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Abstract

We propose Consistency-guided Asynchronous Contrastive Tuning (CoACT), a novel method
for continuously tuning foundation models to learn new classes in few-shot settings. CoACT
consists of three key components:(¢) asynchronous contrastive tuning, which learns new
classes by including LoRA modules in the pre-trained encoder while enforcing consistency
between two asynchronous encoders; (i) controlled fine-tuning, which facilitates effective
tuning of a subset of the foundation model; and (74) consistency-guided incremental tuning,
which enforces additional regularization during later sessions to reduce forgetting of the
learned classes. We evaluate our proposed solution on Few-Shot Class-Incremental Learning
(FSCIL) as well as a new and more challenging setup called Few-Shot Class-Incremental
Tuning (FSCIT), which facilitates the continual tuning of vision foundation models to learn
new classes with only a few samples per class. Unlike traditional FSCIL, FSCIT does not
require a large in-distribution base session for initial fully supervised training prior to the
incremental few-shot sessions. We conduct extensive evaluations across 16 diverse datasets,
demonstrating the effectiveness of CoACT in both FSCIL and FSCIT setups. CoACT
outperforms existing methods by up to 5.02% in FSCIL and up to 12.51% in FSCIT for
individual datasets, with an average improvement of 2.47%. Furthermore, CoACT exhibits
reduced forgetting and enhanced robustness in low-shot experiments. Detailed ablation and
sensitivity studies highlight the contribution of each component of CoACT. We make our
code publicly available at |https://github.com/ShuvenduRoy/CoACT-FSCILL

1 Introduction

Large foundation models pre-trained on web-scale unlabeled data exhibit strong generalization capabilities
on downstream tasks when fine-tuned with relatively small amounts of labelled data (Radford et al., [2021}
Zhou et al.| [2022c). However, the immense size of these pre-trained models introduces significant challenges
for fine-tuning, especially when working with limited labelled data (Khattak et al.l 2023} [Yao et al., [2023).
Despite recent advancements such as parameter-efficient tuning (Khattak et al., 2023; |Gao et al., [2023), it has
been observed that fine-tuning the model in a few-shot setting often leads to a decline in the out-of-the-box
generalization capability of the foundation model (Roy & Etemad, [2024). Yet, real-world applications not
only necessitate learning from a few samples but also demand continual learning of new tasks. Few-shot
class-incremental learning (FSCIL) (Masana et al., 2022) is a continual learning setup that extends the
scope of few-shot learning by enabling models to adapt incrementally to new tasks while preserving existing
knowledge. While few prior works (D’Alessandro et al., 2023; [Park et al., 2024) have explored tuning a
foundation model in FSCIL setups, existing approaches often struggle with the forgetting of leaned classes
and a loss of the foundation model’s generalization capabilities.

In this work, we propose Consistency-guided Asynchronous Contrastive Tuning (CoACT), a novel framework
for class-incremental tuning of vision foundation models in few-shot settings. CoACT introduces three novel
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Figure 1: Performance comparison on FSCIT with a Table 1: Performance comparison to existing meth-
foundation model. ods on tradition FSCIL.

components: (i) asynchronous contrastive tuning, (ii) controlled fine-tuning, and (iii) consistency-guided
incremental tuning. To strike a balance between adaptability to learn new classes and retaining generalizable
knowledge of the pre-trained foundation model asynchronous contrastive tuning learns from the first
incremental session using a novel asynchronous contrastive loss. Specifically, to provide adaptability to learn
new classes, we integrate learnable LoRA modules into the pre-trained encoder and ensure generalization by
enforcing consistency between two asynchronous encoders: a student encoder containing the learnable modules
and a teacher encoder identical to the pre-trained encoder, updated as the Exponential Moving Average
(EMA) of the student. This prevents rapid change in the output distribution of the teacher, which in turn
helps reduce overfitting in the student encoder while learning new classes. To further enhance adaptability,
we introduce controlled fine-tuning, which is a two-step training protocol for training the first incremental
session. First, we train the newly added LoRA modules with a high Learning Rate (LR) for a certain number
of epochs and then fine-tune the last few layers of the pre-trained parameters with a relatively lower LR.
This also helps balance adaptability with generalizability. Finally, to ensure effective learning of classes in the
following incremental sessions while preventing forgetting of previously learned classes and preserving the
generalization capabilities of the foundation model at the same time, we introduce a novel regularization
technique, consistency-guided incremental tuning. We achieve this by enforcing consistency between
the predictions of the learnable encoder in the incremental sessions and the frozen encoder from the first
incremental session.

We conduct a comprehensive study on 16 diverse image recognition datasets to investigate the effectiveness
of our method in FSCIL. Additionally, we introduce a novel and more challenging setup called few-shot
class-incremental tuning (FSCIT), where, unlike FSCIL, we do not assume the availability of a fully-supervised
base session. Specifically, in FSCIT, a foundation model is fine-tuned over incremental sessions with a few
samples per class for all sessions, including the first session. The datasets include generic objects, fine-grained
objects, scenes, satellite images, and texture recognition. Our comprehensive experiments demonstrate that
on the FSCIL setup, CoACT outperforms prior methods by up to 5.02%. On our proposed FSCIT setup,
CoACT outperforms existing methods by 2.47% on average across 16 datasets, with up to 12.79% performance
gain on individual datasets. More importantly, COACT exhibits reduced forgetting of already learned classes
as the number of classes increases. CoACT also exhibit generalization with different sizes of pre-trained
encoders and different numbers of shots. We provide detailed ablation studies showing the effectiveness of
each component of our method. Overall, our contributions are:
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e We propose CoACT, which consists of three novel components to tune a vision foundation model
in a few-shot continual learning setup without losing its generalization capability or forgetting the
already learned classes.

o We introduce a new paradigm of continual learning called Few-shot Class-Incremental Tuning (FSCIT),
which aims to tune a foundation model to continuously learn new classes with few samples per class.
We also establish several baselines for this new paradigm.

o Comprehensive experiments show the effectiveness of our method, achieving state-of-the-art (SOTA)
on both FSCIT and FSCIL setup. We also show reduced forgetting and effectiveness in very-low-shot
settings. Extensive ablation and sensitivity studies show the effectiveness of each of our proposed
components.

