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Abstract

Next token prediction is the fundamental principle for training large language
models (LLMs), and reinforcement learning (RL) further enhances their reasoning
performance. As an effective way to model language, image, video, and other
modalities, the use of LLMs for end-to-end extraction of structured visual repre-
sentations, such as scene graphs, remains underexplored. It requires the model
to accurately produce a set of objects and relationship triplets, rather than gener-
ating text token by token. To achieve this, we introduce R/-SGG, a multimodal
LLM (M-LLM) initially trained via supervised fine-tuning (SFT) on the scene
graph dataset and subsequently refined using reinforcement learning to enhance
its ability to generate scene graphs in an end-to-end manner. The SFT follows a
conventional prompt-response paradigm, while RL requires the design of effective
reward signals. We design a set of graph centric rewards, including three recall
based variants—Hard Recall, Hard Recall+Relax, and Soft Recall—which evaluate
semantic and spatial alignment between predictions and ground truth at the object
and relation levels. A format consistency reward further ensures that outputs follow
the expected structural schema. Extensive experiments on the VG150 and PSG
benchmarks show that R1-SGG substantially reduces failure rates and achieves
strong performance in Recall and mean Recall, surpassing traditional SGG models
and existing multimodal language models.

1 Introduction

Scene graphs, as structured visual representations, have gained increasing attention in many vision
applications, such as robot manipulation [44} 41]], robot navigation [7, 23} 137], and medical image
or video analysis [20, 24], etc. To generate scene graphs from an image, traditional Scene Graph
Generation (SGG) models [10} 34} 14} 138,129} 2} [15 11} 5} 40} 4] decouple the task into two subtasks,
i.e., object detection and visual relationship recognition, and directly maximize the likelihood of
the ground-truth labels given the image. Essentially, these models tend to overfit the distribution of
annotated datasets; Consequently, they struggle to handle long-tail distributions and are prone to
generating biased scene graphs (e.g., all predicted relationships are head classes like “on” and “of™).

While traditional SGG models rely on manual annotated datasets and struggle to generalize to new
domains, recent advances in large languge models (LLMs) offer a new paragdim. LLM4SGG [12]
utilizes an LLM to extract relationship triplets from captions using both original and paraphrased
text, while GPT4SGG [3] employs an LLM to synthesize scene graphs from dense region captions.
Additionally, Li [17] generates scene graphs via image-to-text generation using vision-language
models (VLMs). These weakly supervised methods demonstrate potential for generating scene graphs
with little or no human annotation but suffer from accuracy issues in the generated results.

Despite these advancements, existing methods typically employ text-only LLMs or rely on intermedi-
ate captions as input, which do not fully leverage the rich visual context. In contrast, multimodal
large language models (M-LLMs) which integrate both visual and linguistic modalities offer the
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(a) M-LLM with SFT is optimized token by token (here, w; refers to a token).
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(b) M-LLM with RL is optimized using rule-based rewards. Here, G = (V, E)
and G = (V,FE) refer to the ground-truth and predicted scene graphs, respectively.

Figure 1: Comparison of multimodal LLMs (M-LLMs) fine-tuned via Supervised Fine-tuning (SFT)
and Reinforcement Learning (RL) for Scene Graph Generation (SGG).

potential for more direct and holistic scene understanding. By processing visual information alongside
natural language prompts, M-LLMs can generate scene graphs in an end-to-end manner. However,
in practice, M-LLMs suffer from instruction following (e.g., the output does not contain “objects”
or “relationships”), repeated response (e.g., { "objects":[- - - {"id": "desk.9", "bbox": [214, 326, 499,
389]}, {"id": "desk.10", "bbox": [214, 326, 499, 389]}, {"id": "desk.11", "bbox": [214, 326, 499,
3891}, ---]--- }), inaccurate location, efc. These challenges highlight the need for better alignment
between visual understanding and structured representation within the M-LLM framework.

To improve instruction-following and structured output generation in M-LLMs, one intuitive solution
is to perform Supervised Fine-tuning (SFT) on scene graph datasets (see Fig. [TH(a)). In the context
of SGG, SFT aligns the model’s outputs with expected formats (e.g., structured lists of objects and
relationships) by training it on high-quality scene graph annotations. This process encourages the
model not only to recognize entities and relations from the image but also to organize them into a
coherent and valid graph structure. Nevertheless, SFT alone still be insufficient as all output tokens
are weighted equally in the loss. For example, the experimental results on the VG150 dataset [34]
reveal that even with SFT, M-LLM still has a high failure rate to generate a valid and high-quality
scene graph. The drawback of SFT in SGG lies in the lack of effective signals to correct the output
(e.g., the model cannot directly utilize the Intersection over Union (IoU) between the predicted box
and the ground truth to refine its output ).

To advance M-LLMs for effective Scene Graph Generation (SGG), we propose RI-SGG, a novel
framework leveraging visual instruction tuning enhanced by reinforcement learning (RL). The visual
instruction tuning stage follows a conventional supervised fine-tuning (SFT) paradigm, i.e., fine-
tuning the model using prompt-response pairs with a cross-entropy loss. For the RL stage, we adopt
GRPO, an online policy optimization algorithm introduced in DeepSeekMath [28]].

To enable effective reinforcement learning for Scene Graph Generation, we introduce a set of rule-
based, graph-centric rewards that reflect the structural characteristics of scene graphs. Given an
image and a prompt, a multimodal large language model (M-LLM) generates a set of objects and
relational triplets. To evaluate and optimize these predictions, we formulate reward functions aligned
with standard SGDET metrics [34] and structured reasoning objectives. Specifically, we define three
reward variants: Hard Recall, which counts a triplet as correct only if the subject, predicate, and
object labels exactly match the ground truth and both bounding boxes achieve IoU > 0.5; Hard
Recall+Relax, which relaxes the exact match constraint by incorporating embedding similarity
between predicted and ground-truth labels; and Soft Recall, which further densifies reward signals
via bipartite matching, combining object label similarity, IoU, and bounding box distance into a
unified cost function. These scene graph rewards are computed over matched object and edge pairs,
and are complemented by a format reward that enforces structural adherence in output formatting.
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This reward design enables stable and fine-grained policy optimization using GRPO, guiding the
M-LLM toward generating accurate, complete, and structurally valid scene graphs.

