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Abstract

Topic segmentation aims to detect topic bound-
aries and split automatic speech recognition
transcriptions (e.g., meeting transcripts) into
segments that are bounded by thematic mean-
ings. In this work, we propose M3Seg, a
novel Maximum-Minimum Mutual informa-
tion paradigm for linear topic segmentation
without using any parallel data. Specifically, by
employing sentence representations provided
by pre-trained language models, M3Seg first
learns a region-based segment encoder based
on the maximization of mutual information be-
tween the global segment representation and
the local contextual sentence representation.
Secondly, an edge-based boundary detection
module aims to segment the whole by topics
based on minimizing the mutual information
between different segments. Experiment re-
sults on two public datasets demonstrate the
effectiveness of M3Seg, which outperform the
state-of-the-art methods by a significant (18%—
37% improvement) margin.

1 Introduction

Automatic speech recognition (ASR, also known
as computer speech recognition or speech-to-text)
(Rabiner and Juang, 1993; Graves and Jaitly, 2014)
has brought us great convenience by transcribing
conversations into text anytime and anywhere to aid
human understanding. However, the generated un-
structured transcriptions are sometimes too lengthy
for users to grasp a high-level meaning quickly.
Meeting transcripts are usually long and contain
multiple heterogeneous topics in various structures,
such as opening sessions, different discussion sub-
jects, and closing sections. As one or more topics
usually drive conversations or discussions, topic
segmentation (Labadié and Prince, 2008) can im-
prove the readability of transcription and facilitate
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Figure 1: Illustration of M3Seg, which first learns seg-
ment representations by mutual information maximiza-
tion, and then segments the entire ASR transcript by
mutual information minimization. PLM refers to pre-
trained language models, and dotted red lines indicate
topic changes.

downstream long-text tasks such as meeting sum-
marization, passage retrieval, and automated article
generation (Mohri et al.; Feng et al.).

However, acquiring annotated training data to
support topic segmentation is expensive. Unsu-
pervised methods have attracted attention due to
their less reliance on annotated data. Most exist-
ing unsupervised works can be categorized into
edge-based and region-based methods. Particularly,
edge-based methods aim to detect discontinuities
(i.e., topic changes) in a sequence where semantic
features change rapidly, based on word frequency
(Hearst, 1997), embeddings of pre-trained language
models (Solbiati et al., 2021), etc (Choi, 2000).
Region-based methods aggregate neighbouring
sentences through the homogeneity criterion, such



as latent dirichlet allocation (Riedl and Biemann,
2012) or perplexity calculated by PLM (Feng et al.).
Nevertheless, these methods rely on capturing lo-
cal sentence information rather than global topic
information to perform segmentation, which may
be noise sensitive and have a gap in generating
ground-truth semantic boundaries.

In contrast to prior works, which fail to cap-
ture the global semantic-level topic information of
different segments, we propose a novel Maximum-
Minimum Mutual information paradigm for unsu-
pervised topic segmentation (M3Seg). Our work is
inspired by mutual information, which measures
how much one random variable tells us about an-
other. Intuitively, sentences in the same segment
should depend on the same topic (with high mutual
information), and different topic segments should
be independent of each other (with low mutual in-
formation). Based on this insight, M3Seg divides
an ASR script into different topic segments based
on a two-stage process: region-based segment mod-
eling and edge-based boundary detection. We first
learn a segment encoder by maximizing the mu-
tual information between the global segment rep-
resentation and each local contextualized sentence
representation (provided by pre-trained language
Models). Stage 2 detects topic boundaries by mini-
mizing mutual information between different seg-
ments.

Experimental results on two widely-used bench-
mark datasets show that M3Seg consistently sur-
passes five existing methods by a wide margin. We
conduct ablation studies to demonstrate the effec-
tiveness of the proposed model and show the great
utility of using mutual information in this task.

