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Abstract

We tackle the problem of bias mitigation of algorithmic decisions in a setting where both the
output of the algorithm and the sensitive variable are continuous. Most of prior work deals
with discrete sensitive variables, meaning that the biases are measured for subgroups of
persons defined by a label, leaving out important algorithmic bias cases, where the sensitive
variable is continuous. Typical examples are unfair decisions made with respect to the
age or the financial status. In our work, we then propose a bias mitigation strategy for
continuous sensitive variables, based on the notion of endogeneity which comes from the
field of econometrics. In addition to solve this new problem, our bias mitigation strategy
is a weakly supervised learning method which requires that a small portion of the data can
be measured in a fair manner. It is model agnostic, in the sense that it does not make
any hypothesis on the prediction model. It also makes use of a reasonably large amount of
input observations and their corresponding predictions. Only a small fraction of the true
output predictions should be known. This therefore limits the need for expert interventions.
Results obtained on synthetic data show the effectiveness of our approach for examples as
close as possible to real-life applications in econometrics.

1 Introduction

Machine Learning (ML) provides a way to learn accurate forecast models which are able to learn tasks, such
as classification, regression, forecasting, clustering, etc., from data. Broadly speaking, we have two main
paradigms to adjust such models: supervised learning, where we adjust the model parameters based on an
error signal, and unsupervised learning, where we want to explore some latent pattern of the data Goodfellow
et al. (2016) without knowing the true labels to be predicted. Despite the flexibility of ML models and their
high accuracy, such algorithms also present some drawbacks. One of the mostly discussed subject over the
past few years is how models produce biased decisions, i.e outcomes which depend on some variables referred
to as sensitive attributes, while they should not play any role in the decision. Such biases lead to ethical
concerns, which have turned to be legal concerns for critical applications due to the new regulations on
the use of Artificial Intelligence. A typical example is the A.I. act1, which will expose to severe sanctions
the companies selling unreasonably biased AI systems in the European-Union, if these systems are used to
high-risk applications. Initiated in Dwork et al. (2012), we then refer for instance to Besse et al. (2022), Bird
et al. (2020), Mehrabi et al. (2021), Del Barrio et al. (2020) or Barocas et al. (2017) and references therein
for important strategies dedicated to mitigate algorithmic biases. If an A.I. system turns out to be biased,
such strategies are indeed of primary importance to make the systems compliant with the regulations. Let
us develop the presentation of these strategies. When a notion of bias in the algorithm has been defined and
chosen, there are a variety of techniques to mitigate model bias, which can be split into three main categories
Mehrabi et al. (2021):

1. Pre-processing techniques: since the data can be biased, for historical reasons, misrepresentation, or
more intricate patterns, the use of such data can render the model unfair. Therefore, treating the

1https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206 (accessed on 24 july 2023)

1

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206


Under review as submission to TMLR

data before it feeds the model is a possible strategy to mitigate the bias in the decisions Kamiran &
Calders (2012); Feldman et al. (2015a); Calmon et al. (2017); Samadi et al. (2018); Gordaliza et al.
(2019).

2. In-processing techniques: to reduce the biased decisions, these techniques aim at changing the
model training procedure, by adapting the objective function, by adding constraints, or by doing
both Calders & Verwer (2010); Kamishima et al. (2012); Zafar et al. (2017); Risser et al. (2022b).

3. Post-processing techniques: when one has a black-box model that cannot be changed, the only way
to possibly reduce the bias is by using post-processing techniques. In this case, the outputs produced
by the model are processed once again, to be less biased Kamiran et al. (2010); Hardt et al. (2016);
Woodworth et al. (2017).

In the vast majority of the cases, the problem of Fair Machine Learning deals with classification tasks, with
discrete sensitive attributes (such as gender, or race). In this scenario, the outputs take values on a discrete
set (the true label Y = 0 or Y = 1 in a binary classifier), and the same occurs for the sensitive attribute
(S = 0 representing the protected group, S = 1 representing the privileged one). The usual measures of bias
introduced in this setting consist in evaluating the proportion of individuals belonging to each sub-group
who share the same properties, either the same forecast or the same efficiency. In this framework we can
use measures such as Disparate Impact Feldman et al. (2015b), Equalized Odds Hardt et al. (2016), Equal
Opportunity Verma & Rubin (2018) or Treatment Equality Berk et al. (2021).

