CodeGRAG: Bridging the Gap between Natural Language and
Programming Language via Graphical Retrieval Augmented Generation

Anonymous ACL submission

Abstract

Utilizing large language models to generate
codes has shown promising meaning in soft-
ware development revolution. Despite the in-
telligence shown by the general large language
models, their specificity in code generation can
still be improved due to the syntactic gap and
mismatched vocabulary existing among natu-
ral language and different programming lan-
guages. In this paper, we propose CodeGRAG,
a Graphical Retrieval Augmented Code Gener-
ation framework to enhance the performance
of LLMs. CodeGRAG builds the graphical
view of code blocks based on the control flow
and data flow of them to fill the gap between
programming languages and natural language,
which can facilitate natural language based
LLMs for better understanding of code syn-
tax and serve as a bridge among different pro-
gramming languages. To take the extracted
structural knowledge into the foundation mod-
els, we propose 1) a hard meta-graph prompt
template to transform the challenging graphi-
cal representation into informative knowledge
for tuning-free models and 2) a soft prompting
technique that injects the domain knowledge of
programming languages into the model param-
eters via finetuning the models with the help of
a pretrained GNN expert model. CodeGRAG
significantly improves the code generation abil-
ity of LLMs and can even offer performance
gain for cross-lingual code generation.

1 Introduction

In recent years, large language models (LLMs)
(Achiam et al., 2023; Touvron et al., 2023a) have
shown great impact in various domains. Automated
code generation emerges as a captivating frontier
(Zheng et al., 2023; Roziere et al., 2023; Shen et al.,
2023), promising to revolutionize software develop-
ment by enabling machines to write and optimize
code with minimal human intervention.

However, syntatic gap and mismatched vocabu-
lary among between natural language and program-

Programming

Language Vocabulary Mismatch Syntactic Gap

Natural for, int, =, <, ++, ... Complex & Structural

Language
consisting, binary Easier & Sequential
Extracted

Graph

X X

Input are two strings a and b consisting only of 1s and 0s. Perform binary XOR
on these inputs and return results also as a string.

string string_xor(string a, string b){
string output="";
for (int i=0;(i<a.length() and i<b.length());i++}
if (i<a.length() and i<b.length(){
if (ali]== biil) output+="0';
else output+='1";}
else{
if (i>=a.length()) output+=b[i];
else output+=alil;}}
return output;}

Figure 1: Illustration of the gap between the program-
ming language and the natural language.

ming languages, hindering LLM’s performance on
code generation. As illustrated in Figure 1, pro-
gramming language (marked in blue) contains spe-
cial tokens such as “int” or “++” that natural lan-
guage (marked in yellow) doesn’t possess, leading
to vocabulary mismatch. Besides, the relations be-
tween tokens in programming languages are often
structural, e.g., the complex branching and jumps,
whereas natural language is arranged simply in
sequential manner, leading to syntactic gap. For
example, in the control flow graph of the raw code
(marked in pink), two “if”” blocks (marked in pur-
ple) are adjacent and are executed sequentially un-
der certain condition, but they appear to be inter-
valed in raw textual code.

As discussed above, the innate structures of pro-
gramming languages are different from that of the
sequential-based natural language. The challenges
of enhancing a general-purposed large language
models for code-related tasks can be summarized
into two folds.

(C1) How to solve the gap between different
languages and better interpret the inherent logic
of code blocks. Code, unlike natural language,
possesses a well-defined structure that governs its
syntax and semantics. This structure provides valu-
able information about the relationships between
different parts of the code, the flow of execution,

and the overall organization of the functions (Jiang
et al., 2021; Guo et al., 2020). General-purpose
LLMs regard a code block as a sequence of tokens.
By ignoring the inherent structure of codes, they
miss out on essential cues that could help them
better understand and generate code. In addition,
the multi-lingual code generation abilities of LLMs
is challenging due to the gap among different pro-
gramming languages.

(C2) How to inject the innate knowledge of pro-
gramming languages into general purpose large lan-
guage models for enhancement. Despite the well
representation of the programming knowledge, the
ways to inject the knowledge into the NL-based
foundation models is also challenging. The struc-
tural representation of code blocks could be hard
to understand, which poses a challenge to the capa-
bility of the foundation models.

To solve the above challenges, we propose Code-
GRAG, a graphical retrieval augmented generation
framework for code generation. For (C1), we pro-
pose to interpret the code blocks using the com-
posed graph based on the data-flow and control-
flow of the code block, which extracts both the
semantic level and the logical level information
of the code. The composed graphical view could
1) better capture the innate structural knowledge
of codes for NL-based language models to under-
stand and 2) model the innate function of code
blocks that bridging different programming lan-
guages. For (C2), we propose a meta-graph prompt-
ing technique for tuning-free models and a soft-
prompting technique for tuned models. The meta-
graph prompt summarizes the overall information
of the extracted graphical view and transforms the
challenging and noisy graphical representation into
informative knowledge. The soft-prompting tech-
nique deals with the graphical view of codes with a
pretrained GNN expert network and inject the pro-
cessed knowledge embedding into the parameters
of the general-purpose foundation models with the
help of supervised finetuning.

