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Abstract

In the last two years, text-to-image diffusion models have become extremely
popular. As their quality and usage increase, a major concern has been the need
for better output control. In addition to prompt engineering, one effective method
to improve the controllability of diffusion models has been to condition them
on additional modalities such as image style, depth map, or keypoints. This
forms the basis of ControlNets or Adapters. When attempting to apply these
methods to control human poses in outputs of text-to-image diffusion models, two
main challenges have arisen. The first challenge is generating poses following a
wide range of semantic text descriptions, for which previous methods involved
searching for a pose within a dataset of (caption, pose) pairs. The second challenge
is conditioning image generation on a specified pose while keeping both high
aesthetic and high pose fidelity. In this article, we fix these two main issues
by introducing a text-to-pose (T2P) generative model alongside a new sampling
algorithm, and a new pose adapter that incorporates more pose keypoints for higher
pose fidelity. Together, these two new state-of-the-art models enable, for the first
time, a generative text-to-pose-to-image framework for higher pose control in
diffusion models. We release all models and the code used for the experiments at
https://github.com/clement-bonnet/text-to-pose.

1 Introduction

Text-to-image diffusion models have recently shown impressive results in the space of image genera-
tion [14, 5, 15, 6, 13]. As the use and quality of these models have increased, so have the requirements
from users to strengthen the controllability of the outputs. Various methods have emerged to yield
better output control, from fine-tuning [21], to sophisticated prompt-engineering [3, 9], to adding
new modalities as conditions, e.g. ControlNets [24] and Adapters [10, 23].

In the context of enhancing human pose fidelity in text-to-image diffusion models, two key problems
have emerged:

• (1) Obtaining poses to cover the wide variety of situations that can be described semantically
through the text description. Previous methods required selecting poses from a dataset, either
by giving a picture, extracting its pose using pose-estimation models such as DWPose [22],
and transferring it to the new image with systems such as GANs [8].
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• (2) Pose-conditioned image generation such as the previous SOTA SDXL-Tencent adap-
tor [10] does not include faces or hands, hindering pose fidelity, suffers from an aesthetic
quality drastically lower than that of the original SDXL model.

In this article, we overcome these two main challenges of image generation conditioned on text
and pose by first training a text-to-pose generative model, which is to the best of our knowledge
the first of its kind, and then by training a new SOTA pose adapter for diffusion models, which
incorporates both facial and hand gestures. Combining these two new SOTA models enables a new
text-to-pose-to-image generative framework for higher pose control in diffusion models (see figure 4
for a visual in the appendix).

2 Text-to-Pose Generative Model

We describe a human pose with a series of points locating key positions of body parts: 18 points
for the body, 42 points for the hands, and 68 points for the face (see Figure 5 in the appendix for
examples of poses). To train a text-to-pose model, we first design a metric inspired by CLIP [11] to
assess the quality of generated poses during training. We then design a transformer architecture for
prompt-conditioned pose generation, annotate a dataset of high-quality images, and train the model
on it.

2.1 CLaPP: A Contrastive Text-Pose Metric

Before training a generative text-to-pose model, we first create a metric that will guide training
regarding matching text to poses. To do so, we train a contrastive model – akin to CLIP [11, 12] – by
embedding both text and pose image into a joint latent space and optimizing the projection such as
to minimize the angular distance between poses that corresponds to the same text description while
maximizing the distance between those that do not. Inspired by CLIP, we call our model Contrastive
Language-Pose Pretraining (CLaPP).

We train our CLaPP metric on a dataset of 500k (image, prompt) pairs from JourneyDB [16] which
we annotate to extract poses (body, face, and hands) using DWPose [22]. Both prompts and poses
(images of poses on a black background) are first encoded using CLIP. The CLaPP layers then map
each CLIP representation to a new text-pose embedding from which to compute the CLaPP score.
The resulting CLaPP scores between different poses and texts are reported in Figure 5 in the appendix.
As expected, the diagonal of the score matrix has high CLaPP scores since it corresponds to the exact
captions of each image.