2 Related works

2.1 Fine-tuning foundation models.

A number of techniques have recently been proposed to tune foundation models without the need to re-train
them from scratch, addressing the growing demand for computationally efficient and parameter-efficient
fine-tuning methods. These approaches leverage the pre-trained capabilities of large models, adapting them to
downstream tasks without modifying the core pre-trained parameters extensively. Adapter tuning (Houlsby
et al} 2019) fine-tunes large pre-trained models to downstream tasks by inserting new learnable layers inside
the pre-trained model. On the other hand, prompt-tuning (Lester et al., |2021)) and prefix-tuning (Li &
Liang] 2021)) add learnable prompts with the input embedding for learning the new task without tuning
the pre-trained parameters of the model. Low-rank adapters (Hu et al., [2021; |[Karimi Mahabadi et al.
2021) have been introduced to reduce the computation cost of additional parameters. VPT (Jia et al., |2022)
and AdapterFormer (Chen et all 2022)) explored parameter-efficient fine-tuning in the context of vision
transformers. A well-known issue of training a foundation model with few labelled samples per class is
the overfitting and the loss of the generalization of the foundation model. More recent, CoPrompt [Roy &
Etemad| (2024) proposed a novel regularization technique by enforcing consistency between the pre-trained
and learnable encoders to reduce overfitting and improve generalization. Nonetheless, existing methods for
tuning foundation models are not designed for continuous tuning of the model since there are no inherent
mechanisms to prevent loss of generalization and catastrophic forgetting.

2.2 Few-shot class-incremental learning.

Class-incremental learning is a continual learning process that focuses on continuous learning of new classes
while retaining the knowledge of already learned ones (Wang et al., 2023; |Smith et al., 2023; Wang et al., [2024;
2022)). In practice, machine learning models often need to learn new classes from a few labelled samples per
class (Zhou et al., |2022b)), while having no access to samples from already learned classes. This scenario has
given rise to a new learning task called few-shot class-incremental learning or FSCIL (Tian et al 2023; Tao
et al. 2020). The existing literature on FSCIL can be broadly categorized into two main groups: methods
that continuously train both the encoder and classifier over each incremental session (Cheraghian et al.,
2021; Dong et al., [2021}; |Zhao et al.,|2021)), and methods that keep the encoder frozen during the incremental
learning sessions (Zhu et al.} 2021} [Shi et al., 2021; [Zhang et al., [2021)).

As an example of the first group of methods, MgSvF (Zhao et al., |2021]) employed a component-wise update
strategy to ensure adapting to new classes while preserving knowledge of existing ones. The exemplar
relation distillation framework (Dong et al. |2021)) constructed and updated a graph of exemplar relationships
to facilitate the integration of new classes. SoftNet (Kang et al., [2023) introduced a novel approach for
identifying and freezing a sub-network of crucial parameters from the previous session and training the
remaining parameters during incremental sessions. While such methods in the first group generally offer
greater adaptability, the methods in the second group focus on ensuring stability by maintaining separability in
the base classes in the learned embedding space. For example, FACT (Zhou et al.| |2022a)) introduced virtual
prototypes to maximize class embedding separation while preserving their relative positions. SAVC (Song
et al 12023)) generated virtual classes during the base session training to maximize separability. Similarly,
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Figure 2: Illustration of CoACT. (Left) Training on the first incremental session with asynchronous contrastive
tuning and controlled fine-tuning. The student encoder contains learnable LoRA modules, while the teacher is
identical to the foundation model but updated as the EMA of the student. Controlled fine-tuning enables the
tuning of a subset of the foundation model with reduced LR after certain epochs. (Right) Consistency-guided
incremental tuning enforces consistency between the learnable student and the frozen encoder from the first
session, providing additional regularization that prevents overfitting and forgetting.

NC-FSCIL (Yang et all, [2022)) pre-assigned optimally spaced prototypes to each base class, promoting diverse
and distinct class representations.

Some of the more recent works have explored tuning a foundation in the FSCIL setup. For instance, CPE-CLIP
(D’Alessandro et al., 2023) utilized the strong generalization capability of a pre-trained vision-language model
to learn new classes with parameter-efficient fine-tuning. SV-T used a semantic-visual
guided Transformer to enable few-shot class-incremental learning while reducing overfitting by combining
text-based semantic labels with visual labels to improve generalization to new classes. PriViLege (Park et al.
showed that with prompt tuning and knowledge distillation, pre-trained vision language shows strong
performances in FSCIL. Nonetheless, these methods operate on the FSCIL setting and still show forgetting
issues as they learn new classes.