The main contributions of the paper can be sum-
marized as follows:

* We propose CodeGRAG that bridges the gap
among natural language and programming lan-
guages, transfers knowledge among different
programming languages, and enhances the
ability of LLMs for code generation. Code-
GRAG requires only one calling of LLMs and
can offer multi-lingual enhancement.

* We propose an effective graphical view to pu-
rify the semantic and logic knowledge from
the code space, which offers more useful in-
formation than the raw code block and can
summarize the cross-lingual knowledge.

* We propose an effective soft prompting tech-
nique, which injects the domain knowledge of
programming languages into the model param-
eters via finetuning LLMs with the assistance
of a pretrained GNN expert model.

2 Related Work

LLMs for NL2Code. The evolution of the Natural
Language to Code translation (NL2Code) task has
been significantly influenced by the development
of large language models (LLMs). Initially, gen-
eral LLMs like GPT-J (Radford et al., 2023), GPT-
NeoX (Black et al., 2022), and LLaMA (Touvron
et al., 2023a), despite not being specifically tailored
for code generation, showed notable NL2Code ca-
pabilities due to their training on datasets contain-
ing extensive code data like the Pile (Gao et al.,
2020) and ROOTS (Laurengon et al., 2022). To
further enhance these capabilities, additional pre-
training specifically focused on code has been em-
ployed. PalLM-Coder, an adaptation of the PaLM
model (Chowdhery et al., 2023), underwent further
training on an extra 7.8 billion code tokens, signifi-
cantly improving its performance in code-related
tasks. Similarly, Code LLaMA (Roziere et al.,
2023) represents an advancement of LLaMA?2 (Tou-
vron et al., 2023b), benefiting from extended train-
ing on over 500 billion code tokens, leading to
marked improvements over previous models in
both code generation and understanding. These
developments underscore the potential of adapting
generalist LLMs to specific domains like NL2Code
through targeted training, leading to more effective
and efficient code translation solutions.

Code Search. The code search methods can be
summarized into three folds. Early methods uti-
lizes sparse search to match the query and codes
(Hill et al., 2011; Yang and Huang, 2017), which
suffers from mismatched vocabulary due to the
gap between natural language and codes. Neural
methods (Cambronero et al., 2019; Gu et al., 2021)
then focus on mapping the query and codes into
a joint representation space for more accurate re-
trieval. With the success of pretrained language
models, many methods propose to use pretraining
tasks to improve the code understanding abilities

(Graphical View)

Soft Prompting

e

T

Structure Preserving

Retriever }

e N>
External Code Composed Syntax Graph
Knowledge Base AN)
Ve N\

Compose

Compact

Query Extraction

5

General Purpose LLM

Modality Alignment

Expert GNN

c h>
#include<math.h>

¥ [Meta-Graph RAG Pompt I

___ DataFlow Control Flow /

C 1

Knowledge (std::vector<inl>)
Document twoSum(std::vector<int>& nums, int giﬁcfugeismim)
ERF e Yaihg! nasespace, std;
_ Raw Code Ju

Return a string containing space-delimited
numbers starting from 0 upto n inclusive.
>>> string_sequence(0)

non

>> string_sequence(5)
5

string string_sequence(int n){

INPUT: Task instruction prompt

using std;

#include<algorithm>

#include<stdlib.h>

string string_sequence(int n){
string out="0"

for (int i=Lii<=n;i++)
out=out+" "+to_string(i);
return out;

3>%é

General Purpose LLM

}
OUTPUT: Generated Code

(a) Graphical Knowledge Base Preparation

(b) Knowledge Querying

(c) Graphical Knowledge Augmented Generation
(Top: Finetuning with soft prompting
Bottem: Hard prompt with Meta-Graph)

Figure 2: The illustration of the overall process of CodeGRAG.

and align different language spaces. For example,
CodeBERT (Feng et al., 2020) is pretrained on
NL-PL pairs of 6 programming languages with the
masked language modeling and replaced token de-
tection task. CodeT5 (Wang et al., 2021) supports
both code-related understanding and generation
tasks through bimodal dual generation. UniXcoder
(Guo et al., 2022) integrates the aforementioned
pretraining tasks, which is a unified cross-modal
pre-trained model.

