
CodeGRAG: Bridging the Gap between Natural Language and
Programming Language via Graphical Retrieval Augmented Generation

Anonymous ACL submission

Abstract

Utilizing large language models to generate001
codes has shown promising meaning in soft-002
ware development revolution. Despite the in-003
telligence shown by the general large language004
models, their specificity in code generation can005
still be improved due to the syntactic gap and006
mismatched vocabulary existing among natu-007
ral language and different programming lan-008
guages. In this paper, we propose CodeGRAG,009
a Graphical Retrieval Augmented Code Gener-010
ation framework to enhance the performance011
of LLMs. CodeGRAG builds the graphical012
view of code blocks based on the control flow013
and data flow of them to fill the gap between014
programming languages and natural language,015
which can facilitate natural language based016
LLMs for better understanding of code syn-017
tax and serve as a bridge among different pro-018
gramming languages. To take the extracted019
structural knowledge into the foundation mod-020
els, we propose 1) a hard meta-graph prompt021
template to transform the challenging graphi-022
cal representation into informative knowledge023
for tuning-free models and 2) a soft prompting024
technique that injects the domain knowledge of025
programming languages into the model param-026
eters via finetuning the models with the help of027
a pretrained GNN expert model. CodeGRAG028
significantly improves the code generation abil-029
ity of LLMs and can even offer performance030
gain for cross-lingual code generation.031

1 Introduction032

In recent years, large language models (LLMs)033

(Achiam et al., 2023; Touvron et al., 2023a) have034

shown great impact in various domains. Automated035

code generation emerges as a captivating frontier036

(Zheng et al., 2023; Roziere et al., 2023; Shen et al.,037

2023), promising to revolutionize software develop-038

ment by enabling machines to write and optimize039

code with minimal human intervention.040

However, syntatic gap and mismatched vocabu-041

lary among between natural language and program-042

string string_xor(string a, string b){
string output="";
for (int i=0;(i<a.length() and i<b.length());i++){

if (i<a.length() and i<b.length()){
if (a[i]== b[i]) output+='0';
else output+='1';}

else{
if (i>=a.length()) output+=b[i];
else output+=a[i];}}

return output;}

Input are two strings a and b consisting only of 1s and 0s. Perform binary XOR
on these inputs and return results also as a string.

Start:
string_xor

Vocabulary Mismatch

for, int, =, <, ++, ...

consisting, binary

Syntactic Gap

Complex & Structural

Easier & Sequential

Programming
Language

Natural
Language

Init output,
minlen

For: i

range(minlen)

If: i<minlen

If:
a[i]=b[i]

yes

If:
i>=len(a)

yes

no

output
+= '0'

output
+= '1'

Extracted
Graph

no yes

no

output
+= b[i]

Figure 1: Illustration of the gap between the program-
ming language and the natural language.