2.2 T2P: Text-to-Pose Transformer
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Figure 1: Text-to-Pose transformer architecture.

A pose is defined as an ordered sequence of key points, i.e. (x, y) coordinates of points in the image
that correspond to e.g. the right thumb, the left shoulder, the nose, etc. Given this, it makes sense
to design a sequence model that can embed the whole pose conditioned on text features. For this,
we use a decoder-only Transformer [17] architecture (see fig. 1) to auto-regressively predict the
next point in a pose with cross-attention on the text features produced by CLIP. We use positional
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embeddings of length 128 (18 body points, 68 face points, and 2∗21 for the hands). Contrary to
language models that have tokens, the pose input space is continuous, therefore, we model it with a
Gaussian Mixture Model (GMM) along with a binary classifier. The former allows us to learn rather
complex non-normal probability distributions over the next pose keypoint, while the latter predicts if
the next keypoint exists. Indeed, poses are not always complete, e.g. if a pose describes a portrait,
it is likely that only the 68 points corresponding to the face will be present. We found the use of
mixtures necessary since a single Gaussian cannot represent well the multi-modal properties of the
conditional probability distribution of the next keypoint, e.g. if the pose represents two people on
either side, a GMM can capture this bi-modality of where the next point can be (left or right).

2.3 Training

We train the model in a self-supervised fashion by predicting the next pose point in the sequence.
The GMM output is trained with maximum likelihood (the GMM likelihood can be computed
analytically), and the binary classifier with binary cross-entropy on the existence of the next point or
not. We train the model on the 4M (pose, prompt) pairs obtained from JourneyDB by annotating each
image with DWPose. We found that a mixture of 6 different Gaussian mixtures and a transformer
with 4 layers worked best for our dataset.

2.4 Inference: Tempered Distribution Sampling

After training, the auto-regressive Gaussian mixture model suffers from too high of an entropy which
makes sampling from the model quickly diverge out-of-distribution at inference time. Traditionally,
language models have their logits divided by a temperature at inference time to decrease the model’s
entropy [4, 19, 18]. In our case, the model outputs GMM parameters and although the tempered
likelihood function can be analytically computed, to our knowledge there is no known algorithm
to sample from it. Therefore, we generalize the approach of tempered distribution sampling to any
distribution in theorem 1. We then applied tempered sampling to our GMM and found generated
poses to be much more precise with lower temperatures, at the expense of being less diverse (see
figure 7 in the appendix).

2.5 Analysis & Performance
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Figure 2: CLaPP scores with 95% confidence intervals.
The win-rate ratio of T2P over KNN is 78%. We use
a subset of 100 (caption, pose) pairs from the COCO
2017 validation dataset

To analyze the performance of our text-to-
pose (T2P) model, we compiled a “COCO-
Pose” benchmark dataset, where we ex-
tracted the poses of 100 image-caption
pairs from the standard COCO 2017 bench-
mark [7, 1]. For each of the text labels of
the COCO-Pose dataset, we then compared
the CLaPP score of either: (a) selecting
the closest pose from the training dataset
(KNN search [2] from CLIP embeddings);
or (b) generating a pose using T2P. The re-
sults are compiled in figure 2, where we
can see that T2P outperforms a KNN in
the training dataset 78% of the time. This
somewhat proves the local generalization
capabilities of T2P and its alignment with
respect to prompts describing poses.

3 Pose Adapter for Image Generation

Several pose-conditioning systems have been built for diffusion models, notably ControlNets [24],
and Adapters [10, 23]. The previous SOTA model for pose-conditioning is the SDXL-Tencent
adapter [10] which suffers from two key drawbacks. First, it does not include keypoints related to
faces and hands. Second, it suffered from lower image aesthetic due to training on low-quality images
or optimization issues.
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3.1 Adapter Training

We start from the same architecture as the previous SOTA adapter [10], which consists of a ResNet-
like model, and we train it on the same dataset used to train T2P. We use the same hyper-parameters
as the original model for a total of 7600 training steps with a batch size of 256.