Code Representation. Early methods regard code
snippets as sequences of tokens, assuming the ad-
jacent tokens will have strong correlations. This
line of methods (Harer et al., 2018; Ben-Nun et al.,
2018; Feng et al., 2020; Ciniselli et al., 2021) take
programming languages as the same with the nat-
ural language, using language models to encode
the code snippets too. However, this ignoring of
the inherent structure of codes leads to a loss of
expressiveness. Methods that take the structural in-
formation of codes into consideration then emerge.
Mou et al. (2016) used convolution networks over
the abstract syntax tree (AST) extracted from codes.
Alon et al. (2019) encoded paths sampled from the
AST to represent codes. Further exploration into
the graphical representation of codes (Allamanis
et al., 2017) is conducted to better encode the struc-
tures of codes, where more intermediate states of
the codes are considered.

3 Methodology

3.1 Overview

In this paper, we leverage both generative models
and retrieval models to produce results that are

both coherent and informed by the expert graphical
knowledge of programming language. The overall
process of CodeGRAG is illustrated in Figure 2,
which mainly consists of three stages: graphical
knowledge base preparation, knowledge querying,
and graphical knowledge augmented generation.

3.2 Graphical Knowledge Base Preparation

In this section, we discuss how to extract informa-
tive graphical views for code blocks. We analyze
the syntax and control information of code blocks
and extract their graphical views to better repre-
sent the codes. This process can be formulated as,
Ve; € DpOOl:

g; + GraphExtractor(c;),
KB.append({c;, gi)),

€]
2

where c; is the raw code block and g; is the corre-
sponding extracted graphical view.

To capture both the semantic and the logical
information, we propose to combine the data flow
graph (Aho et al., 2006) and the control flow graph
(Allen, 1970) with the read-write signals (Long
et al., 2022) to represent the code blocks, both of
them are constructed on the base of the abstract
syntax tree.

Abstract Syntax Tree (AST). An abstract syntax
tree (AST) is a tree data structure that represents
the abstract syntactic structure of source code. An
AST is constructed by a parser, which reads the
source code and creates a tree of nodes. Each node
in the tree represents a syntactic construct in the
source code, such as a statement, an expression,
or a declaration. ASTSs are used in a variety of

temp

Function Desciption

ParmVarDe;

Checks if given string is a palindrome. MenfBetExpr e

Membercall:k’\/

temp
#include<string> fiai - CXxCoExer
using namespace std; N ‘
#include<algorithm> SR ‘
#include<stdlib.h>
bool is_palindrome(string text){
string pr(text.rbegin(),text.rend());

return pr==text;
} —— DeclStmtedge0

Code Block

#include<stdio.h>
#include<math.h>

CXXMemberCallExpr._/ EXXConstructExpr

MemberExpr

——» UserDefineFun

ReturnStmt
/ CXXOperatorCallExpr USerDEﬁn/
userDefine -

DeclStmt———CempoundStmt

——» CXXOperatorCallExpredgel

auto

void

userDefine }

userDefine void«————void

auto
userDefine bool (std:string)

FunctionDec| userDefine
\ N ‘ \
/ | void
|

fileAST auto
userDefine

——userDefine

userDefine

—— child write

——» CXXOperatorCallExpredge2 next read

Figure 3: Illustration of the extracted composed syntax graph from the code block. The arrows in the bottom part
indicate the names of different edges, which are extracted based on the ASTs.

compiler construction and program analysis tasks,
including: parsing, type checking, optimization,
and program analysis. ASTs have good compact-
ness and can represent the structure of the source
code in a clear and concise way.

Data Flow Graph (DFG). The data flow graph
(DFG) is a graphical representation of the flow of
data dependencies within a program. It is a directed
graph that models how data is transformed and
propagated through different parts of a program. In
DFG, nodes are operands and edges indicate data
flows. Two types of edges are considered: 1) opera-
tion edges that connect the nodes to be operated and
the nodes that receive the operation results; 2) func-
tion edges that indicate data flows for function calls
and returns. These edges connect nodes, including
non-temporary operands and temporary operands,
which refer to variables and constants that explic-
itly exist in the source code, and variables existing
only in execution, respectively.

Control Flow Graph (CFG). The control flow
graph (CFG) is a graphical representation of the
flow of control or the sequence of execution within
a program. It is a directed graph that models the
control relationships between different parts of a
program. Based on compiler principles, we slightly
adjust the design of CFG to better capture the key
information of the program. Nodes in CFG are
operations in the source code, including standard
operations, function calls and returns. Edges indi-
cate the execution order of operations.

Composed Syntax Graph. A composed syntax
graph composes the data flow graph and the control
flow graph with the read-write flow existing in the
code blocks. An illustration of the extracted com-
posed syntax graph is displayed in Figure 3. Dif-

ferent edge types along with their concrete names
are given in colors. As for the node names, the
middle figure displays the concrete types of nodes
(operands) and the right figure displays the proper-
ties of nodes.