ming languages, hindering LLM’s performance on 043

code generation. As illustrated in Figure 1, pro- 044

gramming language (marked in blue) contains spe- 045

cial tokens such as “int” or “++” that natural lan- 046

guage (marked in yellow) doesn’t possess, leading 047

to vocabulary mismatch. Besides, the relations be- 048

tween tokens in programming languages are often 049

structural, e.g., the complex branching and jumps, 050

whereas natural language is arranged simply in 051

sequential manner, leading to syntactic gap. For 052

example, in the control flow graph of the raw code 053

(marked in pink), two “if” blocks (marked in pur- 054

ple) are adjacent and are executed sequentially un- 055

der certain condition, but they appear to be inter- 056

valed in raw textual code. 057

As discussed above, the innate structures of pro- 058

gramming languages are different from that of the 059

sequential-based natural language. The challenges 060

of enhancing a general-purposed large language 061

models for code-related tasks can be summarized 062

into two folds. 063

(C1) How to solve the gap between different 064

languages and better interpret the inherent logic 065

of code blocks. Code, unlike natural language, 066

possesses a well-defined structure that governs its 067

syntax and semantics. This structure provides valu- 068

able information about the relationships between 069

different parts of the code, the flow of execution, 070

1

and the overall organization of the functions (Jiang071

et al., 2021; Guo et al., 2020). General-purpose072

LLMs regard a code block as a sequence of tokens.073

By ignoring the inherent structure of codes, they074

miss out on essential cues that could help them075

better understand and generate code. In addition,076

the multi-lingual code generation abilities of LLMs077

is challenging due to the gap among different pro-078

gramming languages.079

(C2) How to inject the innate knowledge of pro-080

gramming languages into general purpose large lan-081

guage models for enhancement. Despite the well082

representation of the programming knowledge, the083

ways to inject the knowledge into the NL-based084

foundation models is also challenging. The struc-085

tural representation of code blocks could be hard086

to understand, which poses a challenge to the capa-087

bility of the foundation models.088

To solve the above challenges, we propose Code-089

GRAG, a graphical retrieval augmented generation090

framework for code generation. For (C1), we pro-091

pose to interpret the code blocks using the com-092

posed graph based on the data-flow and control-093

flow of the code block, which extracts both the094

semantic level and the logical level information095

of the code. The composed graphical view could096

1) better capture the innate structural knowledge097

of codes for NL-based language models to under-098

stand and 2) model the innate function of code099

blocks that bridging different programming lan-100

guages. For (C2), we propose a meta-graph prompt-101

ing technique for tuning-free models and a soft-102

prompting technique for tuned models. The meta-103

graph prompt summarizes the overall information104

of the extracted graphical view and transforms the105

challenging and noisy graphical representation into106

informative knowledge. The soft-prompting tech-107

nique deals with the graphical view of codes with a108

pretrained GNN expert network and inject the pro-109

cessed knowledge embedding into the parameters110

of the general-purpose foundation models with the111

help of supervised finetuning.112

The main contributions of the paper can be sum-113

marized as follows:114

• We propose CodeGRAG that bridges the gap115

among natural language and programming lan-116

guages, transfers knowledge among different117

programming languages, and enhances the118

ability of LLMs for code generation. Code-119

GRAG requires only one calling of LLMs and120

can offer multi-lingual enhancement.121

• We propose an effective graphical view to pu- 122

rify the semantic and logic knowledge from 123

the code space, which offers more useful in- 124

formation than the raw code block and can 125

summarize the cross-lingual knowledge. 126

• We propose an effective soft prompting tech- 127

nique, which injects the domain knowledge of 128

programming languages into the model param- 129

eters via finetuning LLMs with the assistance 130

of a pretrained GNN expert model. 131

2 Related Work 132

LLMs for NL2Code. The evolution of the Natural 133

Language to Code translation (NL2Code) task has 134

been significantly influenced by the development 135

of large language models (LLMs). Initially, gen- 136

eral LLMs like GPT-J (Radford et al., 2023), GPT- 137

NeoX (Black et al., 2022), and LLaMA (Touvron 138

et al., 2023a), despite not being specifically tailored 139

for code generation, showed notable NL2Code ca- 140

pabilities due to their training on datasets contain- 141

ing extensive code data like the Pile (Gao et al., 142

2020) and ROOTS (Laurençon et al., 2022). To 143

further enhance these capabilities, additional pre- 144

training specifically focused on code has been em- 145

ployed. PaLM-Coder, an adaptation of the PaLM 146

model (Chowdhery et al., 2023), underwent further 147

training on an extra 7.8 billion code tokens, signifi- 148

cantly improving its performance in code-related 149

tasks. Similarly, Code LLaMA (Roziere et al., 150

2023) represents an advancement of LLaMA2 (Tou- 151

vron et al., 2023b), benefiting from extended train- 152

ing on over 500 billion code tokens, leading to 153

marked improvements over previous models in 154

both code generation and understanding. These 155

developments underscore the potential of adapting 156

generalist LLMs to specific domains like NL2Code 157

through targeted training, leading to more effective 158

and efficient code translation solutions. 159

Code Search. The code search methods can be 160

summarized into three folds. Early methods uti- 161

lizes sparse search to match the query and codes 162

(Hill et al., 2011; Yang and Huang, 2017), which 163

suffers from mismatched vocabulary due to the 164

gap between natural language and codes. Neural 165

methods (Cambronero et al., 2019; Gu et al., 2021) 166

then focus on mapping the query and codes into 167

a joint representation space for more accurate re- 168

trieval. With the success of pretrained language 169

models, many methods propose to use pretraining 170

tasks to improve the code understanding abilities 171

2

External Code
Knowledge Base

Knowledge
Document std::vector<int>

twoSum(std::vector<int>& nums, int

target) {

Composed Syntax Graph

Control FlowData Flow

Raw Code

C
om

pa
ct

General Purpose LLM

Ret ur n a st r i ng cont ai ni ng space- del i mi t ed
number s st ar t i ng f r om 0 upt o n i ncl usi ve.
>>> st r i ng_sequence(0)
" 0"
>> st r i ng_sequence(5)
0 1 2 3 4 5
#i ncl ude<st di o. h>
#i ncl ude<st r i ng>
usi ng namespace st d;
st r i ng st r i ng_sequence(i nt n) {

Query Extraction

Retr iever

INPUT: Task instruction prompt

Meta-Graph RAG Pompt
#include<stdio.h>

#include<math.h>

#include<string>

using namespace std;

#include<algorithm>

#include<stdlib.h>

string string_sequence(int n){

 string out="0";

 for (int i=1;i<=n;i++)

 out=out+" "+to_string(i);

 return out;

}

(a) Graphical Knowledge Base Preparation (b) Knowledge Querying
(c) Graphical Knowledge Augmented Generation

(Top: Finetuning with soft prompting
Bottem: Hard prompt with Meta-Graph)

Knowledge
DocumentKnowledge

Document

Compose

OUTPUT: Generated Code

Graphical View

Structure Preserving

Modality Alignment

Exper t GNN

Soft Prompting

General Purpose LLM

Figure 2: The illustration of the overall process of CodeGRAG.