Our contributions can be summarized as follows:

* We explore how to develop a multimodal LLM for Scene Graph Generation (SGG), by
leveraging visual instruction tuning with reinforcement learning (RL). To our knowledge,
this is a pioneer work that develop a multimodal LLM to generate scene graphs in an
end-to-end manner.

* Graph-centric, rule-based rewards are designed to guide policy optimization in a man-
ner aligned with standard evaluation metrics in SGG, such as the recall of relationship
triplets—metrics that cannot be directly optimized through SFT.

* Experimental results demonstrate that the proposed framework improves the ability to
understand and reason about scene graphs for multimodal LLM:s.

2 Related Work

Scene Graph Generation (SGG). Scene Graph Generation (SGG) is a foundational task in
structured visual understanding, where the goal is to represent an image as a graph of objects and their
pairwise relationships. Traditional approaches like [34} [14} |38}, 29} 12, [15, [11} 15] decouple the task
into object detection and relationship classification stages, and are typically trained via supervised
learning on datasets such as Visual Genome (VG150) [34]]. While effective, these models are limited
by their reliance on annotated data and exhibit strong bias toward head predicates such as “on” or
“of”, struggling on long-tail classes.

To overcome the closed-set limitation, recent work has explored open-vocabulary SGG. For example,
OvSGTR [4] extends scene graph prediction to a fully open-vocabulary setting by leveraging visual-
concept alignment. In parallel, weakly supervised methods have been developed to reduce the
annotation burden. These approaches, such as those proposed by [43) (16} 40, 4], use image-caption
pairs as supervision to distill relational knowledge, enabling generalization to unseen concepts.

LLMs for Scene Graph Generation. With the rise of LLMs, several studies have attempted to
synthesize scene graphs from natural language. LLM4SGG [12] extracts relational triplets from
both original and paraphrased captions using text-only LLMs. GPT4SGG [3] goes a step further by
using GPT-4 to generate scene graphs from dense region captions, improving contextual consistency
and coverage. Meanwhile, [[17] leverage vision-language models (VLMs) to produce scene graphs
through image-to-text generation pipelines.

However, these caption-based or LLM-driven methods often exhibit limited accuracy, including
incomplete object sets, and inconsistent relationship descriptions. These issues arise from the lack of
structure in the generated outputs and the absence of mechanisms to refine the results according to
scene-level constraints.

Reinforcement Learning (RL) for LLMs. Reinforcement learning (RL) has been increasingly
adopted to enhance the reasoning capabilities of large models. Algorithms like Proximal Policy
Optimization (PPO) [27] and Group Relative Policy Optimization (GRPO) [28]] guide models using
reward signals instead of relying solely on maximum likelihood estimation. In the context of
large language models, DeepSeek-R1 [8] demonstrates that RL can significantly improve structured
reasoning and planning.

In multimodal learning, however, RL remains underutilized for generating structured outputs. Our
work addresses this by introducing rule-based reward functions at multiple levels, including three
scene graph reward variants and a format consistency reward. These signals promote the generation
of meaningful and coherent scene graphs by explicitly evaluating alignment with ground-truth
annotations.
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3 Methodology

3.1 Preliminary

Scene Graph Generation (SGG). Scene graph generation (SGG) transforms an image I into a
structured representation that captures both objects and their interactions. Specifically, SGG produces
a directed graph G = (V, £), where each node v; € V represents an object annotated with an object
category ¢; and a bounding box b;. Each relationship triplet e;; € £ captures the relationship between
two nodes. The triplet is defined as e;; := (v;, pi;, v;), where p;; encodes the visual relationship
between the subject v; and the object v;, such as spatial relations (e.g., “on”, “under”) or interactive
relations (e.g., “riding”, “holding”). Typically, SGG models decouple this task into two subtasks,
namely object detection and relationship recognition, both optimized by maximizing the likelihood
of the corresponding ground-truth labels given the image.

Reinforcement Learning with GRPO. Group Relative Policy Optimization (GRPO) is a online
reinforcement learning algorithm introduced by DeepSeekMath [28]]. Unlike traditional methods such
as PPO [27]], which require an explicit critic network, GRPO instead compares groups of candiates to
update the policy 7. Specifically, for each input query g, a set of candidate outputs {0;}&_; is drawn
from the previous policy 7°¢(O|q), and the advantage of each candidate is computed relative to the
group’s average reward:

A — r; —mean({ry,...,r¢}) )
Std({?“l, N ,Tg})
The policy parameters 6 are updated by maximizing the following GRPO objective:
1< mo(0ilq)
Jareo(0) = Eqp (@), {0} 2, ~m(0la) a Zl (min <7Told(oi|q) Ai,
- @

. Te\0;
chp(ﬂ_(ﬂd((ojqu)), 1l—¢ 1+ e)Ai> — 6DKL(7T9 I '/Tref)‘| ,
Here, € and 3 are hyper-parameters. The first term uses a clipped probability ratio (as in PPO) to
control the update magnitude, while the KL divergence regularizer Dxp (7g || mref) constrains the new
policy 7 to not deviate too much from a reference policy 7. This formulation, which combines a
group-relative advantage, a clipping mechanism, and a KL divergence regularizer, stabilizes policy
updates and improves training efficiency, demonstrating remarkable potential for enhancing the
reasoning performance of LLMs such as DeepSeek R1 [8].

3.2 Overview of R1-SGG

R1-SGG is a reinforcement learning framework that enhances scene graph generation (SGG) in
multimodal large language models (M-LLMs). It builds on a supervised fine-tuning (SFT) stage
using prompt-response pairs, followed by reinforcement learning (RL) with structured, graph-centric
rewards.