An illustration of the composed graphical view
is given in Figure 3. After obtaining the composed
syntax graphs for code blocks in the retrieval pool,
we use them to inform the general-purpose LLMs
to bridge the gap between NL and PLs, where both
the semantic level and the logic level information
are preserved.

3.3 Knowledge Querying

Given a target problem to be completed, we gen-
erate informative query of it and use it to retrieve
graphical knowledge from the constructed knowl-
edge base. The process can be formulated as:

q + QueryExtractor(p), €)
i oot Retriever(q, K B), “)

where ¢ denotes the query content, p denotes the
target problem, and ¢ is the returned index of the
Top-1 relevant content stored in the constructed
knowledge base.

The main problems of the retrieval lie in: 1) how
to design the informative query content and 2) how
to align the different modalities.

3.3.1 Query Extractor

Since the styles of different code problems can di-
versify, the query content of the retrieval process
matters. We consider the following contents: 1)
Problem description, which describes the task to
be completed by the target function code. Poten-
tial ambiguity and style diversity may exist among

different problems set, which lead to a decrease in
retrieval accuracy. 2) Function declaration, which
gives the function name and the input variables.

Before knowledge querying, we first extract the
problem description of each task to reduce the am-
biguity and then concatenate it with the function
declaration to serve as the query content, where the
functionality and input format of the expected code
block are contained.

3.3.2 Retriever

The query of the retrieval includes problem de-
scription (), and function description ()., while
each content of the retrieval pool includes raw code
block V. and its graphical view V.

To expressively represent the components, we
use the encoder ¢(-) of the pretrained NL2Code
model to represent the problem description and
code snippets. The retrieval function is:

hY = o(Ve|[Vy), ®)
h? = 6(Qy1Q0), (©)

) hQ.nhVv
Distance = 1 — W (7)

3.4 Graphical Knowledge Augmented
Generation

After we obtain the returned graphical view, we in-
ject it to the foundation LLMs for graphical knowl-
edge augmented generation. Since the graphical
view is hard to understand, we propose 1) a meta-
graph template to transform the graphical view into
informative knowledge for tuning-free model and
2) a soft prompting technique to tune the founda-
tion models for their better understanding of the
graphical views with the assistance of an expert
GNN model.

3.4.1 Hard Meta-Graph Prompt

The original graphical view of a code block could
contain hundreds of nodes and edges. A full de-
scription of it could cost a overly long context,
along with the understanding challenge posed by
the long edge lists. Therefore, we propose to use
a meta-graph template to abstract the information
of the graphical view, which describes the number
of different nodes, that of different edges, and the
overall topology.

The template for the meta-graph is displayed as
below.

Graph(

num_nodes={node_type : #nodes},
num_edges={(src_node_type, edge_type,
dst_node_type) : #edges},
metagraph=[(src_node_type, edge_type,
dst_node_type)]

Then we use the meta-graph template to trans-
form the retrieved graphical view into digestable
knowledge and insert it into the final prompt for
generation. As illustrated in Figure 4, the final
prompt consists of three components: the system
prompt illustrated in the blue part, the retrieved
knowledge and hints illustrated in the green part,
and the problem (including task description, func-
tion declaration, etc.) illustrated in the yellow part.
The three parts are concatenated to be fed into
LLMs for knowledge augmented generation.

Prompt for Knowledge Augmentated Generation

System Prompt

Please continue to complete the [/ang] function
according to the requirements and function
declarations. You are not allowed to modify the
given code and do the completion only.\n

Retrieved Knowledge

The syntax graph of a similar code might be:\n
[composed syntax graph desciption)

You can refer to the above knowledge to do the
completion. \n

Problem

The problem:\n
[problem prompf]

Figure 4: Illustration of the hard meta-graph prompt.

3.4.2 Soft Prompting with the Expert

Directly hard prompt to the LLMs poses a chal-
lenge to the digesting capability of the backbone
LLMs, which could fail under the case where the
backbone LLMs cannot well understand the graph
components.

To compress the graphical knowledge into model
parameters and help the backbone LLMs to better
understand the programming language, we propose
a soft prompting technique. The overall procedure
can summarized into expert encoding of graphi-
cal views, finetuning with the expert signal, and
inference.

Expert Encoding of Graphical Views. We design
a graph neural network to preserve the semantic
and logical information of code blocks. The rep-

resentation of each node ngo) and edge ego) are

first initialized with vectors corresponding to the
node text and edge text encoded by ¢;. A message
passing process is first conducted to fuse the se-
mantic and structural information into each node
representation.

m{) = WOl ™), ®)

Q) =wqn™, ©)

K = wWgOm), v =wyOm{ (0
(11

(12)

ag) = SOftmaXigN(j) (QEZ)K'E‘?))

