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ABSTRACT

We consider the problem of non-stationary reinforcement learning (RL) in the
infinite-horizon average-reward setting. We model it by a Markov Decision Process
with time-varying rewards and transition probabilities, with a variation budget of
Ar. Existing non-stationary RL algorithms focus on model-based and model-free
value-based methods. Policy-based methods, however, despite their flexibility in
practice, are not theoretically well understood in non-stationary RL. We propose
and analyze the first model-free policy-based algorithm, Non-Stationary Natural
Actor-Critic (NS-NAC), a policy gradient method with efficient exploration for
change and a novel interpretation of learning rates as adapting factors. We present

~ 1
a dynamic regret of O(|S|2|.A|2 A2T5), where T is the time horizon, and |S], |A|
are the sizes of the state and action spaces. The regret analysis relies on adapting the
Lyapunov function based analysis to dynamic environments and characterizing the
effects of simultaneous updates in policy, value function estimate and environment.

1 INTRODUCTION

Reinforcement Learning is a sequential decision-making framework where an agent learns optimal
behavior by iteratively interacting with its environment. At each timestep, the agent observes the
current state of the environment, takes an action, receives a reward, and transitions to the next state.
While RL has traditionally been studied in stationary environments with time-invariant rewards and
state-transition dynamics, this may not always be the case. Consider the examples of a carbon-aware
datacenter job scheduler that tracks the dynamic electricity prices and local weather patterns (Yeh
et al., 2024) and recommendation systems with evolving user preferences (Chen et al., 2018). Time-
varying environments are also observed in inventory control (Mao et al., 2024), healthcare (Chandak
et al., 2020), ride-sharing (Kanoria & Qian, 2024), multi-agent systems (Zhang et al., 2021a).

Motivated by these applications, we consider the problem of non-stationary reinforcement learning,
modeled by a Markov Decision Process with time-varying rewards and transition probabilities, in the
infinite horizon average reward setting. While many works consider discounted rewards (Chandak
et al., 2020; Igl et al., 2020; Lecarpentier & Rachelson, 2019), the more challenging average-reward
setting is vital in representing problems where the importance of rewards does not decay with time,
such as in robotics (Mahadevan, 1996; Peters et al., 2003) or scheduling workloads in cloud computing
systems (Jali et al., 2024; Liu et al., 2022). The key challenges for an agent operating in a dynamic
environment are learning an optimal behavior policy that varies with the environment, devising an
efficient exploration strategy, and effectively incorporating the acquired information into its behavior.

Current algorithms designed for non-stationary MDPs in the average reward setting can be classified
broadly into model-based and model-free value-based methods. Model-based solutions incorporate
sliding windows, forgetting factors, and confidence interval management mechanisms into UCRL
(Cheung et al., 2020; Ortner et al., 2020; Gajane et al., 2018; Jaksch et al., 2010). Model-free value-
based methods assimilate restarts and optimism into Q-Learning (Mao et al., 2024; Feng et al., 2023)
and LSVI (Zhou et al., 2020; Touati & Vincent, 2020). A significant gap in the literature is the absence
of model-free policy-based techniques for time-varying environments. The inherent flexibility of
policy-based algorithms makes them suitable for continuous state-action spaces, facilitates efficient
parameterization in high-dimensional state-action spaces, and enables effective exploration through
stochastic policy learning (Sutton & Barto, 2018).
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Our Contributions. We make the following contributions to tackle the problem of non-stationary
reinforcement learning in the challenging infinite-horizon average reward setting.

1. We propose and analyze Non-Stationary Natural Actor-Critic (NS-NAC), a policy gradient al-
gorithm with efficient exploration for change and a novel interpretation of learning rates as
adapting factors. To the best of our knowledge, this is the first model-free policy-based method
for time-varying environments.

~ 1 1,1
2. We present a dynamic regret bound of O (|S |Z|A|2 A%Tg) under standard assumptions where

T is the time horizon, A represents the variation budget of rewards and transition probabilities,
|S||.A| is the size of the state-action space and O(-) hides logarithmic factors.

3. We address theoretical challenges presented by non-stationarity by adapting the Lyapunov function-
based analysis of NPG methods in the stationary case to dynamic environments; characterizing
the effects of simultaneously evolving actor policy and changing environment on the value
function estimates and average reward; and amending the martingale analysis that characterizes
the distribution of state-action observations to incorporate time-varying transitions.

2 RELATED WORK

Non-Stationary RL. Solutions to the non-stationary RL problem can be categorized into passive
and active methods. Active algorithms are designed to actively detect changes in the environment in
contrast to passive ones which implicitly adapt to new environments without distinct recognition of the
change. While we focus our attention on passive techniques with dynamic regret as the performance
metric in this work, a comprehensive survey can be found in Padakandla (2021) and Khetarpal et al.
(2022). Model-based solutions in the infinite horizon average reward setting incorporate into UCRL a
sliding window or a forgetting factor for piecewise stationary MDPs (Gajane et al., 2018), variation
aware restarts (Ortner et al., 2020) and a bandit based tuning of sliding window and confidence
intervals (Cheung et al., 2020) for gradual or abrupt changes constrained by a variation budget and
pessimistic tree search for Lipschitz continuous changes (Lecarpentier & Rachelson, 2019).

In the episodic setting, model-free value based methods assimilate restarts and optimism into Q-
Learning (Mao et al., 2024), LSVI (Zhou et al., 2020; Touati & Vincent, 2020) and sliding window
and optimistic confidence set based exploration into a value function approximated learning (Feng
et al., 2023). Further, in the episodic setting, Lee et al. (2024) proposes strategically pausing learning
as an effective solution to non-stationarity with forecasts of the future. Wei & Luo (2021) proposed
an algorithm agnostic black-box approach that finds a non-stationary equivalent to optimal regret
stationary MDP algorithms. Further, Mao et al. (2024) presents an information theoretic lower bound
on the dynamic regret for both the episodic and infinite horizon settings and Peng & Papadimitriou
(2024) captures the complexity of updating value functions with any change. We note the distinction
between the scope of this work and the body of research on adversarial MDPs which often allow for
only changes in rewards, study the static regret and work with full information feedback instead of
bandit feedback. We direct readers to Appendix J for a table of comparison of regret bounds across
the above mentioned algorithms which we omit here due to a paucity of space.

Non-Stationary Bandits. A precursor to non-stationary RL, the multi-armed bandit problem with
time-varying rewards was first proposed in Garivier & Moulines (2008). Solutions include UCB with
a sliding window or a discounting factor (Garivier & Moulines, 2008), UCB with adaptive blocks
of exploration and exploitation (Besbes et al., 2014), Restart-Exp3 (Besbes et al., 2014), Thompson
Sampling with a discounting factor (Raj & Kalyani, 2017) and bandit based sliding window tuning
(Cheung et al., 2019). Further, while most existing works assume arbitrarily (constrained by variation
budget) changing reward distributions and achieve @(TQ/ 3) regret, (Jia et al., 2023) achieves an
improved O(T3/%) regret when the reward distributions change smoothly. Recent work by Liu et al.
(2023a) points out ambiguities in the definition of non-stationary bandits and how the dynamic regret
performance metric causes over-exploration, and Liu et al. (2023b) proposes, predictive sampling, an
algorithm that deprioritizes acquiring information that loses usefulness quickly.

Policy Gradient Algorithms for Stationary RL. Wau et al. (2020) was the first to provide a finite
time analysis of the two timescale Advantage Actor-Critic (A2C) with function approximation to a
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stationary point in the average reward, Markovian sampling setting and Chen & Zhao (2023) further
improved its rate by leveraging a single timescale algorithm. Convergence to global optima of A2C
was analyzed in Bai et al. (2024); Murthy et al. (2023) which use a two loop structure with the inner
loop estimating the state-action value function and outer loop learning the policy. Further, Lazic et al.
(2021) characterized global convergence and regret for the Politex algorithm which combines a mirror
descent update with experience replay. Natural Policy Gradient (NPG) was analyzed in the discounted
reward case in Agarwal et al. (2021); Khodadadian et al. (2021) and with entropy regularization in
Cen et al. (2022). NPG in the average reward setting was characterized in Even-Dar et al. (2009);
Murthy & Srikant (2023) which assume access to information of the exact value functions. The most
relevant to our work is the Natural Actor Critic (NAC) algorithm where the actor learns the policy by
natural gradient ascent and critic estimate the value function. Khodadadian et al. (2022) establishes
an (7)(1 /T*/6) rate convergence of the discounted reward tabular NAC to the global optima. Average
reward setting with (compatible) function approximation is considered in Wang et al. (2024) and
an (5(1 JT'/3) rate convergence to the global optima is derived. A more detailed review of the
Actor-Critic algorithm literature can be found in Section 1.2, Wang et al. (2024).

3 PROBLEM SETTING

In this section, we first present preliminaries of a Markov Decision Process and the Natural Actor
Critic algorithm in a stationary environment. We then introduce the problem of non-stationary
reinforcement learning, where the MDP has time-varying rewards and transition probabilities, and
define dynamic regret as a performance metric.

Notation. Standard typeface (e.g., s) denote scalars and bold typeface (e.g., r, A) denote vectors
and matrices. || - ||oc denotes the infinity norm and || - ||2 denotes the 2-norm of vectors and matrices.
Given two probability measures P and Q, drv (P, Q) = 3 [, \P (dz) — Q(dx)] is the total variation

distance between P and @, while Dxr,(P||Q) = [, P + P(dx)log a( dz; is the KL-divergence. For two

sequences {a, } and {b, }, a, = O(b,,) represents the existence of an absolute constant C' such that
an, < Cby,. Further O is used to hide logarithmic factors. |S| denotes the cardinality of a set S. Given
a positive integer 7', [T'] denotes the set {0,1,2,--- , T — 1}.

3.1 PRELIMINARIES: STATIONARY RL

Markov Decision Process. Reinforcement learning tasks can be modeled as discrete-time Markov
Decision Processes (MDPs). An MDP is represented as M = (S, A, P,r) where S and A are,
respectively, finite sets of states and actions, P € RISIAIXIS] is the transition probability matrix, with
P(s'|s,a) € [0,1], for s,s' € S,a € A, and r € RISIMI is the reward vector with individual entries
{r(s,a)} bounded in magnitude by constant U, > 0. An agent in state s takes an action a ~ 7(:|s)
according to a policy 7, where for each state s, 7(-|s) is a probability distribution over the action
space. The agent then receives a reward r (s, a) and transitions to the next state s’ ~ P(-|s,a). We
denote the policy by € RIS which concatenates {7 (:|s)}s. In a stationary MDP, the transition
probabilities P and the rewards r are time-invariant.

Average Reward and Value Functions. In this work, we consider the average reward setting
(instead of discounted rewards), which is essential to model problems where the importance of
rewards does not decay with time (Peters et al., 2003; Liu et al., 2022). If the Markov chain is ergodic,
the average reward received by an agent over time following policy 7 converges to

= IEs~cl""~1:’(~),a~71'(<|s) [7"(8, a)] ) (H

where d™¥ is the stationary distribution over states induced by policy 7 and transition probabilities
P. The relative state-value function defines the overall reward (relative to the average reward)
accumulated by policy 7t when starting from state s as

VT(s):=E lz (r(se,ar) —J™) ‘so = s] ,

t=0



Under review as a conference paper at ICLR 2025

where the expectation is over the trajectory rolled out by a; ~ 7(:|s¢) and sg11 ~ P(-|s¢,aq).
Similarly, the relative state-action value function defines the overall reward (relative to the average
reward) accumulated by policy 7 when starting from state s and action a as

oo

Q™ (s,a) :=E Z (r(sg,ar) — J™) |so = s,a0 = a

t=0

Natural Actor-Critic. The goal of an agent is to find a policy that maximizes the average reward

7w =max J" = max B, grp () qun(|s) (S, @)] -

Here, we consider the actor-critic class of policy-based algorithms. While actor-only methods are at
a disadvantage due to inefficient use of samples and high variance and critic-only methods are at a
risk of the divergence from the optimal policy, actor-critic methods provide the best of both worlds
(Wu et al., 2020). An actor-critic algorithm learns the policy and the value function simultaneously
by gradient methods. Further, the natural actor-critic leverages the second-order method of natural
gradient to establish guarantees of global optimality (Bhatnagar et al., 2009; Khodadadian et al.,
2022). The actor updates the policy by performing a natural gradient ascent (Martens, 2020) step

T+ BEL'VIT,  where Fpi=E  gnr()ann(ls) |VIogm(als) (Vlogﬂ'(a|s))T] . (@

F is called the Fisher Information matrix. The gradient of the average reward is given by the Policy
Gradient Theorem (Sutton & Barto, 2018, Section 13.2) as

VJT = ESNd‘”'P(‘),CLNTF("S) [Qﬂ-(sa a)VIog 71-(CL|S)} :

The critic enables an approximate policy gradient computation by estimating the Q-Value function
Q™ (s, a) using TD-learning as

Q(Sv a) A Q(S, a) +a [T‘(S, a) —n+ Q(5l7al) - Q(S7 a)] )

where s’ ~ P(:|s,a), a’ ~ w(-|s’), and 7 is an estimate of the average reward J™. While we consider
the tabular setting in this work, actor-critic algorithms can be extended to the function approximation
case by parameterizing the policy and/or value function.

