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Abstract

Next token prediction is the fundamental principle for training large language1

models (LLMs), and reinforcement learning (RL) further enhances their reasoning2

performance. As an effective way to model language, image, video, and other3

modalities, the use of LLMs for end-to-end extraction of structured visual repre-4

sentations, such as scene graphs, remains underexplored. It requires the model5

to accurately produce a set of objects and relationship triplets, rather than gener-6

ating text token by token. To achieve this, we introduce R1-SGG, a multimodal7

LLM (M-LLM) initially trained via supervised fine-tuning (SFT) on the scene8

graph dataset and subsequently refined using reinforcement learning to enhance9

its ability to generate scene graphs in an end-to-end manner. The SFT follows a10

conventional prompt-response paradigm, while RL requires the design of effective11

reward signals. We design a set of graph centric rewards, including three recall12

based variants—Hard Recall, Hard Recall+Relax, and Soft Recall—which evaluate13

semantic and spatial alignment between predictions and ground truth at the object14

and relation levels. A format consistency reward further ensures that outputs follow15

the expected structural schema. Extensive experiments on the VG150 and PSG16

benchmarks show that R1-SGG substantially reduces failure rates and achieves17

strong performance in Recall and mean Recall, surpassing traditional SGG models18

and existing multimodal language models.19

1 Introduction20

Scene graphs, as structured visual representations, have gained increasing attention in many vision21

applications, such as robot manipulation [44, 41], robot navigation [7, 23, 37], and medical image22

or video analysis [20, 24], etc. To generate scene graphs from an image, traditional Scene Graph23

Generation (SGG) models [10, 34, 14, 38, 29, 2, 15, 11, 5, 40, 4] decouple the task into two subtasks,24

i.e., object detection and visual relationship recognition, and directly maximize the likelihood of25

the ground-truth labels given the image. Essentially, these models tend to overfit the distribution of26

annotated datasets; Consequently, they struggle to handle long-tail distributions and are prone to27

generating biased scene graphs (e.g., all predicted relationships are head classes like “on” and “of”).28

While traditional SGG models rely on manual annotated datasets and struggle to generalize to new29

domains, recent advances in large languge models (LLMs) offer a new paragdim. LLM4SGG [12]30

utilizes an LLM to extract relationship triplets from captions using both original and paraphrased31

text, while GPT4SGG [3] employs an LLM to synthesize scene graphs from dense region captions.32

Additionally, Li [17] generates scene graphs via image-to-text generation using vision-language33

models (VLMs). These weakly supervised methods demonstrate potential for generating scene graphs34

with little or no human annotation but suffer from accuracy issues in the generated results.35

Despite these advancements, existing methods typically employ text-only LLMs or rely on intermedi-36

ate captions as input, which do not fully leverage the rich visual context. In contrast, multimodal37

large language models (M-LLMs) which integrate both visual and linguistic modalities offer the38
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(a) M-LLM with SFT is optimized token by token (here, wi refers to a token).
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(b) M-LLM with RL is optimized using rule-based rewards. Here, G = (V,E)

and Ĝ = (V̂ , Ê) refer to the ground-truth and predicted scene graphs, respectively.

Figure 1: Comparison of multimodal LLMs (M-LLMs) fine-tuned via Supervised Fine-tuning (SFT)
and Reinforcement Learning (RL) for Scene Graph Generation (SGG).

potential for more direct and holistic scene understanding. By processing visual information alongside39

natural language prompts, M-LLMs can generate scene graphs in an end-to-end manner. However,40

in practice, M-LLMs suffer from instruction following (e.g., the output does not contain “objects”41

or “relationships”), repeated response (e.g., {"objects":[· · · {"id": "desk.9", "bbox": [214, 326, 499,42

389]}, {"id": "desk.10", "bbox": [214, 326, 499, 389]}, {"id": "desk.11", "bbox": [214, 326, 499,43

389]}, · · · ]· · · } ), inaccurate location, etc. These challenges highlight the need for better alignment44

between visual understanding and structured representation within the M-LLM framework.45

To improve instruction-following and structured output generation in M-LLMs, one intuitive solution46

is to perform Supervised Fine-tuning (SFT) on scene graph datasets (see Fig. 1-(a)). In the context47

of SGG, SFT aligns the model’s outputs with expected formats (e.g., structured lists of objects and48

relationships) by training it on high-quality scene graph annotations. This process encourages the49

model not only to recognize entities and relations from the image but also to organize them into a50

coherent and valid graph structure. Nevertheless, SFT alone still be insufficient as all output tokens51

are weighted equally in the loss. For example, the experimental results on the VG150 dataset [34]52

reveal that even with SFT, M-LLM still has a high failure rate to generate a valid and high-quality53

scene graph. The drawback of SFT in SGG lies in the lack of effective signals to correct the output54

(e.g., the model cannot directly utilize the Intersection over Union (IoU) between the predicted box55

and the ground truth to refine its output ).56

To advance M-LLMs for effective Scene Graph Generation (SGG), we propose R1-SGG, a novel57

framework leveraging visual instruction tuning enhanced by reinforcement learning (RL). The visual58

instruction tuning stage follows a conventional supervised fine-tuning (SFT) paradigm, i.e., fine-59

tuning the model using prompt-response pairs with a cross-entropy loss. For the RL stage, we adopt60

GRPO, an online policy optimization algorithm introduced in DeepSeekMath [28].61

To enable effective reinforcement learning for Scene Graph Generation, we introduce a set of rule-62

based, graph-centric rewards that reflect the structural characteristics of scene graphs. Given an63

image and a prompt, a multimodal large language model (M-LLM) generates a set of objects and64

relational triplets. To evaluate and optimize these predictions, we formulate reward functions aligned65

with standard SGDET metrics [34] and structured reasoning objectives. Specifically, we define three66

reward variants: Hard Recall, which counts a triplet as correct only if the subject, predicate, and67

object labels exactly match the ground truth and both bounding boxes achieve IoU > 0.5; Hard68

Recall+Relax, which relaxes the exact match constraint by incorporating embedding similarity69

between predicted and ground-truth labels; and Soft Recall, which further densifies reward signals70

via bipartite matching, combining object label similarity, IoU, and bounding box distance into a71

unified cost function. These scene graph rewards are computed over matched object and edge pairs,72

and are complemented by a format reward that enforces structural adherence in output formatting.73
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This reward design enables stable and fine-grained policy optimization using GRPO, guiding the74

M-LLM toward generating accurate, complete, and structurally valid scene graphs.75

Our contributions can be summarized as follows:76

• We explore how to develop a multimodal LLM for Scene Graph Generation (SGG), by77

leveraging visual instruction tuning with reinforcement learning (RL). To our knowledge,78

this is a pioneer work that develop a multimodal LLM to generate scene graphs in an79

end-to-end manner.80

• Graph-centric, rule-based rewards are designed to guide policy optimization in a man-81

ner aligned with standard evaluation metrics in SGG, such as the recall of relationship82

triplets—metrics that cannot be directly optimized through SFT.83

• Experimental results demonstrate that the proposed framework improves the ability to84

understand and reason about scene graphs for multimodal LLMs.85

2 Related Work86

Scene Graph Generation (SGG). Scene Graph Generation (SGG) is a foundational task in87

structured visual understanding, where the goal is to represent an image as a graph of objects and their88

pairwise relationships. Traditional approaches like [34, 14, 38, 29, 2, 15, 11, 5] decouple the task89

into object detection and relationship classification stages, and are typically trained via supervised90

learning on datasets such as Visual Genome (VG150) [34]. While effective, these models are limited91

by their reliance on annotated data and exhibit strong bias toward head predicates such as “on” or92