O D~
n;’ = Z a;; Vij .
iEN(4)

A global attention-based readout is then applied
to obtain the graph representation:

g= Z SOftmaX(fgate(niL))ffeat(niL)' 13)

The expert encoding network is optimized via
the contrastive learning based self-supervised train-
ing, which includes the intra-modality contrastive
learning and inter-modality contrastive learning.
The intra-modality constrastive learning serves
for preserving the modality information, while
the inter-modality contrastive learning serves for
modality alignment.

* Alignment Contrastive Learning. There are
two types of alignment to be ensured: 1) NL-
Code (NC) alignment and 2) Code-Graph (CG)
alignment. We define the positive pairs for NC
alignment purpose as Zj;,, = {(hy,h?ﬂz €
Dirain } and define the negative pairs for NC align-
ment purpose as Zy,~ = {(hy,th)]z # j,i €
Dtraimj € Dtrain}~
And we define the positive pairs for CG align-
ment purpose as IgG = {{(P1(ci), P2(gi))|i €
Dirqin } and define the negative pairs for CG align-
ment purpose as Zo; = {(d1(ci), da(g;))|i #
j;i S Dtrainaj € Dtrain}'

* Structure Preserving Contrastive Learning.
To preserve the structural information of the
graphical views, we perform intra-modality con-
trastive learning among the graphical views and
their corrupted views. Concretely, we corrupt
each of the graphical view g; with the edge
dropping operation to obtain its corrupted view
g:. The positive pairs for structure-preserving

purpose are then designed as I;;eserve =

{(¢2(gi), $2(9))|? € Dirain }. The negative pairs
for structure preserving purpose are designed

as I, = {(#2(9:), 2(9)))li # j,i €

preserve

Dtrainvj € Dtrain}-

Finetuning with the Expert Soft Signal. To help
the backbone LLMs to digest the graphical views,
we tune the LLMs with the expert soft signal using
supervised finetuning. The prompt for finetuning
consists of the system prompt, retrieved knowledge
where the expert encoded graphical view is con-
tained using a token embedding, and task prompt,
which is illustrated in Figure 5.

Soft Prompt for Knowledge Augmented Generation

System Prompt

Please use [/ang] to write a correct solution to a program-
ming problem. You should give executable completed code
and nothing else.\n

Retrieved Knowledge '
We also have the syntax graph embedding of a similar prob-
lem encoded in <GraphEmb> for you to refer to.\n

Problem
The problem:\n
[problem prompt]

Figure 5: Illustration of the soft prompting.

Inference. After the finetuning stage, we used
the tuned models to generate codes using the soft
prompting template as illustrated in Figure 5.

4 Experiments

RQ1 Does the proposed CodeGRAG offer perfor-
mance gain against the base model?

RQ2 Does the proposed graph view abstract more
informative knowledge compared with the
raw code block?

RQ3 Can soft prompting enhance the capability of
the backbone LLMs? Does finetuning with
the soft prompting outperforms the simple
supervised finetuning?

RQ4 Does the proposed CodeGRAG model the
high-level thought-of-codes? Can Code-
GRAG offer cross-lingual augmentation?

RQS5 What is the impact of each of the components
of the graphical view?

RQ6 How is the compatibility of the graphical
view?

Table 1: Results of code generation on Humaneval-X. (Pass@1)

Model Size Model Retrieved Knowledge C++ Python
6B GPT-J N/A 7.54 11.10
6B CodeGen-Multi N/A 11.44 1941

6.7B InCoder N/A 9.50 16.4l1
13B CodeGeeX N/A 17.06 22.89
16B CodeGen-Multi N/A 18.05 19.22
16B CodeGen-Mono N/A 19.51 29.28
15B StarCoder N/A 31.55 3293
15B WizardCoder N/A 29.27 57.30
15B Pangu-Coder2 N/A 45.12 64.63
- GPT-3.5-Turbo N/A 5793 71.95
- GPT-3.5-Turbo Code Block 60.37 72.56
- GPT-3.5-Turbo Meta-Graph 62.20 72.56
- GPT-3.5-Turbo (Multi-Lingual) Code-Block 62.20 70.12
- GPT-3.5-Turbo (Multi-Lingual) Meta-Graph 64.02 77.44

Table 2: Results of finetuning with soft prompting on CodeForce. (Pass@ 1)

Model Finetuning CodeForce
N/A 0.0128
Gemma-7B SFT 0.0255
CodeGRAG (soft prompting) 0.0299

4.1 Setup

In this paper, we evaluate CodeGRAG with the
widely used HumanEval-X (Zheng et al., 2023)
dataset, which is a multi-lingual code benchmark
and CodeForce dataset in which we collect real-
world programming problems from codeforces'
website. For CodeForce adataset we include prob-
lems categorized by different difficulty levels corre-
sponding to the website and selecte 469 problems
of difficulty level A for testing. We use greedy
decoding strategy to do the generation. The evalua-
tion metric is Pass@1.