Given an input image and prompt, the M-LLM generates a scene graph Gpeq = (Vpred, Epred),
comprising objects (nodes) and their relationships (edges). We primarily optimize using Hard Recall,
which aligns with SGDET metrics by rewarding exact triplet matches. To study the sparsity and
design of the rewards, we also evaluated relaxed alternatives based on bipartite matching between
Gprea and the ground truth graph Gy, allowing fine-grained node and edge rewards. Our RL pipeline
employs Group Relative Policy Optimization (GRPO) [28], which compares sampled outputs and
promotes higher-reward candidates. By integrating SFT, GRPO, and graph-aware rewards, R1-SGG
enables M-LLMs to generate accurate, diverse, and structurally valid scene graphs.

3.3 Rewards Definition
3.3.1 Format Reward

Following DeepSeek R1 [8]], we employ a format reward to ensure that the model’s response adheres to
the expected structure, specifically <think>---</think><answer>---</answer>. A reward of 1
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is assigned if the response follows this format and the segment enclosed by <answer>- - - </answer>
contains both the keywords "object" and "relationships"; otherwise, the reward is O.

3.3.2 Scene Graph Rewards

Standard evaluation protocols for Scene Graph Generation (SGG), such as SGDET [34], formulate
the task as a recall-oriented problem, emphasizing the model’s ability to retrieve correct relationship
triplets from an image. To investigate the impact of different reward formulations, we introduce three
variants: Hard Recall, Hard Recall+Relax, and Soft Recall.

Hard Recall. To align policy optimization with standard SGDET metrics, we define Hard Recall,
where a predicted triplet (subject, predicate, object) is counted as a true positive when both of
the following hold: 1) Triplet accuracy: the subject, predicate, and object labels exactly match the
ground truth. 2) Localization accuracy: the IoU between predicted and ground-truth bounding boxes
exceeds 0.5.

This reward is aligned with standard metrics but suffers from sparsity due to its strict criteria.

Hard Recall + Relax. We relax the triplet accuracy requirement by computing cosine similarity
between the entity embeddings of predicted and ground-truth triplets. This softens the discrete
matching constraint to provide more gradient signal.

Soft Recall. We further propose a dense matching reward by formulating it as a bipartite matching
problem, similar to DETR [T]l, where predicted nodes {v; = (¢;, b;)}, (each node v; is comprising
an object class ¢; and a bounding box b;) are matched to ground-truth nodes {7; = (¢;, b;)}}_, with
the following cost:

cost(v;, Uj) =A1 - (1.0 — (Embedding(c; ), Embedding(¢;)))

b . 3)
+ /\2 . (].O - IOU(b“ bj)) + )\3 . ||b2 - bj”la

where (-, -) denotes cosine similarity, A, Ay are weight factors, and Embedding is obtained via
the NLP tool SpaCy. By solving the bipartite matching problem, we establish a one-to-one node
matching between the predicted graph Gyreq and the ground-truth graph G.

For a predicted node v;, the reward is defined as
A1 - (Embedding(c;), Embedding(¢;))

+>\2 . IOU(b,, bj)

+As3 - exp(—||b; — bjl1), if v; and v; are matched,
0, otherwise.

Reward(v;) = “)

which is the linear combination of object category similarity and the IoU of bounding boxes. The
total rewards of an image’s prediction set {v; } 1, is computed as

Reward({v; } 1)) ZReward v;). Q)

Wgt|

For a predicted triplet e;; :=< v;, p;;, v; >, the reward is defined as

(Embedding(v;), Embedding(vy))-
(Embedding(v;), Embedding(?;))-

Reward(e;;) = ¢ (Embedding(p;;), Embedding(py;)), if v; matches ¥y (6)
and v; matches vy,
0, otherwise.

Thereby, the reward of an image’s predicted edge set is computed as

Reward({e;;}) = |5 | ZReward €ij)- (7
t
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4 Experiments

4.1 Dataset and Experiment Setup

Dataset. The widely-used scene graph dataset VG150 [34] consists of 150 object categories and
50 relation categories. Following prior works [40, 4]], the training set used in this work contains
56,224 image-graph pairs, while the validation set includes 5,000 pairs. To prompt the M-LLM, we
transform each image-graph pair using the template described in Table 6]

The Panoptic Scene Graph (PSG) dataset [36] is built on the COCO dataset [18]], consisting of 80
thing object categories, 53 stuff object categories, and 56 relation categories. It contains 46,563
image-graph pairs for training and 2,186 pairs for testing.

Evaluation. Following the standard evaluation pipeline in SGG, we adopt the SGDET protocol [34,
30] to measure the model’s ability to generate scene graphs. SGDET requires the model to generate
scene graphs directly from the image without any predefined object boxes. Performance is evaluated
using Recall and mean Recall (mRecall). Recall is computed for each image-graph pair, where
a predicted triplet is considered correct if both the subject and object bounding boxes have an
Intersection over Union (IoU) of at least 0.5 with the corresponding ground-truth boxes, and the
subject category, object category, and relationship label all match the ground truth. Mean Recall
(mRecall) is obtained by averaging the Recall across all relation categories. We additionally report
AP@50 to assess object detection performance and Failure Rate to evaluate format consistency.

Implementation Details. Our code is based on the trl library [31] and utilizes vLLM [13] to
speed up sampling during reinforcement learning. For SFT, the model is trained for 3 epochs with
a batch size of 128 on 4 NVIDIA A100 (80GB) GPUs, using the AdamW optimizer [22] with a
maximum learning rate of le-5. For RL, the model is trained for 1 epoch with a batch size of 32
and 8 generations per sample on 16 NVIDIA GH200 (120GB) GPUs, also using AdamW with a
maximum learning rate of 6e-7.