“of”, struggling on long-tail classes.93

To overcome the closed-set limitation, recent work has explored open-vocabulary SGG. For example,94

OvSGTR [4] extends scene graph prediction to a fully open-vocabulary setting by leveraging visual-95

concept alignment. In parallel, weakly supervised methods have been developed to reduce the96

annotation burden. These approaches, such as those proposed by [43, 16, 40, 4], use image-caption97

pairs as supervision to distill relational knowledge, enabling generalization to unseen concepts.98

LLMs for Scene Graph Generation. With the rise of LLMs, several studies have attempted to99

synthesize scene graphs from natural language. LLM4SGG [12] extracts relational triplets from100

both original and paraphrased captions using text-only LLMs. GPT4SGG [3] goes a step further by101

using GPT-4 to generate scene graphs from dense region captions, improving contextual consistency102

and coverage. Meanwhile, [17] leverage vision-language models (VLMs) to produce scene graphs103

through image-to-text generation pipelines.104

However, these caption-based or LLM-driven methods often exhibit limited accuracy, including105

incomplete object sets, and inconsistent relationship descriptions. These issues arise from the lack of106

structure in the generated outputs and the absence of mechanisms to refine the results according to107

scene-level constraints.108

Reinforcement Learning (RL) for LLMs. Reinforcement learning (RL) has been increasingly109

adopted to enhance the reasoning capabilities of large models. Algorithms like Proximal Policy110

Optimization (PPO) [27] and Group Relative Policy Optimization (GRPO) [28] guide models using111

reward signals instead of relying solely on maximum likelihood estimation. In the context of112

large language models, DeepSeek-R1 [8] demonstrates that RL can significantly improve structured113

reasoning and planning.114

In multimodal learning, however, RL remains underutilized for generating structured outputs. Our115

work addresses this by introducing rule-based reward functions at multiple levels, including three116

scene graph reward variants and a format consistency reward. These signals promote the generation117

of meaningful and coherent scene graphs by explicitly evaluating alignment with ground-truth118

annotations.119
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3 Methodology120

3.1 Preliminary121

Scene Graph Generation (SGG). Scene graph generation (SGG) transforms an image I into a122

structured representation that captures both objects and their interactions. Specifically, SGG produces123

a directed graph G = (V, E), where each node vi ∈ V represents an object annotated with an object124

category ci and a bounding box bi. Each relationship triplet eij ∈ E captures the relationship between125

two nodes. The triplet is defined as eij := ⟨vi, pij , vj⟩, where pij encodes the visual relationship126

between the subject vi and the object vj , such as spatial relations (e.g., “on”, “under”) or interactive127

relations (e.g., “riding”, “holding”). Typically, SGG models decouple this task into two subtasks,128

namely object detection and relationship recognition, both optimized by maximizing the likelihood129

of the corresponding ground-truth labels given the image.130

Reinforcement Learning with GRPO. Group Relative Policy Optimization (GRPO) is a online131

reinforcement learning algorithm introduced by DeepSeekMath [28]. Unlike traditional methods such132

as PPO [27], which require an explicit critic network, GRPO instead compares groups of candiates to133

update the policy πθ. Specifically, for each input query q, a set of candidate outputs {oi}Gi=1 is drawn134

from the previous policy πold(O|q), and the advantage of each candidate is computed relative to the135

group’s average reward:136

Ai =
ri −mean({r1, . . . , rG})

std({r1, . . . , rG})
. (1)

The policy parameters θ are updated by maximizing the following GRPO objective:137

JGRPO(θ) = Eq∼P (Q), {oi}G
i=1∼πold(O|q)

[
1

G

G∑
i=1

(
min

(
πθ(oi|q)
πold(oi|q)

Ai,

clip
( πθ(oi|q)
πold(oi|q)

, 1− ϵ, 1 + ϵ
)
Ai

)
− β DKL

(
πθ ∥ πref

)]
,

(2)

Here, ϵ and β are hyper-parameters. The first term uses a clipped probability ratio (as in PPO) to138

control the update magnitude, while the KL divergence regularizer DKL(πθ ∥ πref) constrains the new139

policy πθ to not deviate too much from a reference policy πref. This formulation, which combines a140

group-relative advantage, a clipping mechanism, and a KL divergence regularizer, stabilizes policy141

updates and improves training efficiency, demonstrating remarkable potential for enhancing the142

reasoning performance of LLMs such as DeepSeek R1 [8].143

3.2 Overview of R1-SGG144

R1-SGG is a reinforcement learning framework that enhances scene graph generation (SGG) in145

multimodal large language models (M-LLMs). It builds on a supervised fine-tuning (SFT) stage146

using prompt-response pairs, followed by reinforcement learning (RL) with structured, graph-centric147

rewards.148

Given an input image and prompt, the M-LLM generates a scene graph Gpred = (Vpred, Epred),149

comprising objects (nodes) and their relationships (edges). We primarily optimize using Hard Recall,150

which aligns with SGDET metrics by rewarding exact triplet matches. To study the sparsity and151

design of the rewards, we also evaluated relaxed alternatives based on bipartite matching between152

Gpred and the ground truth graph Ggt, allowing fine-grained node and edge rewards. Our RL pipeline153

employs Group Relative Policy Optimization (GRPO) [28], which compares sampled outputs and154

promotes higher-reward candidates. By integrating SFT, GRPO, and graph-aware rewards, R1-SGG155

enables M-LLMs to generate accurate, diverse, and structurally valid scene graphs.156

3.3 Rewards Definition157

3.3.1 Format Reward158

Following DeepSeek R1 [8], we employ a format reward to ensure that the model’s response adheres to159

the expected structure, specifically <think>· · · </think><answer>· · · </answer>. A reward of 1160

4



is assigned if the response follows this format and the segment enclosed by <answer>· · · </answer>161

contains both the keywords "object" and "relationships"; otherwise, the reward is 0.162

3.3.2 Scene Graph Rewards163

Standard evaluation protocols for Scene Graph Generation (SGG), such as SGDET [34], formulate164

the task as a recall-oriented problem, emphasizing the model’s ability to retrieve correct relationship165

triplets from an image. To investigate the impact of different reward formulations, we introduce three166

variants: Hard Recall, Hard Recall+Relax, and Soft Recall.167

Hard Recall. To align policy optimization with standard SGDET metrics, we define Hard Recall,168

where a predicted triplet ⟨subject, predicate, object⟩ is counted as a true positive when both of169

the following hold: 1) Triplet accuracy: the subject, predicate, and object labels exactly match the170

ground truth. 2) Localization accuracy: the IoU between predicted and ground-truth bounding boxes171

exceeds 0.5.172

This reward is aligned with standard metrics but suffers from sparsity due to its strict criteria.173

Hard Recall + Relax. We relax the triplet accuracy requirement by computing cosine similarity174

between the entity embeddings of predicted and ground-truth triplets. This softens the discrete175

matching constraint to provide more gradient signal.176

Soft Recall. We further propose a dense matching reward by formulating it as a bipartite matching177

problem, similar to DETR [1], where predicted nodes {vi = (ci, bi)}Mi=1 (each node vi is comprising178

an object class ci and a bounding box bi) are matched to ground-truth nodes {ṽj = (c̃j , b̃j)}Nj=1 with179

the following cost:180

cost(vi, ṽj) =λ1 · (1.0− ⟨Embedding(ci), Embedding(c̃j)⟩)
+ λ2 · (1.0− IoU(bi, b̃j)) + λ3 · ||bi − b̃j ||1,

(3)

where ⟨·, ·⟩ denotes cosine similarity, λ1, λ2 are weight factors, and Embedding is obtained via181

the NLP tool SpaCy. By solving the bipartite matching problem, we establish a one-to-one node182

matching between the predicted graph Gpred and the ground-truth graph G.183

For a predicted node vi, the reward is defined as184

Reward(vi) =


λ1 · ⟨Embedding(ci), Embedding(c̃j)⟩
+λ2 · IoU(bi, b̃j)

+λ3 · exp(−||bi − b̃j ||1), if vi and ṽj are matched,
0, otherwise.