and align different language spaces. For example,172

CodeBERT (Feng et al., 2020) is pretrained on173

NL-PL pairs of 6 programming languages with the174

masked language modeling and replaced token de-175

tection task. CodeT5 (Wang et al., 2021) supports176

both code-related understanding and generation177

tasks through bimodal dual generation. UniXcoder178

(Guo et al., 2022) integrates the aforementioned179

pretraining tasks, which is a unified cross-modal180

pre-trained model.181

Code Representation. Early methods regard code182

snippets as sequences of tokens, assuming the ad-183

jacent tokens will have strong correlations. This184

line of methods (Harer et al., 2018; Ben-Nun et al.,185

2018; Feng et al., 2020; Ciniselli et al., 2021) take186

programming languages as the same with the nat-187

ural language, using language models to encode188

the code snippets too. However, this ignoring of189

the inherent structure of codes leads to a loss of190

expressiveness. Methods that take the structural in-191

formation of codes into consideration then emerge.192

Mou et al. (2016) used convolution networks over193

the abstract syntax tree (AST) extracted from codes.194

Alon et al. (2019) encoded paths sampled from the195

AST to represent codes. Further exploration into196

the graphical representation of codes (Allamanis197

et al., 2017) is conducted to better encode the struc-198

tures of codes, where more intermediate states of199

the codes are considered.200

3 Methodology201

3.1 Overview202

In this paper, we leverage both generative models203

and retrieval models to produce results that are204

both coherent and informed by the expert graphical 205

knowledge of programming language. The overall 206

process of CodeGRAG is illustrated in Figure 2, 207

which mainly consists of three stages: graphical 208

knowledge base preparation, knowledge querying, 209

and graphical knowledge augmented generation. 210

3.2 Graphical Knowledge Base Preparation 211

In this section, we discuss how to extract informa- 212

tive graphical views for code blocks. We analyze 213

the syntax and control information of code blocks 214

and extract their graphical views to better repre- 215

sent the codes. This process can be formulated as, 216

∀ci ∈ Dpool: 217

gi ←− GraphExtractor(ci), (1) 218

KB.append(⟨ci, gi⟩), (2) 219

where ci is the raw code block and gi is the corre- 220

sponding extracted graphical view. 221

To capture both the semantic and the logical 222

information, we propose to combine the data flow 223

graph (Aho et al., 2006) and the control flow graph 224

(Allen, 1970) with the read-write signals (Long 225

et al., 2022) to represent the code blocks, both of 226

them are constructed on the base of the abstract 227

syntax tree. 228

Abstract Syntax Tree (AST). An abstract syntax 229

tree (AST) is a tree data structure that represents 230

the abstract syntactic structure of source code. An 231

AST is constructed by a parser, which reads the 232

source code and creates a tree of nodes. Each node 233

in the tree represents a syntactic construct in the 234

source code, such as a statement, an expression, 235

or a declaration. ASTs are used in a variety of 236

3

Checks if given string is a palindrome.

 #include<stdio.h>

 #include<math.h>

 #include<string>

 using namespace std;

 #include<algorithm>

 #include<stdlib.h>

 bool is_palindrome(string text){

 string pr(text.rbegin(),text.rend());

 return pr==text;

 } writechildDeclStmtedge0

read

CXXOperatorCallExpredge1

CXXOperatorCallExpredge2 nextUserDefineFun

Function Desciption

Code Block

Figure 3: Illustration of the extracted composed syntax graph from the code block. The arrows in the bottom part
indicate the names of different edges, which are extracted based on the ASTs.