3.2 NON-STATIONARY RL

In this work, we study reinforcement learning with time-varying environments. The MDP is modeled
by a sequence of environments M = {M; = (S, A, P;, 1)}/, with time-varying rewards {r;}
and transition probabilities {P;}. At each time ¢, the agent in state s; takes action a;, receives a
reward 7¢(s¢, at ), and transitions to the next state s¢11 ~ P:(+|s¢, at). The cumulative change in the
reward and transition probabilities is quantified in terms of variation budgets Ar r and Ap 1 as

T-1 T-1
Arr = lris1=rilloos Apr =Y [IPiy1—Pille, Ar=Agr+Apr. ()
t=0 t=0

Note that while the overall budgets Ar 7, Ap may be used as inputs by the agent, the variations at
a given time ¢, ||rt41 — rtlloo and ||Pi41 — P00, are unknown.

We denote the long-term average reward obtained by following policy 7r; in the environment M, by
I = EgogmiPo(yamn(s) [11(5,a)] -
Further, the state and state-action value functions at time ¢ are solutions to the Bellman equations

Vit (s) = Z m(a|s)QF(s,a) and Q7t(s,a) =r(s,a) — J + Z Py(s'|s,a)V™ ().
acA s'eS

The goal of the agent is to maximize the time-averaged reward Z;F:_Ol (8¢, at)/T. We measure the
performance using an equivalent metric called the dynamic regret defined as

T-1
Dyn-Reg(M,T) :=E lz JTt - rt(staat)] ) “)

t=0

4
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where 7} = argmax, J/* is the optimal policy in the environment M, = (S, A, Py, r;) at time

t. The optimal average reward .J; ¢ associated with 7w} can be computed by solving the linear
program (28) described in Appendix G. The notion of dynamic regret has also been used in several
recent works (Cheung et al., 2020; Fei et al., 2020; Zhou et al., 2020; Mao et al., 2024; Feng et al.,
2023). It is more challenging to analyze than static regret, which compares the cumulative reward
collected by an agent against that of a single stationary optimal policy (Even-Dar et al., 2009; Touati
& Vincent, 2020). Further, in applications such as robotics or network routing, where the underlying
environment evolves over time, a single best action/policy in hindsight might not be a realistic
benchmark. On the other hand, dynamic regret provides a more useful performance measure.

Challenges due to Non-Stationarity. When running policy-gradient methods in stationary RL, the
policy evolves to efficiently learn a fixed environment (P, r). However, in non-stationary case, the
environment (P, r;) also changes over time. Therefore, the agent chases a moving target, namely,
the time-varying optimal policy 7}, resulting in the following unique challenges.

» Explore-for-Change vs Exploit: The agent needs to explore more aggressively than in the stationary
setting to adapt to the changing dynamics. As an example, a sub-optimal action at the current
timestep may become optimal at a later timestep, necessitating re-exploration. This is in sharp
contrast to stationary RL, where sub optimal actions are picked less often as time progresses.

* Forgetting Old Environments: The policy and value function estimates must evolve quickly lest
they might become irrelevant once the environment changes significantly. However, observations
are noisy and the agent needs to collect multiple samples to obtain confident estimates. Hence, the
agent has to carefully balance the rate of forgetting the old environment versus learning a new one.

4  ALGORITHM

In this section, we present Non-Stationary Natural Actor-Critic (NS-NAC), a two-timescale natural
policy gradient method with an entropy based exploration for change and step-sizes designed to
carefully balance the rate of forgetting the old environment and adapting to a new one.

Algorithm 1 Non-Stationary Natural Actor-Critic (NS-NAC)

1: Input time horizon 7, variation budgets A 7, Ap r, projection radius R

2: Set actor step-size 3, critic step-size «, average reward step-size -y and exploration parameter e

3: Initialize policy mo(als) = \%\I’ value function Qo(s,a) =0, forall s € S,a € A, and average
reward estimate 1y = 0

4: Sample so ~ Unif{0, 1,...,|S| — 1}, take action ag ~ mo(+|so)
5. fort=0,1,2,..., 7 —1do
6:  Observe reward r¢(s¢, as), next state s;y1 ~ Py(+|s¢, ar), and take action az1 ~ 7¢(+[S¢41)
7o 1 e oy (re(se, a8) — ) > Average Reward estimate
8 Qui1(st,ar) < Qu(se, ar) + are(se, ar) — me + Qe(Se41, arg1) — Qu(se, ar)]
9:  Qit1 + gy B [Qit1] > Critic update
. _ (i(a]$))'~P€ exp(BQ¢(s,a))
10:  mrq(als) = S (e (@) exp(B0: (5.a7))° forall s,a > Actor update
11: end for

The NS-NAC algorithm seeks to maximize the total reward received over the time horizon 7', given
the variation budgets Ar r and Ap . The pseudocode is presented in Algorithm 1. At timestep ¢,
7 denotes the tabular policy with 7(-|s), such that 7(a|s) > 0, forall e € A, and ) 7(a|s) = 1,
forall s € S. w; = argmax,_ J; is the optimal policy in the environment M,. The estimate of the
tabular state-action value function QT is denoted by Q; € RISl Note that there exists a unique
solution to the Bellman equations Q}'* € F where F is the subspace of orthogonal to the all ones
vector 1 (Lemma 1, Zhang et al. (2021b)). 7; denotes the estimate of the average reward J;"*. We
consider the class of tabular softmax policies, parameterized by 6 € RISHAL for all s, a, with

7(als) =

exp s q

> expbsa
a’eA
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Note that while we consider the tabular formulation in this work for the ease of presentation of regret
analysis, the NS-NAC can also be extended to the function approximation setting.

To ensure the algorithm sufficiently explores for change, we consider an entropy based incentive for
the actor choosing diverse actions as

max J;* + Eggep, o [H(m(+]s))] = maxE, gwpi gum(|s) [12(5,a) — €log w(als)]

where € controls the weight of exploration and H(7(:[s)) = Eqx(.|s)[— log 7 (a|s)] is the entropy
of policy 7 (|s). At time ¢, the actor (slower timescale) takes a natural gradient ascent step towards
the optimal policy in environment M, by the Policy Gradient Theorem (Sutton & Barto, 2018) as
Ori1 = 01+ BFLE, o [(QT(5,0) — )Vlogm(als)] = (1 - Be)8, + SQ"
where [ is the actor step-size, and F is the Fisher Information matrix (2). In the absence of
knowledge of the exact natural gradient, the actor uses an estimate to update the policy as
0111 < (1 — Be)0: + SQy. (5)
With the softmax parameterization, this is equivalent to the update equation in line 10.

The critic (faster timescale) estimates the tabular state-action value function of the current policy
¢ as Q; using TD-Learning (line 8) with step-size «. The projection step in line 9, where E is
the subspace orthogonal to the all ones vector 1 and IIg,, g [x] := arg M|y <R, .yek [x = yll2,

estimates the unique solution to the Bellman equations in the average reward setting' (Zhang et al.,
2021b). The average reward estimate 7, is updated (line 7) with step-size . Using a two timescale
technique with o > 3, NS-NAC thus enables the actor to chase the moving target 7} facilitated by
the critic updates of the value function estimates which adapt to the changed data distribution. In the
stationary RL case, this change in data distribution is induced solely by the evolving actor policy,
while in non-stationary RL, the time-varying environment (P, r;) further exacerbates it. Further,
as Theorem 1 suggests, a careful selection of the step-sizes enables NS-NAC to balance the rate of
forgetting the old environment versus learning a new one.

5 REGRET ANALYSIS

In this section, we set up notation and assumptions, state our main result establishing an upper bound
on the dynamic regret and present a sketch of the proof.

5.1 ASSUMPTIONS

Notation. We denote an observation O; = (s, ay, S¢41, at-&-l)-f If d™+F¢(.) is the stationary
distribution induced over the states, we define the matrices A (O,), APt ¢ RISIMIXISIIAI 55
=1, if (s¢,a0) # (St41,ae41),7 = = (54, a4)
A(Oy)ij =11, if(se,a0) # (Se41,ae41),0 = (5¢,a), 5 = (8641, @p41)
0, else
AP = B gme () amre (5),5/~P (Js.0) 0/ (s7) [A(8, 0,8 a")]
If D™Pt = diag (d™F*(s)m(als)) and 1 is the all ones vector, then the TD limiting point satisfies
D7 P (v, — J7'1) + AT P QP = 0. (6)
Assumption 1 (Uniform Ergodicity). A Markov chain generated by implementing policy 7 and
transition probabilities P is called uniformly ergodic, if there exists m > 0 and p € (0, 1) such that
drv (P(S-,— € sp = s),d’r’P) <mp"Vr>0,s€S,

where d™F is the stationary distribution induced over the states. We assume Markov chains induced
by all potential policies 7 in all environments Py, t € [T, are uniformly ergodic. Further, if 7
denotes the optimal policy for the environment My = (S, A, Py, ry), there exists C > 0 such that

. dﬂ‘,Pt/ (S)
C= s,ilt,I%’fﬂr dmi Pt (S)

'See Definition 1 and the following discussion on how to choose Rg.

> 0.
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Definition 1. Under Assumption 1, for all potential policies 7 in all environments Py, t € [T, the
matrix A™Pt is negative semi-definite. Further, define its maximum non-zero eigenvalue as —\.

Assumption 1 is standard in literature (Murthy & Srikant, 2023; Wu et al., 2020; Zou et al., 2019).
Further, observe that Q; € E due to the projection operation in line 9 of Algorithm 1 and it is
an estimation of Qf'* € F (Lemma 1, Zhang et al. (2021b)). Note that this fact is utilized in the
analysis of the critic estimation error. Also note that Definition 1 follows from Lemma 2 in Zhang
et al. (2021b) and we set the projection radius Rg = 2UgA ™" in line 9 of Algorithm 1 because

I (A’”’Pt)T l2 < A~! where { represents the pseudo-inverse.

5.2 BOUNDS ON REGRET

The dynamic regret achieved by Algorithm 1 can be upper bounded as follows.

Theorem 1. If Assumption 1 is satisfied and the step-sizes and exploration parameter are chosen as
0 < a,B,v,e < 1/2in Algorithm I, then we have

T-1 .
Z Jtﬂ-t — Tt(sh at)‘|
t=0

<0(3)+0(1)+0 (ﬁ) +0 (%) +0(rvE)+0 (%) +@(Tﬁ)+@<\ﬁ)

Bounds cumulative change

Dyn-Reg(M,T) =E

Error in Average Reward Estimate (1) at Critic

Effect of initialization and exploration in policy over horizon T
A A (ArT a A ~ 1 1
+ O(Tva) +0(%5)+0(Ar)+0(VAIT) +0 (AT (2 4 1)),
—— «a v

Bounds cumulative

change in critic estimates Error due to Non-Stationarity

. (N
where Ar = Apr + Apr, O(+) hides the constants and logarithmic dependence on the time
horizon T, and N is a parameter in the analysis which divides the total horizon T into N segments
of equal length. Our results hold for any 1 < N < T and when N, together with o, 3,7 , €, are

optimized, we get o = v* = (%)2/9, g = (%)3/9, N* = Agw/ng/g, e = (%)4/9. The

resulting regret (with explicit dependence on the size of the state-action space |S|, |A|) is

Dyn-Reg(M.T) < O (||} | AJF ALTE) ®)

We provide a sketch of the proof in Section 5.3 and the full proof in Appendix C.

Effect of Non-Stationarity. The variation budget A1 (3) represents the extent of non-stationarity of
the environment. In Theorem 1, as the variation budget increases, so do the optimal step-sizes and
exploration parameter and the regret incurred (8). This observation is consistent with the intuition that
in a rapidly changing environment, the algorithm must adapt quickly and explore more (hence, larger
step-sizes and exploration parameter). However, as a result, the algorithm cannot exploit its current
policy and value-function estimates, which soon become outdated (hence, higher regret). Also, in
environments with larger state/action spaces, the agent requires proportionately more samples to
detect changes and learn a good policy.

Next, we compare the upper bound in Theorem 1 with the following lower bound on dynamic regret.

Theorem 2 ((Mao et al., 2024), Proposition 1). For any learning algorithm, there exists a non-
stationary MDP such that the dynamic regret of the algorithm is at least Q(|S|*/3|.A|'/3 A;/ S2/3),

Gap between Bounds. To the best of our knowledge, this is the first bound on dynamic regret for
model-free policy-based algorithm in the infinite horizon average reward setting. We conjecture that
the gap between the bounds results from a slack in the analysis of the underlying Natural Actor-Critic
(NAC) algorithm. The best-known regret bounds for NAC for an infinite horizon stationary MDP in
the (compatible) function approximation setting with a single timescale algorithm is @(Tz/ 3) (Wang
etal., 2024), and tabular setting with a two timescale algorithm is O(7"%/) (Khodadadian et al., 2022).
A single timescale analysis is considerably more intricate, and we opt for a two-timescale algorithm
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in our work to effectively characterize non-stationarity, which is the focus of this work. The analysis
of the actor involves the norm of the critic estimation error ||Q: — Q7| (Proposition 1) whereas
guarantees for critic establish a bound on norm-squared of the error [|Q; — Q7' || (Proposition 2).
This mismatch, which underlies the sub-optimality of the current best stationary infinite horizon NAC
analysis, becomes even more pronounced in non-stationary environments.

Moreover, the infinite horizon setting (only one sample per environment is available) is harder than
the episodic setting (environment remains stationary during the episode). Also, note that model-free
policy-based methods for non-stationary RL are more challenging in the infinite horizon setting due to
the absence of high probability bounds for policy gradient algorithms which the model-based methods
leverage. Further, the |S]| z |A|% dependence occurs due to the use of a tabular policy and state-action
value function. These terms can be improved using a low-dimensional function approximation, a
technique amenable to integration into the actor-critic framework (Chen & Zhao, 2023; Wang et al.,
2024; Wu et al., 2020).