4.2 How Well Do M-LLMs Reason About Visual Relationships?

We evaluate the visual relationship reasoning capabilities of open-source multimodal LL.Ms using
a four-to-one Visual Question Answering (VQA) task. Each model is prompted with an image
and a corresponding question. The used prompt template is:  Analyze the relationship
between the object "{sub_name}" at {sub_box} and the object "{obj_name}" at
{obj_box} in an image of size ({widthl}x{heightl}). The bounding boxes are in
[x1, y1, x2, y2] format. Choose the most appropriate relationship from the
following options: A) {choices[0]}; B) {choices[1]}; C) {choices[2]}; D)
{choices[3]}. We report Acc (accuracy over all questions) and mAcc (mean accuracy per
image) in Table[7} The results reveal that many multimodal LLMs struggle with visual relationship
reasoning. Moreover, the task exhibits a noticeable text bias, and the presence of bounding boxes can
sometimes mislead the model’s attention. As a simpler task compared to SGG, the poor performance
suggests that directly applying multimodal LLMs to SGG may yield suboptimal results.

4.3 How Well do M-LLMs Generate Scene Graphs?
4.3.1 Benchmark on VG150

We report the performance under various settings in Table[I] which includes: 1) Specific Models:
Methods built on specific detectors such as Faster R-CNN [26] (e.g., IMP [34]]) or DETR [1] (e.g.,
OvSGTR [4]) for scene graph generation. 2) Commercial M-LLMs: Advanced multimodal large
language models such as GPT-40 [9] and Gemini 1.5 Flash [25]. 3) Open-source M-LLMs: Publicly
available models such as LLaVA v1.5 [21], Qwen2-VL [32], and our proposed RI-SGG-Zero (based
on Qwen2-VL-2B/7B-Instruct, trained with GRPO but without supervised fine-tuning) and R/-
SGG (built on the same backbone, fine-tuned with GRPO and initialized from SFT checkpoints).

The results in Table [T]reveal several key observations.

Zero-shot Performance of M-LLMs. Either commercial or open-source multimodal LLMs struggle
to generate accurate scene graphs, and this can be attributed to several factors. First, the internal
processing of private models such as GPT-4o0 remains opaque to users, resulting in suboptimal
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Table 1: SGDET performance on the VG150 validation set. For M-LLMs, predefined object classes
and relation categories are included in the input prompts.

Method Params Failure Rate (%) AP@50 Recall mRecall
Specific Models
IMP [34] 2091 17.85 2.66
MOTIFS [38] 29.56 27.21 7.84
VCTree [29] . B 28.13 24.87 8.47
OvSGTR [4] 33.39 26.74 5.83
Commercial M-LLMs
GPT-40 [9] - 2.94 0.00 0.00 0.00
Gemini 1.5 Flash [25] - 1.10 0.51 0.10 0.08
Gemini 2.0 Flash [6] - 1.06 0.54 0.07 0.03
Open-sourced M-LLMs
LLaVA v1.5 [21] 7B 82.70 0.00 0.00 0.00
Qwen2-VL-2B-Instruct [32] 2B 59.96 2.18 0.07 0.18
+SFT 2B 72.42 8.10 547 1.46
Qwen2-VL-7B-Instruct [32] 7B 54.46 6.07 0.69 0.80
+SFT 7B 39.54 14.18 9.62 3.30
"RI-SGG-Zero 2B 034 1230 ~ 11.89 570
R1-SGG 2B 0.10 17.87 21.09 7.48
R1-SGG-Zero 7B 0.04 15.59 18.34 8.32
R1-SGG 7B 0.08 19.47 23.75 11.43

object detection performance. Second, models like LLaVA v1.5 align visual and textual features
only at the image level, typically using a fixed resolution of 336x336, which restricts spatial
understanding. Third, although models such as Gemini 2.0 and Qwen2-VL demonstrate a degree of
spatial understanding, the task of scene graph generation is much complex than pure object detection
or visual grounding. Consequently, their zero-shot performance drops significantly.

SFT vs. RL. 1) RL substantially improves performance across all metrics compared to SFT alone.
Specifically, RL dramatically reduces the failure rate (e.g., from 72.42% to 0.10% for 2B models) and
yields significant gains in AP@50, Recall, and mRecall. This highlights the effectiveness of GRPO
in enhancing the model’s ability to generate accurate and complete scene graphs. 2) SFT achieves
moderate improvements in AP@50 and Recall over the baseline but struggles with a relatively high
failure rate. This suggests that SFT primarily improves relation prediction while being less effective
at correcting structural errors, such as missing objects, relationships, or format inconsistencies. 3)
applying RL on top of SFT (i.e., R1-SGG) further boosts performance over both SFT and R1-SGG-
Zero in most cases. This indicates that combining SFT and RL benefits from better initialization,
leading to stronger relation recognition and higher recall. 4) larger models (e.g., 7B) consistently
outperform smaller models (e.g., 2B) across AP@50, Recall, and mRecall, demonstrating the benefits
of scaling model capacity for scene graph generation.

Compared to Specific Models. The gap between AP@50 and Recall highlights the advantage of
dense predictions. However, our models, such as R/-SGG, achieve a notable mean Recall (mRecall)
of 11.43%, suggesting that multimodal LLMs are more effective at generating less biased scene
graphs. Moreover, specific models are typically restricted to a limited vocabulary and struggle
to generalize across domains, whereas multimodal LL.Ms exhibit greater adaptability and broader
generalization capabilities.

Overall, the results demonstrate that reinforcement learning (RL) significantly reduces the failure rate
and enhances both object detection and relationship recognition. In contrast, supervised fine-tuning
(SFT) alone results in a relatively high failure rate and limited improvements. As shown in Fig.
the failure rate quickly drops to near-zero with RL, whereas SFT continues to suffer from frequent
structural errors.

4.3.2 Benchmark on PSG

As shown in Table 2] our R1-SGG approach achieves strong performance on the PSG dataset.
Compared to baselines, SFT significantly improves AP@50, Recall, and mean Recall (mRecall),
while reinforcement learning further enhances relationship recognition, achieving the highest Recall
(43.48% for 7B model) and mRecall (33.71%). Notably, our method also drives the failure rate to
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Table 2: Performance on the PSG dataset [36]. For M-LLMs, predefined object classes and relation
categories are included in the input prompts.