compiler construction and program analysis tasks,237

including: parsing, type checking, optimization,238

and program analysis. ASTs have good compact-239

ness and can represent the structure of the source240

code in a clear and concise way.241

Data Flow Graph (DFG). The data flow graph242

(DFG) is a graphical representation of the flow of243

data dependencies within a program. It is a directed244

graph that models how data is transformed and245

propagated through different parts of a program. In246

DFG, nodes are operands and edges indicate data247

flows. Two types of edges are considered: 1) opera-248

tion edges that connect the nodes to be operated and249

the nodes that receive the operation results; 2) func-250

tion edges that indicate data flows for function calls251

and returns. These edges connect nodes, including252

non-temporary operands and temporary operands,253

which refer to variables and constants that explic-254

itly exist in the source code, and variables existing255

only in execution, respectively.256

Control Flow Graph (CFG). The control flow257

graph (CFG) is a graphical representation of the258

flow of control or the sequence of execution within259

a program. It is a directed graph that models the260

control relationships between different parts of a261

program. Based on compiler principles, we slightly262

adjust the design of CFG to better capture the key263

information of the program. Nodes in CFG are264

operations in the source code, including standard265

operations, function calls and returns. Edges indi-266

cate the execution order of operations.267

Composed Syntax Graph. A composed syntax268

graph composes the data flow graph and the control269

flow graph with the read-write flow existing in the270

code blocks. An illustration of the extracted com-271

posed syntax graph is displayed in Figure 3. Dif-272

ferent edge types along with their concrete names 273

are given in colors. As for the node names, the 274

middle figure displays the concrete types of nodes 275

(operands) and the right figure displays the proper- 276

ties of nodes. 277

An illustration of the composed graphical view 278

is given in Figure 3. After obtaining the composed 279

syntax graphs for code blocks in the retrieval pool, 280

we use them to inform the general-purpose LLMs 281

to bridge the gap between NL and PLs, where both 282

the semantic level and the logic level information 283

are preserved. 284

3.3 Knowledge Querying 285

Given a target problem to be completed, we gen- 286

erate informative query of it and use it to retrieve 287

graphical knowledge from the constructed knowl- 288

edge base. The process can be formulated as: 289

q ←− QueryExtractor(p), (3) 290

i
Top-1←−−− Retriever(q,KB), (4) 291

where q denotes the query content, p denotes the 292

target problem, and i is the returned index of the 293

Top-1 relevant content stored in the constructed 294

knowledge base. 295

The main problems of the retrieval lie in: 1) how 296

to design the informative query content and 2) how 297

to align the different modalities. 298

3.3.1 Query Extractor 299

Since the styles of different code problems can di- 300

versify, the query content of the retrieval process 301

matters. We consider the following contents: 1) 302

Problem description, which describes the task to 303

be completed by the target function code. Poten- 304

tial ambiguity and style diversity may exist among 305

4

different problems set, which lead to a decrease in306

retrieval accuracy. 2) Function declaration, which307

gives the function name and the input variables.308

Before knowledge querying, we first extract the309

problem description of each task to reduce the am-310

biguity and then concatenate it with the function311

declaration to serve as the query content, where the312

functionality and input format of the expected code313

block are contained.314

3.3.2 Retriever315

The query of the retrieval includes problem de-316

scription Qp and function description Qc, while317

each content of the retrieval pool includes raw code318

block Vc and its graphical view Vg.319

To expressively represent the components, we320

use the encoder ϕ(·) of the pretrained NL2Code321

model to represent the problem description and322

code snippets. The retrieval function is:323

hV = ϕ(Vc∥Vg), (5)324

hQ = ϕ(Qp∥Qc), (6)325

Distance = 1− hQ · hV

∥hQ∥ · ∥hV∥
. (7)326

3.4 Graphical Knowledge Augmented327

Generation328

After we obtain the returned graphical view, we in-329

ject it to the foundation LLMs for graphical knowl-330

edge augmented generation. Since the graphical331

view is hard to understand, we propose 1) a meta-332

graph template to transform the graphical view into333

informative knowledge for tuning-free model and334

2) a soft prompting technique to tune the founda-335

tion models for their better understanding of the336

graphical views with the assistance of an expert337

GNN model.338

3.4.1 Hard Meta-Graph Prompt339

The original graphical view of a code block could340

contain hundreds of nodes and edges. A full de-341

scription of it could cost a overly long context,342

along with the understanding challenge posed by343

the long edge lists. Therefore, we propose to use344

a meta-graph template to abstract the information345

of the graphical view, which describes the number346

of different nodes, that of different edges, and the347

overall topology.348

The template for the meta-graph is displayed as349

below.350

Graph(
num_nodes={node_type : #nodes},
num_edges={(src_node_type, edge_type,
dst_node_type) : #edges},
metagraph=[(src_node_type, edge_type,
dst_node_type)]

Then we use the meta-graph template to trans- 351

form the retrieved graphical view into digestable 352

knowledge and insert it into the final prompt for 353

generation. As illustrated in Figure 4, the final 354

prompt consists of three components: the system 355

prompt illustrated in the blue part, the retrieved 356

knowledge and hints illustrated in the green part, 357

and the problem (including task description, func- 358

tion declaration, etc.) illustrated in the yellow part. 359

The three parts are concatenated to be fed into 360

LLMs for knowledge augmented generation.

Please continue to complete the [lang] function
according to the requirements and function
declarations. You are not allowed to modify the
given code and do the completion only.\n

The syntax graph of a similar code might be:\n
[composed syntax graph desciption]
You can refer to the above knowledge to do the
completion. \n

The problem:\n
[problem prompt]

System Prompt

Retr ieved Knowledge

Problem

Prompt for Knowledge Augmentated Generation

Figure 4: Illustration of the hard meta-graph prompt.

3613.4.2 Soft Prompting with the Expert 362

Directly hard prompt to the LLMs poses a chal- 363

lenge to the digesting capability of the backbone 364

LLMs, which could fail under the case where the 365

backbone LLMs cannot well understand the graph 366

components. 367

To compress the graphical knowledge into model 368

parameters and help the backbone LLMs to better 369

understand the programming language, we propose 370

a soft prompting technique. The overall procedure 371

can summarized into expert encoding of graphi- 372

cal views, finetuning with the expert signal, and 373

inference. 374

Expert Encoding of Graphical Views. We design 375

a graph neural network to preserve the semantic 376

and logical information of code blocks. The rep- 377

5

resentation of each node n
(0)
i and edge e

(0)
i are378

first initialized with vectors corresponding to the379

node text and edge text encoded by ϕ1. A message380

passing process is first conducted to fuse the se-381

mantic and structural information into each node382

representation.383

m
(l)
ij = W(l)(n

(l−1)
i ∥e(l−1)

ij), (8)384

Q
(l)
j =WQ

(l)n
(l−1)
j , (9)385

K
(l)
ij = WK

(l)m
(l)
ij , V

(l)
ij = WV

(l)m
(l)
ij , (10)386

a
(l)
ij = softmaxi∈N(j)(Q

(l)
j K

(l)
ij), (11)387

n
(l)
j =

∑
i∈N(j)