5.3 PROOF SKETCH

We now present a sketch of the proof where we address the following theoretical challenges that non-
stationarity presents in NS-NAC. (a) Stationary environment NAC analyses use the KL-divergence to
the optimal policy as a Lyapunov function. What is an appropriate function for dynamic environments?
(b) How do the simultaneously varying environment and evolving policy affect the average reward
and state-action value function? (c) How do the time-varying transition probabilities affect the
martingale-based argument used to analyze the Markovian noise ?

Regret Decomposition. We start by decomposing the dynamic regret as

T-1 T—1 T—1
T ot - -
B> 05 —ri(sea)| = B> JT =I5 +E | I —rilsna)|, 9
t=0 t=0 t=0
Difference of optimal versus ., Difference of actual versus
1*  actual average reward ' instantaneous reward

where I characterizes the difference between the average reward of the actual policy 7, at time ¢
relative to the optimal policy 7r;. The second term I analyzes the gap between the average reward
and the actual rewards received due to the stochasticity of the Markovian sampling process.

Actor (Proposition 1). We first bound I; in (9) by adapting the Natural Policy Gradient analysis for
average-reward stationary MDPs in Murthy & Srikant (2023) to non-stationary environments. NPG
in the stationary case is analyzed by characterizing the drift of the policy towards the optimal policy
using an appropriate Lyapunov function. In non-stationary case we innovatively decompose and
analyze the change in the environment from the drift of the policy as follows. We start by dividing
the total horizon 7" into N segments of length Ty each and break down I; as

N*l(n“l‘l)TO_l . * *
n=E> (57 = 7mr) + (s =)+ Uik =)
—

n=0 j=nTy

. optimal avg. reward I,: &ve reward 5 avg. 'reward WiFh same

“across two environments 4*sub-optimality policy in two environments
To analyze the drift in the policy, we consider the beginning of each segment as a pseudo-restart
and the environment to be pseudo-stationary. We benchmark the policies learned in each segment

n € [N] against the optimal average reward at the initial time step n7y i.e. J:QTC)TO. > We bound
I, by a mirror descent style analysis for each segment n with the Lyapunov function adapted to

non-stationarity as

W(r;) =D d™50 "m0 (s) Dyer, (g, (1) |5 (-]s)).

The term characterizing the difference in value functions at consecutive timesteps HQ:ﬁ’l — Q7| is the
cause for the O (A;/STWS (é + %)) term (see I4, I5 in Proposition 2).

3Note that we say pseudo-stationary because we characterize the effect of change in the environment
separately.
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In addition, since NS-NAC does not have access to the exact value functions Q;-rj, 1, also depends
on the critic estimation error [|Q}7 — Q;[oc-

We analyze the change in the environment next. We bound /3, the difference in the optimal average
rewards in two different environments, in terms of the corresponding changes in the environment
lrj —rp1, || oo and |P;—P,1, || oo (Lemma G.4) by a clever use of the linear programming formulation
of an MDP. Similarly, we deftly bound I, the difference in average rewards when following the same
policy 7r; in two different environments, in terms of the change in the environment (Lemma G.5).
Note that IV is a parameter that balances the accounting of the effects of the changing environment
and the drifting policy and we optimize it in Theorem 1 to minimize regret.

Critic (Proposition 2). We bound the critic estimation error 1, = Q; — Q['* by adapting the
critic analysis used in stationary MDPs (Wu et al., 2020; Khodadadian et al., 2022) to non-stationary
environments. We decompose the error as

hes1ll3 S (1= )lleell3 + ot [(re(Or) — ITH(O:) + A(O)QT") + (A(Or) — A™0F) 4y

Is:Error due to Markov noise

+a (JTH(0r) —me(Or))? +§ 1QF — QT I3+ a?[|lre (Of) — me(Of) + A(O)Qull5 . (10)

I7:Avg. reward estimation error Is:Value function drift Ig:Variance term

I is the error induced by the Markovian noise which is analyzed leveraging the auxiliary Markov
chain described below. I7 describes the error due to an inaccurate estimation of the average reward
which is bounded below. I3, the change in the true value function is caused by drifting policies and
environments, and can be neatly bounded in terms of the change in policy, rewards and transition
probabilities (Lemma G.8). Finally, I is the variance term.

Bound on Markovian Noise. Given time indices t > 7 > 0, consider the auxiliary Markov chain
starting from s;_, constructed by conditioning on F;_, = {s;—-, w¢—,_1, P;_, } and rolling out by
applying w1, P, as

Tt—7—1 Tt—7—1

P, - Tp—r—1_ v~ .
St—r ———2 Qt—7 —7 St—741 — 7 Qt—741 —7 St ag St+1 At41-

Recall that the original Markov chain is

71 Py T 1 P, T
Steqr — 2 Qt—7 —— St—741 ——7 Qt—741 7 St — > At —> St41 —7 Qt41.
This method enables us to characterize properties of the original Markov chain in comparison
to the auxiliary chain as dry (P(O; € «|Fi—.), P(O; € |Fi—-)). We do this by bounding the
effects of drifting policies and transition probabilities in the original chain and leveraging uniform
ergodicity in the auxiliary chain. While prior works use auxiliary Markov chains for stationary
environments (Zou et al., 2019; Wu et al., 2020; Wang et al., 2024), ours is the first adaptation to a
non-stationary environment. Observe that the time-varying transition probabilities P; add an extra
layer of complexity, unlike the stationary case where only the policy changes over time.

Average Reward Estimation Error (Proposition 4). To bound /7 in (10), i.e., the error in the
average reward estimate ¢; = 7 — J;'*, we can decompose the error as

TC¢ 1 Tt TTt41
¢?+1 S ’V)¢t2 + (re(Or) = Ji )2 +; (Ji = Jt+1+ )2 +72(Tt(ot) - m)27
—_——

I10:Error due to Markov noise 1, .Avgreward at consecutive I12:Variance term
11 time steps

where ~ is the step-size (line 7, Algorithm 1). I is the error induced by Markovian noise and is
analyzed using the auxiliary Markov chain construction. I; quantifies the difference in average
rewards at consecutive timesteps, and is neatly bounded in Lemma G.5 in terms of the corresponding
changes in policies, rewards, and transition probabilities. /1o is again the variance term.

Finally, I5 in (9) characterizes the difference between the average reward and the instantaneous
reward at any time, and is analyzed in Proposition 3 using the auxiliary Markov chain to bound the
bias occurring due to Markovian sampling. This concludes the proof sketch.
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Figure 1: Performance of NS-NAC and baseline algorithms across various settings. (a) Dynamic
regret for a single instance with 7' = 25 x 10 steps. Log-log plots showing the effect of varying: (b)
time horizon T, (c) variation budget A, (d) number of states |S|, and (e) number of actions |.A|.

6 SIMULATIONS

We empirically evaluate the performance of our algorithm, NS-NAC, on a synthetic non-stationary
MDP (see Appendix K), comparing it with three baseline algorithms: SW-UCRL2-CW (Cheung et al.
(2023)), Var-UCRL2 (Ortner et al. (2020)), and RestartQ-UCB (Mao et al. (2024)). SW-UCRL2-CW
is a model-based algorithm that adapts to non-stationarity by maintaining a sliding window of recent
observations, applying extended value iteration, and adjusting confidence intervals to track changing
dynamics. Var-UCRL2, also model-based, adjusts its confidence intervals dynamically based on the
observed variations in rewards and transitions. RestartQ-UCB, a model-free approach, periodically
restarts Q-learning and resets its upper confidence bounds to adapt to non-stationarity. While there is
a gap between our theoretical analysis of regret and those of the baseline methods, we observe in
simulations that NS-NAC strongly matches their performance. We observe a consistent sub-linear
dynamic regret across all experimental settings: varying time horizon T (fig. 1b), variation budget
Ar (fig. 1c), number of states |S| (fig. 1d), and number of actions |A] (fig. 1e).

7 CONCLUSION

We consider the problem of non-stationary reinforcement learning in the infinite-horizon average-
reward setting and model it as a Markov decision process with time-varying rewards and transition
probabilities. We analyze the first model-free policy-based algorithm, Non-Stationary Natural Actor-
Critic (NS-NACQ). It is a two-timescale natural policy gradient based method that utilizes learning
rates as adapting factors and entropy based exploration to learn the time-varying optimal policy.
NS-NAC achieves a dynamic regret that is sublinear in the time horizon thus theoretically validating
policy gradient methods often used in practice in continual non-stationary RL. Directions for future
work include designing parameter-free algorithms that do not require prior knowledge of the variation
budget. Further, we believe a tighter regret bound can be obtained by a more refined analysis of the
norm of the policy gradient using by leveraging the Fisher Information preconditioner.

10
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A NOTATION

Variation Budgets
T—-1 t
AR,T = Z ||I‘t+1 - rt”oo;AR,th%»l,t = Z ||I‘z - ri71||ooa
t=0 i=t—714+1
T-1 t
AP,T = Z ||Pt+l - Pt||oo;AP,t—T+1,t = Z ||P1 - Pi—l”ooa
t=0 i=t—714+1

Ar =Arr+ Apr.

The critic update (line 8 in Algorithm 1) can be defined in vector form using the following notation.
Note that we use a one-to-one mapping o : S x A — {1,2,...,|S||A|}, to map state-action pairs
(s,a) € S x A to vector/matrix entries. However, for ease of notation, we denote the index of each
entry by (s, a), instead of the more accurate o (s, a).

O¢ = (8¢, Qt, St41, A 41)

rt(Ot) = [O’ N 70’ rt(st’ at); 0’ N ’O]T c R‘SHAl
0e(Og) = [0; -+ 3030+ ;0] € RISIA
IT(O0) = (05 50;J75 05+ 50] T € RISIA
A(0) € RISIAXISIAL - guch that
-1 if(s,a) # (s',d),i =7 =(s,a)
AO)ij = Als,as, )iy =41 if (5,0) 7 (5',")yi = (5,0),] = (', )
0 else

As aresult, we get the critic update

Qi1 = H [Q: + a(re(Or) = m:(Or) + A(O) Q1)) -

Rq
For the purpose of analysis, we define the following quantities.
Aﬂ7p = Eswd">P(~),a~1‘r(-|5),s’~P(-\s,a),a’w‘n’(-\s’) [A(S? a, SI’ al)]
Q™Pr = Q associated with 7, P, r

JePr — Z d™P (s) Z m(als)r(s,a)

S a
P, =Q, — Qf" (Error in the value-function estimate)
L(m,P,r,,0) =" (r(0) = I™P7(0) + A(0)Q™"") + 47 (A(0) — A™F)
Gy =m — J7t (Error in the average reward estimate)

A(m,P,r,n,0) = (n — J™FT)(r(s,a) — J=FT)

Given time indices t > 7 > 0, consider the auxiliary Markov chain starting from s;_ constructed
by conditioning on s;_ ., w;—,_1, P;_, and rolling out by applying 7,_,_1,P;_, as

Tt_r—1 P r Tior—1_ ~ P . . i1 . Py L Ttor—1 ~
St—r at—r St—r4+1 — 7 At—741 ... St a St4+1 At41-

Recall that the original Markov chain is

T—r—1 P,_- 7 Py 11 -1 P, T
St—r at—r St—r41 — 7 Qt—741 A At — St41 —2 Qg41.
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B SYMBOL REFERENCE

Constant First Appearance
Ur Section 3.1
Ug Lemma 1.3

E' = subspace orthogonal to all ones vector 1

C = inf 7T (s)
st/ ari-Pt (s)

m, p
o — 1
M = [log, m 1 +1i
A
§= {E%DKL (7 (s)llwe(-]s))
W1 = (3G%)'/3(4U3)?/*
Wa = (3G%)V/3(4U2)%
Dy = LBy 4 4Ug/|S||A|Bs + 4Ug
D2 = 4UR + LP
D3 = 4URFs + 8U12%
Dy =9L3 B3
Wy = (3)1/3(4[]122)2/3
Wy = (3L3)'/3(4U})*/?