Model Params Failure Rate (%) AP@50 Recall mRecall
Specific Models
IMP [34] 16.50 6.50
MOTIFS [38] 20.00 9.10
VCTree [29] - - - 20.60 9.70
GPSNet [19] 17.80 7.00
PSGFormer [36] 18.60 16.70
Open-sourced M-LLMs
LLaVA v1.5 [21] 7B 81.97 0.07 0.00 0.00
TextPSG [42] - - - 4.80 -
ASMV2 [33] 13B 0.87 21.45 14.77 11.82
LLaVA-SpaceSGG [35] 13B - - 15.43 13.23
Qwen2-VL-2B-Instruct 2B 67.20 4.89 0.39 0.26
+SFT 2B 6.54 36.05 22.06 14.92
Qwen2-VL-7B-Instruct 7B 37.97 12.75 3.18 4.33
+SFT 7B 0.96 40.79 24.73 17.11
" RI-SGG-Zero 2B 023 2561 2506 1815
R1-SGG 2B 2.70 39.28 38.49 31.21
R1-SGG-Zero 7B 0.00 32.92 37.00 32.04
R1-SGG 7B 0.00 42.05 43.48 33.71

zero, demonstrating the effectiveness of reinforcement learning in promoting structured, accurate
scene graph generation even without predefined object categories.

4.4 Qualitative Results

We present qualitative results in Fig. [6] and Fig. As shown in Fig. [6] the ground-truth scene
graph (Fig. [6}(a)) captures key objects and their relationships but is biased toward the predicate
“has”. Conversely, the zero-shot Qwen2-VL-7B-Instruct (Fig. [6}(b)) fails to generate a valid JSON
output, indicating poor instruction-following ability. With supervised fine-tuning, the model produces
structurally valid graphs (Fig. [6}(c)) but frequently omits important relationships, resulting in a sparse
scene graph. R1-SGG-Zero (7B), trained with RL only, improves relational recall and structure
(Fig. E]-(d)), yet still outputs inaccurate triplets such as <wheel, on, horse> and <helmet.2, on,
horse>. Finally, R1-SGG (7B), trained with both SFT and RL, produces a complete and consistent
scene graph (Fig.[6}(e)), with results that even surpass the ground truth in relational richness.

4.5 Discussion

Through the exploration of applying GRPO to the SGG task, we make several observations.

KL Regularization. We compare models trained with and without KL divergence regularization in
Fig.[5} From the result, removing KL regularization leads to improved performance, particularly with
a significant reduction in failure rate.

Sampling Length. In our experiments, the default sampling length is set to 1,024, which sufficiently
covers most corrected answers. As shown in Fig. [} increasing the sampling length to 2,048 does not
yield further performance improvements, suggesting that longer sampling might enlarge the search
space and introduce additional optimization difficulties without clear benefits. This observation aligns
with prior findings on test-time scaling, where increasing Chain-of-Thought (CoT) length can degrade
performance [39].

Group Size. As shown in Fig. |5} increasing the group size from 8 to 16 stabilizes training performance,
consistent with the intuition that more candidates reduce variance in group statistics estimation. To
balance computational cost and performance, we adopt a group size of 8 as the default in this work.

To Think or Not Think? We adopt the <think>-.-</think><answer>---</answer>
format in the system prompt, following DeepSeek R1 [8]. However, models such as
Qwen2-VL-2B/7B-Instruct often fail to produce outputs with the <think> tag after fine-tuning,
indicating difficulty in adhering to the intended structure. This suggests that rule-based rewards alone
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Table 3: Generalization across datasets using Qwen2-VL-7B-Instruct as the baseline. Columns
under Pre-training indicate whether the weights were initialized from specific checkpoints, while
the Training column specifies the dataset(s) used during the fine-tuning stage. “w/o cats.” denotes
prompts without predefined object classes or relation categories.

. . VG150 PSG
Model Pre-Training  Training
Failure Rate AP@50 Recall mRecall Failure Rate AP@50 Recall mRecall
baseline - - 54.46 6.07 0.69 0.80 37.97 12.75 3.18 4.33
baseline (w/o cats.) - - 44.58 6.83 0.61 0.37 30.28 13.79 1.96 2.30
SFT - VG150 39.54 14.18 9.62 3.30 22.10 11.05 3.03 1.36
SFT (w/o cats.) - VG150 42.98 13.03 8.94 247 19.81 12.15 3.87 1.81
R1-SGG-Zero - VG150 0.04 15.59 18.34 8.32 0.18 24.92 13.83 8.90
R1-SGG-Zero (w/o cats.) - VG150 0.06 15.30 16.33 6.94 0.18 18.10 6.16 3.38
R1-SGG SFT VG150 0.08 19.47 23.75 11.43 0.23 18.12 9.10 5.13
R1-SGG (w/o cats.) SFT (w/o cats.) VG150 0.30 18.09 22.73 9.62 0.64 14.64 7.51 3.88
CSFT - PSG 3698 579 142077 091 - 40.58 2475 1731

SFT (w/o cats.) - PSG 2.54 7.94 1.77 1.25 1.01 39.02 23.70 17.17
R1-SGG-Zero - PSG 0.12 14.22 8.90 5.34 0.00 32.92 37.00 32.04
R1-SGG-Zero (w/o cats.) - PSG 0.02 9.08 2.80 1.78 0.05 24.26 19.94 18.04
R1-SGG SFT PSG 0.94 10.38 4.40 2.69 0.00 42.05 43.48 33.71
R1-SGG (w/o cats.) SFT (w/o cats.) PSG 0.14 9.38 2.16 1.55 0.14 41.15 41.44 3151

Table 4: Ablation of reward formulations on VG150 validation set using R1-SGG (7B).