a
(l)
ij V

(l)
ij . (12)388

A global attention-based readout is then applied389

to obtain the graph representation:390

g =
∑
i

softmax(fgate(n
L
i))ffeat(n

L
i). (13)391

The expert encoding network is optimized via392

the contrastive learning based self-supervised train-393

ing, which includes the intra-modality contrastive394

learning and inter-modality contrastive learning.395

The intra-modality constrastive learning serves396

for preserving the modality information, while397

the inter-modality contrastive learning serves for398

modality alignment.399

• Alignment Contrastive Learning. There are400

two types of alignment to be ensured: 1) NL-401

Code (NC) alignment and 2) Code-Graph (CG)402

alignment. We define the positive pairs for NC403

alignment purpose as I+NC = {⟨hV
i ,h

Q
i ⟩|i ∈404

Dtrain} and define the negative pairs for NC align-405

ment purpose as I−NC = {⟨hV
i ,h

Q
j ⟩|i ̸= j, i ∈406

Dtrain, j ∈ Dtrain}.407

And we define the positive pairs for CG align-408

ment purpose as I+CG = {⟨ϕ1(ci), ϕ2(gi)⟩|i ∈409

Dtrain} and define the negative pairs for CG align-410

ment purpose as I−CG = {⟨ϕ1(ci), ϕ2(gj)⟩|i ̸=411

j, i ∈ Dtrain, j ∈ Dtrain}.412

• Structure Preserving Contrastive Learning.413

To preserve the structural information of the414

graphical views, we perform intra-modality con-415

trastive learning among the graphical views and416

their corrupted views. Concretely, we corrupt417

each of the graphical view gi with the edge418

dropping operation to obtain its corrupted view419

g′i. The positive pairs for structure-preserving420

purpose are then designed as I+preserve = 421

{⟨ϕ2(gi), ϕ2(g
′
i)⟩|i ∈ Dtrain}. The negative pairs 422

for structure preserving purpose are designed 423

as I−preserve = {⟨ϕ2(gi), ϕ2(g
′
j)⟩|i ̸= j, i ∈ 424

Dtrain, j ∈ Dtrain}. 425

Finetuning with the Expert Soft Signal. To help 426

the backbone LLMs to digest the graphical views, 427

we tune the LLMs with the expert soft signal using 428

supervised finetuning. The prompt for finetuning 429

consists of the system prompt, retrieved knowledge 430

where the expert encoded graphical view is con- 431

tained using a token embedding, and task prompt, 432

which is illustrated in Figure 5.

Soft Prompt for Knowledge Augmented Generation

System Prompt
Please use [lang] to write a correct solution to a program-
ming problem. You should give executable completed code
and nothing else.\n

Retrieved Knowledge
We also have the syntax graph embedding of a similar prob-
lem encoded in <GraphEmb> for you to refer to.\n

Problem
The problem:\n
[problem prompt]

Figure 5: Illustration of the soft prompting.

433Inference. After the finetuning stage, we used 434

the tuned models to generate codes using the soft 435

prompting template as illustrated in Figure 5. 436

4 Experiments 437

RQ1 Does the proposed CodeGRAG offer perfor- 438

mance gain against the base model? 439

RQ2 Does the proposed graph view abstract more 440

informative knowledge compared with the 441

raw code block? 442

RQ3 Can soft prompting enhance the capability of 443

the backbone LLMs? Does finetuning with 444

the soft prompting outperforms the simple 445

supervised finetuning? 446

RQ4 Does the proposed CodeGRAG model the 447

high-level thought-of-codes? Can Code- 448

GRAG offer cross-lingual augmentation? 449

RQ5 What is the impact of each of the components 450

of the graphical view? 451

RQ6 How is the compatibility of the graphical 452

view? 453

6

Table 1: Results of code generation on Humaneval-X. (Pass@1)
Model Size Model Retrieved Knowledge C++ Python

6B GPT-J N/A 7.54 11.10
6B CodeGen-Multi N/A 11.44 19.41

6.7B InCoder N/A 9.50 16.41
13B CodeGeeX N/A 17.06 22.89
16B CodeGen-Multi N/A 18.05 19.22
16B CodeGen-Mono N/A 19.51 29.28
15B StarCoder N/A 31.55 32.93
15B WizardCoder N/A 29.27 57.30
15B Pangu-Coder2 N/A 45.12 64.63

- GPT-3.5-Turbo N/A 57.93 71.95
- GPT-3.5-Turbo Code Block 60.37 72.56
- GPT-3.5-Turbo Meta-Graph 62.20 72.56
- GPT-3.5-Turbo (Multi-Lingual) Code-Block 62.20 70.12
- GPT-3.5-Turbo (Multi-Lingual) Meta-Graph 64.02 77.44

Table 2: Results of finetuning with soft prompting on CodeForce. (Pass@1)
Model Finetuning CodeForce

Gemma-7B
N/A 0.0128
SFT 0.0255

CodeGRAG (soft prompting) 0.0299

4.1 Setup454

In this paper, we evaluate CodeGRAG with the455

widely used HumanEval-X (Zheng et al., 2023)456

dataset, which is a multi-lingual code benchmark457

and CodeForce dataset in which we collect real-458

world programming problems from codeforces1459

website. For CodeForce adataset we include prob-460

lems categorized by different difficulty levels corre-461

sponding to the website and selecte 469 problems462

of difficulty level A for testing. We use greedy463

decoding strategy to do the generation. The evalua-464

tion metric is Pass@1.465

We evaluate the multi-lingual code generation466

abilities of 1) models with less than 10 billion pa-467

rameters: GPT-J (Radford et al., 2023), CodeGen-468

Multi (Nijkamp et al., 2022), InCoder(Fried et al.,469

2022) and Gemma(Mesnard et al., 2024); 2) mod-470

els with 10-20 billion parameters: CodeGeeX471

(Zheng et al., 2023), CodeGen-Multi (Nijkamp472

et al., 2022), CodeGen-Mono (Nijkamp et al.,473

2022), StarCoder (Li et al., 2023), WizardCoder474

(Luo et al., 2023), and Pangu-Coder2 (Shen et al.,475

2023); 3) close-sourced GPT-3.5 model.476

4.2 Main Results477

The main results are summarized in Table 1 and Ta-478

ble 2. From the results, we can draw the following479

conclusions:480

RQ1. The proposed CodeGRAG could offer per-481

1https://codeforces.com/

formance gain against the base model, which val- 482

idates the effectiveness of the proposed graphical 483

retrieval augmented generation for code generation 484

framework. 485

RQ2. The model informed by the meta-graph 486

(CodeGRAG) could beat model informed by the 487

raw code block. From the results, we can see that 488

the proposed graph view could summarize the use- 489

ful structural syntax information and filter out the 490

noises, which could offer more informative knowl- 491

edge hints than the raw code block. 492

RQ3. From Table 2, we can see that finetuning 493

with the expert soft prompting could offer more per- 494

formance gain than that brought by simple super- 495

vised finetuning. This validates the effectiveness 496

of the designed pretraining expert network and the 497

technique of finetuning with soft prompting. 498

4.3 Study on Cross-Lingual Modeling (RQ4) 499

To study the capability of graphical view modeling 500

cross-lingual thoughts of codes, we use the graph- 501

ical view of each source code block to serve as 502

a bridge for translation to another programming 503

language. The results are in Table 3. 504

From the results, we could see that the bridged 505

graphical view could offer augmentation for transla- 506

tion among different programming languages. This 507

validates that the proposed graphical view could ab- 508

stract the high-level and inherent information (e.g., 509

the control and data flow to solve a specific prob- 510

lem) of the code blocks, which are shared across 511

7

Table 3: Results of code translation on Humaneval-X.
Model Size Model Bridge Content Python to C++ C++ to Python