2 Method

Formally, let s denote a meeting transcript pro-
duced by an automatic speech recognition (ASR)
system, which consists of a list of n utterances
s = {s1, s2, · · · , sn}. Topic segmentation can be
seen as a problem of topic change detection, and
aims to cut the transcript into consecutive segments
{s1:i−1, si:j , · · · , sk:n} based on the underlying
topic structure. For each segment si:j , it represents
a segment in a meeting transcript, from the i-th
sequence to the j-th sequence si:j = {si, · · · , sj}.

For example, an hour-long meeting transcript
can be broken down into different topic segments
(e.g., opening sessions, different discussion sub-
jects, and closing remarks) to make it more read-

able. Note that we cannot access gold-standard
segments as human annotations do not exist.

Model Overview As aforementioned, given a
transcript s = {s1, s2, · · · , sn}, topic segmenta-
tion seeks to splits it into several topic segments,
where the sentences in each segment belong to
the same topic (requirement i) but different seg-
ments represents relatively independent topics (re-
quirement ii). Inspired by this idea, we propose a
maximum-minimum mutual information paradigm
for topic segmentation (titled M3Seg) in an un-
supervised manner, which learns segment repre-
sentations by maximizing mutual information and
partitions different segments by minimizing mutual
information.

Mutual information (MI) can measure the de-
pendence between two random variables (Shannon,
1948). Given two random variables a and b, the MI
between them is I(a; b) =

∑
a,b P (a, b) log P (a|b)

P (a) .
The intuitive interpretation of I(a; b) is a measure-
ment of the degree a reduces the uncertainty in b or
vice versa. For example, the MI I(a; b) is equal to
0 when a and b are independent. Therefore, from
the view of MI, different topic segments should be
as independent of each other as possible (i.e., MI
minimization), but sentences within the same topic
segment should be as dependent on the same topic
as possible (i.e., MI maximization). Based on this
insight, M3Seg consists of two stages (as depicted
in Figure 1):

(1) Segment Modeling Based on MI Maximiza-
tion Intuitively, knowing a sentence reduces the
uncertainty of its corresponding topic. Thus, we
train a segment encoder E to learn the global seg-
ment representation yi:j = Eθ(ri:j) of the segment
si:j by maximizing the MI between it and each
of its local sentence representations rk, k ∈ [i, j]
(requirement i):

JSM = max
∑

i,j,k∈[1,n],k∈[i,j]

I(rk; yi:j) (1)

Specifically, given n utterances s =
{s1, s2, · · · , sn} in an ASR transcript, we
first use the pre-trained language model (PLM)
to obtain the contextualized representation r
of each sentence (Peters et al., 2018): r =
{r1, · · · , ri, · · · , rn}, ri = PLM(si), si ∈ Rd,
where d is the representation dimension of
PLM. In our case, ri is computed by applying
a mean-over-time pooling layer on the token



representations of the last layer of RoBERTa-base
(Liu et al., 2019) model. We then use the segment
encoder E to get the segment representation yi:j
of the text segment si:j :yi:j = Eθ(ri:j), yi:j ∈ Rd,
where θ denotes the parameters of E. The
segment encoder E is trained by maximizing the
MI between the global segment representation
and each of its local sentence representations.
However, mutual information estimation is
generally intractable for continuous and high
dimensional random variables, so we maximize
the InfoNCE (Logeswaran and Lee, 2018) lower
bound estimator of Eq 1. Following (Kong et al.,
2020), maximizing InfoNCE is analogous to maxi-
mizing the standard cross-entropy loss: Lsm& =

−Ei,j∈[1,n],i≤j [log
exp(yi:j◦y+i:j)

exp(yi:j◦y+i:j)+exp(yi:j◦y−i:j)
],

where y+i:j ∈ ri:j is sampled from sentence
representations in the segment si:j , and y−i:j is
sampled from the rest. We use the dot product
between embeddings to measure the distance (i.e.,
◦) in the vector space. Note that we only need
to train the segment encoder E, while PLM’s
parameters are fixed.