3 Method

3.1 Problem formulation

In FSCIT, a model ¢(z) is continuously trained over T' consecutive sessions of new classes. Each session
follows an n-way, k-shot setup, where n represents the number of classes in each session, and k is the
number of samples per class. Consequently, the training data for each session ¢ € T' can be represented as
Dt in = {(z, yi)}f\i‘l, where 2; and 7; denote the i*" sample and its corresponding label, and N, represents
the number of samples in session t. We can express ¢(x) = W7 fy(x), where fp is an encoder and W is a
linear classifier. In the conventional setup of FSCIL, fy is trained on a large labelled in-distribution base
session (DY, ;) in a fully-supervised manner. In FSCIT, we do not assume the availability of such a base
session, rendering standard FSCIL techniques incompatible. In this work, we aim to design a method for

tuning off-the-shelf vision foundation models to continuously learn new classes in few-shot settings.
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3.2 Consistency-guided Asynchronous Contrastive Tuning (CoACT)

In this section, we discuss the details of the three components of our proposed method: asynchronous
contrastive tuning, controlled fine-tuning, and consistency-guided incremental tuning. Here, asynchronous
contrastive tuning and controlled fine-tuning facilitate learning the first session (see Figure [2| (left)), while
consistency-guided incremental tuning learns the remaining incremental sessions without forgetting the
learned classes (see Figure [2| (right)).

3.2.1 Asynchronous contrastive tuning.

To strike a balance between adaptability to learn new classes and retaining generalizable knowledge of the
foundation model, we introduce asynchronous contrastive tuning as the first component in our framework.
This involves fine-tuning the pre-trained model using our novel Asynchronous Contrastive Learning (ACL)
approach while incorporating LoRA modules into the model. Let h; = fél) (hi_1) be the output of i*" layer of
the pre-trained encoder, h; 1 be the output of the (i — 1)*® hidden layer of the encoder, and fél) be the 3th
layer of the encoder. Wlth the new learnable LoRA layers the output of the i*" layer of the network can be
represented as h; = fe (hi—1) + fLOR A(hi—1), where, fLOR A is the i*" LoRA layer added to the pre-trained
encoder. For brev1ty, we denote the encoder with learnable LoRA layers as f, . We can train f, on D}
to learn the first session:

train

Lup = ﬁce(WTfe’ (), ). (1)

However, it has been shown in prior work that cross-entropy alone does not learn a well-separable embedding
space (Song et al., [2023]) and has a higher over-fitting tendency, especially in a few-shot setting (Roy & Etemad,
2024). To reduce the possibility of overfitting and retain the generalization in the learnable encoder fy, we
regularize its output distribution with an asynchronous teacher encoder by maximizing their agreement
in the embedding space. Our novelty lies in the asynchronous design of the encoders, where the student
encoder contains the learnable LoRA modules, but the teacher encoder is identical to the pre-trained model
(without LoRA modules) and learned through the Exponential Moving Average (EMA) of the student f, as
0" =m-0" 4 (1—m)-0, where 6 and @ are the parameters of the student (excluding LoRA) and teacher
encoders, and m is the momentum parameter. Since the teacher lacks LoRA modules, the EMA update
applies only to the student’s base parameters, affecting the teacher layers corresponding to those fine-tuned
in the student (Section . Given that the teacher and student encoders differ in their architecture due
to the addition of LoRA to the student, learning occurs asynchronously. This asynchronous encoder design
and slow-moving update of the teacher through EMA ensures that the predictions from the teacher do not
fluctuate. Since the teacher encoder is also initialized from the foundation model, consistency with the teacher
effectively regularizes the student from overfitting.

In practice, we maximize the agreement between the embeddings of the student and teacher encoders on all
the samples from each class as:

exp((gi, k;)/7)
Lacr = Z P & S exp((ai ki) /1) )

JjeC;

where C; dof {j 1 y; = v}, (-,-) denotes inner product, ¢; = fy (Ai(x;)) and k; = fy (A2(x;)) are online
embeddings and momentum embeddings of augmentations of z; and x; from the student and the teacher
encoder respectively, and 4; and A, are random augmentations. Finally, we train the model with the £ 401
and Lgp as: Lacr + A - Lgyp, where A controls the impact of Lgy,;.

The exclusion of LoRA adapters from the EMA updates prevents rapid fluctuations in the teacher encoder,
ensuring it serves as a slow-moving reference that mitigates overfitting and retains the generalization
capabilities of the pre-trained foundation model. If LoRA adapters were included, the teacher would change
more dynamically, reducing its ability to regularize the student effectively and undermining the balance
between adaptability and generalization retention. Maintaining the teacher closer to the pre-trained model
prevents the student from drifting too far and acts as a form of regularization that constrains learned
representations while preserving prior knowledge.
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3.2.2 Controlled fine-tuning.

Controlled fine-tuning is a two-step training protocol to enhance the adaptability of the model by selectively
fine-tuning a few layers of the pre-trained encoder. Since the newly added LoRA modules are randomly
initialized, we begin by training only the LoRA modules of the student encoder with a higher learning rate
for the initial E. epochs of training to prevent the propagation of randomness to the well-trained pre-trained
encoder, which could otherwise lead to forgetting of its generalizable knowledge. This is followed by a
fine-tuning stage where the last C; layers of the pre-trained encoder are fine-tuned with a reduced LR (scaled
by a factor of Cy). We focus on fine-tuning only the last C; layers, as the later layers of a pre-trained
model are responsible for learning domain-specific fine-grained features, whereas the earlier layers are more
general and transferable to a wide range of tasks (Neyshabur et al.l |2020)). Importantly, this fine-tuning is
performed under the consistency constraint of asynchronous contrastive learning, ensuring the model learns
target-domain features effectively without overfitting or forgetting pre-trained knowledge. This balance
between adaptability and generalization enables effective adaptation to new classes while preserving the
pre-trained encoder’s foundational capabilities. The two-setup controlled fine-tuning strategy is applied
during the first session, while in later sessions, fine-tuning continues with LoRA across all layers, along with
fine-tuning the last C; layers.