6.7B InCoder N/A 26.11 34.37
13B CodeGeeX N/A 26.54 27.18
16B CodeGen-Multi N/A 35.94 33.83
15B StarCoder N/A 0.61 26.22
15B WizardCoder N/A 50.00 67.07

- GPT-3.5-Turbo N/A 61.59 81.71
- GPT-3.5-Turbo Meta-Graph 62.80 82.32

Table 4: The impacts of the graph components.
Datasets Python C++

Edge Type Only 73.78 61.59
Edge Type + Node Name 75.00 59.76
Edge Type + Node Type 75.61 59.15
Edge Type + Topological 77.44 64.02

different programming languages regarding solving512

the same problem.513

4.4 Impacts of the Components of the514

Graphical View (RQ5)515

In this section, we adjust the inputs of the graphical516

components to the LLMs. Concretely, we study517

the information contained in node names, edge518

names, and the topological structure. The results519

are presented in Table 4.520

The edge type refers to the type of flows between521

operands (child, read, write, etc.), the node type522

refers to the type of operands (DeclStmt, temp,523

etc.), the node name refers to the name of the inter-524

mediate variables, and the topological information525

refers to the statistics of the concrete numbers of526

different types of edges. From the results, we can527

observe that 1) the edge features matter the most528

in constructing the structural view of code blocks529

for enhancement, 2) the type of nodes expresses530

the most in representing operands information, and531

3) the overall structure of the graphical view also532

gives additional information.533

4.5 Compatibility Discussion of the Graphical534

Views(RQ5)535

Despite the effectiveness of the proposed graphical536

views to represent the code blocks, the flexibility537

and convenience of applying the graphical views538

extraction process is important for wider applica-539

tion of the proposed method. In this section, we540

discuss the compatibility of CodeGRAG.541

First of all, the extraction process of all the graph-542

ical views are front-end. Therefore, this extraction543

process applies to a wide range of code, even error544

code. One could also use convenient tools to refor- 545

mulate the code and improve the pass rate of the 546

extraction process. 547

In addition, we give the ratio of generated results 548

that can pass the graphical views extraction process, 549

which is denoted by Extraction Rate. The Pass@1 550

and the Extraction Rate of the generated results 551

passing the graphical extraction process are given 552

in Table 5. 553

Table 5: The extraction rate of the generated results
passing the graphical extraction process.

Generated Codes Pass@1 Extraction Rate

(C++) Code-RAG 62.20 92.07
(C++) CodeGRAG 64.02 92.68

(Python) Code-RAG 71.95 91.46
(Python) CodeGRAG 77.44 96.95

From the results, we could see that the extraction 554

rates are high for codes to pass the graphical views 555

extraction process, even under the situation where 556

the Pass@1 ratios of the generated results are low. 557

This indicates that the application range of the pro- 558

posed method is wide. In addition, as the code 559

RAG also offers performance gains, one could use 560

multiple views as the retrieval knowledge. 561

5 Conclusion 562

Despite the expanding role of LLMs in code gen- 563

eration, there are inherent challenges pertaining 564

to their understanding of code syntax and their 565

multi-lingual code generation capabilities. This 566

paper introduces the Syntax Graph Retrieval Aug- 567

mented Code Generation (CodeGRAG) to enhance 568

LLMs for single round and cross-lingual code gen- 569

eration. CodeGRAG extracts and summarizes data 570

flow and control flow information from codes, ef- 571

fectively bridging the gap between programming 572

language and natural language. By integrating ex- 573

ternal structural knowledge, CodeGRAG enhances 574

LLMs’ comprehension of code syntax and empow- 575

ers them to generate complex and multi-lingual 576

code with improved accuracy and fluency. 577

8

Limitations578

In this paper, we propose a graphical retrieval aug-579

mented generation method that can offer enhanced580

code generation. Despite the efficiency and effec-581

tiveness, there are also limitations within this work.582

For example, dependency on the quality of the ex-583

ternal knowledge base could be a potential concern.584

The quality of the external knowledge base could585

be improved with regular expression extraction on586

the noisy texts and codes.587

References588

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama589
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,590
Diogo Almeida, Janko Altenschmidt, Sam Altman,591
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.592
arXiv preprint arXiv:2303.08774.593

Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D594
Ullman. 2006. Compilers: Principles techniques and595
tools. 2007. Google Scholar Google Scholar Digital596
Library Digital Library.597

Miltiadis Allamanis, Marc Brockschmidt, and Mah-598
moud Khademi. 2017. Learning to repre-599
sent programs with graphs. arXiv preprint600
arXiv:1711.00740.601

Frances E Allen. 1970. Control flow analysis. ACM602
Sigplan Notices, 5(7):1–19.603

Uri Alon, Meital Zilberstein, Omer Levy, and Eran604
Yahav. 2019. code2vec: Learning distributed rep-605
resentations of code. Proceedings of the ACM on606
Programming Languages, 3(POPL):1–29.607

Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten608
Hoefler. 2018. Neural code comprehension: A learn-609
able representation of code semantics. Advances in610
Neural Information Processing Systems, 31.611

Sid Black, Stella Biderman, Eric Hallahan, Quentin612
Anthony, Leo Gao, Laurence Golding, Horace He,613
Connor Leahy, Kyle McDonell, Jason Phang, et al.614
2022. Gpt-neox-20b: An open-source autoregressive615
language model. arXiv preprint arXiv:2204.06745.616

Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik617
Sen, and Satish Chandra. 2019. When deep learning618
met code search. In Proceedings of the 2019 27th619
ACM Joint Meeting on European Software Engineer-620
ing Conference and Symposium on the Foundations621
of Software Engineering, pages 964–974.622

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,623
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul624
Barham, Hyung Won Chung, Charles Sutton, Sebas-625
tian Gehrmann, et al. 2023. Palm: Scaling language626
modeling with pathways. Journal of Machine Learn-627
ing Research, 24(240):1–113.628

Matteo Ciniselli, Nathan Cooper, Luca Pascarella, 629
Denys Poshyvanyk, Massimiliano Di Penta, and 630
Gabriele Bavota. 2021. An empirical study on the 631
usage of bert models for code completion. In 2021 632
IEEE/ACM 18th International Conference on Mining 633
Software Repositories (MSR), pages 108–119. IEEE. 634

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi- 635
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, 636
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A 637
pre-trained model for programming and natural lan- 638
guages. arXiv preprint arXiv:2002.08155. 639

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, 640
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih, 641
Luke Zettlemoyer, and Mike Lewis. 2022. Incoder: 642
A generative model for code infilling and synthesis. 643
arXiv preprint arXiv:2204.05999. 644

Leo Gao, Stella Biderman, Sid Black, Laurence Gold- 645
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho- 646
race He, Anish Thite, Noa Nabeshima, et al. 2020. 647
The pile: An 800gb dataset of diverse text for lan- 648
guage modeling. arXiv preprint arXiv:2101.00027. 649

Jian Gu, Zimin Chen, and Martin Monperrus. 2021. 650
Multimodal representation for neural code search. In 651
2021 IEEE International Conference on Software 652
Maintenance and Evolution (ICSME), pages 483– 653
494. IEEE. 654

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming 655
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross- 656
modal pre-training for code representation. arXiv 657
preprint arXiv:2203.03850. 658

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu 659
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey 660
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode- 661
bert: Pre-training code representations with data flow. 662
arXiv preprint arXiv:2009.08366. 663

Jacob A Harer, Louis Y Kim, Rebecca L Russell, Onur 664
Ozdemir, Leonard R Kosta, Akshay Rangamani, 665
Lei H Hamilton, Gabriel I Centeno, Jonathan R Key, 666
Paul M Ellingwood, et al. 2018. Automated software 667
vulnerability detection with machine learning. arXiv 668
preprint arXiv:1803.04497. 669

Emily Hill, Lori Pollock, and K Vijay-Shanker. 2011. 670
Improving source code search with natural language 671
phrasal representations of method signatures. In 2011 672
26th IEEE/ACM International Conference on Auto- 673
mated Software Engineering (ASE 2011), pages 524– 674
527. IEEE. 675

Xue Jiang, Zhuoran Zheng, Chen Lyu, Liang Li, and 676
Lei Lyu. 2021. Treebert: A tree-based pre-trained 677
model for programming language. In Uncertainty in 678
Artificial Intelligence, pages 54–63. PMLR. 679

Hugo Laurençon, Lucile Saulnier, Thomas Wang, 680
Christopher Akiki, Albert Villanova del Moral, Teven 681
Le Scao, Leandro Von Werra, Chenghao Mou, Ed- 682
uardo González Ponferrada, Huu Nguyen, et al. 2022. 683

9

The bigscience roots corpus: A 1.6 tb composite mul-684
tilingual dataset. Advances in Neural Information685
Processing Systems, 35:31809–31826.686

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas687
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc688
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.689
2023. Starcoder: may the source be with you! arXiv690
preprint arXiv:2305.06161.691

Ting Long, Yutong Xie, Xianyu Chen, Weinan Zhang,692
Qinxiang Cao, and Yong Yu. 2022. Multi-view graph693
representation for programming language process-694
ing: An investigation into algorithm detection. In695
Proceedings of the AAAI Conference on Artificial696
Intelligence, volume 36, pages 5792–5799.697

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-698
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,699
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:700
Empowering code large language models with evol-701
instruct. arXiv preprint arXiv:2306.08568.702