Algorithm 1

Assumption 1

Assumption 1
Lemmal.1l
Definition 1

Proposition 1

Proposition 2
Proposition 2
Proposition 3
Proposition 3
Proposition 4
Proposition 4
Proposition 4
Proposition 4

B, = 4\/ng2 Lemma G.1

By =2Uqg Lemma G.2

B3 = (Fix + Gr + F3+/[S]|A| + F4) B2 Lemma G.9

B, = F»,(2Ug + 2Ug) Lemma G.9

Bs = FoGr Lemma G.9

Bs = Fip + FoGp + F3 Lemma G.9

By = (F5Ly + F7\/|S||A] + F3) B2 Lemma G.10

Bs = F; + F5Lp Lemma G.10

L. = 4Ug(M + 1)/|S[|A] Lemma G.5

Lp =4UrM Lemma G.5

G = 2Uq/|S[JA| Lemma G.6

Gr =22"1/|S||A| Lemma G.7

Gp = (\"'Lp +4Up\~'M + 4UpA\~%(M +1))1/|S]]A] | LemmaG.7
Fix = 2UQLx 4 4UQgGr + 8US(M + 2)|S|| Al Lemma H.3
Fip =2UqLp +4UoGp + 8UZ(M + 1)/|S[[A] Lemma H.3
Fy, =2Ugr + 18Uq Lemma H.4

Fy = 16UUq + 24U3/|S[IA| Lemma H.5

Fy = 8URrUq + 24U \/IS[| A Lemma H.6

Fs =4Up Lemma H.8

Fs =2Up Lemma H.9

Fr; = SUI% Lemma H.10

Fg = 8U12% Lemma H.11
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C REGRET ANALYSIS

Theorem 1. If Assumption 1 is satisfied and the step-sizes and exploration are chosen as 0 <
a, B,7,€ < 1/2 in Algorithm 1, then we have

Dyn-Reg(M,T) =E

T-1 .
S Jr - Tt(Staat)]

t=0

<o(¥)+orn+o(|T)+0(2)+o(rvi) +o(2) +ouvn+o(|[2)

Bounds cumulative change

Error in Average Reward Estimate (1) at Critic

Effect of initialization and exploration in policy over horizon T
A ArT ~ ~ ~ 2 /1 1
+ O0(1va) +0 () +0(ar)+0 (VAIT) + 0 (AYT*2 (2 + 1)),
N— a 5

Bounds cumulative

change in critic estimates Error due to Non-Stationarity

where Ar = Ar 1 + Ap, @() hides the constants and logarithmic dependence on the time
horizon T, and N is a parameter in the analysis which divides the total horizon T into N segments

of equal length. Our results hold for any 1 < N < T and when N, together with o, 3,7 , €, are
optimized, we get o = v* = (%)2/9, g = (%)3/9, N* = qu/ng/g, e = (%)4/9. The

resulting regret (with explicit dependence on the size of the state-action space |S|,|A|) is

Dyn-Reg(M,T) < O (|S\%|A|%A§T%) :

Proof. We start by dividing the total horizon 7" into N segments of length Ty eachi.e. N = [Tlﬂ,
which enables analysis in the non-stationary environment. For simplicity, we assume T' = kT, for
some positive integer k. Decomposing the regret as follows, we have

T—1 .

Z Jtﬂ-t — Tt(St,CLt)
t=0

T-1

S ur g

t=1r

~T)+0 (55) +O (eT) + O (BT)

T-1
Z Jtﬂ-t — ’f't(St,at)‘|

t=1p

<2Ugptr + E +E

T—1
Z JI = Tt(5t7at)]

t=1r

(2@(>+0(

T-1
+2 Y E[IQ - Qx| +E

t=7p

(2(5(1)+(§(AT)+0(5 ) +0(eT) + O (8T)

+o<\/§> +0(var) +0 (%) + 0 (VBT) + 0 (5) + O (viT) + <\ﬁ>

- N 1/342/3 - [ AY372/3
+O(‘/ATT)+O(ATT)+O<T) [Z It —ri(se, ar)

[e7

=

t=17

o(%)+0 ( 1) +0 (1) + O (8T)

Z)m(ﬁnm(j) O (VBr) + ()m(ﬁTH@(ﬁ)
+@(¢ATT)+@(W’)+@<W)+@<5T)+@<AP,T>

a v
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<@(T¢a)+@<\f> +o( 2)+0(TvB) + ( )+@(Tﬁ>+@<\/f)
+0(20) +0(35;) +0(e1) + 0 (Ar) + O (VALT) +O(A1T/1T2/3> +0(A1T/37T2/3)
where (a) is due to Proposition 1, (b) is because > E[[|QT* — Q¢lloo] < D E[IQT — Qull2] <

T2 (S E[|QT — Qt||§])1/2 and Proposition 2, (c) is by Proposition 3 and Ay = Ag 1 + Ap .
We further have 77 = O(log T'). Note that O(-) hides constants and logarithmic terms. O

D ACTOR

The next result bounds the cumulative difference between the average rewards of the optimal policy
7} and that of the current policy 74, in the environment M.

Proposition 1. If Asumption 1 holds, we have

-1
P TA TA
ElZth—th] (2+2GR+C> J\fT (UQ+LP—|—2GP+C> ;T
=0

Error due to Non-Stationarity

T-1
_ log|4| 2UoN BiAT U
+2 3 E[IQF - Qullo] + N AL 20N gy gy BPT U
153 [e C C
t=0 ~——v —~—
N X Bias of Effect of exploration Bounds cumulative  constant

Critic Estimation Error change in policy

Initialization

where Ap p = Z Irr41 — reljoe Apr = Z IPt11 — Ptlloo, C is defined in Assumption 1, and
the total horlzon T is divided into N segments of equal length. The remaining constants are defined
in Appendix B.

Remark. Note that N is an artifact of the proof and does not affect the algorithm. In Theorem I, we
choose N to optimize the regret upper bound.

Proof. We start by dividing the total horizon 7" into N segments of length 7T eachi.e. N = [To]
For simplicity, we assume 1" = kT, for some positive integer k. In each segment (indexed by

n € [N]), we use J:;OT" as an anchor against which to compare the performance of the learned
policies.

T—1
E lz Jr g
t=0

N— 1(TL+1)T(] 1 . o o
<2l X (77 = Tz ) + (T = 7, ) + (g, = I7)

n=0 j=nTp
(TL+1)T0 1 .
Vg 2||r; — Uy + Lp)|P, — P A
Z Z (2[lr; = ranyllc + (Ug + Lp)|P; nTy lloo) + nTo nTo
n=0 j=nTp

b) N—-1(n+1)Tp—1
<> Y (M=l il + (Ug + Le) [Py = Pji]loo)
n=0 j=nTy+1

+E ZZ( nToTO - nTo)

< (To—1) 2Ap7 + (Ug + Lp)Apr) +E | Y Y Joio — gk | (11)

noJ
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where (a) is by Lemma G.4 and Lemma G.5 and (b) is by triangle inequality. We now bound the last
term as

N—-1(n+1)To—1 .
TrnTO Uy
> 2 un =ik
N—-1(n+1)Tp—1

EDIEDY ZZd““o T (5) g, (als) [BQTH, (5,a) — BV ()]

n=0 j= nTO

=3 Z 3 > D dmn P (s)mhy (als) [BQT (s,a) = BV (s) + BQj (s, a) — BQ;(s, )]
n o j s a

> % Yo AT (s)mh (als) [BQR, (s:a) — BQT (s, a) + BV (s) = BV, (5)]
n g s a

XY 530 ST ), als) [5Q] (5, 0) = Y 6) + 551 ~ 55,
DI HELHE

< > Z 5 2 2 T o) (o) [Q (5:0) = BV (5) + Qs (1) = Qs (5,

’n,+1)T0 1
+ Z Z 2GRltnT, — Tjlleo +2GP|Prr, — Pjlloo

= j=nTo

O S LS Y T )i ol
n J s a

log Z;(s) — BV} (3)]

I

j(als))
Iz
+ (TO — 1)(2GRAR,T + 2GPAP,T) (12)

where (c¢) follows from the Performance Difference Lemma G.3, (d) follows from
Lemma G.7 and (e) from the actor update equation (line 10 in Algorithm 1) and Z:(s) =

1 . ; o
FE Y LY S T sy, als) [log T 5QT (5.0) — Q) (5.0)
noj s a ,

I3

> wea(m(d]s) P exp(BQ;(s,a’)). Next, we bound each of I, I, I3. Using Lemma G.1,
we have

L=), Z > TP (s) [logg ] Z oty (als)
n o j s

=1

ﬂ-]+17 ) o ) P,
> | 2 telog A+ Q) — Qo + 222 4 It —mile | eyt — Pl
(13)
Next, we establish a bound on /5 as
1 * miv1(als)
I, =— d™vro PrTo (§)* . (a)s) log —L— 2
2 52222 (), (als) g(ﬁj(a‘s))lfﬁe
1 N — ’I’L+1)T0 1
BZ S S dmme P (s) [D (whay (1) 175 (ls)) — Dxw (wha, (ls)llm i1 (1))
n=0 j=nTy s

%Z > d10 P10 (s) [Dycr, (i, (18) [0, (-19)) = Dicw (7, (1)1 (nnym, )]
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f) 1
szw "0 (5) D, (Wi, (18) [Ty (1))
(9) 1 ELON S A Niog|A] | 2UeN
sz Ty 0 log QUQ/; S ﬁ + 56 (14)

where (f) is because >°, d™ 7o PnTo w1, (als)Belog m;(als) < 0 and non-negativity of KL-
divergence and (g) is due to Lemma H.1. Lastly, I3 can be bounded as

=Y "33 dmn P (st (als) [QF (s,a) — Qs(s.a)]
n o j s a
< H1QT - Qjllse- (15)
nJ

Substituting the bounds on I, I5, Is from (13)-(15) in (12), and then combining with (11), we get the
final result. O

E CRITIC

Proposition 2. If Assumption 1 is satisfied and 0 < v < 1/2, then we have

T—1 2/3 1/3 2/3 1/3
- /1 - - - ALST - [ ALST
Y E[lQ:— Q3] < O (a) +O(Arr)+O(ApT) + 0O (%) +0 <PT2>

«
t=1p \ ,
Effect of

initialization

~ ~ 2 N A2/3T1/3 B A2/3T1/3
roem o (N ro (L) ro(2rr ) yo(2rr
v v? 72 2

Error in Average Reward Estimate (1)) at Critic

(5T)+(9(”32 >+ O(al)

Bounds cumulative
Bounds cumulative change change in critic estimates

in policy over horizon T’

Error due to Non-Stationarity

where (5( -) hides constants and logarithmic terms which can be found in Equation (19) and Ar 1 =
Yico Irest = relloos and Apr = 37,5 [Pir — Pl

Proof. Recall that ¢, = Q; — Q7" and the critic update equation (line 8 in Algorithm 1) can be
expressed in vector form as Qs 11 = Ilr, g [Qt + a (r:(Or) — 1:(Oy) + A(O¢)Q¢)]. Recall the
notations ry, 7, A(Oy), A™F+ J,(O,),T(-), ¢ from Appendix A. We therefore have

[ealls = 1Qisr — QLT3

<NQ: + a(r:(0r) = 1:(0r) + A(0)Qr) — QT I3

= [[pr + @ (re(Or) — me(Or) + A(O1) Q) + - Q'3

< [lell3 + 202, (r1(Or) = ne(O1) + A(oa )
+29] (QF — QYY" +20°|Ir(Or) — me(O1) + A(0)Qelf5 + 21QT — QYT (I3

< [lepe]l3 + 209" (r4(Or) — m(Or) + A(O4) Qs — Am"Pt’l/Jt) + 201p ATHFP e,
+2¢ (QF — QY1) +20°|Ir(Or) — me(Or) + A(O)Qull5 + 21QT — QY113

< lbell3 + 209p, (r4(O1) — mu(O1) + A(O)QT*) + 203h, (A(Or) — Am’Pt) Py + 20ap] AT,
+29, (QF — QIYT") + 202 ||r:(0r) — me(Or) + A(O0)Qell3 +21QF — QY113

<93 + 20T (74, P, vi, 41, Or) + 200p, (I7H(O;) — mi(Oy)) + 2ap,] AT Peap,
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+ 29 (QF' — QYY) + 202 1 (O1) — mu(On) + A(0)Qul3 +21QT — QT 13

(@) _
< |[ll3 + 208 (704, P, v, 9, Or) + 204 [l2 [ I7 (Or) — 0 (On) [ + 209p, AT Feap,
+ 2] 21QT — Q' l2 + 202 [re(Or) — me(Or) + A(O)Qel3 +21Q7 — QLT 113

& 4pul3 + 20T (e, P i, b0, O) -+ 2a4be oI — el — 201953

2 [|QF — QI s + 207 [2(O1) — m(O1) + AONQE +2QF — QT
< (1 20063 + 20T (er, Py w1, 261, ) + 20y ol T — 1y

2 |QF — QT s + 20320k + 2U0)? +2QF — QT2

where (a) is due to Cauchy-Schwarz inequality, (b) follows from Q; — Qf* € E, Lemma 2 of Zhang
et al. (2021b) and Definition 1. Recall that Q, € E due to the projection operation in line 9 of
Algorithm 1 and Q" € E (Lemma 1, Zhang et al. (2021b)). Taking expectation, rearranging the
terms, setting 7 = 7 = min{i > 0/mp’~! < min{A3, a}} and summing over time, we have

Tf AE [[l¢]13]

t=1r
T-1 T-1 T—1
E 2 _ 2
< Z [||1/Jt||22 ||'l/;t+1||2] + Z E[F(Wt7Pt7rt;1/’t7Ot)]+ Z E[|¢t|”¢t”2] (16)
t=1p @ t=17 t=1r
I Iy I3
T-1 g T-1 ™
E ™ t4+1 E T t+11|2
+ Z [Hd’t”?”Qt Qt+1 ||2] —|—a(2UR +2UQ)2(T—TT) + Z [HQt Qt+1 ||2] )
t=1r « t=11 «
I4 I5

‘We now bound each of the terms starting with the first term as

1, — Bl 3 — Jwrlg) _ 2U5

2a e
By Lemma G.9, we have
T-1
I, < Z BsB(tr + 1)* + Baatr + BsARgt—rpi1,t + BeTrApy—rpi1t
t=1r

< B3B(tp + 1)X(T — 77) + Byarr(T — 7r) + BstrAp.1 + BeT2Ap .

By the Cauchy-Schwarz inequality, we have

T-1 T-1 2 s 1/2
< 3 \EGENw3 < (Z wa}) (Z E[nwtn%]) ,

t=1p t=11 t=1r
where ZtT:_TlT [E[¢?] can be further bounded using Proposition 4.