(4)

which is the linear combination of object category similarity and the IoU of bounding boxes. The185

total rewards of an image’s prediction set {vi}Mi=1 is computed as186

Reward({vi}Mi=1) =
1

|Vgt|

M∑
i=1

Reward(vi). (5)

For a predicted triplet eij :=< vi, pij , vj >, the reward is defined as187

Reward(eij) =



⟨Embedding(vi), Embedding(ṽk)⟩·
⟨Embedding(vj), Embedding(ṽl)⟩·
⟨Embedding(pij), Embedding(pkl)⟩, if vi matches ṽk

and vj matches ṽl,
0, otherwise.

(6)

Thereby, the reward of an image’s predicted edge set is computed as188

Reward({eij}) =
1

|Egt|
∑

Reward(eij). (7)
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4 Experiments189

4.1 Dataset and Experiment Setup190

Dataset. The widely-used scene graph dataset VG150 [34] consists of 150 object categories and191

50 relation categories. Following prior works [40, 4], the training set used in this work contains192

56,224 image-graph pairs, while the validation set includes 5,000 pairs. To prompt the M-LLM, we193

transform each image-graph pair using the template described in Table 6.194

The Panoptic Scene Graph (PSG) dataset [36] is built on the COCO dataset [18], consisting of 80195

thing object categories, 53 stuff object categories, and 56 relation categories. It contains 46,563196

image-graph pairs for training and 2,186 pairs for testing.197

Evaluation. Following the standard evaluation pipeline in SGG, we adopt the SGDET protocol [34,198

30] to measure the model’s ability to generate scene graphs. SGDET requires the model to generate199

scene graphs directly from the image without any predefined object boxes. Performance is evaluated200

using Recall and mean Recall (mRecall). Recall is computed for each image-graph pair, where201

a predicted triplet is considered correct if both the subject and object bounding boxes have an202

Intersection over Union (IoU) of at least 0.5 with the corresponding ground-truth boxes, and the203

subject category, object category, and relationship label all match the ground truth. Mean Recall204

(mRecall) is obtained by averaging the Recall across all relation categories. We additionally report205

AP@50 to assess object detection performance and Failure Rate to evaluate format consistency.206

Implementation Details. Our code is based on the trl library [31] and utilizes vLLM [13] to207

speed up sampling during reinforcement learning. For SFT, the model is trained for 3 epochs with208

a batch size of 128 on 4 NVIDIA A100 (80GB) GPUs, using the AdamW optimizer [22] with a209

maximum learning rate of 1e-5. For RL, the model is trained for 1 epoch with a batch size of 32210

and 8 generations per sample on 16 NVIDIA GH200 (120GB) GPUs, also using AdamW with a211

maximum learning rate of 6e-7.212

4.2 How Well Do M-LLMs Reason About Visual Relationships?213

We evaluate the visual relationship reasoning capabilities of open-source multimodal LLMs using214

a four-to-one Visual Question Answering (VQA) task. Each model is prompted with an image215

and a corresponding question. The used prompt template is: Analyze the relationship216

between the object "{sub_name}" at {sub_box} and the object "{obj_name}" at217

{obj_box} in an image of size ({width}x{height}). The bounding boxes are in218

[x1, y1, x2, y2] format. Choose the most appropriate relationship from the219

following options: A) {choices[0]}; B) {choices[1]}; C) {choices[2]}; D)220

{choices[3]}. We report Acc (accuracy over all questions) and mAcc (mean accuracy per221

image) in Table 7. The results reveal that many multimodal LLMs struggle with visual relationship222

reasoning. Moreover, the task exhibits a noticeable text bias, and the presence of bounding boxes can223

sometimes mislead the model’s attention. As a simpler task compared to SGG, the poor performance224

suggests that directly applying multimodal LLMs to SGG may yield suboptimal results.225

4.3 How Well do M-LLMs Generate Scene Graphs?226

4.3.1 Benchmark on VG150227

We report the performance under various settings in Table 1, which includes: 1) Specific Models:228

Methods built on specific detectors such as Faster R-CNN [26] (e.g., IMP [34]) or DETR [1] (e.g.,229

OvSGTR [4]) for scene graph generation. 2) Commercial M-LLMs: Advanced multimodal large230

language models such as GPT-4o [9] and Gemini 1.5 Flash [25]. 3) Open-source M-LLMs: Publicly231

available models such as LLaVA v1.5 [21], Qwen2-VL [32], and our proposed R1-SGG-Zero (based232

on Qwen2-VL-2B/7B-Instruct, trained with GRPO but without supervised fine-tuning) and R1-233

SGG (built on the same backbone, fine-tuned with GRPO and initialized from SFT checkpoints).234

The results in Table 1 reveal several key observations.235

Zero-shot Performance of M-LLMs. Either commercial or open-source multimodal LLMs struggle236

to generate accurate scene graphs, and this can be attributed to several factors. First, the internal237

processing of private models such as GPT-4o remains opaque to users, resulting in suboptimal238
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Table 1: SGDET performance on the VG150 validation set. For M-LLMs, predefined object classes
and relation categories are included in the input prompts.

Method Params Failure Rate (%) AP@50 Recall mRecall
Specific Models
IMP [34]

- -

20.91 17.85 2.66
MOTIFS [38] 29.56 27.21 7.84
VCTree [29] 28.13 24.87 8.47
OvSGTR [4] 33.39 26.74 5.83

Commercial M-LLMs
GPT-4o [9] - 2.94 0.00 0.00 0.00
Gemini 1.5 Flash [25] - 1.10 0.51 0.10 0.08
Gemini 2.0 Flash [6] - 1.06 0.54 0.07 0.03

Open-sourced M-LLMs
LLaVA v1.5 [21] 7B 82.70 0.00 0.00 0.00
Qwen2-VL-2B-Instruct [32] 2B 59.96 2.18 0.07 0.18

+SFT 2B 72.42 8.10 5.47 1.46
Qwen2-VL-7B-Instruct [32] 7B 54.46 6.07 0.69 0.80

+SFT 7B 39.54 14.18 9.62 3.30
R1-SGG-Zero 2B 0.34 12.30 11.89 5.70
R1-SGG 2B 0.10 17.87 21.09 7.48
R1-SGG-Zero 7B 0.04 15.59 18.34 8.32
R1-SGG 7B 0.08 19.47 23.75 11.43

object detection performance. Second, models like LLaVA v1.5 align visual and textual features239

only at the image level, typically using a fixed resolution of 336×336, which restricts spatial240

understanding. Third, although models such as Gemini 2.0 and Qwen2-VL demonstrate a degree of241

spatial understanding, the task of scene graph generation is much complex than pure object detection242

or visual grounding. Consequently, their zero-shot performance drops significantly.243

SFT vs. RL. 1) RL substantially improves performance across all metrics compared to SFT alone.244