3.2.3 Consistency-guided incremental tuning.

While the first two modules facilitate tuning the foundation model (f, ) during the first session, later sessions
also require the retention of previously learned classes. To facilitate this, we propose consistency-guided
incremental tuning, which prevents forgetting by regularizing the output distribution of the student f,» when
training on the incremental sessions. More specifically, we enforce consistency between the predictions of the
student encoder and the frozen student encoder after the first session, effectively discouraging substantial
changes in the learned representations of the student. We do not enforce consistency with the frozen encoder
from the most recent session (e.g., using the frozen encoder from session ¢ — 1 for session t), since the model
may gradually drift away from the pre-trained encoder’s knowledge with cumulative overfitting over the
sessions, which can lead to increased forgetting of the foundational generalization capabilities of the model.
By anchoring the consistency to the first session’s encoder, CoACT effectively balances the learning of
new classes with the retention of pre-trained knowledge, mitigating catastrophic forgetting. In a standard
class-incremental learning setup, the encoder updates across multiple sessions as fy, = fge—1 + Ap, where Ay,
represents the parameter updates due to learning new classes at session t. If is consistency enforced with the
encoder from the previous session, ¢t — 1. As a result, the model incrementally adapts but can also gradually
drift away from its initial state, leading to fo,. = fgo + 23:1 Ayp,. This, in turn, can result in a gradual loss
of generalization, where the model drifts away from the foundational encoder. Instead, enforcing consistency
with the frozen encoder from the first session fgo prevents progressive divergence. This ensures that at each
session, fg, = fgo + Ap,, where [|Ap,

t
i=1
Let fg, be the frozen encoder after the first session, and the frozen embedding of this encoder be p; =
fo,(A(x;)). We define our consistency regularizer as:

exp({(qi,pj)/T)
Z PR Sy 3)

]EC

Finally, we train the model after the first session with: Lcor + vLacr + ALsup, Where v and A controls the
relative importance of the loss functions. We tune the LoRA modules and the classifier during incremental
training while keeping the encoder frozen.

4 Experiments

4.1 Datasets and implementation details.

Following existing literature on FSCIL, we evaluate CoACT on CIFAR-100 (Krizhevsky et al.l 2009), CUB-200
(Wah et al.|[2011)), and minilmageNet (Russakovsky et al.,|2015) datasets. We evaluate our new benchmark,
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Table 2: Comparison to prior works across the base and incremental sessions on CUB-200 with 100 base

classes and 10-way 5-shot evaluation setup.

Acc. in each session (%) T
Method PT. Backbone 1 3 3 1 3 6 7 3 9 10
iCaRL (Rebuffi et al.||2017) X 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16
EEIL (Castro et al.[ [2018) X 68.68 53.63 47.91 44.20 36.30 27.46 25.93 24.70 23.95 24.13 22.11
TOPIC (Tao et al.| 2020 X 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28
Rebalancing (Hou et al.[|2019) X 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87
SPPR (Zhu et al.||2021) X 68.68 61.85 57.43 52.68 50.19 46.88 44.65 43.07 40.17 39.63 37.33
MetaFSCIL(Chi et al.|[2022) X 75.90 72.41 68.78 64.78 62.96 59.99 58.30 56.85 54.78 53.82 52.64
F2M (Shi et al.|[[2021) X 81.07 78.16 75.57 72.89 70.86 68.17 67.01 65.26 63.36 61.76 60.26
CEC (Zhang et al.| 2021 X 75.85 71.94 68.50 63.50 62.43 58.27 57.73 55.81 54.83 53.52 52.28
FACT (Zhou et al.\'zomab X 75.90 73.23 70.84 66.13 65.56 62.15 61.74 59.83 58.41 57.89 56.94
LIMIT (Zhou et al.|[2022b) X 75.89 73.55 71.99 68.14 67.42 63.61 62.40 61.35 59.91 58.66 57.41
SoftNet (Kang et al.|[2023] X 78.07 74.58 71.37 67.54 65.37 62.60 61.07 59.37 57.53 57.21 56.75
SAVC (Song et al.|[2023] X 81.85 77.92 74.95 70.21 69.96 67.02 66.16 65.30 63.84 63.15 62.50
BOT (Roy et al.|[2024]) X 82.31 78.03 75.45 70.99 71.06 67.85 67.44 66.05 64.95 64.31 63.75
SV-T (Qiu et al.| [2023) SwinT 84.19 82.63 81.21 78.97 79.38 77.64 77.55 75.71 75.91 75.77 76.17
CPE-CLIP (D’Alessandro et al.||2023) ~ CLIP-B/16  81.58 78.52 76.68 71.86 71.52 70.23 67.66 66.52 65.09 64.47 64.60
PriViLege (Park et al.|[2024) CLIP-B/16  82.21 81.25 80.45 77.76 77.78 75.95 75.69 76.00 75.19 75.19 75.08
Ours ViT-B/16 ~ 88.68 86.26 85.83 83.38 83.52 81.71 81.77 81.77 81.02 80.76 81.19

Table 3: Comparison to prior works across the base and incremental sessions on minilmageNet with 60 base

classes and 5-way 5-shot incremental setting.