However, in forecasting applications, where the objective is to produce a score that suitably summarizes the
input data, the model’s output referred to as Y (x) no longer takes values on a discrete set but in a continuous
interval. Hence , Y (x) ∈ [a, b], where x represents the other attributes (non-sensitive ones). This renders
the evaluation of the model’s fair behaviour more difficult, since it is hard to ensure that the values of Y (x)
are the same for x belonging to different sub-groups characterized by the value of their sensitive value s = 1
or s = 0. In this scenario, measures like Fairness through Awareness Dwork et al. (2012) and Counterfactual
Fairness Kusner et al. (2017) are interesting options.

The problem becomes even more challenging when we model the sensitive attributes s no longer as a discrete
variable bu as a continuous variable. This is a suitable choice to model sources of bias encoded in character-
istics as age, financial status or ethnic proportions. In such a case, the aforementioned measures of fairness
cannot be applied, since it is not possible to separate the population into sub-groups and assess the model’s
performance on each of them.

In such a setting, i.e., forecasting with continuous sensitive attributes, the situation can be modeled as a
regression where the sensitive attribute, due to its relationships with the observations x, doest not enable
the regression noise to be independent from the regression function. This situation corresponds to the notion
often referred to as as endogeneity. We refer for instance in econometrics to Nakamura & Nakamura (1998)
or Florens (2003) where the issue of endogeneity happens in when the measurement noise is correlated to
one or more of the inputs, establishing a dependency between them.

The objective of this work is to mitigate bias of forecasting models, when dealing with continuous-valued
sensitive attributes. Here we focus on the case where we need to mitigate the bias of an already operating
model, that should be treated as a black box. Since we can neither change the model’s input nor its training
procedure, we propose here a post-processing treatment.

Because it is not possible to separate the population in sub-groups, in order to evaluate if the model is
biased or not, we need an external source of knowledge to assess such a feature. In this work, we encode the
external knowledge by two means. First, we assume that a group of specialists (composed of economists,
sociologists, lawyers, and others) provides us with the probability distribution of scores that a fair model
should follow. Second, we also have access to an oracle/specialist that given a particular person returns the
fair score for such an individual, but we can use such a specialist only for a few individuals. By using such
an approach, we cope with the problem of bias mitigation in two steps: first, we need to know the unbiased
scores; second, we need to properly distribute those scores among the individuals of the population. The
same ideas are developed in bias mitigation for rankings of recommender systems Wang et al. (2023). In
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this case, as pointed out also in Kletti et al. (2022), there exists a prior of what should be a fair ranking.
Enhancing fairness is thus achieved by comparison between this ideal fair scores and the observations.

To better contextualize the applicability of our framework, let us consider the problem of risk assignment
made by assurance companies. Note that this application may have a strong impact on individual’ lives and
will therefore be likely to be ranked as High risk by the A.I. act, so they will be regulated by the articles
9.7, 10.2, 10.3 and 71.3 of this act. In the risk assignment case, we know the distribution of the risk scores
for a particular city, and we know that it is biased. This could be the case for a non-urban city, for which
we observe more frequently than for urban places the occurrence of high values of risk scores. With our
framework, we compare the distribution of the risk scores of this non-urban city with its “ideal version”, i.e.,
we compare such a distribution with the one that should have been observed if the living place was not, or if
it was fairly, taken into account. Besides the comparison with the “ideal version” of the population, we also
use information obtained from specialists to know the fair risk scores for some individuals. This procedure
is equivalent to a polling, where a group of interviewers (recruited by the assurance company or for a group
of auditors) collects the relevant information (such as profession, age, driving history, among others) about
a little fraction of the population (since it is an expensive and time-consuming procedure), and then assigns
to them the fair risk scores.