We evaluate the multi-lingual code generation
abilities of 1) models with less than 10 billion pa-
rameters: GPT-J (Radford et al., 2023), CodeGen-
Multi (Nijkamp et al., 2022), InCoder(Fried et al.,
2022) and Gemma(Mesnard et al., 2024); 2) mod-
els with 10-20 billion parameters: CodeGeeX
(Zheng et al., 2023), CodeGen-Multi (Nijkamp
et al., 2022), CodeGen-Mono (Nijkamp et al.,
2022), StarCoder (Li et al., 2023), WizardCoder
(Luo et al., 2023), and Pangu-Coder2 (Shen et al.,
2023); 3) close-sourced GPT-3.5 model.

4.2 Main Results

The main results are summarized in Table 1 and Ta-
ble 2. From the results, we can draw the following
conclusions:

RQ1. The proposed CodeGRAG could offer per-

"https://codeforces.com/

formance gain against the base model, which val-
idates the effectiveness of the proposed graphical
retrieval augmented generation for code generation
framework.

RQ2. The model informed by the meta-graph
(CodeGRAG) could beat model informed by the
raw code block. From the results, we can see that
the proposed graph view could summarize the use-
ful structural syntax information and filter out the
noises, which could offer more informative knowl-
edge hints than the raw code block.

RQ3. From Table 2, we can see that finetuning
with the expert soft prompting could offer more per-
formance gain than that brought by simple super-
vised finetuning. This validates the effectiveness
of the designed pretraining expert network and the
technique of finetuning with soft prompting.

4.3 Study on Cross-Lingual Modeling (RQ4)

To study the capability of graphical view modeling
cross-lingual thoughts of codes, we use the graph-
ical view of each source code block to serve as
a bridge for translation to another programming
language. The results are in Table 3.

From the results, we could see that the bridged
graphical view could offer augmentation for transla-
tion among different programming languages. This
validates that the proposed graphical view could ab-
stract the high-level and inherent information (e.g.,
the control and data flow to solve a specific prob-
lem) of the code blocks, which are shared across

Table 3: Results of code translation on Humaneval-X.

Model Size Model Bridge Content Python to C++ C++ to Python

6.7B InCoder N/A 26.11 34.37
13B CodeGeeX N/A 26.54 27.18
16B CodeGen-Multi N/A 35.94 33.83
15B StarCoder N/A 0.61 26.22
15B WizardCoder N/A 50.00 67.07

- GPT-3.5-Turbo N/A 61.59 81.71

- GPT-3.5-Turbo Meta-Graph 62.80 82.32

Table 4: The impacts of the graph components.

Datasets Python C++

Edge Type Only 73.78 61.59
Edge Type + Node Name 75.00 59.76
Edge Type + Node Type 75.61 59.15
Edge Type + Topological ~ 77.44 64.02

different programming languages regarding solving
the same problem.

4.4 Impacts of the Components of the
Graphical View (RQ5)

In this section, we adjust the inputs of the graphical
components to the LLMs. Concretely, we study
the information contained in node names, edge
names, and the topological structure. The results
are presented in Table 4.

The edge type refers to the type of flows between
operands (child, read, write, etc.), the node type
refers to the type of operands (DeclStmt, temp,
etc.), the node name refers to the name of the inter-
mediate variables, and the topological information
refers to the statistics of the concrete numbers of
different types of edges. From the results, we can
observe that 1) the edge features matter the most
in constructing the structural view of code blocks
for enhancement, 2) the type of nodes expresses
the most in representing operands information, and
3) the overall structure of the graphical view also
gives additional information.

4.5 Compatibility Discussion of the Graphical
Views(RQ5)

Despite the effectiveness of the proposed graphical
views to represent the code blocks, the flexibility
and convenience of applying the graphical views
extraction process is important for wider applica-
tion of the proposed method. In this section, we
discuss the compatibility of CodeGRAG.

First of all, the extraction process of all the graph-
ical views are front-end. Therefore, this extraction
process applies to a wide range of code, even error

code. One could also use convenient tools to refor-
mulate the code and improve the pass rate of the
extraction process.

In addition, we give the ratio of generated results
that can pass the graphical views extraction process,
which is denoted by Extraction Rate. The Pass@1
and the Extraction Rate of the generated results
passing the graphical extraction process are given
in Table 5.

Table 5: The extraction rate of the generated results
passing the graphical extraction process.

Generated Codes Pass@1 Extraction Rate
(C++) Code-RAG 62.20 92.07
(C++) CodeGRAG 64.02 92.68

(Python) Code-RAG 71.95 91.46
(Python) CodeGRAG 77.44 96.95

From the results, we could see that the extraction
rates are high for codes to pass the graphical views
extraction process, even under the situation where
the Pass@1 ratios of the generated results are low.
This indicates that the application range of the pro-
posed method is wide. In addition, as the code
RAG also offers performance gains, one could use
multiple views as the retrieval knowledge.