Acc. in each session (%) T

Method PT. Backbone 1 3 3 1 5 6 7 3

iCaRL (Rebuffi et al.|[2017) X 71.77 61.85 58.12 54.60 51.49 48.47 45.90 44.19 42.71
Rebalancing (Hou et al.|[2019) X 72.30 66.37 61.00 56.93 53.31 49.93 46.47 44.13 42.19
TOPIC (Tao et al.|[2020 X 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42
EEIL (Castro et al.| 2018 X 61.31 46.58 44.00 37.29 33.14 27.12 24.10 21.57 19.58
FSLL (Mazumder et al.|[2021) X 66.48 61.75 58.16 54.16 51.10 48.53 46.54 44.20 42.28
FSLL+SS (Mazumder et al.| [2021) X 68.85 63.14 59.24 55.23 52.24 49.65 47.74 45.23 43.92
F2M (Shi et al.[[2021) X 72.05 67.47 63.16 59.70 56.71 53.77 51.11 49.21 47.84
CEC (Zhang et al.[[2021) X 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63
MetaFSCIL (Chi et al.|[2022) X 72.04 67.94 63.77 60.29 57.58 55.16 52.90 50.79 49.19
C-FSCIL (Hersche et al.|[2022) X 76.40 T1.14 66.46 63.29 60.42 57.46 54.78 53.11 51.41
FACT (]_Zhou et al.|[2022a X 72.56 69.63 66.38 62.77 60.60 57.33 54.34 52.16 50.49
CLOM (Zou et al.|[2022) X 73.08 68.09 64.16 60.41 57.41 54.29 51.54 49.37 48.00
LIMIT (Zhou et al.|[2022b) X 72.32 68.47 64.30 60.78 57.95 55.07 52.70 50.72 49.19
SoftNet (Kang et al.|[2023) X 79.77 75.08 70.59 66.93 64.00 61.00 57.81 55.81 54.68
SAVC (Song et al.| [2023 X 81.12 76.14 72.43 68.92 66.48 62.95 59.92 58.39 57.11
BOT (Roy et al.| [2024) X 84.30 79.59 7549 T71.4 68.45 65.12 62.20 60.52 59.57
SV-T (Qiu et al.|[2023) SwinT 88.75 87.92 86.07 84.84 84.30 83.24 82.22 82.28 82.38
CPE-CLIP (D’Alessandro et al.| 2023) ~ CLIP-B/16  90.23 89.56 87.42 86.80 86.51 85.08 83.43 83.38 82.77
PriViLege (Park et al.|[2024) CLIP-B/16  96.68 96.49 95.65 95.54 95.54 94.91 94.33 94.19 94.10
Ours ViT-B/16  97.63 97.55 97.09 97.02 97.0 96.58 96.3 96.29 96.24
FSCIT on a diverse set of 16 datasets, including generic object detection (Caltech101 (Fei-Fei et al., 2004
CIFAR-100 (Krizhevsky et al.l |2009), CUB-200 (Wah et al.| 2011, minilmageNet (Russakovsky et al., 2015),

VOC 2007 (Everingham, 2008
Krause et al., |2013
Maji et al.

)

), ﬁne grained recognition (OxfordPets (Parkhi et al., 2012, StanfordCars
, Flower102 (Nilsback & Zisserman) 2008), Food101 (Bossard et al.l [2014), FGVCAircraft
2013)), scene recognition (SUN397 (Xiao et al., 2010), Country211 (]Radford et al.| 2021))),

satellite-image (EuroSAT (Helber et all [2019), Resisc-45 (Cheng et al. [2017)), texture recognition (DTD
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Table 4: Comparison to prior works across the base and incremental sessions on CIFAR-100 with 60 base
classes and 5-way 5-shot incremental setting.

Acc. in each session (%) 7

Method PT. Backbone 1 > 3 1 5 5 7 3

Rebalancing (Hou et al.i2019:) X 61.31 47.80 39.31 31.91 25.68 21.35 18.67 17.24 14.17
iCaRL (Rebufhi et al.||2017) X 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21
TOPIC (Tao et al.|[2020) X 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42
IDLVQ-C (Chen & Lee|[2020) X 64.77 59.87 55.93 52.62 49.88 47.55 44.83 43.14 41.84
FSLL (Mazumder et al.|2021) X 66.48 61.75 58.16 54.16 51.10 48.53 46.54 44.20 42.28
FSLL+SS (Mazumder et al.|[2021) X 68.85 63.14 59.24 55.23 52.24 49.65 47.74 45.23 43.92
F2M (Shi et al.|[2021) X 67.28 63.80 60.38 57.06 54.08 51.39 48.82 46.58 44.65
CEC (Zhang et al.|[2021) X 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14
MetaFSCIL (Chi et al.||2022) X 74.50 70.10 66.84 62.77 59.48 56.52 54.36 52.56 49.97
CLOM (Zou et al.||2022) X 74.2 69.83 66.17 62.39 59.26 56.48 54.36 52.16 50.25
C-FSCIL (Hersche et al.|[2022) X 7747 7240 67.47 63.25 59.84 56.95 54.42 52.47 50.47
LIMIT (Zhou et al.|[2022b) X 73.81 72.09 67.87 63.89 60.70 57.77 55.67 53.52 51.23
FACT (Zhou et al.|[2022a) X 74.60 72.09 67.56 63.52 61.38 58.36 56.28 54.24 52.10
SAVC (Song et al.| 2023) X 79.85 73.70 69.37 65.28 61.91 59.27 57.24 54.97 53.12
SoftNet (Kang et al.||2023) X 79.88 75.54 T71.64 67.47 64.45 61.09 59.07 57.29 55.33
BOT (Roy et al.|[2024) X 80.25 77.20 75.09 70.82 67.83 64.86 62.73 60.52 58.75
SV-T (Qiu et al.||2023) SwinT 86.77 82.82 80.36 77.20 76.06 74.00 72.92 71.68 69.75
CPE-CLIP (D’Alessandro et al.| 2023) CLIP-B/16 87.83 85.86 84.93 82.85 82.64 82.42 82.27 81.44 80.52
PriViLege (Park et al.|[2024) CLIP-B/16 90.88 89.39 88.97 87.55 87.83 87.35 87.53 87.15 86.06
Ours ViT-B/16 90.46 88.46 88.11 86.94 86.98 86.52 86.39 86.0 84.63

(Cimpoi et all |[2014)), and traffic sign recognition (GTSRB (Houben et al., [2013)). By default, we divide the
classes into 10 (or 9) sessions with an equal number of classes and perform 10-shot continual learning.