The paper is organized as follows: in Section 2, we model the problem of mitigating bias in a black box
model, formalizing the idea of endogeneity and how it is usually treated in economics. In Section 3 we
present our methodology to automatically mitigate the bias, inspired by recent results in Inverse Problems;
we also present a theoretical analysis of our approach, assessing its performance. In Section 4 we evaluate
our approach by means of numerical simulations, considering 1- and 2-dimensional signals, representing the
cases where we have a single sensitive attribute or two of them, respectively. Finally, in Section 5 we present
the conclusions of this work and perspectives for future ones.

2 Theoretical Background

As presented in Section 1, Machine Learning models can produce decisions that may convey biased informa-
tion, learned from many different sources of bias encountered at the different stages of the data processing.
Our focus here is to mitigate the bias of an algorithm by post-processing its outputs. To better understand
it, let us consider a Machine Learning model, as depicted in Figure 1.

x Y (x)
Biased Model
(Black Box)

Figure 1: Bias mitigation of an operating model Y (x).

Such a model, that will perform a forecasting task Bishop & Nasrabadi (2006), takes a set of characteristics
(such as financial status, gender, age, education level, country, etc.), represented by x ∈ RP and performs
a statistical treatment on such data. Since here we are treating the mitigation of bias of Machine Learning
models, we do not know, explicitly, how such a treatment is implemented. In fact, we only know that it
consists in an automated procedure, based on a flexible enough parameterized model, whose parameters
were optimized in order to satisfy a specific criterion, typically using Supervised Learning Goodfellow et al.
(2016). After such a procedure, the model outputs a score Y (x) ∈ R, summarizing the collected information
in a suitable way to take a decision, for credit assignment or selection of students to universities, for example.

Since the model was trained automatically, usually in a very high dimensional space, it could have learned,
in an unwanted way, how to satisfy the training criterion by favouring a group of individuals to the detriment
of another. We refer for instance to Bell & Sagun (2023) or Risser et al. (2022a) for the description of such
an optimization drawback. When it happens, the characteristic that drives an unwanted change of behaviour
and is at the origin of the algorithmic bias, is called the sensitive attribute. Removing this effect and thus
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mitigating the corresponding bias has become a legal constraint when the sensitive variable is a prohibited
variable, such as gender, political or religious orientation, or race.

Because here we deal with the problem of an already operating model, we can neither change its input, x,
by transforming it in a suitable manner in order to reduce the impact of the sensitive attributes, nor change
the way the model was trained, by changing the training criterion, by adding constraints or by doing both.
In this scenario, we must treat the model as a black box and only treat its biased output, Y (x).

Here we model the biased output as the sum of two terms

Y (x) = φ∗(x) + U.

Note that we can interpret this model as follows. The term φ∗(x) represents the output of the algorithm
that should have been obtained by the model, if it was not biased at all, and U is a type of measurement
noise, that may affect differently the different groups of the population, i.e., it reflects a dependence with
respect to the input attributes,

E[U |x] ̸= 0,

which implies that U = U(x), leading to biased models

Y (x)︸ ︷︷ ︸
Observed Biased Score

= φ∗(x)︸ ︷︷ ︸
Unbiased Score

+ U(x).︸ ︷︷ ︸
Bias Term

(1)

Since the property E[U |X] = 0 is not verified, φ∗(x) is not the conditional expectation of Y given x. For
example, the noise U may depend on some characteristic of the individual which is unobservable for the
statistician, but known from assignment priors of the treatment. The choice of the levels x than depends on
this characteristic, and then process a dependence between U and x. Note that in this work, the model (1),
we tackle consider the case of continuous-valued sensitive attributes, which are particularly useful to model
financial status, age or ethnic proportions Mary et al. (2019). Bias with respect to continuous sensitive
attribute has received scarce attention in the fairness literature where bias is often conveyed by a discrete
variable that splits the population into subsamples. Also, neither φ∗(x) nor U(x) are directly observed. The
goal, therefore, is to reduce as much as possible the effect of U(x) on Y (x), which models that bias, and by
doing so, to estimate φ∗(x) .

Since U(x) is a measurement noise, but correlated with x, we model it as

U(x) ∼ N(µ(x), σ(x)) (2)

such that the bias term follows a Gaussian distribution, whose mean µ(x) and variance σ(x) encode its
dependence on x.