Specifically, RL dramatically reduces the failure rate (e.g., from 72.42% to 0.10% for 2B models) and245

yields significant gains in AP@50, Recall, and mRecall. This highlights the effectiveness of GRPO246

in enhancing the model’s ability to generate accurate and complete scene graphs. 2) SFT achieves247

moderate improvements in AP@50 and Recall over the baseline but struggles with a relatively high248

failure rate. This suggests that SFT primarily improves relation prediction while being less effective249

at correcting structural errors, such as missing objects, relationships, or format inconsistencies. 3)250

applying RL on top of SFT (i.e., R1-SGG) further boosts performance over both SFT and R1-SGG-251

Zero in most cases. This indicates that combining SFT and RL benefits from better initialization,252

leading to stronger relation recognition and higher recall. 4) larger models (e.g., 7B) consistently253

outperform smaller models (e.g., 2B) across AP@50, Recall, and mRecall, demonstrating the benefits254

of scaling model capacity for scene graph generation.255

Compared to Specific Models. The gap between AP@50 and Recall highlights the advantage of256

dense predictions. However, our models, such as R1-SGG, achieve a notable mean Recall (mRecall)257

of 11.43%, suggesting that multimodal LLMs are more effective at generating less biased scene258

graphs. Moreover, specific models are typically restricted to a limited vocabulary and struggle259

to generalize across domains, whereas multimodal LLMs exhibit greater adaptability and broader260

generalization capabilities.261

Overall, the results demonstrate that reinforcement learning (RL) significantly reduces the failure rate262

and enhances both object detection and relationship recognition. In contrast, supervised fine-tuning263

(SFT) alone results in a relatively high failure rate and limited improvements. As shown in Fig. 2,264

the failure rate quickly drops to near-zero with RL, whereas SFT continues to suffer from frequent265

structural errors.266

4.3.2 Benchmark on PSG267

As shown in Table 2, our R1-SGG approach achieves strong performance on the PSG dataset.268

Compared to baselines, SFT significantly improves AP@50, Recall, and mean Recall (mRecall),269

while reinforcement learning further enhances relationship recognition, achieving the highest Recall270

(43.48% for 7B model) and mRecall (33.71%). Notably, our method also drives the failure rate to271
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Table 2: Performance on the PSG dataset [36]. For M-LLMs, predefined object classes and relation
categories are included in the input prompts.

Model Params Failure Rate (%) AP@50 Recall mRecall
Specific Models
IMP [34] 16.50 6.50
MOTIFS [38] 20.00 9.10
VCTree [29] - - - 20.60 9.70
GPSNet [19] 17.80 7.00
PSGFormer [36] 18.60 16.70

Open-sourced M-LLMs
LLaVA v1.5 [21] 7B 81.97 0.07 0.00 0.00
TextPSG [42] - - - 4.80 -
ASMv2 [33] 13B 0.87 21.45 14.77 11.82
LLaVA-SpaceSGG [35] 13B - - 15.43 13.23
Qwen2-VL-2B-Instruct 2B 67.20 4.89 0.39 0.26

+SFT 2B 6.54 36.05 22.06 14.92
Qwen2-VL-7B-Instruct 7B 37.97 12.75 3.18 4.33

+SFT 7B 0.96 40.79 24.73 17.11
R1-SGG-Zero 2B 0.23 25.61 25.06 18.15
R1-SGG 2B 2.70 39.28 38.49 31.21
R1-SGG-Zero 7B 0.00 32.92 37.00 32.04
R1-SGG 7B 0.00 42.05 43.48 33.71

zero, demonstrating the effectiveness of reinforcement learning in promoting structured, accurate272

scene graph generation even without predefined object categories.273

4.4 Qualitative Results274

We present qualitative results in Fig. 6 and Fig. 7. As shown in Fig. 6, the ground-truth scene275

graph (Fig. 6-(a)) captures key objects and their relationships but is biased toward the predicate276

“has”. Conversely, the zero-shot Qwen2-VL-7B-Instruct (Fig. 6-(b)) fails to generate a valid JSON277

output, indicating poor instruction-following ability. With supervised fine-tuning, the model produces278

structurally valid graphs (Fig. 6-(c)) but frequently omits important relationships, resulting in a sparse279

scene graph. R1-SGG-Zero (7B), trained with RL only, improves relational recall and structure280

(Fig. 6-(d)), yet still outputs inaccurate triplets such as <wheel, on, horse> and <helmet.2, on,281

horse>. Finally, R1-SGG (7B), trained with both SFT and RL, produces a complete and consistent282

scene graph (Fig. 6-(e)), with results that even surpass the ground truth in relational richness.283

4.5 Discussion284

Through the exploration of applying GRPO to the SGG task, we make several observations.285

KL Regularization. We compare models trained with and without KL divergence regularization in286

Fig. 5. From the result, removing KL regularization leads to improved performance, particularly with287

a significant reduction in failure rate.288

Sampling Length. In our experiments, the default sampling length is set to 1,024, which sufficiently289

covers most corrected answers. As shown in Fig. 5, increasing the sampling length to 2,048 does not290

yield further performance improvements, suggesting that longer sampling might enlarge the search291

space and introduce additional optimization difficulties without clear benefits. This observation aligns292

with prior findings on test-time scaling, where increasing Chain-of-Thought (CoT) length can degrade293

performance [39].294

Group Size. As shown in Fig. 5, increasing the group size from 8 to 16 stabilizes training performance,295

consistent with the intuition that more candidates reduce variance in group statistics estimation. To296

balance computational cost and performance, we adopt a group size of 8 as the default in this work.297

To Think or Not Think? We adopt the <think>· · · </think><answer>· · · </answer>298

format in the system prompt, following DeepSeek R1 [8]. However, models such as299

Qwen2-VL-2B/7B-Instruct often fail to produce outputs with the <think> tag after fine-tuning,300

indicating difficulty in adhering to the intended structure. This suggests that rule-based rewards alone301
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Table 3: Generalization across datasets using Qwen2-VL-7B-Instruct as the baseline. Columns
under Pre-training indicate whether the weights were initialized from specific checkpoints, while
the Training column specifies the dataset(s) used during the fine-tuning stage. “w/o cats.” denotes
prompts without predefined object classes or relation categories.

Model Pre-Training Training VG150 PSG
Failure Rate AP@50 Recall mRecall Failure Rate AP@50 Recall mRecall

baseline - - 54.46 6.07 0.69 0.80 37.97 12.75 3.18 4.33
baseline (w/o cats.) - - 44.58 6.83 0.61 0.37 30.28 13.79 1.96 2.30
SFT - VG150 39.54 14.18 9.62 3.30 22.10 11.05 3.03 1.36
SFT (w/o cats.) - VG150 42.98 13.03 8.94 2.47 19.81 12.15 3.87 1.81
R1-SGG-Zero - VG150 0.04 15.59 18.34 8.32 0.18 24.92 13.83 8.90
R1-SGG-Zero (w/o cats.) - VG150 0.06 15.30 16.33 6.94 0.18 18.10 6.16 3.38
R1-SGG SFT VG150 0.08 19.47 23.75 11.43 0.23 18.12 9.10 5.13
R1-SGG (w/o cats.) SFT (w/o cats.) VG150 0.30 18.09 22.73 9.62 0.64 14.64 7.51 3.88
SFT - PSG 36.98 5.79 1.42 0.77 0.91 40.58 24.75 17.31
SFT (w/o cats.) - PSG 2.54 7.94 1.77 1.25 1.01 39.02 23.70 17.17
R1-SGG-Zero - PSG 0.12 14.22 8.90 5.34 0.00 32.92 37.00 32.04
R1-SGG-Zero (w/o cats.) - PSG 0.02 9.08 2.80 1.78 0.05 24.26 19.94 18.04
R1-SGG SFT PSG 0.94 10.38 4.40 2.69 0.00 42.05 43.48 33.71
R1-SGG (w/o cats.) SFT (w/o cats.) PSG 0.14 9.38 2.16 1.55 0.14 41.15 41.44 31.51