The performance after each session is calculated as the average accuracy of all classes seen so far. Unless
specified otherwise, accuracy refers to the accuracy after the last session, which is the average accuracy over all
classes on the test set. We also evaluate CoACT on the traditional FSCIL setup, where the initial training is
performed with a large in-distribution base session, followed by few-shot tuning over the incremental sessions.
We use ViT-B/16 as the backbone for most of the experiments, while we present the detailed per-dataset
results with ViT-B/32 and ViT-L/16 as well. The encoders are pre-trained on ImgeNet-21K (Russakovsky
et al., [2015). We implement our framework in PyTorch and train the model using an SGD optimizer with
a momentum of 0.9. The base learning rate is set to 0.1, with a batch size of 64, and the model is trained
for 50 epochs for the first session and 5 epochs for the remaining sessions. A cosine LR decay scheduler is
used to reduce the learning rate over the training epochs. The teacher encoder is updated with a momentum
value of 0.999. For experiments with the FSCIL setup, we train the model for 25 epochs with a learning rate
of 0.001. We train the model with input resolution of 224 x 224. All other implementation details are the
same as described above. All experiments are conducted with 3 random seeds, and the reported results are
averaged over the three runs. All experiments are conducted on an Nvidia V100 GPU, where the training
takes about 6 hours.

4.2 FSCIL results

In this section, we discuss the results of CoACT in the FSCIL setup. Following the existing literature, we
present these results on the CIFAR-100, CUB-200, and minilmageNet datasets. In Table 2] we compare the
performance of CoACT with prior works on the CUB-200 dataset, where we divide the existing methods
into two groups: the first group, which trains randomly initialized models and the second group which use a
pre-trained encoder. The results are reported for 100 base classes and a 10-way, 5-shot incremental learning
setup. As we observe, CoACT outperforms the previous SOTA (SV-T) by 5.02%.
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Table 5: Details on class splits over the continual sessions for different datasets.

Classes Sessions First Ses. class Cls/session

Dataset
Caltech101 102 10 12 10
CIFAR-100 100 10 10 10
Country211 211 10 22 21
CUB-200 200 10 20 20
DTD 47 9 5 5
EuroSAT 10 10 1 1
FGVCAircraft 100 10 10 10
Food101 101 10 11 10
GTSRB 43 10 7 4
MinilmageNet 100 10 10 10
Flower102 102 10 12 10
OxfordPets 37 9 5 4
Resisc-45 45 9 5 5
StanfordCars 196 9 28 21
SUN397 397 10 45 44
VOC 2007 20 10 2 2

Table 6: Performance of CoACT on FSCIT across 16 datasets and its comparison to existing FSCIL methods
and our baseline methods. Pro. lear. and Lin. tun. respectively refer to prototype learning and linear tuning.
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7.03 73.47 53.92 61.77 14.79 69.71 14.64 94.57 97.02 87.05 48.43
54.44 62.57 15.23 70.67 15.87 95.04 97.46 87.34 49.17

54.72 62.20 15.51 71.09 15.53 95.31 98.09 88.10 49.83
54.72 62.20 15.32 71.18 16.92 95.32 98.09 88.10 49.83
54.70 62.20 15.32 71.24 17.23 95.32 98.09 88.10 49.82

55.11 62.25 18.98 71.59 26.05 95.34 98.18 87.79 62.62

CPE-CLIP 82.79 74.11
PriViLege 83.49 75.06 7.28 74.45

Pro. lear. 83.47 75.58 7.42 74.10
Lin. tun. 83.60 75.58 7.45 74.41
LoRA 83.87 75.81 7.45 74.65

CoACT 86.86 78.31 7.42 77.38

18.67 65.09 64.11 58.49

18.90 65.68 64.72 58.77
18.96 65.87 64.72 58.89
18.94 65.90 64.72 58.96

24.40 66.11 64.45 61.43

Results on minilmageNet are reported in Table [3] with 60 base classes and a 5-way, 5-shot incremental
learning setup. As we find from this table, COACT outperforms the prior SOTA (PriViLege) by 2.14%. Also,
the performance difference increases (over the sessions) as we learn new classes, indicating that CoACT shows
less forgetting than PriViLege. Finally, the results for CIFAR-100 are presented in Table [4] where PriViLege
(Park et al., 2024) holds the highest result. With significantly fewer parameters (86M in ViT-B/16 compared
to 149M in CLIP-B/16), our proposed CoACT achieves competitive results, performing only 1.43% below

PriViLege.