We now upper bound the difference in state-action value function at consecutive timesteps as follows.
For timesteps with small changes in the environment, we use Lemma G.8, and for timesteps with
large changes in the environment, we use a naive upper bound. Define the set of timesteps T¢ = {t :
[ri+1 — rilloo < Op, [[Pry1 — Pello < dp}

= (c)
SE[IQF - Qi3] < D E[IQr — Qi + Y 4U3
o—— teTo t¢Tq

(d)
< Y 3GH6% +3GH0p +3GB3A + Y AU
teTq t¢To
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4UQ22AR,T n 4U622Ap7T

(e)
< 3G%HO%T + 3GH63T + 3G2 B3 3T +
Or op

)
< WAYSTY? + WoAYRTY? 4 3G2 BIB2T (17)

where (c) follows from the Lemma 1.3, (d) follows from Lemma G.8 and (e) is obtained by choosing

A 1/3 U2 A 1/3 ) f
dop = 3%7%?) and dp = ( 3%%;1) and defining W, = (3G%)1/3(4Ué)2/3, Wy =
(3G%)M/3(4U3)?/3.

To bound 14, we use Cauchy-Schwarz Inequality and the bound in (17) above to get

-1 E T O)TtFL||2 1/2 T-1 1/2
I < (Z 1197 QQQM u) (Z - d’t%])

t:TT t:TT

. 1/2 B 1/2
WIASTYS WoAYRTYS 32 B2aeT =
< ( : + : + =" llellzl )

Y E

t=1r

a? a? a?
For the last term, again by using (17), we have

2/3 2/3

(0% (0% (0%

We substitute the bounds on Iy, I, Is, 14, I's (using Proposition 4) into (16) and use the squaring
trick from Section C.3 in Wu et al. (2020). The above equation is of the form, X <Y + Z VX.
Completing the squares and rearranging, we get X < 2Y + Z2. Hence, we get the final result as

T—1
> E i3] (18)
t=71r
_ 4U3, N 2Bsf(rr +1)°T N 20((By 48U + 8U)rrT N 9BsrrApy  2Ber2Apr
- a\ A A b\ X
L 8UR |, 4BiB(rr +1)°T | 2DymeT | ABs(rr +1)*Apy
YA? A2 22 N2
| 2DuB°T 6W3AY5T/3 ) WA T1/3
v2\2 ¥2\2 72\2
p (L L) (AR WeAR T s BQBQT (19)
A2 A a2 o?
/1 i
<O<a>+O(5T)+O(aT)+O(ART)+O(APT)+O(’}/T (’)( ) i)

L6 <A?{:}T1/3> " (AQP{;Tl/:%) 5 <A2/3 T1/3> ( 2/3T1/3>
72 Y2

where O(-) hides constants and logarithmic terms.

F AVERAGE REWARD

Proposition 3. IfAssumption 1 is satisfied, then the following holds true

Z E[J = ri(se,ai)] < D1B(mr + 1)*(T — 7r) + Da(7r + 1)’ Apr

t=1r

WhereD1 L BQ+4UR\/|S||A BQ+4UR, D2 —4UR+LP andApT—Z |Pt+1_PtHoo~
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Proof. Given time indices ¢ > 7 > 0, recall the auxiliary Markov chain starting from s;_, con-
structed by conditioning on $;_,, w¢—,_1, P:+—, and rolling out by applying 7;_._1,P;_, as

71 Pi Tt—r—1 Pi - . Tt—r—1 . Pi o 71 ~

St—r at—r St—rpl — Qp—ry1 S8y ag St+1 aty1-
Also, recall that the original Markov chain is
71 Py, 1 Py -4 -1 P T
St—r ai—r St—r41 — 7 Qt—741 - S Ay — St41 — G4

Further, recall J™t——1-Pe=rre .= 37 dme—r—1Per (), . (als)ri(s, a).
We start by decomposing the term as
E[J —ri(st,a)] = E [Jtm - Jm*T*l’PH’rt] +E[ri(5e,a1) — re(se,a0)]
I I
+E [JTorr P (5, a)] (20)

I3

Note that I is the difference in the average rewards between the two policies 7, wy_-_1 in two
different environments (Py,r;) and (P;_,,r;) that share the same reward function. Hence, using
Lemma G.5 and Lemma G.2 successively, we get

I <E[Lx|m — m—roallz + Lp[|P: — Pir /o]

¢ ¢
SE|Lzx Y |mi—miaalla+Lp Y, ||Pi_Pi1||m]
i=t—T1 i=t—7+1
< LiBafB(tr+ 1)+ LpApi—ri14, 2D

where Apy—ri10 =30y 41 IPi — Pici]lco.
For I, by Lemma 1.2 and Lemma H.2 successively, we get
I, <2UR - 2dpy (P((s¢,0a¢) € -|Fi—r), P((5¢,a¢) € -|Fi—7))

t t
§4UR\/|S|A||ElZ s = o llo|Fer | + 408 3 1P = Pyl

1=t—T

i=t—T

< AURV/|S||A|BoB(T + 1) + AURTAPt—r114- (22)

Finally, we bound I35 using Lemma H.7 as
I3 <4Urmp". (23)

Plugging the bounds on Iy, I5, I3 into Equation (20) and setting 7 = 77 = min{i > 0jmp'~! <

min{ 3, a}},
T-1
S ET = ri(se,an)]

t:TT
T-1

<Y LaBoB(rr + 1)+ LpApy—rpi14 + AURV|S|A[B2B(rr + 1)
t=7p

+4UpTrApt—7pt1,t +4Urmp™
< (Lx + 4UrV/|S||A) B2 (1 + 1)*(T — 77) + (AUg + Lp) (17 + 1)*Ap 1 + AURB(T — 7).
O

Proposition 4. If Assumption 1 holds and 0 < v < 1/2, then we have the following

T—-1

4U3
STE[(T = m)?] < 7R + 2B B(rr + 1)*T + DsyrpT + 2Bs(rr + 1)*Ap 1
t=1
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DT 3W3AYSTY3  3WyAYSTV/3
+ 2 + 2 + 2
¥ v gl
where D3 = AUpFe+8U%, Dy = 9L2B3, Apr = 1o Ites1—Tlloo Apr = 3o [Pry1—
Pyllo, Wy = (3)1/3(4U3)?/% and Wy = (3L%)'/3(4U})?/3.

Proof. Recall that ¢; := n, — J{"*. Using the average reward update equation (line 7 in Algorithm 1),
we have
Jﬂ't+1

qb?—i—l = (7725 +y(re(se, ae) —ne) — Ji4fd )2
= (¢ + 7 = T (st a) =)
< @7 + 29 (e, ap) — ) + 200 (JT =TT 4 2007 — TS + 293 (s, ae) — me)?
= (1= 29)67 + 279 (re(se, ar) = J7) + 200 (I = J)
+ 2007 = IO 4 292 (re(s0, ae) —me)®
= (1= 29)¢7 + 2yA(my, Py, vy, me, Op) + 260 (T — T 1)
+ 2007 = IO+ 292 (re(s0, a8) — )

Rearranging and setting 7 = 7 = min{i > 0lmp'~! < min{B, a}}, we have

[fe (ST — T

T-1 T-1 EW)Q _¢2 ] T-1 -1 g
DSTERY < Y R 4 S E[A(my, Pyt e, O]+ Y

t=7r t=1r 27 =rr ikl i
I L2 "
T-1 ™ !
E[(JF — IS5
+ D+ ) Eln(sean) = m))-
P Y t=1p
Iy fs

We now analyze each of these terms starting with the first term as

Elo?, — 03] _ 2%

2y Y

I =

By Lemma G.10 and the average reward update equation, we have

7-1
I < > Bif(rr +1)* + Folne — h—rp| + FrmAptrpire
t=1p

< B:B(rr + 1)*(T — 7r) + 2UpFsyrr(T — 1) + Bs(r + 1)*Ap 1.

We now upper bound the difference in average reward at consecutive timesteps as follows. For
timesteps with small changes in the environment, we use Lemma G.5, and for timesteps with large
changes in the environment, we use a naive upper bound. Define the set of timesteps 7y := {t :
[re+1 — Telloo < OR, [|Prr1 — Pilloc < dp}-

T-1
DUEB[UE = JT < QB[R = IT) + D AUR
t=1p teTy tQTJ

(a)

< Y 305 +3Lp0p + 3L B8+ Y AU

teTy tE T
) AUZA AUZA
2 3627 4 3LA0LT + 312 B22T + VRART | AURAPT
or Sp
< W3AY T3 4 WiAY R TY? + 312 B3BT (24)
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1/3
where (a) follows from Lemma G.5 and (b) is obtained by choosing ér = (%’#) and

2 1/3
dp = (4@;@;) and defining W3 = (3)V/3(4U2)2/3, W, = (3L2)/3(4U%)?/3.

Now we bound I3 as
_ 1/2 _ 1/2
© (= T R(J7 — g2
2 ()" (5
t=1p t=1p
1/2 ) 1/2
@ (=N (wealsrs w2 peer”
< | D Elgi] T R

t=7r

where (c) is by Cauchy-Schwarz inequality, (d) follows from Equation (24).
Again, by Equation (24), we have

W3 AY STV Wy AYSTY3 312 g2ger
I < 312T N 4;:;T +37r72ﬂ '

For the final term, we have

Is < AUAY(T — 77).

Putting everything together, we have

T-1
2U3
> E[g7] < TR + ByB(rr + 1)*(T — 17) + 2Ur Feyrr(T — 7r) + Bs(r + 1)*Ap 1

t=1r

T-1 1/2 2/3 /3 2/3 11/3 1/2
WAy T WAL T 3LZB33°T
P(Smen) (M Mo

t=71r
WsAZ3 TS WA2RTYS 32 p2ger
n 32R,T + 4=2pT + T 25
Y Y 0

+4UAY(T — 77).

Now, we use the squaring trick from Section C.3, Wu et al. (2020). The above equation is of the form,
X <Y + ZvX. Completing the squares and rearranging, we get X < 2V + Z2. Hence,

T-1

4U3
> El6f] < T E +2BrB(rr +1)2(T — 7r) + AURFyyrr (T —r) + 2Bs(rr +1)°Ap
t=77

93BT | 3W3 A3 5T/ . SWLAY ST/

,)/2 72 72 +8UE{Y(T7TT).

G TECHNICAL LEMMAS

Lemma G.1. If Assumption I holds, for any t,t' > 0, we have

. log Z, J — g B
S i (s) |20y | < Tl I g a1 - @il + 22
; 2 c c
Irees —efloo  Lp[Pri1 — Pifloo
C C

where Zy(s) = 3 e a(mi(d]s)) 7P exp(BQy(s,a’)), C is defined in Assumption 1 and other
constants in Appendix B.

+
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Proof. We have
T - I

Tt41 Tt41 Tt4+1 T
i1 —Jy +J; —J;

R AR de“’Pt( )it (als) [QF (s,a) = Vi7" (s) + Qu(s, a) — Qu(s, a)]

b T 7 Tt t s T
2 i — e "‘Zd P (8)met1(als) [Qt‘(s,a) =V (s)

log Zy(s) | 1, mmlals) o,
7B TR ) Qt(”]

T ™ T ¥ ! Z
S I Y dm P (s (als) [Qy«(&a) _ e (s) + 08 20) | 1og i (a)s) — Qt<s,a>]

s,a B
41 41 T P 1Og Zt(s) w1, P
> IO = JT ) AP (s)m(als) — 5 Qu(s,a) |+ Y d™+ Pt (s)m 11 (als)elog m(als)
I
+ > d™ P () (miga (als) — mi(als)) [QF (s, ) — Quls, )] (25)
Iy

where (a) follows from Lemma G.3, (b) follows from the actor update (line 10 in Algorithm 1), and
(¢) is due to the non-negativity of KL-Divergence.

Next, we bound the last two terms in (25). Under Assumption 1, we have
" dre+1Pe(g) ) log Z(s)
= d™v P (8) [ —"2 ) my(als) | =22 — s, a
S ) (Frrrr) mtels) | 52— 0o
5 P, dﬂt+17Pt (S)
+E AP (s) m miy1(als)elogmi(als)

log Zy(s)
B

> CZd"f”Pf’ s)m(als) —Qi(s,a)

d"rt"’Pt/ (5)

47+ Pt (g
Zd"f”P*’ <*()> met1(als)elog mi(als)

S oy e () [FEZE )| Cetog 4] + 0 amio e (o)mal) QF (5.0) - Qi)

(26)
where (d) follows from Lemma H.1.

Further, by Lemma G.2, we have

I > 200 Y d™+ P (s)(msa(als) — mals)) > —2Uq - 28U /Al = —Bif.  (27)

s,a

Plugging the bounds from (26) and (27) into (25) and rearranging, we have

Jﬂ't+1 _ JT:

JTe . B Jﬂ't+1 _ Jﬂ't+1

< S telog|A| + gdﬂufﬂ(s)m(ﬂg [Qi(s,0) — QT (s,0)] + éﬂ +
Tt = J Bif | lrigr —rifle | Lp||Pip1 — Peflos

< 1 Tt — Qoo

< S elog AL+ 1QF - Quflee + S 4 LT =

where the last inequality follows from Lemma G.5. O
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Lemma G.2. Fort > 0, policy my satisfies

|71 — mell2 < B2f
where By = 2Uq.