Table 4: Ablation of reward formulations on VG150 validation set using R1-SGG (7B).
Setting Sparsity Metric Aligned Failure Rate (%) AP@50 Recall (%) mRecall (%)
Hard Recall sparse ✓ 0.08 19.47 23.75 11.43
Hard Recall + Relax medium ✗ 0.02 19.93 24.05 9.61
Soft Recall dense ✗ 0.06 18.73 21.92 5.61

are insufficient to trigger abstract reasoning patterns like CoT, and highlights the need for additional302

SFT on CoT-specific datasets to incentivize coherent intermediate reasoning.303

Generalization Across Datasets. We report performance comparisons across datasets in Table 3.304

The results highlight several key insights: 1) VG150 poses a significantly greater challenge than305

PSG. For instance, SFT trained solely on PSG achieves a high AP@50 of 40.58 and Recall of306

24.75%, with a low failure rate of 0.91%. In contrast, SFT trained only on VG150 results in a much307

higher failure rate of 39.54%, with notably lower AP@50 (14.18) and Recall (9.62%). 2) SFT has a308

strong domain-specific effect. SFT models trained on one dataset (e.g., VG150) exhibit substantial309

performance drops when evaluated on another (e.g., PSG), reflecting limited transferability. For310

example, VG150-trained SFT only achieves 3.03% Recall and 1.36% mRecall on PSG. 3) Predefined311

categories in the prompt. Models trained and evaluated without categories (denoted as “w/o cats.”)312

generally exhibit a slight drop in performance, while those with category information demonstrate313

better generalization under open-set settings. 4) Initialization of RL matters. R1-SGG initialized314

with SFT checkpoints consistently outperforms R1-SGG-Zero. On VG150, R1-SGG (7B) achieves315

23.75% Recall and 11.43% mRecall versus 18.34% and 8.32% for R1-SGG-Zero. A similar trend is316

observed on PSG. This highlights the importance of using SFT as a warm-start for reinforcement317

learning, which leads to improved sample efficiency and stronger downstream performance. 5)318

R1-SGG-Zero exhibits stronger cross-dataset generalization. This aligns with the domain-specific319

nature of SFT—models trained via SFT tend to overfit to the source domain, resulting in degraded320

performance on unseen datasets. In contrast, R1-SGG-Zero, trained without SFT, generalizes more321

robustly across domains.322

Hard Recall vs. Soft Recall. As shown in Table 4, Hard Recall outperforms other variants despite323

providing sparser reward signals. This highlights the importance of aligning reward functions with324

evaluation metrics, rather than prioritizing reward smoothness alone.325

5 Conclusion326

We present a reinforcement learning framework for enhancing end-to-end Scene Graph Generation327

(SGG) with multimodal large language models (M-LLMs). To align training with the structured328

nature of scene graphs, we design a set of rule-based rewards, comprising three scene graph variants329

(Hard Recall, Hard Recall+Relax, and Soft Recall) and a format consistency reward, which enable330

fine-grained and stable policy optimization via GRPO. Our approach significantly improves the331

structural validity and relational accuracy of generated scene graphs. We release our code and models332

to support future research on structured visual understanding with M-LLMs.333
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Table 5: Prompting an M-LLM to generate scene graphs without providing predefined object classes
or predicate types.

messages = [{ "role": "system", "content": " {system_prompt}" }, { "role": "user",
"content": f"""Generate a structured scene graph for an image using the following format:
“‘json { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relation-
ships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "ob-
ject_name.number"}, ... ] }“‘. ### **Guidelines:** - **Objects:** - Assign a unique ID for
each object using the format "object_name.number" (e.g., "person.1", "bike.2"). - Provide its
bounding box ‘[x1, y1, x2, y2]’ in integer pixel format. - Include all visible objects, even if
they have no relationships.
- **Relationships:** - Represent interactions accurately using "subject", "predicate", and "ob-
ject". - Omit relationships for orphan objects.
### **Example Output:** “‘json { "objects": [ {"id": "person.1", "bbox": [120, 200, 350,
700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150,
280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "per-
son.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing",
"object": "helmet.3"} ] } “‘ Now, generate the complete scene graph for the provided image:
""" } ]

Table 6: Prompting an M-LLM to generate scene graphs with predefined object classes and predicate
types. Here, OBJ_CLS and REL_CLS refer to the predefined object classes and relation categories
respectively.

messages = [{ "role": "system", "content": " {system_prompt}" }, { "role": "user",
"content": f"""Generate a structured scene graph for an image using the following format:
“‘json { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relation-
ships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "ob-
ject_name.number"}, ... ] }“‘. ### **Guidelines:** - **Objects:** - Assign a unique ID for
each object using the format "object_name.number" (e.g., "person.1", "bike.2"). The **ob-
ject_name** must belong to the predefined object set: ‘{OBJ_CLS}’. - Provide its bounding
box ‘[x1, y1, x2, y2]’ in integer pixel format. - Include all visible objects, even if they have no
relationships.
- **Relationships:** - Represent interactions accurately using "subject", "predicate", and "ob-
ject". - Omit relationships for orphan objects. - The **predicate** must belong to the prede-
fined relationship set: ‘{REL_CLS}’. ### **Example Output:** “‘json { "objects": [ {"id":
"person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]},
{"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]}
], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject":
"person.1", "predicate": "wearing", "object": "helmet.3"} ] } “‘ Now, generate the complete
scene graph for the provided image: """ } ]

A Supplementary Material447

A.1 Prompt Templates for SGG448

In this work, we adopt two prompt templates for scene graph generation, as illustrated in Table 6 and449

Table 5. The difference lies in whether predefined object classes and relation categories are provided.450

451

A.2 How Well Do M-LLMs Reason About Visual Relationships?452

To evaluate the reasoning capabilities of M-LLMs over visual relationships, we present results in453

Table 7. We vary both the visual input and the text prompt conditions to assess robustness. For visual454

variations, we consider: org. img., mask img., and mask obj.; for prompt variations, we add: w/o cats.455

(without object categories) and w/o box. (without bounding boxes).456
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Table 7: Comparison of VQA on the VG150 validation set across various models and settings. Gains
compared to the Original Image (1st row) are indicated in red. “mask img.” refers to masking the
entire image with random noise, “mask obj.” refers to masking object regions with black pixels, “w/o
cats.” refers to not providing object categories in the prompt, and “w/o box.” refers to not providing
bounding boxes in the prompt.