Our assumption is that in a meeting transcript,
a continuous sequence of utterances contains a
thematic information, which can be either coarse-
grained or fine-grained. For example, the entire
meeting transcript’s utterances may be based on a
certain motivation (coarse-grained theme) for con-
vening, while if divided into fine-grained segments,
each utterance can be associated with a certain
issue (fine-grained theme). It is based on this as-
sumption that we construct data from any contin-
uous sequence of utterances in the same meeting
transcript and use the maximization of mutual in-
formation to train a segment encoder E to learn
the global segment representation (Eq 1) (Wang
and Wan, 2020, 2021). This also contributes to the
effectiveness of our method.

(2) Boundary Detection Based on MI Minimiza-
tion After obtaining the segment representation
of any region, we propose an edge-based bound-
ary detection module to detect topic changes by
minimizing the MI between the segment represen-
tations of different topic segments (requirement
ii): JBD = min

∑
i,j,k∈[1,n],i ̸=k

I(yi:j ; yj:k). Specif-

ically, as we are primarily interested in maximizing
the MI gap, and not concerned with its precise
value, we can rely on non-Kullback–Leibler diver-

gences which may offer favorable trade-offs.
Following the InfoNCE estimator in Poole et al.

(2019), we define a Jensen-Shannon mutual infor-
mation estimator of two factorized latent variables
a and b: ÎJSD(a; b)& :=

∑
a,b[log(1 + exp(a ◦

b)) −
∑

a,b− [log(1 + exp(a ◦ b−))], where b− is
sampled from the complement set b of b. In order to
achieve a single-pass computation (low time com-
plexity), we calculate the difference in MI between
the proposed boundary i and its adjacent offsets of
+/- 1 as the MI bound.

MIG(y1:i−1; yi:j) := y1:i−2 ◦ yi−1:j − y1:i−1 ◦ yi:j︸ ︷︷ ︸
Disentanglement with offset−1

+ y1:i ◦ yi+1:j − y1:i−1 ◦ yi:j︸ ︷︷ ︸
Disentanglement with offset+1

. (2)

This can be easily extended to more complex
bounds in the future. As a consequence, we pro-
pose a metric based on MI gap (MIG) to quan-
titatively assess the effectiveness of disentangle-
ment between two neighboring regions s1:i−1 and
si:j : MIG(y1:i−1; yi:j) := y1:i ◦ yi+1:j + y1:i−2 ◦
yi−1:j − 2 ∗ y1:i−1 ◦ yi:j .

Finally, we derive the topic boundaries as pairs
of regions y1:i−1 and yi:j where MIG(y1:i−1; yi:j)
scores are greater than a certain threshold δ. The
MIG measures how much the segment representa-
tions change when we move the boundary by one
position. A positive MIG means that the segments
become more dissimilar when we shift the bound-
ary, indicating a potential topic change. A negative
MIG means that the segments become more similar
when we shift the boundary, indicating a coherent
topic. Therefore, we can use the MIG as a criterion
for detecting topic boundaries.

3 Experiments

To demonstrate the effectiveness of our model, we
evaluate M3Seg on two widely-used benchmark
datasets, AMI Meeting Corpus (Carletta et al.,
2005) and the ICSI Meeting Corpus (the dataset
details are shown in Appendix A.). According
to the paper Ghosh et al. (2022), it is more likely
that the dataset we used consists of Unstructured
Chats, transcriptions of spoken language from a
spoken scene, which result in often incoherent and
incomplete utterances with some word errors.

We compare M3Seg with several state-of-the-art
unsupervised topic segmentation methods, includ-
ing region-based methods (i.e., TopicTiling (Riedl
and Biemann, 2012) and DialoGPT (Feng et al.) )
and edge-based methods (i.e., TextTiling (Hearst,
1997), C99 (Choi, 2000), and TextTiling-BERT



(Solbiati et al., 2021)). For analysis, we also show
the Random and Even methods, which refer to
placing topic boundaries randomly and every n-th
utterance, respectively. We perform two standard
evaluation metrics, Pk (Beeferman et al., 1999) and
WinDiff (Wd) (Pevzner and Hearst, 2002) scores
(details are shown in Appendix B), and the model
implementation details are shown in Appendix C.