Proof. From the update(5), we have the following recursive equation
0111 = (1—Be)0; + BQ:
t
= (1= +8) (1-80)"'Q..
i=0

By starting from 8y = 0 and 1-Lipschitzness of the softmax parameterization (Beck, 2017) and
Lemma 1.3, we have

[mer1 — mell2 < [[BQ: — Bebll2
< BlQell2 + Bel|6:]]2

< BUq + 66@ <28Uq.
€

O

Lemma G.3 (Average-reward Performance Difference Lemma (Murthy & Srikant, 2023)). The
average rewards for any two policies 7, 7' at time t satisfy

JE— I =Y s) Y wlals) [QF (s.0) = Vi (s)] -

seES acA
Lemma G.4. Foranyt,t’' > 0, it holds that
I = I < ve = te]loo + Ug|Pt — Pi o

where T} represents the optimal policy for MDP My(S, A, Py, ry).

Proof. Consider the linear programming formulation of an MDP M(S, A, P, r) (Puterman, 2014)

min J
J,V (s)

such that J + V(s) > r(s,a) + ZP(3'|s,a)V(s’) Vs e S,a€ A (28)

If the optimal solution for M/ (S, A, Py, ry) is J55, Vi, we have
J;lzrt/-i-(Pt/—I) :/

Now for M;(S, A, Py, 1), we know
JE<lre + (P —DV{ oo

<|ry + Py —DV + (re —rv) + (Pr — Pr) Vil

< I oo + [Ire — rerfloc + [[(Pr = P )V oo
Hence, we have

JE—=Ji <|lre = relloo + | (Pe = Pr) Viloo
T T < vy~ to e + UglPy — Pulo.
O

The next result bounds the difference in the average rewards between two policies 7, 7" under two
different environments (r;, P;) and (ry, Py).
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Lemma G.5. There exist constants Ly = 4Ur(M + 1)\/|S||A| and Lp = 4UrM such that for all
policies 7, 7' and timesteps t,t', it holds that

I =I5 < Lallm = w'll2 + [re = volloc + L[ Pt = Po||oc-

Proof. / / ) /
A (29)
T T

where T} is the difference in the average rewards between two policies 7, 7w’ under the same
environments (r;, P;), while T5 is the difference in the average rewards with the same policy =, but
under two different environments (r;, P;) and (ry, Py/).

’
Ty =JF =I5 =By ymrr g simdn’ P armm [11(8,0) —11(8, a")]

— AUpdpy (d"’P‘ @, d” P o 71")

(a)
< Ly|lw — 7|2, (30)
where (a) follows from Lemma I.1, where ® denotes the Kronecker product. Next, we bound T5.
Ty =J7 —JF =Y d™ P (s)n (als)ri(s,a) — d™ P (s)n' (als)ry (s, a)

s,a

< Z ‘d"/’Pt(s)r’(aB)n(s, a) — d"'/’Pt(s)ﬂ'(a|s)ry(s, a)‘
+y ‘d”"Pf (s)7'(als)r (s, @) — d™ P (s)7' (a]s)re (s, a)‘

< |t = vorlloo + AUrdpy (d™ Pt @ 7/ d™ P @ «r')

©]
< ||ty = relloo + Lp|IPt — Pyloo (31

where (b) also follows from Lemma I.1. Substituting the bounds from (30) and (31) into (29), we get
the result. O

In the next result, we bound the value function difference for two different policies 7, 7/, given the
underlying environment {r;, P;}. Consequently, the value-function difference depends only on the
difference between the two policies.

Lemma G.6. For any policies 7, ', we have
1QF ~ QT [l2 < Gaflw — |1

where G, = 2Ug+/|S||Al.

Proof.

—

QT (5,0) 2 ry(s,0) = JF + Europy oy [V (5))]

QT (s,a)  —0JF V™ (s)
L 200 DI S by )s 2D

om s'eS T
on 5 or ||y
9Q7 (s,a)|| @ 1wy o
Htaw , < 2||d™F(s)QT (s,a)||, < 2Uq (33)

It follows from mean-value theorem that
Q7 (s,0) — QF (s,a)| < 2Ugq||m — ='||2, forall s,a

!
= QT — QT |2 < Gxllm — «'||2,

where (a) is by using the Bellman equation, and (b) follows from Policy Gradient Theorem (Sutton
& Barto, 2018) and Lemma 1.3. O
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Complementary to Lemma G.6, in the next result, we bound the difference between the value
functions when following the same policy 7r in two different environments {r;, P;} and {ry, Py }.

Lemma G.7. For any timesteps t,t' > 0, we have
1QF — QFll2 < Grllri — v lloc + Gp[Pr = Prrloo

where Gr = 2A\71\/|S||A] and Gp = (A" Lp + AURA "M + 4UrA~2(M + 1))+ /|S|| Al

Proof. Recall the diagonal matrix D™Ft = diag (d™F*(s)7(a|s)), where d™P¢(-) denotes the
stationary distribution induced over the states, while 1 denotes the all ones vector. Pseudo-inverse of
a matrix is represented by XT. Now, we have

T ™ (@) A P\t Py T AT ’ T ’ T
IQT — Q7 [l2 = [(A™P) D™ P (JF 1 —r;) — (A™F) D™ (JF1 — 1) |2

< I(A™P)ID™PH(JTL — re) — (A™FO)TD™FC (JFL — ry)|2
+ [(A™POTD™Pe (JFL —rp) — (AP ID™PY (JTL — 1) |2
<A™z (|ID™PJFL = D™PCJEL o + | D™Prry — D™Pery||2)
+ [(A™POTD™Pe (JFL —ry) — (ATP)ID™PY (JTL — 1) |2

A (DRI — JEN L + (D™ — DTRYIEL, 4 [ DTPer, — DTPrr )
F(A™PYT DR (JEL — rp) — (ATPF DT (L~ 1)

<X (VISTAID™P ol 7 = JF| + [ D7F = D™ - Up/[STA] + [ D™, — D™Forx )
(ATPT DR (JEL — ry) — (ATPFDTPE(EL 1)

(e)

< AVISTAT (IIre = xvllow + LplPr = Py llog + 2Updyy (4™ @ 7, 0™ @ )
+ATY[D™ P, — DTy (34)
+[[(A™POTDTEY (JFL — vy) — (A™PY )T DR (JTL —vy)|2

(d)

< ATWVISIAL (et = rolloo + Lp[[Pe = Pirfloo + 2UrM||Pr = P o)
+ATHD™ Py = D™ ry | (35)
+ [(ATFOTD™E (JTL —vp) — (ATF)D™Pe (JFL = 1)

A VBTN @lre — roll + [Py — Pyl + 4URM[P, — Pylloc)
(AT DRP (JEL = xy) — (AP ) DTP (JEL — 1)l

< WISTA] @l — vl + Lo [Py — Polloc + AURM|P; — Py 1)
T (AT — (A™Pe )T, - 2Up

()
< A WISIAL @llre = rolloo + Lp[Py — Py floc + 4URM Py — Pyr|loc)
+ QUR)\_QHA‘K’P” _ Aﬂ',Pt/ ||2

(9)

< ATHVISIAL @l =t lloo + Lp[Py = Polloo + 4URM|P; — Py |)
+2UpA™2 - 2(M + 1)\/|S||A||P: — Pir| o

< GRrllry —rloo + GP|IP: — Pyrloo

where (a) is because E [r(O) — J(O) + A(0)Q™] = 0 (see TD limiting point (6) in Section 5.1)
(b) is from Definition 1, (¢) is by Lemma G.5, (d) is due to lemma L1, (e) is using the same
process as the last step for the second term, (f) is because || X" — YT, < |XH(X - Y)YT||; <
I XH[[2]|X — Y]2][YT||2 and (g) is by Lemma I.3 and Lemma I.1.

O
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We combine Lemma G.6 and Lemma G.7 to bound the difference between the value functions
resulting from, respectively, following policy 7r; at time ¢ (in environment {r;, P;}) and policy 711
at time ¢ + 1 (in environment {r; 1, P;11}).

Lemma G.8. Foranyt > 0, we have

1QET" — QT ll2 < Grllres1 — relloo + GP|Prt1 — Pifloc + GrBa2B.
See Appendix B for constants.

Proof.
e’ T Tt ™ K’ T
1Qri1 = Q' ll2 < 11Qeft = Qe 2 +11Q7 — Q7|2

(a)
< GRrllrisr = rilloo + GPIPii1 — Pilloo + Grllmigr — w2
®)
< Grllris1 = illoo + GP|IPi1 — Pifloc + Gr B2

where (a) is by Lemma G.7 and Lemma G.6 and (b) is from Lemma G.2. O

Lemma G.9. If Assumption I holds, for any t > T, we have
E[[(my, Py, vy, by, Oy)] < BsB(r +1)? 4+ Byat + BsAg—r41, + BeTApt—r414

where B3 = (Flﬂ- + FoGr + F3y/ |S||.A| +F4)BQ, B, = FQ(QUR"—QUQ), Bs = I5GR and Bg =

Fip+ FoGp+ F3, ARt—ri1,t = Zzzt_ﬂrl lri = ri1loo and Apy—711¢ = Zzzt_ﬂrl |P; —
Pi—l”oo-

Proof. Recall from Appendix A, the definition
(m,P.r,9,0) =" (x(0) = I™F*(0) + A(0)Q™F") + 9T (A(0) - A™F) o
We first decompose I'(-) into the following four terms

E [F(ﬂ'nPt, ri, Py, Ot)] =E [F(ﬂ't, Py, 1y, 1y, Ot) - F(ﬂ't—f—l, Py vy, Ot)]

I
+E (i1, Per 1,94, 0p) = D(mp—r 1, Py, 04,17, O4)]
Iz
+E [F(ﬂ-tf-rfl,Ptha vy, Y, Of) = T(m—7 1, Pr_r v, Y1, Ot):|
I3
+E |:F(7rt7-rfl7Ptha re, Y-, Ot)] .

Iy
We now bound each term as follows.

(a)
I < FizE[||my — we—rill2] + Fir|Pt — Pior||so

t
D lmi—micalls

i1=t—T

t
+Fp Y Pi—Pill

1=t—7+1

SFlﬂ'E

®)
< FinBof(t+ 1)+ FipApt—ri1t
where (a) is by Lemma H.3 and (b) is due to Lemma H.2. For the second term, we have

t

>l — tpicall2

i=t—71+1

(c)
I, < BE([||Yy —pe—r|]2] < FoE

t
> (2Ur+2Ug)a+ Grllti = tii]le + Gp|Pi — Pioilco + G Baf3
i=t—7+1

(d)
<5
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< F5(2Ug 4+ 2Uqg)at + FoGrARt—r414 + FoGpApi_ry1+ + FoGrBa ST

where (c) is by Lemma H.4, (d) follows from Lemma 1.3, || Q11 — Q¢||, < B(Ur+Ug) by the critic
update equation (8), lemma G.8 and Lemma H.2. We also define Ap ¢ ry1 ¢ = Zt

A i=t—rt1 i —
ri il and Apy 7y1e =2 iy iy IPi = Piciflco.

For the third term, we have

(e) ‘
Is < F3\/IS|JAE | Y i — mi—ra2

i=t—T

()
S F3 \V |S|‘A|Bgﬁ(7’ + 1)2 + F3TAP,t—T+1,t-

where (e) is due to Lemma H.5 and (f) follows from lemma H.2. For the last term, by Lemma H.6,
we have

t
+F Y P =Pyl

i=t—T1

ftf'r

I4 S F4mpT.

We get the final result by putting all the four terms together. O
Lemma G.10. If Assumption 1 holds, for any t > T, we have

E[A(my, Py, vy, me, Op)] < BrB(T + 1) + Fglne — mi—r| + BsTApt—ri1,t
where By = (F5 L +F7\/W+FS)B2, Bg =Fr+FsLpand Apy_r41+ = ZZ:FT+1 IP; —
Pi 1] oo
Proof. Recall from Appendix A, the definition

A(m,P,r,n,0) = (n = J7F5)(r(s,a) — J7FT)

We first decompose A (7, Py, vy, nt, O;) into the following four terms

E[A(ﬂ'm Ptyl‘t,ﬂt, Otﬂ = E[A(ﬂ'taPt; e, N, Ot) - A(ﬂ'thflthf‘ra ey Mty Ot)]

I
+EA(mi 71, Pe 71,1, 0¢) = Mms—r 1, Prr 14,17, Ot)]
Iy
+EAT 1, Prryre, 07, Of) = Ay o1, P v, 01, Ot)]
I3
+EA(mi—r—1, Piry v, s, Ot)] .

Iy
We now bound each term as follows.

(a)
Il S FSLﬂE [||7Tt - 7Tt77'71H2] + F5LPHPt - Ptf‘r”oo

t
o llmi—mialls

1=t—T1

t

+FLp Y |IPi—Piiw
i=t—7+1

< FyL.E

(b)
S F5LxBoB(T+ 1)+ FsLpApt—ri1t

where (a) follows from Lemma H.8, and (b) is due to Lemma H.2. For the second term I, we have

(c)
Iy < Fg|ne —ne—r|

where (c) is by Lemma H.9. For the third term I3, we have

t
+F7 Z ||Pi_Pt—‘r||oo

i=t—T

@ :
Iy < F/ISTAE | 3 s =m0 ez For

i=t—T
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(e)
S F7\/ |SHA|BQﬁ(T + 1)2 + F7Ap)t_7+1)t.

where (d) is due to Lemma H.10 and (e) follows from lemma H.2. For the last term, by Lemma H.11,
we have

I4 § FgmpT.