4.3 FSCIT results

As the first work on FSCIT, we first establish a few baselines to better evaluate our proposed framework. To
this end, we explore two of the existing SOTA from the FSCIL literature PriViLege and CPE-CLIP and also
explore 3 well-known approaches from the few-shot tuning literature. First, we adopt prototype learning,
which has been shown to perform well for learning incremental classes in traditional FSCIL (Song et al.|
2023)). To apply this approach to FSCIT, we keep the pre-trained encoder frozen during the incremental
learning sessions, while the classifier (V) is learned with the prototypes (Song et al., [2023) of the new classes:
W = {wl,w?, -, w|060|} U {wd, wf, -, w|TcT\}' Here, the prototype w! of class ¢ from session t is defined as
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Table 7: Performance of CoACT on FSCIT across 16 datasets on different encoders.
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Figure 3: (left) Forgetting of learned classes in FSCIT. (right) Accuracy breakdown into the first, remaining
and all sessions in FSCIT setup.

the average of the embeddings of all samples of the class: w = ITlil > jep, fo(xj), where P; def {j:y; =i}
Next, we consider an incremental-frozen approach with linear tuning as a baseline, where we fine-tune the
model only on the first session, followed by prototype learning for the remaining sessions (Zhou et al.| [2022al).
Finally, we use parameter-efficient fine-tuning as the third baseline, where we add LoRA to different layers of
the pre-trained encoder, train them during the first setting, and perform prototype learning in incremental
sessions. Additionally, to ensure extensive evaluation of the new benchmark, we conduct the experiments on
16 datasets. The classes are divided into sessions as summarized in Table

In Table |§|, we present the main results of our study on the FSCIT setup using the ViT-B/16 encoder. The
table highlights that existing methods for FSCIL, such as CPE-CLIP and PriViLege, do not perform well on
FSCIT. This is primarily because these methods heavily rely on supervised training of the base session, which
is absent in the FSCIT setup, leading to reduced performance. Among the other three baselines, namely
prototype tuning, linear tuning, and LoRA, performance is slightly better compared to FSCIL methods.
However, CoACT surpasses all prior approaches by significant margins on all the datasets. Specifically, CoACT
achieves an average improvement of 2.47% over the baselines and exhibits notable gains of up to 12.79% on
individual datasets, such as Resisc-45. Additionally, we observe larger improvements on more challenging
datasets. For instance, on the five datasets with the lowest accuracy (Country211, FGVCAircraft, GTSRB,
Resisc-45, and StanfordCars), CoACT achieves an average improvement of 6.14% over the best-performing

baseline.

Next, we report the forgetting of learned classes for each method, measured as the drop in accuracy w.r.t.
the first session, in Figure (left). As we observe in this figure, CoACT has the least amount of forgetting
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compared to the baselines, with approximately 1.5% less forgetting than both LoRA and linear tuning and
3.2% than prototype learning. We also present a breakdown of accuracies into the first incremental session,
the remaining incremental sessions, and all sessions in Figure [3| (right). Here, for all methods, the first session
shows particularly higher accuracy than other sessions since there is no interference (or forgetting) of other
classes. While LoRA and linear tuning have higher overall accuracy than prototype tuning, the improvement
mainly comes from the higher accuracy in the first session only. All baselines, however, perform relatively
similarly in the remaining sessions. In contrast, CoACT shows higher improvement in both the first and
remaining sessions.

Next, we investigate the generalization of CoACT across differ-

ent encoders of different sizes. Specifically, we explore ViT-B/16, 62.5

ViT-B/32, ViT-L/14, Swin-B (Liu et al., |2021)), DINO ViT- —~60.0

B/14 (Oquab et all), and vision encoder from CLIP ViT-B/16 Rsrs

(Radford et al.,[2021)) as the backbone. The results of this study S50

are presented in Table [} The results from this study show o 55

that our proposed solution generalizes across the encoder sizes. 3 — Pro. lea.
Specifically, with a larger encoder (ViT-L/14), CoACT improves & 500 M Lin=tun:
the average accuracy to 61.79%. On individual datasets, we find 47.5 T E(;iAéT
up to 3.4% improvements over the default ViT-B/16 encoder. 45.0

Similarly, CoACT shows strong performances on the Swin-B, 1 2 Shi)ts 8 16

DINO ViT-B/14, and CLIP ViT-B/16 encoders. Figure 4: Performance for different shots in

To further evaluate the efficacy of CoACT, we investigate the FSCIT.

performance with a different number of samples per class. Specif-

ically, we explore fine-tuning the foundation model in the FSCIT

setup with only 1, 2, 4, 8, and 16 samples per class. The results of this experiment are presented in Figure [4]
As we find from this experiment, CoACT outperforms other methods in all settings and shows robustness in
very low-shot settings. The baselines vary in effectiveness with the different number of samples per class. For
instance, prototype learning performs better than linear tuning and LoRA in 1-shot and 2-shot settings, while
the other two perform better as the number of samples increases. These results indicate that linear tuning
and LoRA do not learn very effective representations in very low-shot settings compared to our method and
prototype learning.

4.4 Ablation study

We present an ablation study on the proposed components of CoACT in Table[§l Given that the asynchronous
contrastive tuning component of our method could not be removed as it contains the trainable parameters,
we start this study by removing controlled fine-tuning and consistency-guided incremental tuning modules
individually and simultaneously. Interestingly, we observe that while individual removal of these components
does not show considerable drops in performance, their concurrent application within our framework results
in a significant boost in performance of 1.17% across 16 datasets. Finally, with the ablation of all three
components and only training a linear classifier, we observe a 2.66% drop in performance. Notably, all the
ablations experiments show a very small standard deviation.