In the biomedical statistics, this phenomenon is called confounding and endogeneity in the econometric
literature. In this case, the function φ∗(·) is not well-defined and more assumptions are needed to remove
the endogenous component. A solution to this problem is commonly obtained by assuming the existence
of another source of variability. This is the so-called Instrumental Variables (IV)’s Florens (2003), W =
(W1, W2, · · · , Wk), which need to satisfy two hypothesis described for instance in Carrasco et al. (2014)

1. an independence condition with the noise: E[U |W] = 0;

2. a sufficiency relation with the assigned treatment

E[φ∗(x)|W] =
a.s.

0 ⇒ φ∗(x) =
a.s.

0

The first condition implies a linear equation characterizing φ∗:
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E[Y |W] = E[φ∗(x)|W];

and the second condition implies the unicity of the solution of this equation.

Actually, we can write the model as

E[Y (x) − φ∗(x)|W1, W2, · · · , Wk] = 0. (3)

Defining the operator
T (·) = E[·|W1, W2, · · · , Wk],

and the variable
r(W) = E[Y (x)|W1, W2, · · · , Wk],

the following equation holds

T (φ∗) = r (4)

Equation (4), where we observe r and we want to estimate φ∗, defines an Inverse Problem as defined in
Engl et al. (1996). There are many ways to solve Inverse Problems in the context of econometrics, as in
Carrasco et al. (2007), Loubes & Ludena (2008); Loubes & Marteau (2012), but here we are inspired by
recent techniques in this field, and we will learn how to automatically remove the endogeneity effect. The
endogeneity can be seen as a bias on the observed information, Y (x), and thus we can promote unbiasedness
with this framework. Note that fairness for IV regression has been presented in Centorrino et al. (2022).w

Yet in many cases, additional information like instrumental variables are not available. The new literature
on statistical learning in Inverse Problems, such as Arridge et al. (2019) for instance, provides interesting
directions to solve inverse problem and thus post-process bias in Machine Learning. When dealing with
Inverse Problems in the usual setting of Machine Learning, it is common to have access to a training set
{φ∗(xi), Y (x)i}T

i=1, i.e., a set that associates the samples of the estimated signal to the samples of the
reference one, considering a total of T available points. Then deep neural networks are used to invert the
observations and estimate an invert operator directly from the data. Such new methods are often referred
to as unrolling inverse problem, see for instance in Monga et al. (2021) and references therein. Yet in our
framework, having access to the true unbiased function φ∗ is an unrealistic setting. Rather, we will use a
paradigm of learning called Weakly Supervised Learning Zhou (2018). In this case, we do not have access
to {φ∗(xi), Y (xi)}T

i=1 for all T available samples, but only for a small fraction of them, namely

{φ∗(xi), Y (xi)}, for all i ∈ XL,

where XL represents the set of all labelled data.

Usually, the amount of labelled data in this paradigm of learning is very small, |XL| ≪ T , which poses a
challenge to the estimation of φ∗(x). To circumvent this lack of information, we observe a set of samples
of φ∗(x), but without establishing the correspondence between these samples and those of the estimated
signal. From such a dataset, we estimate, numerically, the probability distribution P(φ∗) and use it to better
estimate the true function.

By estimating P(φ∗) and by observing a few training pairs, {φ∗(xi), Y (xi)}, we propose a procedure able
to mitigate the bias of a Machine Learning model, inspired by the recent work of Mukherjee et al. (2021),
which will be detailed next.

3 Methodology

In this section, we first detail our approach based on Inverse Problems to mitigate bias and then, we present
a theoretical guarantee that assess its performance.
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3.1 Bias mitigation in Machine Learning Models

Recall the observation model (1)

Y (x) = φ∗(x) + U(x).

The input characteristics are a continuous variable x that follows a distribution, x ∼ P(x).

We have modeled x as a continuous variable which is well suited to represent continuous values, such as age,
financial status or ethnic proportions, which are known to be potential sources of bias, as in Mary et al.
(2019). In terms of probability distribution, the observed response has a probability distribution given by

P(Y ) = P(φ∗) ∗ P(U)

where the operation ∗ denotes the convolution operation.