3.2 Analysis & Performance

To measure the performance of our adapter compared to the previous SOTA, we conducted a series of
benchmarking tests. For these tests, we generate pose-conditioned images using 30 steps of diffusion
with both adapters and then 10 steps of the SDXL refiner model to correct small distortions. The fact
that our adapter now has faces and hands to condition on yields better pose accuracy, as shown in
figure 8 in the appendix. However, one can see the poses are never perfectly matched and the image
quality is still below that of the base SDXL model.

We also measure the aesthetic score 2, and Human Preference Score (HPS) v2 [20], of both the
SDXL-Tencent adapter and ours on the COCO-Pose dataset. As shown in figure 3, our adapter
outperforms the Tencent one 70% of the time for the aesthetic score, and 76% of the time for the
HPS score on the COCO-Pose benchmark.
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(b) HPS v2, win ratio: 76%
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Figure 3: Performance of pose-conditioned image generation for the Tencent adapter and ours. (a):
Aesthetic score (ML based). (b): Human Preference Score v2 [20]. (c): Human preferences (manually
annotating). Error bars represent two standard deviations. We use a subset of 100 (caption, pose)
pairs from the COCO 2017 validation dataset to serve as conditions for image generation.

4 Discussion

In this article, we tackle the problem of conditioning on human poses the image generation process
of diffusion models. We first solve the issue of finding the right pose given a prompt by training a
text-to-pose auto-regressive model, which outperforms searching the training database (using KNN)
78% of the time. We then tackle the task of conditioning on poses in a way that guarantees both high
fidelity to the pose and high image aesthetics by training a pose adapter on high-quality images with
more pose keypoints than previous models. Our adapter has a win-rate ratio of 70% on the aesthetic
score and 76% on the COCO-Pose benchmark compared to the previous SOTA.

This work encourages new paradigms for improved user experiences. By creating this intermediate
modifiable image semantics (human poses), one can imagine slightly altering the pose while keeping
the seed constant so as to modify the human pose directly on the generated image, turning the pixel
image somewhat vectorized.

Improved image fidelity and human pose control bring our attention to the broader ethical impacts
that such technologies can have. While our system does not guarantee photorealism, it is important to
keep in mind that such AI-generated images should not be misused and mixed up with real photos of
humans.

2see https://github.com/christophschuhmann/improved-aesthetic-predictor
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A Appendix

A.1 Text-to-pose-to-image framework

We propose factorizing text-to-image generation into semantics generation (human poses) and then
semantics-conditioned image generation (see figure 4). This allows for better control over the
semantics and higher overall quality.

“A lady holding 
a smartphone at 

a cafe”

Diffusion 
Model

(a) Standard text-to-image generation

“A lady holding 
a smartphone at 

a cafe”

Diffusion 
Model + 
Adapter

Semantics 
Generator

(b) Ours: text-to-pose-to-image generation

Figure 4: Text-to-pose-to-image framework.

A.2 CLaPP metric

Our contrastive model, called CLaPP, can predict compatibility scores between a prompt and a human
pose. Figure 5 demonstrates a few CLaPP scores of samples from the COCO dataset. The closer to 1,
the more similar a pose and a prompt are, the worst score being -1.
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Figure 5: CLaPP scores on 5 poses and corresponding captions from the COCO dataset. The scores
measure the compatibility between text and poses.

A.3 Tempered distribution sampling

We prove some properties of our generalization of tempered sampling to any distribution in theorem 1.
We also describe the sampling algorithm used to do inference with the T2P model.

Theorem 1 (Tempered distribution sampling) Let X be a random variable, with a probability
distribution density p(X), i.e. X ∼ p(X). Let T ∈ R+ be a real positive “temperature” parameter.
We define the “tempered distribution transform” as XT ∼ pT (X), where:

pT (x) ≜
p(x)

1
T∫

X
p(x)

1
T dx

=
e

ln p(x)
T∫

X
e

ln p(x)
T dx

(1)
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Properties – the tempered distribution pT is related to the original one p by the following properties:

• Conservation of modes (and inflection points): if ∂xp = 0, then ∂xpT = 0

• Temperature one invariance: pT=1(x) = p(x)