5 Conclusion

Despite the expanding role of LLMs in code gen-
eration, there are inherent challenges pertaining
to their understanding of code syntax and their
multi-lingual code generation capabilities. This
paper introduces the Syntax Graph Retrieval Aug-
mented Code Generation (CodeGRAG) to enhance
LLMs for single round and cross-lingual code gen-
eration. CodeGRAG extracts and summarizes data
flow and control flow information from codes, ef-
fectively bridging the gap between programming
language and natural language. By integrating ex-
ternal structural knowledge, CodeGRAG enhances
LLMs’ comprehension of code syntax and empow-
ers them to generate complex and multi-lingual
code with improved accuracy and fluency.

Limitations

In this paper, we propose a graphical retrieval aug-
mented generation method that can offer enhanced
code generation. Despite the efficiency and effec-
tiveness, there are also limitations within this work.
For example, dependency on the quality of the ex-
ternal knowledge base could be a potential concern.
The quality of the external knowledge base could
be improved with regular expression extraction on
the noisy texts and codes.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D
Ullman. 2006. Compilers: Principles techniques and
tools. 2007. Google Scholar Google Scholar Digital
Library Digital Library.

Miltiadis Allamanis, Marc Brockschmidt, and Mah-
moud Khademi. 2017. Learning to repre-
sent programs with graphs. arXiv preprint
arXiv:1711.00740.

Frances E Allen. 1970. Control flow analysis. ACM
Sigplan Notices, 5(7):1-19.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran
Yahav. 2019. code2vec: Learning distributed rep-
resentations of code. Proceedings of the ACM on
Programming Languages, 3(POPL):1-29.

Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten
Hoefler. 2018. Neural code comprehension: A learn-
able representation of code semantics. Advances in
Neural Information Processing Systems, 31.

Sid Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, et al.
2022. Gpt-neox-20b: An open-source autoregressive
language model. arXiv preprint arXiv:2204.06745.

Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik
Sen, and Satish Chandra. 2019. When deep learning
met code search. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations
of Software Engineering, pages 964-974.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1-113.

Matteo Ciniselli, Nathan Cooper, Luca Pascarella,
Denys Poshyvanyk, Massimiliano Di Penta, and
Gabriele Bavota. 2021. An empirical study on the
usage of bert models for code completion. In 2021
IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR), pages 108—119. IEEE.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih,
Luke Zettlemoyer, and Mike Lewis. 2022. Incoder:
A generative model for code infilling and synthesis.
arXiv preprint arXiv:2204.05999.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Jian Gu, Zimin Chen, and Martin Monperrus. 2021.
Multimodal representation for neural code search. In
2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 483—
494. IEEE.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation. arXiv
preprint arXiv:2203.03850.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
arXiv preprint arXiv:2009.08366.

Jacob A Harer, Louis Y Kim, Rebecca L Russell, Onur
Ozdemir, Leonard R Kosta, Akshay Rangamani,
Lei H Hamilton, Gabriel I Centeno, Jonathan R Key,
Paul M Ellingwood, et al. 2018. Automated software
vulnerability detection with machine learning. arXiv
preprint arXiv:1803.04497.

Emily Hill, Lori Pollock, and K Vijay-Shanker. 2011.
Improving source code search with natural language
phrasal representations of method signatures. In 2011
26th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2011), pages 524—
527. IEEE.

Xue Jiang, Zhuoran Zheng, Chen Lyu, Liang Li, and
Lei Lyu. 2021. Treebert: A tree-based pre-trained
model for programming language. In Uncertainty in
Artificial Intelligence, pages 54—-63. PMLR.

Hugo Laurengon, Lucile Saulnier, Thomas Wang,
Christopher Akiki, Albert Villanova del Moral, Teven
Le Scao, Leandro Von Werra, Chenghao Mou, Ed-
uardo Gonzdlez Ponferrada, Huu Nguyen, et al. 2022.