A model is trained from observation samples of x to finally generate continuous scores, Y (x). The produced
score will, then, be used to forecast individuals for instance in a selection process of candidates to university
or to job positions. However, the distribution of such scores may be biased, favouring some groups (such as
rich people) to the detriment of others (poor ones, for example). This fact requires dealing with this induced
bias and requires that some a posteriori treatment over the probability distribution of such scores should be
used in order to render the model unbiased, or at least to mitigate the bias.

In a Weakly Supervised Learning framework, we assume that we have a way to observe unbiased solutions,
denoted by φ∗(x). This assumption implies that by doing some surveys or external analysis, for instance,
there is a way to measure, for a well-chosen set of candidates, their true ability, i.e., an unbiased version of
the score. This additional information, yet limited to a little number of observations, will be key to mitigate
the bias for all individuals and is analogous to a semi-supervised setting where only a limited number of
labelled information are observed.

In this setting, our approach to mitigate the bias consists in performing a nonlinear treatment on Y (x) such
that it has, after such a treatment, a distribution as close as possible to a reference one, which is unbiased.
We illustrate the proposed treatment in Figure 2.

Y (x) Local
Estimation T

φ̃(x)
Gθ(·)

φ̂(x)

Figure 2: Data processing pipeline: after an initial and simple estimation, we use a neural network to refine
the estimate.

After observing the model’s output, Y (x) (biased) with distribution PY , we first treat it by using a local
estimator, T (·), whose role is to perform an initial estimation to render the nonlinear treatment more robust
and stable Genzel et al. (2022). Such a treatment is a naive one, and the initial estimate, φ̃(x) = T (Y )(x),
may not verify the desired properties. Hence, we will increase the performance of the bias mitigation by using
a Deep Neural Network (DNN). In the following let Gθ(·) be a DNN whose architecture will be described
later and let θ represent its parameters. The output of such a neural network, φ̂(x), is the final estimate,
and is desired to be as close as possible to φ∗(x).

In an end-to-end point of view, we are performing the following compound operation

φ̂(x) = (Gθ̂ ◦ T )(Y (x)),

such that, ideally, we would have a correspondence between the unbiased version of the score both in
distribution and for the set of observations, namely θ̂ minimizes a loss function which should achieve that
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• The estimator we propose, φ̂(x) is close to the fair score for all x for which the fair score is known
in the sense that

(Gθ ◦ T )(Y (x)) = φ∗(x),

• and the distribution of the estimator φ̂(x) is close to the distribution of the unbiased score P(φ∗).

Note that we use the following notation T♯P = P ◦T −1, denoting the push forward operation (see Villani et al.
(2009) for instance). To accomplish such task, we will choose a quadratic norm to assess the correspondence
between the forecast and the unbiased version and a 1-Wasserstein distance to measure the match between
the distributions. Hence, we propose to train a neural network by choosing the set of parameters that
minimizes a cost function composed of two terms

1. Llabeled
(
φ∗(x), Gθ(φ̃(x))

)
, called data-fidelity term, which corresponds to the match of the output

of the network to the unbiased version of the score. This loss requires the knowledge of the fair score
to be predicted φ∗. This fair score is unknown in general but available at well-chosen points. Hence,
we only learn this part on a limited number of observations in a supervised (unbiased) learning set
XL; So this part corresponds to a loss

LXL
(θ) =

∑
i∈XL

(
φ∗(xi) − Gθ(φ̃(xi))

)2

2. R
(
Gθ(φ̃(x))

)
, a regularization term which enforces the distribution of the output to be close to the

true (unbiased) distribution. The distance chosen to measure the difference between the distributions
will be the 1-Wasserstein distance. Note that the distribution of φ∗ can be computed without
knowing which score is biased and which is unbiased, but only considering the data as a whole.
To do so, we numerically estimate the probability distribution P(φ∗) from the data points φ∗

i ,
i = 1, · · · , T , as follows

P(φ∗) = 1
T

T∑
i=1

δφ∗
i

where δ(x) = 1 if x = 0 and δ(x) = 0 otherwise.
It is important to note that we do not have access to the training pairs {φ∗(xi), Y (x)i}T

i=1 for all
the T available samples, as is done in Supervised Learning. Even though we have chosen such an
approach to estimate the reference distribution, any other one could have been used, provided we
have access to a suitable estimate of P(φ∗).
We proceed in the same manner to estimate P(Gθ(φ̃)),