Setting Sparsity Metric Aligned Failure Rate (%) AP@50 Recall (%) mRecall (%)
Hard Recall sparse v 0.08 19.47 23.75 11.43
Hard Recall + Relax ~ medium X 0.02 19.93 24.05 9.61
Soft Recall dense X 0.06 18.73 21.92 5.61

are insufficient to trigger abstract reasoning patterns like CoT, and highlights the need for additional
SFT on CoT-specific datasets to incentivize coherent intermediate reasoning.

Generalization Across Datasets. We report performance comparisons across datasets in Table 3]
The results highlight several key insights: 1) VG150 poses a significantly greater challenge than
PSG. For instance, SFT trained solely on PSG achieves a high AP@50 of 40.58 and Recall of
24.75%, with a low failure rate of 0.91%. In contrast, SFT trained only on VG150 results in a much
higher failure rate of 39.54%, with notably lower AP@50 (14.18) and Recall (9.62%). 2) SFT has a
strong domain-specific effect. SFT models trained on one dataset (e.g., VG150) exhibit substantial
performance drops when evaluated on another (e.g., PSG), reflecting limited transferability. For
example, VG150-trained SFT only achieves 3.03% Recall and 1.36% mRecall on PSG. 3) Predefined
categories in the prompt. Models trained and evaluated without categories (denoted as “w/o cats.”)
generally exhibit a slight drop in performance, while those with category information demonstrate
better generalization under open-set settings. 4) Initialization of RL matters. R1-SGG initialized
with SFT checkpoints consistently outperforms R1-SGG-Zero. On VG150, R1-SGG (7B) achieves
23.75% Recall and 11.43% mRecall versus 18.34% and 8.32% for R1-SGG-Zero. A similar trend is
observed on PSG. This highlights the importance of using SFT as a warm-start for reinforcement
learning, which leads to improved sample efficiency and stronger downstream performance. 5)
R1-SGG-Zero exhibits stronger cross-dataset generalization. This aligns with the domain-specific
nature of SFT—models trained via SFT tend to overfit to the source domain, resulting in degraded
performance on unseen datasets. In contrast, R1-SGG-Zero, trained without SFT, generalizes more
robustly across domains.

Hard Recall vs. Soft Recall. As shown in Table [ Hard Recall outperforms other variants despite
providing sparser reward signals. This highlights the importance of aligning reward functions with
evaluation metrics, rather than prioritizing reward smoothness alone.

5 Conclusion

We present a reinforcement learning framework for enhancing end-to-end Scene Graph Generation
(SGG) with multimodal large language models (M-LLMs). To align training with the structured
nature of scene graphs, we design a set of rule-based rewards, comprising three scene graph variants
(Hard Recall, Hard Recall+Relax, and Soft Recall) and a format consistency reward, which enable
fine-grained and stable policy optimization via GRPO. Our approach significantly improves the
structural validity and relational accuracy of generated scene graphs. We release our code and models
to support future research on structured visual understanding with M-LLMs.
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Table 5: Prompting an M-LLM to generate scene graphs without providing predefined object classes
or predicate types.

messages = [{ "role": "system", "content": " {system_prompt}" }, { "role": "user",
"content": f"""Generate a structured scene graph for an image using the following format:

“‘json { "objects": [ {"id": "object_name.number", "bbox": [x1, yl1, x2, y2]}, ... ], "relation-
ships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "ob-
ject_name.number"}, ... ] }“‘. ### **Guidelines:** - **Objects:** - Assign a unique ID for
each object using the format "object_name.number" (e.g., "person.1", "bike.2"). - Provide its
bounding box ‘[x1, y1, X2, y2]’ in integer pixel format. - Include all visible objects, even if
they have no relationships.

- **Relationships:** - Represent interactions accurately using "subject”, "predicate", and "ob-
ject". - Omit relationships for orphan objects.

### **Example Output:** “‘json { "objects": [ {"id": "person.1", "bbox": [120, 200, 350,
700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150,
280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "per-
son.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.l", "predicate": "wearing",
"object": "helmet.3"} ] } “‘ Now, generate the complete scene graph for the provided image:

nnn } ]

Table 6: Prompting an M-LLM to generate scene graphs with predefined object classes and predicate
types. Here, OBJ_CLS and REL_CLS refer to the predefined object classes and relation categories
respectively.

messages = [{ "role": "system", "content": " {system_promptl}" }, { "role": "user",
"content": f"""Generate a structured scene graph for an image using the following format:

“‘json { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relation-
ships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "ob-
ject_name.number"}, ... ] }“‘. ### **Guidelines:** - **QObjects:** - Assign a unique ID for
each object using the format "object_name.number" (e.g., "person.1", "bike.2"). The **ob-
ject_name** must belong to the predefined object set: ‘{OBJ_CLS}’. - Provide its bounding
box ‘[x1, yl, x2, y2]’ in integer pixel format. - Include all visible objects, even if they have no
relationships.

- **Relationships:** - Represent interactions accurately using "subject”, "predicate", and "ob-
ject". - Omit relationships for orphan objects. - The **predicate™* must belong to the prede-
fined relationship set: ‘{REL_CLS}’. ### **Example Output:** “‘json { "objects": [ {"id":
"person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]},
{"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]}
], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject":

|lperson.1l|’ "predicate”: ”Wearing s Object”: "helmet_3”} ] } e NOW’ generate the Complete
scene graph for the provided image: """ } ]

A Supplementary Material

A.1 Prompt Templates for SGG

In this work, we adopt two prompt templates for scene graph generation, as illustrated in Table [f] and
Table[5] The difference lies in whether predefined object classes and relation categories are provided.

A.2 How Well Do M-LLMs Reason About Visual Relationships?