Regarding the detection of multiple boundaries,
we use a certain threshold δ to control it. That
is, as long as the mutual information gap between
pairs of regions is greater than δ, it will be con-
sidered as topic boundaries (detailed in Section 2).
For the random baseline, following the settings of
TextTiling-BERT, we set each utterance to have a
0.30 probability of being placed with topic bound-
aries (the reason is that this value is roughly consis-
tent with the probability of boundaries occupying
the entire utterance).

Method AMI ICSI
Pk Wd Pk Wd

Random 0.570 0.747 0.640 0.981
Even 0.518 0.559 0.642 0.924

TextTiling 0.412 0.426 0.426 0.600
C99 0.442 0.457 0.514 0.550

TopicTiling 0.356 0.360 0.351 0.380
DialoGPT 0.355 0.356 0.319 0.333

TextTiling-BERT 0.352 0.352 0.324 0.343
M3Seg (Ours) 0.248 0.286 0.203 0.224

Table 1: Results of topic segmentation. The lower the
values of Pk and Wd, the higher the segment perfor-
mance. We mark the best results in bold.

Main Results Table 1 compares the results of
baselines and our method on two meeting transcrip-
tion datasets. From the results, we can see that:
1) TopicTiling has a significant improvement over
TextTiling, which shows that considering the global
region-based topic information can facilitate topic
segmentation. 2) DialoGPT and TextTiling-BERT
achieve lower error rates than word-frequency-
based approaches (i.e., TextTiling and C99), re-
flecting that the representations provided by PLMs
provide better contextual information. 3) Never-
theless, our model outperforms all baseline models
on two datasets by a wide margin (about +18% ∼
+37% reduction in error rate), demonstrating the
effectiveness of using MI for topic segmentation.

Module Effectiveness Analysis To investigate
the importance of the model’s individual com-
ponents, we perform ablations by removing the
region-based segment modeling module and edge-

Model
Variants

AMI ICSI
Pk Wd Pk Wd

M3Seg 0.248 0.286 0.203 0.224
w/o segment modeling 0.363 0.379 0.358 0.363
w/o boundary detection 0.309 0.338 0.285 0.306

Table 2: Ablation study of different components. "w/o"
means “without”.

PLM
Variants

AMI ICSI
Pk Wd Pk Wd

BERT-base 0.325 0.334 0.308 0.326
BERT-large 0.237 0.303 0.198 0.245

XLNet 0.307 0.319 0.3248 0.340
RoBERTa 0.248 0.286 0.203 0.224

Table 3: Results of M3Seg with different PLMs.

based boundary detection module. For "w/o seg-
ment modeling", we directly apply a max-over-time
pooling operation to sentences instead of the seg-
ment encoder E. For "w/o boundary detection", we
apply TextTiling (Hearst, 1997) algorithm, which
calculates the similarity based on the segment repre-
sentations provided by E. From Table 2, two com-
ponents play a role, yet the most significant drop
when the region-based segment modeling module
is removed, demonstrating the great effectiveness
of using MI to model segments.

Influence of Pre-trained Language Models
(PLMs) To investigate the importance of the
PLM’s contextualized representations, we perform
ablations by using different PLMs in Table 3. From
the results, we can see that the larger the pre-trained
model leads to more significant improvement, indi-
cating that the contextual information provided by
PLM with more data and parameters is more con-
ducive to topic segmentation. But M3Seg can bring
consistent and significant improvements under dif-
ferent pre-trained language models, reflecting the
effectiveness of our method.

Sentence Repre-
sentation Variants

AMI ICSI
Pk Wd Pk Wd

CLS-Embedding 0.347 0.365 0.342 0.358
Max-Pooling 0.264 0.297 0.316 0.339
Mean-Pooling 0.248 0.286 0.203 0.224

Sentence-BERT 0.267 0.303 0.197 0.221

Table 4: Results of M3Seg with different contextualized
sentence representations.