• Mode selection with smaller temperatures: as T goes to zero, the tempered distributions pT
tends towards a dirac distribution selecting the mode of the p distribution, i.e.

pT (x) −→
T→0

max
p(x)

δ(x) (2)

• Uniform thermalization with high temperatures: as T goes to infinity, the tempered distribu-
tion pT tends towards a uniform distribution over the support of p, i.e.

pT (x) −→
T→∞

Uniform
X

(x) (3)

• Temperature score scaling: the score of the tempered distribution ∇xlnpT (x) is proportional
to the score of the original distribution ∇xlnp(x), scaled by the temperature, i.e.

∇xlnpT (x) =
∇xlnp(x)

T
(4)

Sampling scheme – to sample from the tempered distribution, one can (c.f. Figure 6):

• Sample N points xi from p(X) to cover its support

• Sample from the following softmax distribution:

Softmax

{[
1

T
− 1

]
ln p(xi)

}
≜

e[
1
T −1]lnp(xi)∑N

j=1 e
[ 1
T −1]lnp(xj)

(5)

Proof 1 The proofs of the mode-conserving and score-scaling properties are established by taking
the derivatives from the tempered distribution definitions. The mode-selecting property is established
by taking the temperature to zero. The proof of the sampling scheme is derived by importance

sampling:
∫
X

e
ln p(x)

T

p(x) p(x)dx =
∫
X
e[

1
T −1]lnp(x)p(x)dx, which is then approximated at large N by

Monte Carlo estimate
∑N

j=1 e
[ 1
T −1]lnp(xj).

We can see in figure 6 the influence of the temperature on a tempered GMM in a toy case with two
Gaussian mixtures. The closer to 0 the temperature, the closer to the mode the tempered distribution
peaks.

Tempered sampling for a GMM is crucial for our T2P model because the model with a temperature
of 1 has too high entropy and ends up generating out-of-distribution high-noise pose sequences. The
effect of the temperature on the T2P inference can be observed in figure 7 with the poses failing to
shake hands at high temperature but eventually succeeding if the temperature is lowered.

A.4 Pose adapter

We train our adapter on high-quality images annotated with full poses (including bodies, hands, and
faces). This leads to a pose-conditioned image generation of higher quality and fidelity as shown in
figure 8.

A.5 Limits

CLaPP metric The metric we designed to automatically assess the quality of generated poses
has some shortcomings. First, it was trained on a not-so-large dataset which means it may consider
out-of-distribution captions or poses that are quite different from the dataset it was trained on, biasing
a text-pose matching score. Then, we used CLIP as a backbone, whose text and image encoders may
have some pose-agnostic representations that hinder the quality of embeddings as much as human
poses are concerned. Finally, using images as representations of poses is highly inefficient, one could
design a better model by working with the sequence of (x, y) points directly (much lower dimension),
for instance using the backbone of the T2P model.
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Figure 6: Tempered distribution sampling of Gaussian Mixture Model. N = 10, 000 Monte-Carlo
samples.

Figure 7: Effect of the temperature on GMM tempered sampling for text-to-pose generation. Prompt:
“two politicians shaking hands in a lobby”.

T2P Although the trained T2P model can generate rather precise poses, it tends to lack diversity and
is really just a reflection of the data it was trained on. Moreover, generating poses in an auto-regressive
fashion is quite costly and adds considerable overhead at inference time.

Pose adapter Although our newly trained pose adapter has higher pose fidelity and image aesthetics,
it does not always conform exactly to pose conditions and still suffers from lower image quality
compared to the base SDXL. More data would likely help mitigate both these issues.
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Pose

a person on skis makes her 
way through the snow

Two men shaking hands after
 a dinner speech.

A man surfing on a large wa
ve in the ocean.

a bunch of kids sitting on 
grass holding a frisbe

A man with a plaid hat, tie
, dress shirt and glasses o

Tencent

Ours

Figure 8: Pose-conditioned image generation using the SDXL-Tencent adapter, and ours (which
includes hands and faces).
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