The bigscience roots corpus: A 1.6 tb composite mul-
tilingual dataset. Advances in Neural Information
Processing Systems, 35:31809-31826.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Ting Long, Yutong Xie, Xianyu Chen, Weinan Zhang,
Qinxiang Cao, and Yong Yu. 2022. Multi-view graph
representation for programming language process-
ing: An investigation into algorithm detection. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 5792-5799.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Gemma Team Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
L. Sifre, Morgane Riviere, Mihir Kale, J Christo-
pher Love, Pouya Dehghani Tafti, L' eonard Hussenot,
Aakanksha Chowdhery, Adam Roberts, Aditya
Barua, Alex Botev, Alex Castro-Ros, Ambrose
Slone, Am’elie H’eliou, Andrea Tacchetti, Anna Bu-
lanova, Antonia Paterson, Beth Tsai, Bobak Shahri-
ari, Charline Le Lan, Christopher A. Choquette-Choo,
Cl’'ement Crepy, Daniel Cer, Daphne Ippolito, David
Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng
Yan, George Tucker, George-Christian Muraru, Grig-
ory Rozhdestvenskiy, Henryk Michalewski, Ian Ten-
ney, Ivan Grishchenko, Jacob Austin, James Keel-
ing, Jane Labanowski, Jean-Baptiste Lespiau, Jeff
Stanway, Jenny Brennan, Jeremy Chen, Johan Fer-
ret, Justin Chiu, Justin Mao-Jones, Katherine Lee,
Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa
Lee, Lucas Dixon, Machel Reid, Maciej Mikula,
Mateo Wirth, Michael Sharman, Nikolai Chinaev,
Nithum Thain, Olivier Bachem, Oscar Chang, Oscar
Wahltinez, Paige Bailey, Paul Michel, Petko Yotov,
Pier Giuseppe Sessa, Rahma Chaabouni, Ramona
Comanescu, Reena Jana, Rohan Anil, Ross Mcll-
roy, Ruibo Liu, Ryan Mullins, Samuel L Smith, Se-
bastian Borgeaud, Sertan Girgin, Sholto Douglas,
Shree Pandya, Siamak Shakeri, Soham De, Ted Kli-
menko, Tom Hennigan, Vladimir Feinberg, Woj-
ciech Stokowiec, Yu hui Chen, Zafarali Ahmed,
Zhitao Gong, Tris Brian Warkentin, Ludovic Peran,
Minh Giang, CI’ement Farabet, Oriol Vinyals, Jeffrey
Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin
Ghahramani, Douglas Eck, Joelle Barral, Fernando
Pereira, Eli Collins, Armand Joulin, Noah Fiedel,
Evan Senter, Alek Andreev, and Kathleen Kenealy.
2024. Gemma: Open models based on gemini re-
search and technology. ArXiv, abs/2403.08295.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016.
Convolutional neural networks over tree structures

10

for programming language processing. In Proceed-
ings of the AAAI conference on artificial intelligence,
volume 30.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.
arXiv preprint arXiv:2203.13474.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In International Conference on Machine
Learning, pages 28492-28518. PMLR.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqging Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan,
Bing Geng, An Fu, Muhan Zeng, Ailun Yu, Jichuan
Ji, Jingyang Zhao, et al. 2023. Pangu-coder2: Boost-
ing large language models for code with ranking feed-
back. arXiv preprint arXiv:2307.14936.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code un-

derstanding and generation. arXiv preprint
arXiv:2109.00859.

Yangrui Yang and Qing Huang. 2017. Iecs: Intent-
enforced code search via extended boolean model.
Journal of Intelligent & Fuzzy Systems, 33(4):2565—
2576.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, et al. 2023. Codegeex: A pre-trained model
for code generation with multilingual evaluations on
humaneval-x. arXiv preprint arXiv:2303.17568.

https://api.semanticscholar.org/CorpusID:268379206
https://api.semanticscholar.org/CorpusID:268379206
https://api.semanticscholar.org/CorpusID:268379206

A Example of the inserted graphical view

An illustration of the inserted graphical view is
given below.

Graph(

num_nodes="node’: 24,

num_edges=("node’, ’-0’, 'node’): 1, ('node’,
-1°, 'node’): 1, ('node’, ’ArraySubscriptEx-
predge0’, 'node’): 1, ('node’, 'ArraySubscrip-
tExpredgel’, 'node’): 1, ("node’, *CXXOp-
eratorCallExpredgel’, 'node’): 1, ('node’,
"CXXOperatorCallExpredge2’, ’'node’): 2,
(‘node’, ’ImplicitCastExpredgeQ’, 'node’): 1,
(‘'node’, 'UserDefineFun’, 'node’): 1, ('node’,
‘falseNext’, 'node’): 1, ('node’, 'next’, 'node’):
5, ('node’, ’read’, ’node’): 10, (’node’,
‘trueNext’, 'node’): 1, (‘node’, "write’, 'node’):
9,

metagraph=[('node’, 'node’, ’-0’), ('node’,
‘node’, ’-1’), ('node’, 'node’, ’ArraySubscript-
Expredge0’), ('node’, 'node’, ’ArraySubscrip-
tExpredgel’), (‘node’, 'node’, ’CXXOperator-
CallExpredgel’), ('node’, 'node’, ’'CXXOper-
atorCallExpredge?2’), (‘node’, 'node’, ’Implic-
itCastExpredgeQ’), ('node’, 'node’, 'UserDe-
fineFun’), ('node’, ’'node’, ’falseNext’),
('node’, ’node’, ’next’), (‘node’, ’node’,
read’), ('node’, 'node’, ’trueNext’), ('node’,
‘node’, ‘write’)]

)