Influence of Sentence Representations (r) To
analyze the influence of different sentence rep-
resentations of a PLM, we conduct the ablation
experiments with different contextualized repre-



sentation calculation methods, including: 1) CLS-
Embedding: The representation of the first token
[CLS] is used as the contextualized representation
of the entire sentence. 2) Max-Pooling: We apply a
max-over-time pooling layer on the token represen-
tation of the last layer of a PLM. 3) Mean-Pooling:
Similarly, we apply a mean-over-time pooling layer
on the token representations. 4) Sentence-BERT:
We use Sentence-BERT (Reimers and Gurevych,
2019) embedding as our contextualized sentence
representation. From the results in Table 4, CLS-
Embedding performs the worst, indicating the im-
portance of considering global information in topic
segmentation. Overall, all methods achieve compet-
itive performances, especially Mean-Pooling and
Sentence-BERT, demonstrating the effectiveness
of the contextualized sentence representation pro-
vided by PLMs.
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Figure 2: Results of different MIG threshold δ.

Influence of the MIG Threshold (δ) We also in-
vestigate the impact of different MI gap threshold
δ on the results. Figure 2 presents the Pk score and
the number of topic segments after segmentation of
our model on the AMI dataset under different MIG
threshold δ. With the increase of δ, the number of
segments decreases, indicating that the larger the
threshold of the MI gap leads to the rougher seg-
mentation of topics. Interestingly, the Pk score first
decreases to a minimum and then increases, poten-
tially due to the presence of an optimal decision
point wrt the selection of MIG threshold δ.

Limitations

In this study, we introduce the M3Seg framework,
which is a novel approach to unsupervised topic
segmentation. We transform the task into an op-
timization problem that maximizes intra-segment
mutual information and minimizes inter-segment
mutual information. Our experiments and analysis

demonstrate that the proposed model outperforms
competitive systems by reducing error rates by 18%
to 37%. These results emphasize the effectiveness
of using mutual information for topic segmentation
and suggest future opportunities to develop more
complex and controllable systems.

However, our approach has limitations that
should be acknowledged. Firstly, it has only been
tested on the English language, and further ex-
perimentation is required to evaluate its perfor-
mance on low-resource languages. Additionally,
our method relies on pre-trained language mod-
els, which may not always be available or suitable
for certain applications. Nevertheless, we believe
that our maximum-minimum mutual information
paradigm has potential to advance the development
of unsupervised topic segmentation systems.
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A Datasets

The AMI Meeting Corpus (Carletta et al., 2005)
and the ICSI Meeting Corpus (Janin et al., 2003)
include 139 and 75 transcribed meetings with topic
segmentation annotations, respectively. The word
error rates of ASR transcription for AMI and ICSI
are 36% and 37%, respectively. We use the human-
transcribed reference (gold) transcripts as same
as in (Solbiati et al., 2021), which are corrected
by humans based on the ASR transcript (which
seem to be missing in AMI and ICSI), but still
contain many errors, such as grammatical errors
like “me and him have done this”. We use all the
data as the test set, and consider only the top-level
meeting changes (i.e., linear topic segmentation).
Noted that we used each script to train the segment
encoder E, but we did not use the annotations,
which conforms to the unsupervised setting.
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B Metrics

Following previous works (Solbiati et al., 2021),
we perform two standard evaluation metrics, Pk
(Beeferman et al., 1999) and WinDiff (Wd)
(Pevzner and Hearst, 2002) scores, to show the
performance of segmented results. Both metrics
use a fixed sliding window over the document, and
calculate the segmentation error by comparing the
number of boundaries in the ground truth with the
number of boundaries predicted by the topic seg-
mentation model.

C Implementation

Our segment encoder E is a one-layer Transformer
(Vaswani et al., 2017) with a dimension of d =
768. The threshold θ of the mutual information
gap score is set to 0.01. The pre-trained language
model uses RoBERTa-base (Liu et al., 2019) and
can be easily migrated to other PLM models. We
implement our model based on PyTorch and use
two Tesla V100 graphic cards for learning. In order
to use the original features obtained from the PLM
without additional scaling, we set Dim(E) to the
same dimension as the output of layer of PLM.

We train E separately for each meeting input,
using only the input text list and random segment
boundaries to maximize mutual information as the
training goal. No gold segment boundaries are
required, which is consistent with the test scenario,
that is, it is not biased by other meeting data.