To evaluate the reasoning capabilities of M-LLMs over visual relationships, we present results in
Table[/} We vary both the visual input and the text prompt conditions to assess robustness. For visual
variations, we consider: org. img., mask img., and mask obj.; for prompt variations, we add: w/o cats.
(without object categories) and w/o box. (without bounding boxes).
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Table 7: Comparison of VQA on the VG150 validation set across various models and settings. Gains
compared to the Original Image (1st row) are indicated in red. “mask img.” refers to masking the
entire image with random noise, “mask obj.” refers to masking object regions with black pixels, “w/o
cats.” refers to not providing object categories in the prompt, and “w/o box.” refers to not providing
bounding boxes in the prompt.

InstructBLIP 7B LLaVA v1.57B LLaVA v1.6 7B Qwen2VL 7B
Acc mAcc Acc mAcc Acc mAcc Acc mAcc
org. img. 2.3 1.9 45.8 45.6 28.7 29.2 53.7 53.4
mask img. 1.0 ¢13) 1.0 0.9 21.8 (2400  21.6 (-240) 3.9 (-248) 4.0 (252 0.0 (-53.7) 0.0 (-53.4)
mask obj. 1.9 04 1.9 con 3720 37284 128 ¢159 132¢160 16.2(375  16.8 (365
w/o cats. 2.5 +0.2) 2.4 (+0.4) 32.8 (1290 3271290 9.5 192 10.1 ¢c19.n)  16.8 (:36.9)  18.1 (:353)
+ mask img. 1.0 ¢13) 1.0 0.9 154 303) 153 303 0.0 (28.7) 0.0 (292 0.2 (-53.6) 0.2 (-53.1)
+ mask obj. 1.8 03) 1.7 03) 279 17.8) 284 (172) 3.3 (254 3.8 (254 4.7 49.1) 5.5 (-47.8)
w/o box. 26.0 +23.7) 259 (+2400 61.9 (+162) 61.3 +157) 53.5 +24.8) 52.1 42290  T8.1 (+244) T7.1 (+23.8)
+mask img.  10.1 +7.9 10.2 (+8.2) 36.3 (95  352¢104 11.5¢172 114 ¢177 0.0 537 0.0 (-53.4)
+maskobj. 193 @170 19.1 «17.) 542 85  53.8 820 33548 332 @4n 403134 39.3 140
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Figure 2: Comparison of R1-SGG-Zero and R1-SGG models against SFT baselines (Qwen2-VL-
2B/7B-Instruct) across training steps on the VG150 validation set in terms of Failure Rate (%),
AP@50, and Recall (%).

A.3 Qualitative Results

We present qualitative results in Fig. [6and Fig.[7] and analyze head and tail predicate performance in
Fig.[3]and Fig.[]to assess long-tail bias. As shown in Fig.[3] both specific models such as OvSGTR
and M-LLMs like Qwen2-VL-7B-Instruct (with or without SFT) tend to be biased toward head
classes, whereas R1-SGG achieves significantly higher recall on tail predicates. This trend is also
confirmed on the PSG dataset in Fig.[d These results demonstrate that R1-SGG is more effective at
generating unbiased scene graphs.
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(c) Recall scores of tail-25 predicates of the VG150 validation set.

Figure 3: Comparison of predicate frequency and predicate-wise recall on the VG150 validation
set. Subfigures (b) and (c) report the recall performance of R/-SGG compared to four models on

the top-24 and tail-25 predicates (the VG150 validation set contains only 49 predicates, with the

predicate “flying in” missing.), respectively. Here, Baseline refers to Qwen2-VL-7B-Instruct.
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Figure 4: Comparison of predicate frequency and predicate-wise recall on the PSG test set. Subfigures
tail-28 predicates, respectively. Here, Baseline refers to Qwen2-VL-7B-Instruct.
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NeurIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the objective of the paper: to enhance
end-to-end scene graph generation using reinforcement learning (RL) with multimodal
LLMs and summarize contributions such as novel reward design, integration of GRPO and

significant performance gains. These are substantiated by methodology and experiments
sections.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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Figure 6: Qualitative comparison of generated scene graphs (from VG150). (a) Ground-truth scene
graph annotated by humans. (b) Zero-shot Qwen2-VL-7B-Instruct produces an invalid JSON (failure
to follow format). (c) Qwen2-VL-7B-Instruct (SFT) outputs a valid graph but omits many relations.
(d) R1-SGG-Zero (7B) recovers most objects and relations but still hallucinates incorrect triplets (e.g.,
< wheel, on, horse> and < helmet.2, on, horse >). (e) R1-SGG (7B) yields a complete, structurally
correct scene graph with higher recall.
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Figure 7: Qualitative comparison of generated scene graphs (from PSG). (a) Ground-truth scene graph
annotated by humans. (b) Zero-shot Qwen2-VL-7B-Instruct generates a valid graph but includes
incorrect triplets (e.g., <person.l, wearing, net.3>). (c) Qwen2-VL-7B-Instruct (SFT) produces a
valid graph but omits some relationships. (d) R1-SGG-Zero (7B) recovers most objects and relations
but still hallucinates errors (e.g., <person.0, wearing, net>). (e) RI-SGG (7B) generates a complete
and accurate scene graph with higher recall.
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477 * The abstract and/or introduction should clearly state the claims made, including the

478 contributions made in the paper and important assumptions and limitations. A No or
479 NA answer to this question will not be perceived well by the reviewers.

480 * The claims made should match theoretical and experimental results, and reflect how
481 much the results can be expected to generalize to other settings.

482 * It is fine to include aspirational goals as motivation as long as it is clear that these goals
483 are not attained by the paper.

484 2. Limitations

485 Question: Does the paper discuss the limitations of the work performed by the authors?
486 Answer: [Yes]

487 Justification: Limitations are discussed, particularly in Section[4.3]

488 Guidelines:

489 * The answer NA means that the paper has no limitation while the answer No means that
490 the paper has limitations, but those are not discussed in the paper.

491 * The authors are encouraged to create a separate "Limitations" section in their paper.
492 * The paper should point out any strong assumptions and how robust the results are to
493 violations of these assumptions (e.g., independence assumptions, noiseless settings,
494 model well-specification, asymptotic approximations only holding locally). The authors
495 should reflect on how these assumptions might be violated in practice and what the
496 implications would be.