InstructBLIP 7B LLaVA v1.5 7B LLaVA v1.6 7B Qwen2VL 7B
Acc mAcc Acc mAcc Acc mAcc Acc mAcc

org. img. 2.3 1.9 45.8 45.6 28.7 29.2 53.7 53.4
mask img. 1.0 (-1.3) 1.0 (-0.9) 21.8 (-24.0) 21.6 (-24.0) 3.9 (-24.8) 4.0 (-25.2) 0.0 (-53.7) 0.0 (-53.4)

mask obj. 1.9 (-0.4) 1.9 (-0.1) 37.2 (-8.6) 37.2 (-8.4) 12.8 (-15.9) 13.2 (-16.0) 16.2 (-37.5) 16.8 (-36.5)

w/o cats. 2.5 (+0.2) 2.4 (+0.4) 32.8 (-12.9) 32.7 (-12.9) 9.5 (-19.2) 10.1 (-19.1) 16.8 (-36.9) 18.1 (-35.3)

+ mask img. 1.0 (-1.3) 1.0 (-0.9) 15.4 (-30.3) 15.3 (-30.3) 0.0 (-28.7) 0.0 (-29.2) 0.2 (-53.6) 0.2 (-53.1)

+ mask obj. 1.8 (-0.5) 1.7 (-0.3) 27.9 (-17.8) 28.4 (-17.2) 3.3 (-25.4) 3.8 (-25.4) 4.7 (-49.1) 5.5 (-47.8)

w/o box. 26.0 (+23.7) 25.9 (+24.0) 61.9 (+16.2) 61.3 (+15.7) 53.5 (+24.8) 52.1 (+22.9) 78.1 (+24.4) 77.1 (+23.8)

+ mask img. 10.1 (+7.9) 10.2 (+8.2) 36.3 (-9.5) 35.2 (-10.4) 11.5 (-17.2) 11.4 (-17.7) 0.0 (-53.7) 0.0 (-53.4)

+ mask obj. 19.3 (+17.0) 19.1 (+17.1) 54.2 (+8.5) 53.8 (+8.2) 33.5 (+4.8) 33.2 (+4.1) 40.3 (-13.4) 39.3 (-14.1)
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Figure 2: Comparison of R1-SGG-Zero and R1-SGG models against SFT baselines (Qwen2-VL-
2B/7B-Instruct) across training steps on the VG150 validation set in terms of Failure Rate (%),
AP@50, and Recall (%).

A.3 Qualitative Results457

We present qualitative results in Fig. 6 and Fig. 7, and analyze head and tail predicate performance in458

Fig. 3 and Fig. 4 to assess long-tail bias. As shown in Fig. 3, both specific models such as OvSGTR459

and M-LLMs like Qwen2-VL-7B-Instruct (with or without SFT) tend to be biased toward head460

classes, whereas R1-SGG achieves significantly higher recall on tail predicates. This trend is also461

confirmed on the PSG dataset in Fig. 4. These results demonstrate that R1-SGG is more effective at462

generating unbiased scene graphs.463
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(b) Recall scores of top-24 predicates of the VG150 validation set.

co
ve

rin
g

m
ou

nt
ed

on
pa

rt
of to

an
d

be
tw

ee
n

fo
r

al
on

g
lo

ok
in

g
at

w
at

ch
in

g
on

ba
ck

of
ag

ai
ns

t
la

yi
ng

on
w

al
ki

ng
in

co
ve

re
d

in
ea

tin
g

gr
ow

in
g

on
ly

in
g

on
us

in
g

ac
ro

ss

fr
om

pa
in

te
d

on
m

ad
e

of
pl

ay
in

g
sa

ys

0

20

40

R
ec

al
l(

%
)

Baseline Baseline (SFT) OvSGTR

R1-SGG-Zero (7B) R1-SGG (7B)

(c) Recall scores of tail-25 predicates of the VG150 validation set.

Figure 3: Comparison of predicate frequency and predicate-wise recall on the VG150 validation
set. Subfigures (b) and (c) report the recall performance of R1-SGG compared to four models on
the top-24 and tail-25 predicates (the VG150 validation set contains only 49 predicates, with the
predicate “flying in” missing.), respectively. Here, Baseline refers to Qwen2-VL-7B-Instruct.
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(a) Histogram of predicate frequency in the PSG test set.
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(b) Recall scores of top-28 predicates of the PSG test set.
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(c) Recall scores of tail-28 predicates of the PSG test set.

Figure 4: Comparison of predicate frequency and predicate-wise recall on the PSG test set. Subfigures
(b) and (c) report the recall performance of R1-SGG compared to four models on the top-28 and
tail-28 predicates, respectively. Here, Baseline refers to Qwen2-VL-7B-Instruct.

16



0 400 800 1,200 1,600

0

20

40

60

80

Training Steps

Fa
ilu

re
R

at
e

(%
)

0 400 800 1,200 1,600

5

10

15

20

Training Steps

A
P@

50

0 400 800 1,200 1,600

5

10

15

20

Training Steps

R
ec

al
l(

%
)

0 400 800 1,200 1,600

0

50

100

Training Steps

Fa
ilu

re
R

at
e

(%
)

0 400 800 1,200 1,600
0

5

10

15

20

Training Steps

A
P@

50

0 400 800 1,200 1,600
0

10

20

Training Steps

R
ec

al
l(

%
)

0 400 800 1,200 1,600

0

50

100

Training Steps

Fa
ilu

re
R

at
e

(%
)

0 400 800 1,200 1,600

5

10

15

20

Training Steps

A
P@

50

0 400 800 1,200 1,600

5

10

15

20

Training Steps

R
ec

al
l(

%
)

R1-SGG (2B, w. KL) R1-SGG (2B, w/o KL)

R1-SGG (2B, sampling length 2k) R1-SGG (2B, sampling length 1k)

R1-SGG (2B, group size 16) R1-SGG (2B, group size 8)

Figure 5: Performance comparison of R1-SGG (2B) across training steps on the VG150 validation
set. Each row evaluates a different setting: (Top) KL divergence regularization (β=0.04 vs. β=0),
(Middle) sampling length, and (Bottom) group size. Metrics reported include Failure Rate (%),
AP@50, and Recall (%).

NeurIPS Paper Checklist464

1. Claims465

Question: Do the main claims made in the abstract and introduction accurately reflect the466

paper’s contributions and scope?467

Answer: [Yes]468

Justification: The abstract and introduction clearly state the objective of the paper: to enhance469

end-to-end scene graph generation using reinforcement learning (RL) with multimodal470

LLMs and summarize contributions such as novel reward design, integration of GRPO and471

significant performance gains. These are substantiated by methodology and experiments472

sections.473

Guidelines:474

• The answer NA means that the abstract and introduction do not include the claims475

made in the paper.476
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Figure 6: Qualitative comparison of generated scene graphs (from VG150). (a) Ground-truth scene
graph annotated by humans. (b) Zero-shot Qwen2-VL-7B-Instruct produces an invalid JSON (failure
to follow format). (c) Qwen2-VL-7B-Instruct (SFT) outputs a valid graph but omits many relations.
(d) R1-SGG-Zero (7B) recovers most objects and relations but still hallucinates incorrect triplets (e.g.,
< wheel, on, horse> and < helmet.2, on, horse >). (e) R1-SGG (7B) yields a complete, structurally
correct scene graph with higher recall.
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Figure 7: Qualitative comparison of generated scene graphs (from PSG). (a) Ground-truth scene graph
annotated by humans. (b) Zero-shot Qwen2-VL-7B-Instruct generates a valid graph but includes
incorrect triplets (e.g., <person.1, wearing, net.3>). (c) Qwen2-VL-7B-Instruct (SFT) produces a
valid graph but omits some relationships. (d) R1-SGG-Zero (7B) recovers most objects and relations
but still hallucinates errors (e.g., <person.0, wearing, net>). (e) R1-SGG (7B) generates a complete
and accurate scene graph with higher recall.
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• The abstract and/or introduction should clearly state the claims made, including the477

contributions made in the paper and important assumptions and limitations. A No or478

NA answer to this question will not be perceived well by the reviewers.479

• The claims made should match theoretical and experimental results, and reflect how480

much the results can be expected to generalize to other settings.481

• It is fine to include aspirational goals as motivation as long as it is clear that these goals482

are not attained by the paper.483

2. Limitations484

Question: Does the paper discuss the limitations of the work performed by the authors?485