Next, we present a comprehensive study on different parameters of CoACT in Table 0] In the first study
(Table @(a)), we study different alternates for LoRA, namely Adapter (Houlsby et al, |2019) and Prompt
(Jia et all 2022), where we observe that Adapter and Prompt do not perform as well as LoRA, with a final
accuracy of 60.01% and 59.87% versus 60.15%, respectively. In this table, the prompt implementation follows
the visual prompt tuning (VPT) (Jia et al) 2022) approach, where learnable prompts are added to the input
embeddings of the vision transformer. In the next table (Table @(b)), we study the performance for different
numbers of training epochs, where we find the best results when trained for 50 epochs. Next, in Table |§|(c)7
we study the performance when adding different numbers of LoRA layers to the pre-trained model, where
we observe that 12 blocks achieve slightly better results. In the next study (Table[9[(d)), we investigate the
performance of our method by adding learnable LoRA layers to both encoders, effectively incorporating
synchronous training. This variant of our method shows a drop of 1.37% in the final accuracy, showing the
importance of our proposed asynchronous teacher. We then study different parameters for the controlled
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Table 8: Ablation study on all datasets. Here, Asy. Cont., Cal. Tun., Con. tun. refers to asynchronous
contrastive tuning, controlled fine-tuning and consistency-guided incremental tuning. The reported values are
average and standard deviations across three runs.
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tuning step, specifically the learning rate factor Cy, fine-tuning layers Cj, and fine-tuning start epoch E, in
Table @(e—g). The results from this study show the best performance when we fine-tune the pre-trained layers
with a higher LR factor, effectively fine-tuning the pre-trained layers with lower LR and allowing smaller
changes in the pre-trained weights. For Cj, we find the best results when we fine-tune half of the layers (6
out of 12) of the pre-trained encoder; training just the final layer or the whole network results in reduced
accuracy. Moreover, the best result is obtained when starting the fine-tuning step after 10 epochs of training
of the newly added LoRA layers. Table |§|(h) shows the results for training different layers during incremental
learning, where tuning both the encoder (last few layers) and the LoRA shows the best results. Table [9{i)
shows the study on using the encoder from the first session vs. the encoder from the most recent session to
enforce consistency. As we find from this table, the student encoder from the first session results in a higher
performance. We also study the performance of two new variants of LoRA, including qL.oRA (Dettmers
et al), [2024) and LoRA+ (Hayou et al) [2024)) in Table [9)j). As we find from this table, LoORA+ shows a
minor improvement over the Naive LoRA, while qLoRA results in a slight drop in performance. However, in
our work, we used the default LoRA method given its popularity and wide use in the area as the default
approach to fine-tuning.

4.5 Computational complexity

Finally, we analyze the computational complexity of our method compared to the previous SOTA, PriVilLege
(Park et all, 2024). Our analysis is presented in Table [9fk). In terms of the number of parameters, CoACT
has significantly fewer parameters than PriViLege (86 million vs. 149 million) since CoACT is based on a
vision-only backbone, whereas PriViLege utilizes a vision-language backbone. Additionally, CoACT achieves
higher throughput than PriViLege during both training and inference. Specifically, PriViLege achieves a
training throughput of 617 samples/second, whereas CoACT reaches 930. Similarly, the inference throughput
is 1,236 for PriViLege and 1,850 for CoACT.
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Table 9: Ablation of different parameters of CoOACT on FSCIL averaged across 16 datasets, including different
alternate for LoRA, training epochs, number of LoRA layers, settings for adding LoRA to the encoders,
different parameters for controlled tuning (learning rate factor, fine-tuning layers, and fine-tuning epochs),
and different tuning layers.

(a) ACT (b) Epochs (c) LoRA layers (d) Async. encoder
Module  Accuracy Epochs Accuracy Layers Accuracy Ablation Accuracy
LoRA 60.15 10 58.98 3 59.92 Asyn. enc. 60.26
Adapter 60.01 20 59.81 6 60.01 Same enc.  58.89
Prompt 59.87 50 60.15 12 60.26

(e) LR factor (Cy) (f) Ft. layers (C) (g) Ctr. epochs (E.) (h) Tuning layers
Cy  Accuracy C;  Accuracy E. Accuracy Tuning layer Accuracy
1.0 59.4 All 60.51 0 60.64 Encoder only 61.22
0.5 60.37 Half 61.14 10 61.21 LoRA only 60.94
0.1 61.14 Last 60.76 25 60.62 Enc. + LoRA 61.28
(i) Incr. consistency (j) Different LoRA (k) Compute complexity
Setup Accuracy Setup  Accuracy Method Param. E;l;i.n(sam[;.n/fseerc.)

Consistency w/ first  61.43 LoRA 58.96 PrVIL Y oy 236

. riViLege
Consistency w/ last  61.22 gloRA  58.92 CoACT S6M 930 1850

LoRA+  59.11

5 Conclusion

To enable few-shot class-incremental learning with pre-trained large vision models, we propose CoACT. Our
method can effectively tune a foundation model to learn new classes without losing the generalization of
the pre-training or forgetting previously learned classes. Extensive studies show the effectiveness of our
method, achieving higher accuracy, lower forgetting, and robustness in low-shot settings. Notably, CoACT
outperforms prior works by up to 5.02% in standard FSCIL setup and by up to 12.51% on FSCIT in the
individual datasets. We present comprehensive experiments on different components of CoACT.

Limitations. Our study only focuses on class-incremental learning, but the notion of tuning a foundation
model can be explored with other forms of continual learning, such as task-incremental learning. Additionally,
a limitation of CoACT is that it comprises a few hyper-parameters, although our study shows a small
sensitivity to those parameters in our study across 16 datasets.

Broader impact. Our work focuses on the few-shot tuning of foundation models with impressive general-
ization capability to effectively learn new classes with limited data. While our method does not have any
direct negative impact, it comes with the same potential risk of being misused as any tuning method, where a
model could be tuned to learn unwanted use cases. On the other hand, the proposed solution can potentially
have a large positive impact, as the idea proposed in this work can be explored to update foundation models
for new classes without the need to train from scratch, saving compute and other resources.
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