497 * The authors should reflect on the scope of the claims made, e.g., if the approach was
498 only tested on a few datasets or with a few runs. In general, empirical results often
499 depend on implicit assumptions, which should be articulated.

500 * The authors should reflect on the factors that influence the performance of the approach.
501 For example, a facial recognition algorithm may perform poorly when image resolution
502 is low or images are taken in low lighting. Or a speech-to-text system might not be
503 used reliably to provide closed captions for online lectures because it fails to handle
504 technical jargon.

505 * The authors should discuss the computational efficiency of the proposed algorithms
506 and how they scale with dataset size.

507 * If applicable, the authors should discuss possible limitations of their approach to
508 address problems of privacy and fairness.

509 * While the authors might fear that complete honesty about limitations might be used by
510 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
511 limitations that aren’t acknowledged in the paper. The authors should use their best
512 judgment and recognize that individual actions in favor of transparency play an impor-
513 tant role in developing norms that preserve the integrity of the community. Reviewers
514 will be specifically instructed to not penalize honesty concerning limitations.

515 3. Theory assumptions and proofs

516 Question: For each theoretical result, does the paper provide the full set of assumptions and
517 a complete (and correct) proof?

518 Answer: [NA]

519 Justification: This is not a theoretical paper.

520 Guidelines:

521 » The answer NA means that the paper does not include theoretical results.

522  All the theorems, formulas, and proofs in the paper should be numbered and cross-
523 referenced.

524 * All assumptions should be clearly stated or referenced in the statement of any theorems.
525 * The proofs can either appear in the main paper or the supplemental material, but if
526 they appear in the supplemental material, the authors are encouraged to provide a short
527 proof sketch to provide intuition.

528 * Inversely, any informal proof provided in the core of the paper should be complemented
529 by formal proofs provided in appendix or supplemental material.

20



530 » Theorems and Lemmas that the proof relies upon should be properly referenced.

531 4. Experimental result reproducibility

532 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
533 perimental results of the paper to the extent that it affects the main claims and/or conclusions
534 of the paper (regardless of whether the code and data are provided or not)?

535 Answer: [Yes]

536 Justification: The paper describes datasets, training setup, reward design, hyperparameters,
537 model configurations, and evaluation metrics. This level of detail supports reproducibility
538 even without direct code access.

539 Guidelines:

540 » The answer NA means that the paper does not include experiments.

541 * If the paper includes experiments, a No answer to this question will not be perceived
542 well by the reviewers: Making the paper reproducible is important, regardless of
543 whether the code and data are provided or not.

544 * If the contribution is a dataset and/or model, the authors should describe the steps taken
545 to make their results reproducible or verifiable.

546 * Depending on the contribution, reproducibility can be accomplished in various ways.
547 For example, if the contribution is a novel architecture, describing the architecture fully
548 might suffice, or if the contribution is a specific model and empirical evaluation, it may
549 be necessary to either make it possible for others to replicate the model with the same
550 dataset, or provide access to the model. In general. releasing code and data is often
551 one good way to accomplish this, but reproducibility can also be provided via detailed
552 instructions for how to replicate the results, access to a hosted model (e.g., in the case
553 of a large language model), releasing of a model checkpoint, or other means that are
554 appropriate to the research performed.

555 * While NeurIPS does not require releasing code, the conference does require all submis-
556 sions to provide some reasonable avenue for reproducibility, which may depend on the
557 nature of the contribution. For example

558 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
559 to reproduce that algorithm.

560 (b) If the contribution is primarily a new model architecture, the paper should describe
561 the architecture clearly and fully.

562 (c) If the contribution is a new model (e.g., a large language model), then there should
563 either be a way to access this model for reproducing the results or a way to reproduce
564 the model (e.g., with an open-source dataset or instructions for how to construct
565 the dataset).

566 (d) We recognize that reproducibility may be tricky in some cases, in which case
567 authors are welcome to describe the particular way they provide for reproducibility.
568 In the case of closed-source models, it may be that access to the model is limited in
569 some way (e.g., to registered users), but it should be possible for other researchers
570 to have some path to reproducing or verifying the results.

571 5. Open access to data and code

572 Question: Does the paper provide open access to the data and code, with sufficient instruc-
573 tions to faithfully reproduce the main experimental results, as described in supplemental
574 material?

575 Answer: [Yes]

576 Justification: We use public datasets and the code will be released. Supplementary material
577 also provides detailed prompt templates for reproducibility.

578 Guidelines:

579 * The answer NA means that paper does not include experiments requiring code.

580 * Please see the NeurIPS code and data submission guidelines (https://nips.cc/
581 public/guides/CodeSubmissionPolicy) for more details.
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* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Sectiond.T|clearly provides training details, dataset splits, evaluation protocols,
model sizes, batch sizes, learning rates, and compute resources used.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The paper does not report error bars, variance, confidence intervals, or signifi-
cance tests.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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8.

10.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section provides specifics: SFT on 4 A100 GPUs, RL on 16 GH200 GPUs,
with training durations, batch sizes, and generation counts.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

 The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research aligns with NeurIPS ethical guidelines, including transparency of
method, release plans, and no direct risks related to human subjects or private data.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: The paper does not explicitly address societal impacts such as misuse, fairness,
or safety. Although scene graph generation has potential societal implications, this aspect
falls outside the scope of the current work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
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12.

to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: Since our models are trained on two public datasets, there is no direct risk of
misuse.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Datasets and tools like VG150, PSG, vLLM, and trl are used and properly
cited with corresponding references.

Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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16.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces the R1-SGG model and corresponding reward mecha-
nisms, and promises documentation and release of assets.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The work does not involve human subjects or crowdsourced data collection.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not applicable since no human subjects are involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: We only use LLMs for writing assistance and proofreading.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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