Answer: [Yes]486

Justification: Limitations are discussed, particularly in Section 4.5.487

Guidelines:488

• The answer NA means that the paper has no limitation while the answer No means that489

the paper has limitations, but those are not discussed in the paper.490

• The authors are encouraged to create a separate "Limitations" section in their paper.491

• The paper should point out any strong assumptions and how robust the results are to492

violations of these assumptions (e.g., independence assumptions, noiseless settings,493

model well-specification, asymptotic approximations only holding locally). The authors494

should reflect on how these assumptions might be violated in practice and what the495

implications would be.496

• The authors should reflect on the scope of the claims made, e.g., if the approach was497

only tested on a few datasets or with a few runs. In general, empirical results often498

depend on implicit assumptions, which should be articulated.499

• The authors should reflect on the factors that influence the performance of the approach.500

For example, a facial recognition algorithm may perform poorly when image resolution501

is low or images are taken in low lighting. Or a speech-to-text system might not be502

used reliably to provide closed captions for online lectures because it fails to handle503

technical jargon.504

• The authors should discuss the computational efficiency of the proposed algorithms505

and how they scale with dataset size.506

• If applicable, the authors should discuss possible limitations of their approach to507

address problems of privacy and fairness.508

• While the authors might fear that complete honesty about limitations might be used by509

reviewers as grounds for rejection, a worse outcome might be that reviewers discover510

limitations that aren’t acknowledged in the paper. The authors should use their best511

judgment and recognize that individual actions in favor of transparency play an impor-512

tant role in developing norms that preserve the integrity of the community. Reviewers513

will be specifically instructed to not penalize honesty concerning limitations.514

3. Theory assumptions and proofs515

Question: For each theoretical result, does the paper provide the full set of assumptions and516

a complete (and correct) proof?517

Answer: [NA]518

Justification: This is not a theoretical paper.519

Guidelines:520

• The answer NA means that the paper does not include theoretical results.521

• All the theorems, formulas, and proofs in the paper should be numbered and cross-522

referenced.523

• All assumptions should be clearly stated or referenced in the statement of any theorems.524

• The proofs can either appear in the main paper or the supplemental material, but if525

they appear in the supplemental material, the authors are encouraged to provide a short526

proof sketch to provide intuition.527

• Inversely, any informal proof provided in the core of the paper should be complemented528

by formal proofs provided in appendix or supplemental material.529
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• Theorems and Lemmas that the proof relies upon should be properly referenced.530

4. Experimental result reproducibility531

Question: Does the paper fully disclose all the information needed to reproduce the main ex-532

perimental results of the paper to the extent that it affects the main claims and/or conclusions533

of the paper (regardless of whether the code and data are provided or not)?534

Answer: [Yes]535

Justification: The paper describes datasets, training setup, reward design, hyperparameters,536

model configurations, and evaluation metrics. This level of detail supports reproducibility537

even without direct code access.538

Guidelines:539

• The answer NA means that the paper does not include experiments.540

• If the paper includes experiments, a No answer to this question will not be perceived541

well by the reviewers: Making the paper reproducible is important, regardless of542

whether the code and data are provided or not.543

• If the contribution is a dataset and/or model, the authors should describe the steps taken544

to make their results reproducible or verifiable.545

• Depending on the contribution, reproducibility can be accomplished in various ways.546

For example, if the contribution is a novel architecture, describing the architecture fully547

might suffice, or if the contribution is a specific model and empirical evaluation, it may548

be necessary to either make it possible for others to replicate the model with the same549

dataset, or provide access to the model. In general. releasing code and data is often550

one good way to accomplish this, but reproducibility can also be provided via detailed551

instructions for how to replicate the results, access to a hosted model (e.g., in the case552

of a large language model), releasing of a model checkpoint, or other means that are553

appropriate to the research performed.554

• While NeurIPS does not require releasing code, the conference does require all submis-555

sions to provide some reasonable avenue for reproducibility, which may depend on the556

nature of the contribution. For example557

(a) If the contribution is primarily a new algorithm, the paper should make it clear how558

to reproduce that algorithm.559

(b) If the contribution is primarily a new model architecture, the paper should describe560

the architecture clearly and fully.561

(c) If the contribution is a new model (e.g., a large language model), then there should562

either be a way to access this model for reproducing the results or a way to reproduce563

the model (e.g., with an open-source dataset or instructions for how to construct564

the dataset).565

(d) We recognize that reproducibility may be tricky in some cases, in which case566

authors are welcome to describe the particular way they provide for reproducibility.567

In the case of closed-source models, it may be that access to the model is limited in568

some way (e.g., to registered users), but it should be possible for other researchers569

to have some path to reproducing or verifying the results.570

5. Open access to data and code571

Question: Does the paper provide open access to the data and code, with sufficient instruc-572

tions to faithfully reproduce the main experimental results, as described in supplemental573

material?574

Answer: [Yes]575

Justification: We use public datasets and the code will be released. Supplementary material576

also provides detailed prompt templates for reproducibility.577

Guidelines:578

• The answer NA means that paper does not include experiments requiring code.579

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/580

public/guides/CodeSubmissionPolicy) for more details.581
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• While we encourage the release of code and data, we understand that this might not be582

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not583

including code, unless this is central to the contribution (e.g., for a new open-source584

benchmark).585

• The instructions should contain the exact command and environment needed to run to586

reproduce the results. See the NeurIPS code and data submission guidelines (https:587

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.588

• The authors should provide instructions on data access and preparation, including how589

to access the raw data, preprocessed data, intermediate data, and generated data, etc.590

• The authors should provide scripts to reproduce all experimental results for the new591

proposed method and baselines. If only a subset of experiments are reproducible, they592

should state which ones are omitted from the script and why.593

• At submission time, to preserve anonymity, the authors should release anonymized594

versions (if applicable).595

• Providing as much information as possible in supplemental material (appended to the596

paper) is recommended, but including URLs to data and code is permitted.597

6. Experimental setting/details598

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-599

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the600

results?601

Answer: [Yes]602

Justification: Section 4.1 clearly provides training details, dataset splits, evaluation protocols,603

model sizes, batch sizes, learning rates, and compute resources used.604

Guidelines:605

• The answer NA means that the paper does not include experiments.606

• The experimental setting should be presented in the core of the paper to a level of detail607

that is necessary to appreciate the results and make sense of them.608

• The full details can be provided either with the code, in appendix, or as supplemental609

material.610

7. Experiment statistical significance611

Question: Does the paper report error bars suitably and correctly defined or other appropriate612

information about the statistical significance of the experiments?613

Answer: [No]614

Justification: The paper does not report error bars, variance, confidence intervals, or signifi-615

cance tests.616

Guidelines:617

• The answer NA means that the paper does not include experiments.618

• The authors should answer "Yes" if the results are accompanied by error bars, confi-619

dence intervals, or statistical significance tests, at least for the experiments that support620

the main claims of the paper.621

• The factors of variability that the error bars are capturing should be clearly stated (for622

example, train/test split, initialization, random drawing of some parameter, or overall623

run with given experimental conditions).624

• The method for calculating the error bars should be explained (closed form formula,625

call to a library function, bootstrap, etc.)626

• The assumptions made should be given (e.g., Normally distributed errors).627

• It should be clear whether the error bar is the standard deviation or the standard error628

of the mean.629

• It is OK to report 1-sigma error bars, but one should state it. The authors should630