We get the final result by putting all the four terms together. O

H AUXILIARY LEMMAS

Lemma H.1. Forallt,s,a in Algorithm 1, we have
672UQ/6

>
m(als) > i

Proof. From the actor update (5), we have the following recursive equation
0111 = (1—Be)0; + fQu

t
Ori1 = (1—Be) 0o+ 8> (1-B) " 'Q..
i=0
Starting from 6y = 0, it holds that

1—(1— Be)t 1—(1— Be)t
—BUg—————— < Opy150 < fUg—————
BUq Be < Ort1,50 < BUQ Be
2U
max et,s.a’ - at,s,a = =<
t,s,a,a’
We hence have Vi, s, a,
eat,s,a 1 672UQ/6
m(als) = > >
(als) Sy €t T \A|efvgl=:xa’ 05,0 —btaa = | A|
O
Lemma H.2. For any timesteps t > T > 0, the policies generated by Algorithm 1 satisfy
t
Z |7; — Ti—r_1]l2 < BaB(T + 1)2
i=t—T
and reward and transition probability matrices satisfy
t t
Z [ri —Ti—rlloc <7 Z [ri —Tic1lloo
i=t—T1 1=t—7+1
t t
D Pi—Piflw<t > Pi—Pii]e
i=t—T1 i=t—7+1
Proof. By triangle inequality, we have
t t i
Sdlmi—miralla< Y 1Y m—miale
i=t—T1 1=t—7 J=t—T
t i
<>l =il
i=t—T j=t—T7
(a) 9
< BeB(t+1)
where (a) is by Lemma G.2. The rest follow similarly using triangle inequality. [
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Lemma H.3. Forany m, 7', P, P’ v, ) and O = (s,a,s’,a’), we have
|F(7T, Pa r, ¢7 O) - F(ﬂ'/) P/a r, ¢7 O)‘ < Fl‘fl'”Tr - 71.,”2 + FlP”P - P/”OO
where Fir = 2UqLx + 4UQGr + 8UZ(M + 2)|S||Al, Fip = 2UqLp +4UqGp + 8UZ(M +

Dv/IS[IAl

Proof.
|F(7\', Pa r, 1/’7 O) - P(ﬂ-/a Plv r, ¢7 O)'

= [T (@™ P F(0) - IPE(0)) + YT A(0) (QTPT - QTP T) 4y T (AT - ATP )y

(2) Jﬂ",P’,r _ Jﬂ',P,r
< [[%]loo]

+ ||'¢||2 ||.A(O)||2 HQﬂ',P,r o QW/’P/’T

+ [l || AT = AP ],

2

(b) /
< 2WoLallm = 'lls + 2o Lr [P = Pl + 2 [AO)], [ @™ FF - Q~F'r

2
9l || AT = AT el

(c)
< WoLnllw — w'lla + 2ULplP — P'|los +4Uq - Gl — |12 + 4UaGplP — P/l
o || AP = A7P| el

(@)
< WoLnlm — 7|2 + 2UaLp||P — P'|s + AU Gl — /|2 + 4UgGp|P — P'|l
+2Uq - 2d7y (d”'»P' or @P on,d"P aroPa 7r> 2o /IS[A]

(e)
< 2UGLr|m — |3 + 2UQLp|[P — P'|| o + 4UGGr |7 — 7'||2 + 4UGp||P — P/l
+ SUB(M + 2)|S||Alllm — 7' [ls + SUZ(M + 1)/[S[A[|7 — 7|l

where (a) follows from Holder’s inequality; (b) is due to Lemma G.5; (c¢) is by Lemma G.8 and
Lemma L3 (J]JA(O)|1 < 1); (d) is by Lemma I.3 and (e) uses Lemma L.1. O

Lemma H.4. Forany w,P v, 4,9’ and O = (s,a,s’,da’), we have
|F(7Ta Pa I'»’lba O) - F(”a Pa r, w/a O)|§ F2H¢ - leQ

where Iy = 2UR + 18U.
Proof.

|F(7Ta Pa r, ¢7 O) - F(T(',P,I',’l,b/, O)|

< ([IrO)ll2 + [3™FF(O) 2 + |AO)12[1Q™F*[|2) |9 — 4'l2

+[|A(0) = A™F|a]l9p = 4|12 ([l ]2 + [|4'[|2)
< (2Ur + 18Uq) 1Y — 9[-
O

Lemma H.5. Consider an observation from the original Markov chain by Oy = (s, ay, S¢41, Gr41)
and auxiliary Markov chain by Oy = (8, a4,8t41,0¢41).  Conditioned on Fy—, =
{8t—7yTt—r—1,Pt_+}, we have

E |:F(7Tt—r—17 Py vy, 7, Ot) - F(ﬂ't—r—h Py 7y, s, Ot)‘]:t—rj|

< F3/|S||AJE

t
+F Y P =Pl

1=t—T

t
> s = mireallo| Fies

1=t—T

where Fy = 16UrUq + 24U /[S]|A].
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Proof. Consider the original and auxiliary Markov chains whose construction is described in Ap-
pendix A.

E [0t Pror T, e, ) = T(miro1, Pr w17, 00) | Fisr |
=9, E [ft(ot) —ry
+v L E[(A0) -
o [(A (O,

< [tpt-r o ||E [

) AT P (0)) = g P (0)| Fi |
(01) Q=P | 7|
(0) |Fer| 11
— (00 + 37 (0n) = I (00| o
+ sl |[E[A0) = AO)|Fir] | Q=P m1)y
+ per o [ [A(00) - AO)|Fer] | Iopel1
< 2Uq - AUR - 2dry (P(Ot € |Fi_.), PO, € ~|fH))
+2Uq - Adry ( (O € | Fo_r), P(O; € .|ft_f)) UoV/ISTIA]
+2Uq - Adry (P(Ot € |Fi)), P(O; € -|]-'t_7)> 2o /IS[A]

t
> i = o] Fis
2

Y2 —T

‘ 1

< (16URUq + 24U4 /IS||A]) (\/ISIAI]E

i=t—T

where the last inequality is from Lemma [.2. O

Lemma H.6. Consider an observation from the original Markov chain by O = (8¢, at, St41,At41)
and auxiliary Markov chain by O; = (8, ay,8t+1,0¢4+1).  Conditioned on Fy_, =
{st—r,m—7_1,P1_+}, we have

E |:F(7Tt7‘r717Pt7Tartv’l;btf‘raot)‘ftfﬂ'} < F4mPT

where Fy = 8UrUq + 24U%\/IS|| Al.

Proof. Consider the original and auxiliary Markov chains whose construction is described in Ap-
pendix A. Also, consider the observation tuple O} = (s}, aj}, s}, 1, aj 1) where s; ~ d™t=7=1:Pr=r(.),
ay ~ 7Tt,7—,%(~|.82),.82+1 ~ Pt,T(-\§§7ag) and aj | ~ 7;_r_1(:|s;, ). From the definition of I'(-)
and the TD limit point equation (6), it follows that

E [D(mr1,Poory o, tr, O) | Fror ] = 0
Hence, we have
B[N 1, Pror i, 0, 00| Ficr]
<E[P(mir 1, Prorstt, 9, O0) = Dy o1, Pup v 11, 0))| s
< prr o [E [1e(01) = 371 Prrmt(Oy) = (07 4 377 Perm (O] Foy
+ el [E[ (4000 - A(O)) QP FL ||
+ el |[E[ (A0 = AOD) v | Fis |
< 2Uq - 4Ug - 2dry (P(Oy € |Fieyr), P(O] € | Fiy))

+2Uq - Adry (p(o} € |F.), POl € ~|]-‘t_7)) UoV/IS[A]

‘ 1
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+2Uq - Adry (p(ét € |F.), POl € ~|]-‘t_7)) 2o /|SIIA]

=Fi Y PG =s|Fir)mra(als)Pr(s'|s,a)m -1 (a'|s)

s,a,s’,a’
— P(s} = s|Fr—r)m—r—1(a|s)Pi_+(s'|s,a)m—r—_1(d’|8")]

=Fy Z Ti—r—1(al8)P(s'|s,a)m—r_1(ad’|s")|P(5; = s|Fi—r) — P(s}, = s|Fi—)|

’ ’
s,a,s’,a

= Fy Y |P(3 = s|Fis) = P(s} = 5| Fis)|

< Fymp”
where the last inequality follows from Assumption 1. O

Lemma H.7. Consider an observation from the original Markov chain by O; = (s, as, s}, a})

and auxiliary Markov chain by O: = (8,a+,8t41,0¢41). Conditioned on Fi_, =
{8t—r,mt—r_1,Pr_+}, we have

E [Jm*”l’P‘”’rt — (5, dt)|]:t77'] < 4Ugrmp"

where J™t-7-1:Piorre — dea dme=r=rPrr(s)m, .1 (als)r(s, a).

: : / A RN / / —r—1,Ps_

P/roof. Consider Ehe (/)bservatlon tuple/: O/t = (sg,at,stﬂ,atﬂ) w/here sy~ dTmToLE (),

ap ~ w_r_1(:8}4), si41 ~ Pe_r(:|s},ay) and aj; ~ 7w _+_1(:[s},,). Then, by definition of
—r—1,Pt_7,

JTi-T-1LYi-7:Tt we have

B [Jmr Pt (s, al)| Foe] = 0,
Hence, we have
E [Jm*f*hpt*”rt — 1¢(8e, &t)|ft—7‘}
=E [']m_T_l’Pt_”rt —14(sy,a1) — re(8e, ap) + (s, ap)| Fir ]
= E[re(s}, a) — re(5e, ar) | Fi—r]
<2Ug - 2dpy (™ P @ my_r_1, P((31,dr) € | Fe—r))

(a)
< 4Ugrdry (dm”_l"P"_TaP(gt € | Fi-r))

(b)
< 4Ugpmp"

where (a) follows from Lemma B.1 in (Wu et al., 2020) and (b) is by Assumption 1. O
Lemma H.8. Forany w, 7', P, P’ r,n, and O = (s,a,s’,a’), we have

A(m,P,r,n,0) — A(w', P r,n,0)| < FsLy||m — ©'||2 + F5Lp||P — P/||oo,
where F5 = 4UR.

Proof.

|A(7T, Pa r,n, O) - A(ﬂ-/a Pla r,n, O)‘

< (= 7P r(s.a) = TVF) = (= TV ) r(s,0) - T

< = J7EN) (s, 0) = TTET) = (= TP (r(s, @) = JTE)|

+ g =TT T (r(s,a) = T7F) = (g = T F ) (r(s,a) = J7OF))
P,r "Pr (@) / !
§4UR|J7T’ T JTEr < 4URLT|-||7T—7T||2+4URLP||P—P||OO

where (a) follows from Lemma G.5. O

Lemma H.9. Forany ,P,r,n,n' and O = (s,a,s’,a’), we have
|A(7\', Pa r,n, O) - A(ﬂ-7 P7 r, 77/7 O)l S F6|77 - 77/|
where Fg = 2UR.
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Proof. Recall the definition of A(-) in Appendix A. It is straightforward to see that
‘A(Tl', P7 r,mn, O) - A(ﬂ-7 P7 r, 77,7 O)' S 2UR‘TI - T/l
O

Lemma H.10. Consider an observation from the original Markov chain by O = (s, at, St41,at41)
and auxiliary Markov chain by O: = (8t,a+,8t41,0¢41). Conditioned on Fi_, =
{St—r,mt—r—_1,Pr_+}, we have

E |:A(7Tt7771a Ptfra ey Mt—7, Ot) - A(ﬂ-tf‘rfh Ptha e, Mt—ry Ot) ‘]:tfril

< F7V/|S||AJE

t
+ P Y P =Pyl

1=t—T

t
> s = mrallo|Fis

1=t—T

where Fr = 8U12%.

Proof.
E [A(ﬂ't—r—la P rre,m—r,O) = M r1, Py v, s, Ot)!E—T]

= (g — JTt= 1Pt T [Tt(st, ar) — (5, ét)|]:t—‘r]

< 20 - 4Undry (P(O1 € | Fi7), POy € | Fi-r))

(@) ¢ ¢

< F7/|S||AIE l >l _7rt—‘r—1||2"’rt—7' +F Y P =Py

i=t—T i1=t—T

where (a) follows from Lemma 1.2. O

Lemma H.11. Consider an observation from the original Markov chain by Oy = (s, at, St41,at41)
and auxiliary Markov chain by O; = (8, ay,8t41,0¢41).  Conditioned on Fy_, =
{St—ry,mt—r—_1,Pr_+}, we have

E A(”tf-rflzptf‘rartvntf‘raot”]:tf‘r} < Fgmp”

where Fy = 8U12%.

: : ! A / / —r—1,Pe_r /
Proof. Consider the observation tuple O} = (s}, ay, s; 1, a; ;) Where s; ~ d™=7-1"t=7(.), aj ~

Timr1 (1), 51 ~ Per (s} ab) and afyy ~ y—ro (|55, ).

‘We know
E [A(ﬂ-tf‘rflaptf'rartantf'ra O;/:)‘ftf'r] =0.