P(Gθ(φ̃)) = 1
T

T∑
i=1

δφ̂i

where φ̂i = Gθ(φ̃i).
After estimating the probability distributions, we calculate the regularization term for all xi i =
1, . . . , T ,

R
(
Gθ(φ̃(x))

)
= W1,T

(
P(φ∗),P(Gθ(φ̃))

)
.

The term W1,T denotes the 1-Wasserstein distance, approximated from T samples and by using the
Sinkhorn algorithm, with ϵ = 1.10−4 Cuturi (2013).
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Hence the loss can be written as
θ −→ LXL

(θ) + λR
(
Gθ(φ̃(x))

)
. (5)

and hyperparameter λ controls the trade-off between these two terms. In all of our simulations, the min-
imization of the cost function is carried out by algorithms based on the gradient of both terms, and such
gradients are automatically calculated using PyTorch Paszke et al. (2017) and GeomLoss Feydy et al. (2019)
frameworks.

The regularization term is given by the Wasserstein Distance, which has been used in many works of Machine
Learning Frogner et al. (2015); Arjovsky et al. (2017); Mukherjee et al. (2021); Heaton et al. (2022). This
term is the responsible for performing the match between the probability distribution of φ∗ and the one of
Gθ(φ̃). However, only minimizing W1,T

(
P(φ∗),P(Gθ(φ̃))

)
, is not enough to ensure that φ̂(x) is close enough

to φ∗(x). Actually, we could obtain two estimates, φ̂1(x) and φ̂2(x), with their probability distributions
as close as possible to the one of φ∗(x), but these two estimates may correspond to each other up up to a
permutation in their samples. This situation is illustrated in Figure 3.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

φ̂
(x

)

φ̂1(x)
φ̂2(x)

Figure 3: Illustration of the permutation problem that arises from the minimization of the Wasserstein
Distance.

In Figure 3 we illustrate two squared functions (only for simplicity), composed of the same samples (and,
therefore, they have the same probability distributions), up to a permutation. Such a permutation of the
samples may pose a major problem in social applications, since it changes the scores associated with each
individual, and, as a consequence, the decisions taken based on such a score. For example, the maximum
score was assigned to the individuals represented by x = 0 and x = 2 by φ̂2(x), and to the individual
represented by x = 1 by φ̂1(x), which, in turn, will change who is selected for a job position, for example.

This permutation problem highlights two interesting facts: first, by minimizing the Wasserstein distance, we
have found the correct values for φ∗(x), but we need to properly sort them; second, such sorting step can
not be accomplished by a procedure based on unsupervised learning, since we need to know which individual
should receive a particular score. For both of these facts, we employed the so called Weakly Supervised
Learning Zhou (2018) to complete the training of the neural network. In Weakly Supervised Learning, from
all the available data, we have only a small fraction that was labelled, represented by the set XL, and, hence,
can be used in a supervised manner. The other part of the data, represented by the gray area, was not
labelled and should be used in an unsupervised manner, which we have done with the Wasserstein distance.
In the simulations, we will vary this proportion of known data.

Hence, our approach here is to use a small fraction of labelled data to complete the estimation process.
This is the role of the term Llabeled

(
φ∗(x), Gθ(φ̃(x))

)
in equation (5): we can link samples from Y (x) to

8



Under review as submission to TMLR

the samples of φ∗(x), by using a few training pairs in XL (typically |XL| ≪ T ), to avoid the permutation
issue. In the context of our work, where we observe scores obtained by individuals through a possibly biased
treatment, this is equivalent to performing a polling on some individuals of the population, analysing their
characteristics, and, then, attributing to them the scores that they would deserve, which is assimilated to the
unbiased scores. This framework is similar to the ideas developed in Friedler et al. (2021) and correspond
to values in a construct space where unbiased versions are available, opposed to the observations or the
decisions which reflect the biases of our world or the biases of the algorithmic decisions. Having access to
the fair scores requires an analysis that, for societal applications, can not be done for all individuals but is
limited to a few cases.