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis631

of Normality of errors is not verified.632
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• For asymmetric distributions, the authors should be careful not to show in tables or633

figures symmetric error bars that would yield results that are out of range (e.g. negative634

error rates).635

• If error bars are reported in tables or plots, The authors should explain in the text how636

they were calculated and reference the corresponding figures or tables in the text.637

8. Experiments compute resources638

Question: For each experiment, does the paper provide sufficient information on the com-639

puter resources (type of compute workers, memory, time of execution) needed to reproduce640

the experiments?641

Answer: [Yes]642

Justification: Section 4.1 provides specifics: SFT on 4 A100 GPUs, RL on 16 GH200 GPUs,643

with training durations, batch sizes, and generation counts.644

Guidelines:645

• The answer NA means that the paper does not include experiments.646

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,647

or cloud provider, including relevant memory and storage.648

• The paper should provide the amount of compute required for each of the individual649

experimental runs as well as estimate the total compute.650

• The paper should disclose whether the full research project required more compute651

than the experiments reported in the paper (e.g., preliminary or failed experiments that652

didn’t make it into the paper).653

9. Code of ethics654

Question: Does the research conducted in the paper conform, in every respect, with the655

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?656

Answer: [Yes]657

Justification: The research aligns with NeurIPS ethical guidelines, including transparency of658

method, release plans, and no direct risks related to human subjects or private data.659

Guidelines:660

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.661

• If the authors answer No, they should explain the special circumstances that require a662

deviation from the Code of Ethics.663

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-664

eration due to laws or regulations in their jurisdiction).665

10. Broader impacts666

Question: Does the paper discuss both potential positive societal impacts and negative667

societal impacts of the work performed?668

Answer: [No]669

Justification: The paper does not explicitly address societal impacts such as misuse, fairness,670

or safety. Although scene graph generation has potential societal implications, this aspect671

falls outside the scope of the current work.672

Guidelines:673

• The answer NA means that there is no societal impact of the work performed.674

• If the authors answer NA or No, they should explain why their work has no societal675

impact or why the paper does not address societal impact.676

• Examples of negative societal impacts include potential malicious or unintended uses677

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations678

(e.g., deployment of technologies that could make decisions that unfairly impact specific679

groups), privacy considerations, and security considerations.680

• The conference expects that many papers will be foundational research and not tied681

to particular applications, let alone deployments. However, if there is a direct path to682

any negative applications, the authors should point it out. For example, it is legitimate683
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to point out that an improvement in the quality of generative models could be used to684

generate deepfakes for disinformation. On the other hand, it is not needed to point out685

that a generic algorithm for optimizing neural networks could enable people to train686

models that generate Deepfakes faster.687

• The authors should consider possible harms that could arise when the technology is688

being used as intended and functioning correctly, harms that could arise when the689

technology is being used as intended but gives incorrect results, and harms following690

from (intentional or unintentional) misuse of the technology.691

• If there are negative societal impacts, the authors could also discuss possible mitigation692

strategies (e.g., gated release of models, providing defenses in addition to attacks,693

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from694

feedback over time, improving the efficiency and accessibility of ML).695

11. Safeguards696

Question: Does the paper describe safeguards that have been put in place for responsible697

release of data or models that have a high risk for misuse (e.g., pretrained language models,698

image generators, or scraped datasets)?699

Answer: [No]700

Justification: Since our models are trained on two public datasets, there is no direct risk of701

misuse.702

Guidelines:703

• The answer NA means that the paper poses no such risks.704

• Released models that have a high risk for misuse or dual-use should be released with705

necessary safeguards to allow for controlled use of the model, for example by requiring706

that users adhere to usage guidelines or restrictions to access the model or implementing707

safety filters.708

• Datasets that have been scraped from the Internet could pose safety risks. The authors709

should describe how they avoided releasing unsafe images.710

• We recognize that providing effective safeguards is challenging, and many papers do711

not require this, but we encourage authors to take this into account and make a best712

faith effort.713

12. Licenses for existing assets714

Question: Are the creators or original owners of assets (e.g., code, data, models), used in715

the paper, properly credited and are the license and terms of use explicitly mentioned and716

properly respected?717

Answer: [Yes]718

Justification: Datasets and tools like VG150, PSG, vLLM, and trl are used and properly719

cited with corresponding references.720

Guidelines:721

• The answer NA means that the paper does not use existing assets.722

• The authors should cite the original paper that produced the code package or dataset.723

• The authors should state which version of the asset is used and, if possible, include a724

URL.725

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.726

• For scraped data from a particular source (e.g., website), the copyright and terms of727

service of that source should be provided.728

• If assets are released, the license, copyright information, and terms of use in the729

package should be provided. For popular datasets, paperswithcode.com/datasets730

has curated licenses for some datasets. Their licensing guide can help determine the731

license of a dataset.732

• For existing datasets that are re-packaged, both the original license and the license of733

the derived asset (if it has changed) should be provided.734

• If this information is not available online, the authors are encouraged to reach out to735

the asset’s creators.736
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13. New assets737

Question: Are new assets introduced in the paper well documented and is the documentation738

provided alongside the assets?739

Answer: [Yes]740

Justification: The paper introduces the R1-SGG model and corresponding reward mecha-741

nisms, and promises documentation and release of assets.742

Guidelines:743

• The answer NA means that the paper does not release new assets.744

• Researchers should communicate the details of the dataset/code/model as part of their745

submissions via structured templates. This includes details about training, license,746

limitations, etc.747

• The paper should discuss whether and how consent was obtained from people whose748

asset is used.749

• At submission time, remember to anonymize your assets (if applicable). You can either750

create an anonymized URL or include an anonymized zip file.751

14. Crowdsourcing and research with human subjects752

Question: For crowdsourcing experiments and research with human subjects, does the paper753

include the full text of instructions given to participants and screenshots, if applicable, as754

well as details about compensation (if any)?755

Answer: [NA]756

Justification: The work does not involve human subjects or crowdsourced data collection.757

Guidelines:758

• The answer NA means that the paper does not involve crowdsourcing nor research with759

human subjects.760

• Including this information in the supplemental material is fine, but if the main contribu-761

tion of the paper involves human subjects, then as much detail as possible should be762

included in the main paper.763

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,764

or other labor should be paid at least the minimum wage in the country of the data765

collector.766

15. Institutional review board (IRB) approvals or equivalent for research with human767

subjects768

Question: Does the paper describe potential risks incurred by study participants, whether769

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)770

approvals (or an equivalent approval/review based on the requirements of your country or771

institution) were obtained?772

Answer: [NA]773

Justification: Not applicable since no human subjects are involved.774

Guidelines:775

• The answer NA means that the paper does not involve crowdsourcing nor research with776

human subjects.777

• Depending on the country in which research is conducted, IRB approval (or equivalent)778

may be required for any human subjects research. If you obtained IRB approval, you779

should clearly state this in the paper.780

• We recognize that the procedures for this may vary significantly between institutions781

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the782

guidelines for their institution.783

• For initial submissions, do not include any information that would break anonymity (if784

applicable), such as the institution conducting the review.785

16. Declaration of LLM usage786
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Question: Does the paper describe the usage of LLMs if it is an important, original, or787

non-standard component of the core methods in this research? Note that if the LLM is used788

only for writing, editing, or formatting purposes and does not impact the core methodology,789

scientific rigorousness, or originality of the research, declaration is not required.790

Answer: [No]791

Justification: We only use LLMs for writing assistance and proofreading.792

Guidelines:793

• The answer NA means that the core method development in this research does not794

involve LLMs as any important, original, or non-standard components.795

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)796

for what should or should not be described.797
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