Hence, we have
E |:A(7Tt—7'—la Pt—‘m e, Mt—ry Ot) ‘]:t—r]

=E |:A(7Tt77'717 Py 1, s, Ot)’ - A(Trtf'rfl; Py 1, M, O£)|]:t7‘r}

=K [(er — J™ 0P T (1, (3, ) — re(sh, ap))| Fi—r]
< 2Ug - AUgdpy (d™ 2P @y, P((51,a) € | Fr—r))

(a)
< 2Ug - 4Ugdypy (d7 2P P(3, € | Fi_))

®
< 8Uzmp”

where (a) follows from Lemma B.1 in (Wu et al., 2020) and (b) is by Assumption 1. O
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I PRELIMINARY LEMMAS

Lemma L.1. For any policies 7, 7' and transition probabilities matrices P, P’, it holds that
dpy (4P, a ") < MV/ISTA]| 7w = ']z + M|[P = P'||o,
dry (d"’P @md" P ® 71") < (M + D)V/[S[[A[|7 — |l + M|[P — P'||os,
dry (d”’P @roP,d" ¥ on ® P/) < (M +D)V|S|JA[lw — 7|2 + (M + 1)||P — P/|| 0,
)

drv (d’**P nPemd” T on 9P @n') < (M+2)V/|S[|Al||w — «'||ls + (M + 1)|P — P||
where ® denotes the Kronecker product, and M := (ﬂogp m~1] + ﬁ)

Proof. Recall that d™F () is the stationary distribution induced over the states by a Markov chain

with transition probabilities P following policy 7. Define the matrices K, K’ € RISI*IS| such that
K(s,s") = > ,ca P(s'|s,a)m(als) and K'(s,5") = >, 4 P'(s'|s,a)n’(als). Further denote the
total variation norm as || - ||7y. Note that [|[P — P’|| o = max ) |P(s'|s,a) — P'(s'|s, a)|.

s,a

From Theorem 3.1 in (Mitrophanov, 2005), we have,

dpy (4™F. ™) <M sup /5 a(ds)(K — K)(s. )

llgllrv =1

<M sup /
lgllrv=1Js
Z P(ds'|s,a)m(a|s) — P'(ds'|s,a)n’ (als)

sup //|q (ds)|
H(IHTV 1 acA

sup //Z\q ds)| |P(ds'|s, a)(als) — P(ds']s, a)r (als)

HqHTv 1

+ M sup //SZ|q(ds)||P(ds’|s,a)7r'(a\s)—P'(ds’|s,a)7r’(a|s)|

lallrv=1Js

TV

/ q(ds)(K — K')(s,ds")
S

< MV/IS[| A7 — 7|2 + M||P — P'|] .
For the second inequality, we have,

dry (d”’P @md" P g 77’) < %/SZ ’d”’P(ds)w(a\s) - d"/’P/(ds)w’(a|s)‘
< ;/g;!dmp(ds)w(as) 4P (ds)r’ (a]s)|

“ /s 2 a7 (ds) (als) — ™ (ds)(a]s)
STAllm = 'l + dry (a™F,a™")

< (M + D)VIS[|Alllm — 7'z + M|[P — P[] oo

The rest follow in a similar manner. O

IN

Lemma L2. Consider observations Oy = (s, at, St41,a1+1) and Oy = (8¢, ay, S¢41,G41) and
define Fi—r := {8t—r,Tt—r—1, Pt_r }. We have

t
drv (P(Oy € | Fi7), P(O1 € |Fir)) < VISTAL Y E [lImi = muroallo| Ficr | + [P = Prosr oo
i=t—T
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Proof.
dry <P(Ot S '|.Ft_7—),P(O~t S '|Ft_7)>
1 U<

—N—
- 2 Z |P(5: = s,a: = @, S441 = S/;at+1 = a/|ft7'r)

2/ /
s,a,s’,a

— P(gf =S, C~Lt =a, §t+1 = S/, Elt+1 = a/‘ft_7)|

== Z |P(s; = s,a; = a|Fi—r)Pi(s]s, a)E [ (d|8") | Fi—r, He]

s,a,s’,a’

N~

— P(8; = s,ay = a|Fi—r )P+ (5'|s,a)m—r_1(d’|§")]

IN
SN

= Z |P(s; = s,a; = a|lF,—)Py(s]s, a)E [m(a|8") | Fo—r, Hi]

s,a,s’,a’
— P(3; = s,a; = a|Fy—r ) P(s']s,a)mi—r—1(d'|8')]
1
+3 Z /|P(§t = 5,4 = a|Fo_r)Pi(s|s,a)ms_r_1(d'|s)
s,a,s’,a

— P(8 = s,ay = a|Fi—r )P (5'|s,a)m—r—_1(d'|§")]

Z P,(s'|s,a)P(sy = s,a; = a|Fy—7)|E [m(d|8") | Foer, He] — mi—r—1(d’|s")]

s,a,s’,a’

1 ~ ~
+ 5 ;‘P(St = S§,0+ = a‘lft—‘r) — P<st =s,a; = a|ft—7)|

1
2

1 - ~
+3 Z P(5; = s,ar = a|Fo—r)mi—r—1(a’|")| Pe(s'|s,a) — P (5|5, a)]

V |S||~A’|H;: [||7Tt - ﬂ-t—‘f‘—lHQ‘ft—T] +dry (P(Ot—l € ‘|-7:t—-r>,P(Ot_1 S ~|]-'t_7))

+ HPt - Pt*‘r”oo-
Finally, recursing backwards until 7 yields the result. O

IN

Lemma L3. If an observation is denoted as O = (s, a, s', a’), then the following hold for all t,t'

L [|QF[l2 < Ug; @l < Rg = Ug

2. |AO)]oe <2: [[A(O)]l2 < V2

3 |A™P — AP < 2dpy (d’*»P ereoPemd P ar P @ 71")
4. [thei1 — ell2 < Qe — Qello + QY — Q7|2

Proof. We have the following.

1. See the projection operator IIx,, £(-) used in Algorithm 1 and discussed further in sec-
tion 5.1.

2. Follows from the definition of A (O) in section 5.1

3. Follows from the definition of A™¥ in section 5.1 and
|A™F — A™F|| o = max " |d™F(s,a)m(als)P(s'|s, a)m(a'| )

s’,a’

—d™F (s,a)n’ (als)P'(s'|s, a)x' (a'] )|

4. By the definition of ¢, = Q; — Q7' and triangle inequality
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J  ADDITIONAL RELATED WORK

Model | Poli
Setting Algorithm Regret odel | Folicy
Free Based
Lower Bound Q (|S|%\A|§D%A§T%) B _
Jaksch et al. (2010) @, \S||A\%DL%T%) X -
Non-Stationary . - N T
) : Gajane et al. (2018) @ <|S|€|A|§D§L§T§> X -
Infinite Horizon B . L
Average Reward Ortner et al. (2020) O (18]14 EDA%Té) x -
~ 1
Cheung etal. (2020) | O <|3|% A} DATY X -
Wei & Luo (2021) 18] (AI%,T%) x ;
~ 1
This Work O (Is|3|Aj akT?) v v
Lower Bound a(|siHlApairiTy) [ ]
Domingues et al. (2021) | O <|S||A|%A§H%T%> v %
Non-Stationary Wei & Luo (2021 & A%Tg y
Episodic i & Luo (2021) ) (~ T’ ) .
Feng et al. (2023) 0) (d% H2T%) v x
~ 1 1
Mao et al. (2024) O (|3|§ \A|%A%HT%) v x
Non-Stationary Zhou et al. (2020) O (d% AZH3T? ) v X
Episodic Linear MDP | T, 1¢; & Vincent (2020) O (diajmiTt) v x
Stationary
Infinite Horizon Khodadadian et al. (2022) @) (T g) v v
Discounted Reward
Stationary
Infinite Horizon Wang et al. (2024) o (T*) v v
Average Reward

Table 1: Regret comparison across Non-Stationary and Stationary RL algorithms with variation
budget A, time horizon T, episode length H, size of the state-action space |S], |.A|, maximum

diameter of MDP D, dimension of feature space d and dynamic Bellman Eluder dimension d.
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K SIMULATION SETUP

Synthetic Environment. We empirically evaluate the performance of our algorithm NS-NAC
on a synthetic non-stationary MDP, comparing it with three baseline algorithms: SW-UCRL2-CW
(Cheung et al. (2023)), Var-UCRL2 (Ortner et al. (2020)), and RestartQ-UCB (Mao et al. (2024)).
The synthetic MDP environment simulates non-stationary dynamics by alternating between two
sets of transition matrices and reward functions over the time horizon 7'. The switching frequency,
controlled by ngwitches, determines the degree of non-stationarity and the variation budget A p - for
transitions and A g 7 for rewards. The MDP consists of |S| states and |.A| actions per state, with two
sets of transition probabilities and rewards sampled at initialization. Further, to benchmark the effect
of the dynamic changes, the optimal policy is recalculated at each switching step s itcn by solving a
linear programming problem (Puterman (2014)).

The environment alternates between these two sets of transitions and rewards, (P1,r1) and (Pa, rs),
every T'/Ngwitches Steps. The transition probabilities, Py and P, are drawn from a Dirichlet distri-
bution with a concentration parameter set to 0.5, ensuring a moderate degree of randomness in the
state transitions. The first reward matrix r; is drawn from a Beta distribution with shape parameters
a = 0.5and 8 = 0.5, leading to rewards spread across the interval [0, 1], with a higher probability
near the extremes of 0 and 1. The second reward matrix ry is sampled from a Beta distribution with
shape parameters o = 0.2 and 8 = 0.9, producing rewards skewed toward lower values, introducing
diversity in the reward structure. We use 5 random seeds to initialize the matrices, with the standard
deviation capturing the variability across these runs.

Varying 7.  'We evaluate the performance of different algorithms in a synthetic environment with
|S| = 50 and |.A| = 4 under varying time horizons 7. Specifically, the time horizon T is varied over
the values 50 x 103,70 x 103,100 x 103,150 x 103,180 x 102,200 x 103, and 250 x 103. For
each T', we set Ngwiches = 1000, resulting in a transition variation budget Ap - ~ 300, indicating
significant environmental changes across the time horizon. The reward function is kept stationary (no
switching between ry and r3), and therefore Ap 7 = 0.

Varying A7. We investigate the impact of changing variation budget by adjusting the number of
switches nwirches While keeping the number of states |S| = 50, actions |.A| = 4, and the time horizon
T = 50 x 103 constant. The number of switches is varied across 10, 45, 100, and 1000, with both the
reward function and the transition dynamics being non-stationary. The observed variation in rewards
Apr,is9,48,98, and 1000, respectively, and the observed variation in transitions Ap r is 4, 14, 30,
and 303, respectively, corresponding to different levels of non-stationarity.

Varying |S|. We study the effect of varying the number of states while keeping the time horizon
T, number of actions, and variation budget A constant. Specifically, the time horizon 7" is fixed
at 50 x 103 steps, and the number of states is varied across the values 100, 150,175, and 200,
corresponding to environments with different state sizes while keeping the number of actions fixed at
4. The ngyitches 1 adjusted to 75,100, 120, and 150, respectively, in order to maintain a consistent
Ap 7 of around 14 for all environments. The reward function is kept stationary (no switching between
r; and ry), and therefore Ap 7 = 0.

Varying |A|. We examine the effect of varying the number of actions while keeping the time
horizon T, number of states, and variation budget A constant. Specifically, the time horizon T
is fixed at 50 x 103 steps, and the number of actions is varied across the values 5, 10, 20, and 25,
corresponding to environments with different action sizes while keeping the number of states fixed
at 50. The ngwitches 1S kept constant at 45 across all experiments to maintain a consistent variation
budget A p 7 of around 14 for all environments. The reward function is kept stationary (no switching
between r; and ry), and therefore A r = 0.

Parameters. The true variation budgets, Ap and A 7, are provided to each algorithm, while
the remaining hyperparameters are configured according to the optimal expressions derived in
their respective papers. For SW-UCRL2-CW, the parameters include the window size W, and the
confidence widening parameter 7,, both set using the optimal expressions given in the paper, and
the confidence parameter § = 0.05. For Var-UCRL2, the true values of the variation budgets for
transitions probabilities A p 7 and rewards A 7, along with the confidence parameter 6 = 0.05, are
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used. In RestartQ-UCB, the ending times of the stages L, confidence parameter § = 0.05, initial
number of samples Ny, and number of epochs D are configured as described in the original paper
with H = 1 (to adapt from episodic setting for which the algorithm is designed to infinite horizon
setting in our work). Further, for NS-NAC, we tune the step-sizes by grid search. The effect of
different choices of step-sizes can be observed in Figure 2.
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Dynamic Regret

0 1 3

4
x10°

2
Time Step
(@) |S| = 50, | A| = 50, Ap =7

Figure 2: Performance of NS-NAC with different step-sizes in an environment with 17 abrupt,
randomly scheduled switches over T' = 4 x 103 steps.
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Figure 3: Performance of NS-NAC and baseline algorithms in various non-stationary settings. (a)
Dynamic regret for a single instance over 7' = 1 x 10* steps in an environment with 50 abrupt,
randomly scheduled switches. (b) Dynamic regret for a single instance over 7' = 1 x 10* steps in an
environment with small, continuous changes.

Additional Environments. We conducted further experiments to evaluate the adaptability of NS-
NAC and baseline algorithms across diverse non-stationary settings. Figure 3a illustrates performance
in an environment with 50 abrupt and randomly scheduled switches (between P and P5), simulating
scenarios with non-periodic unpredictability. Figure 3b captures performance in a continuously
changing environment, where the transition from P; to Py occurred gradually over 7' = 10° steps
resulting A7 = 0.06. This scenario reflects real-world conditions where systems experience smooth
drift rather than abrupt changes. The results highlight NS-NAC’s effectiveness in handling both
abrupt and gradual changes, consistently matching the performance of baseline methods.
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