In simple words, the approach that we use here to mitigate bias consists in two steps: first, we need to
know the correct values that φ̂(x) should have for all the individuals (which we achieve in an unsupervised
manner, by minimizing the Wasserstein distance); second, we need to properly sort those values (which we
achieve by obtaining the correspondence between φ̂(x) and φ∗(x) for the few known training pairs).

Now that we have described our bias mitigation approach, we will present the theoretical analysis that
provides some bounds of its performance.

3.2 Theoretical Guarantees

The following theorem states that a minimizer of (5) has its performance bounded by the performance of “spe-
cialists”, i.e. models that were trained only to minimize either Llabeled

(
φ∗(x), Gθ(φ̃(x))

)
or R

(
Gθ(φ̃(x))

)
,

separately.
Theorem 1. Let us consider the following cost function to be minimized

J(Gθ|λ) =
∑

i∈XL

(
φ∗(xi) − Gθ(φ̃(xi))

)2 + λW1,T

(
P(φ∗),P(Gθ(φ̃))

)
,

and the sets

ΘL =
{

θ :
∑

i∈XL

(
φ∗(xi) − Gθ(φ̃(xi))

)2 = 0
}

,

ΘW =
{

θ : (Gθ)♯P(φ̃) = P(φ∗)
}

.

Let Gθ∗ be a minimizer of J(·|λ). Then it holds that for all θ ∈ ΘL,

∑
i∈XL

(
φ∗(xi) − Gθ∗(φ̃(xi))

)2 ≤ λW1,T

(
P(φ∗),P(Gθ(φ̃))

)
,

and for all θ ∈ ΘW ,

W1,T

(
P(φ∗),P(Gθ∗(φ̃))

)
≤ 1

λ

∑
i∈XL

(
φ∗(xi) − Gθ(φ̃(xi))

)2
.

Hence, the theorem states that we can establish bounds for a minimizer of J2 by using the performance
of "specialists", i.e., models that were trained to only minimize one of the terms of J2. A minimizer Gθ∗

will have a better performance in terms of data fidelity than a data-fidelity specialist used to minimize the
Wasserstein distance; in a dual manner, a minimizer Gθ∗ will have its regularization perform upper-bounded
by the performance of a regularization-specialist applied to the data-quality term.
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This result is inspired by the work of Mukherjee et al. (2021) where the authors propose an adversarial
approach to solve Inverse Problems, in the context of image analysis for a model

yδ = A(x) + ϵ (6)

where A(·) is the forward operator, yδ are the noisy measurements and ϵ, ||ϵ||2 ≤ δ, is the noise. Hence,
mutatis mutandis the analysis made in Mukherjee et al. (2021) in Proposition 1, we obtain the proof of
the previous theorem.

Proof. If Gθ∗ is a minimizer of J(·|λ), then for every θ ∈ ΘL

∑
i∈XL

(
φ∗(xi) − Gθ∗(φ̃(xi))

)2 + λW1,T

(
P(φ∗),P(Gθ∗(φ̃))

)
≤

∑
i∈XL

(
φ∗(xi) − Gθ(φ̃(xi))

)2+

+ λW1,T

(
P(φ∗),P(Gθ(φ̃))

)
.

Naturally, we have

∑
i∈XL

(
φ∗(xi) − Gθ∗(φ̃(xi))

)2 ≤
∑

i∈XL

(
φ∗(xi) − Gθ(φ̃(xi))

)2+

+ λW1,T

(
P(φ∗),P(Gθ(φ̃))

)
− λW1,T

(
P(φ∗),P(Gθ∗(φ̃))

)
.