Gemma Team Thomas Mesnard, Cassidy Hardin,703
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,704
L. Sifre, Morgane Riviere, Mihir Kale, J Christo-705
pher Love, Pouya Dehghani Tafti, L’eonard Hussenot,706
Aakanksha Chowdhery, Adam Roberts, Aditya707
Barua, Alex Botev, Alex Castro-Ros, Ambrose708
Slone, Am’elie H’eliou, Andrea Tacchetti, Anna Bu-709
lanova, Antonia Paterson, Beth Tsai, Bobak Shahri-710
ari, Charline Le Lan, Christopher A. Choquette-Choo,711
Cl’ement Crepy, Daniel Cer, Daphne Ippolito, David712
Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng713
Yan, George Tucker, George-Christian Muraru, Grig-714
ory Rozhdestvenskiy, Henryk Michalewski, Ian Ten-715
ney, Ivan Grishchenko, Jacob Austin, James Keel-716
ing, Jane Labanowski, Jean-Baptiste Lespiau, Jeff717
Stanway, Jenny Brennan, Jeremy Chen, Johan Fer-718
ret, Justin Chiu, Justin Mao-Jones, Katherine Lee,719
Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa720
Lee, Lucas Dixon, Machel Reid, Maciej Mikula,721
Mateo Wirth, Michael Sharman, Nikolai Chinaev,722
Nithum Thain, Olivier Bachem, Oscar Chang, Oscar723
Wahltinez, Paige Bailey, Paul Michel, Petko Yotov,724
Pier Giuseppe Sessa, Rahma Chaabouni, Ramona725
Comanescu, Reena Jana, Rohan Anil, Ross McIl-726
roy, Ruibo Liu, Ryan Mullins, Samuel L Smith, Se-727
bastian Borgeaud, Sertan Girgin, Sholto Douglas,728
Shree Pandya, Siamak Shakeri, Soham De, Ted Kli-729
menko, Tom Hennigan, Vladimir Feinberg, Woj-730
ciech Stokowiec, Yu hui Chen, Zafarali Ahmed,731
Zhitao Gong, Tris Brian Warkentin, Ludovic Peran,732
Minh Giang, Cl’ement Farabet, Oriol Vinyals, Jeffrey733
Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin734
Ghahramani, Douglas Eck, Joelle Barral, Fernando735
Pereira, Eli Collins, Armand Joulin, Noah Fiedel,736
Evan Senter, Alek Andreev, and Kathleen Kenealy.737
2024. Gemma: Open models based on gemini re-738
search and technology. ArXiv, abs/2403.08295.739

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016.740
Convolutional neural networks over tree structures741

for programming language processing. In Proceed- 742
ings of the AAAI conference on artificial intelligence, 743
volume 30. 744

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan 745
Wang, Yingbo Zhou, Silvio Savarese, and Caiming 746
Xiong. 2022. Codegen: An open large language 747
model for code with multi-turn program synthesis. 748
arXiv preprint arXiv:2203.13474. 749

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock- 750
man, Christine McLeavey, and Ilya Sutskever. 2023. 751
Robust speech recognition via large-scale weak su- 752
pervision. In International Conference on Machine 753
Learning, pages 28492–28518. PMLR. 754

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 755
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 756
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. 757
Code llama: Open foundation models for code. arXiv 758
preprint arXiv:2308.12950. 759

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan, 760
Bing Geng, An Fu, Muhan Zeng, Ailun Yu, Jichuan 761
Ji, Jingyang Zhao, et al. 2023. Pangu-coder2: Boost- 762
ing large language models for code with ranking feed- 763
back. arXiv preprint arXiv:2307.14936. 764

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 765
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 766
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 767
Azhar, et al. 2023a. Llama: Open and effi- 768
cient foundation language models. arXiv preprint 769
arXiv:2302.13971. 770

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 771
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 772
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 773
Bhosale, et al. 2023b. Llama 2: Open founda- 774
tion and fine-tuned chat models. arXiv preprint 775
arXiv:2307.09288. 776

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH 777
Hoi. 2021. Codet5: Identifier-aware unified 778
pre-trained encoder-decoder models for code un- 779
derstanding and generation. arXiv preprint 780
arXiv:2109.00859. 781

Yangrui Yang and Qing Huang. 2017. Iecs: Intent- 782
enforced code search via extended boolean model. 783
Journal of Intelligent & Fuzzy Systems, 33(4):2565– 784
2576. 785

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan 786
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang, 787
Yang Li, et al. 2023. Codegeex: A pre-trained model 788
for code generation with multilingual evaluations on 789
humaneval-x. arXiv preprint arXiv:2303.17568. 790

10

https://api.semanticscholar.org/CorpusID:268379206
https://api.semanticscholar.org/CorpusID:268379206
https://api.semanticscholar.org/CorpusID:268379206

A Example of the inserted graphical view791

An illustration of the inserted graphical view is792

given below.793

Graph(
num_nodes=’node’: 24,
num_edges=(’node’, ’-0’, ’node’): 1, (’node’,

’-1’, ’node’): 1, (’node’, ’ArraySubscriptEx-
predge0’, ’node’): 1, (’node’, ’ArraySubscrip-
tExpredge1’, ’node’): 1, (’node’, ’CXXOp-
eratorCallExpredge1’, ’node’): 1, (’node’,

’CXXOperatorCallExpredge2’, ’node’): 2,
(’node’, ’ImplicitCastExpredge0’, ’node’): 1,
(’node’, ’UserDefineFun’, ’node’): 1, (’node’,
’falseNext’, ’node’): 1, (’node’, ’next’, ’node’):
5, (’node’, ’read’, ’node’): 10, (’node’,
’trueNext’, ’node’): 1, (’node’, ’write’, ’node’):
9,
metagraph=[(’node’, ’node’, ’-0’), (’node’,

’node’, ’-1’), (’node’, ’node’, ’ArraySubscript-
Expredge0’), (’node’, ’node’, ’ArraySubscrip-
tExpredge1’), (’node’, ’node’, ’CXXOperator-
CallExpredge1’), (’node’, ’node’, ’CXXOper-
atorCallExpredge2’), (’node’, ’node’, ’Implic-
itCastExpredge0’), (’node’, ’node’, ’UserDe-
fineFun’), (’node’, ’node’, ’falseNext’),
(’node’, ’node’, ’next’), (’node’, ’node’,
’read’), (’node’, ’node’, ’trueNext’), (’node’,
’node’, ’write’)]
)

11