Since θ ∈ ΘL,
∑

i∈XL

(
φ∗(xi) − Gθ(φ̃(xi))

)2 = 0, leading to

∑
i∈XL

(
φ∗(xi) − Gθ∗(φ̃(xi))

)2 ≤ λW1,T

(
P(φ∗),P(Gθ(φ̃))

)
− λW1,T

(
P(φ∗),P(Gθ∗(φ̃))

)
.

By using the fact that W1(·, ·) ≥ 0, we finally have

∑
i∈XL

(
φ∗(xi) − Gθ∗(φ̃(xi))

)2 ≤ λW1,T

(
P(φ∗),P(Gθ(φ̃))

)
, ∀θ ∈ ΘL.

Analogously, for every θ ∈ ΘW , we have

λW1,T

(
P(φ∗),P(Gθ∗(φ̃))

)
≤

∑
i∈XL

(
φ∗(xi) − Gθ(φ̃(xi))

)2 −
∑

i∈XL

(
φ∗(xi) − Gθ∗(φ̃(xi))

)2+

+ λW1,T

(
P(φ∗),P(Gθ(φ̃))

)
Using the fact that θ ∈ ΘW and W1

(
P(φ∗),P(Gθ(φ̃))

)
= 0, and the non-negativity of the other terms, we

have

λW1,T

(
P(φ∗),P(Gθ∗(φ̃))

)
≤

∑
i∈XL

(
φ∗(xi) − Gθ(φ̃(xi))

)2
, ∀θ ∈ ΘW .

Having described our approach and theoretically analyzed it, in the next section we will evaluate it by means
of numerical simulations.

10
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4 Numerical Simulations

To evaluate our approach, we will consider in the following numerical simulations 1- and 2-dimensional
signals. In the first case, the bias is represented by noise with a linear dependence on x, representing a
scenario of a more controlled bias. On the other hand, for the 2-D case, we propose a more challenging bias
term, allowing the noise to depend on x1, x2 and also on the product x1x2. The functions are inspired by
real use cases in econometrics. For each simulation set, we provide and discuss the architecture of the neural
network.

4.1 1-Dimensional Signals

For the 1-dimensional case, we generated T = 1000 uniformly spaced samples for x in the interval [-3, 3],
and φ(x) = x2 Mas-Colell et al. (1995). To generate the bias term in equation (2), we generate a noise with
mean

µ(x) = αx,

with α = 2, and variance σ(x) = 1.

For comparative purposes, we have employed the so-called Instrumental Variables (IVs) to debias Y (x). To
suitably generate the IVs, we used the following procedure Florens (2003):

1. For a number k of IVs, we generate the temporary variable e = (e1, · · · , ek)′, from a standard uniform
distribution;

2. For each j = 1, · · · , k, we have

ϵj =
√

k

2
ej∑k

j=1 ej

, τj = 1
j

j∑
l=1

ej

3. The instrumental variables are generated as

W ≡ w(τj) = Φ−1(
Φ(1) + τj(Φ(1) − Φ(−1))

)
σ

σ = 1.853, so that w(τj) follows a truncated normal distribution between [−σ, σ], for each j =
1, · · · , k.

In (4), the operator T is approximated by a local linear non-parametric regression, whose bandwidth is
adjusted by Silverman’s rule-of-thumb. We did the same for the adjoint operator, T ∗(·) = E[·|X].

Having access to suitable approximations to T and T ∗, we can now solve (4) by using the Landweber-Fridman
algorithm Centorrino & Florens (2021):

φ̂i+1 = φ̂i + cT ∗(T φ̂i − r), i = 1, · · · , N, (7)

where N is the regularization parameter (chosen by leave-one-out cross validation), which controls the number
of iteration, and c ∈ (0, 1) is a constant to avoid instability issues (we used c = 0.5).

We present the results for k = 2, 10, 25 IVs in Figures 4, 5 and 6, respectively, with the associated ℓ2 norm
of the estimation error, ||φ∗ − φ̂||2.
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Figure 4: Instrumental Regression and Landweber Iteration - k = 2.
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Figure 5: Instrumental Regression and Landweber Iteration - k = 10.
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Figure 6: Instrumental Regression and Landweber Iteration - k = 25.

From the above results, we note that k = 2 IVs led to an estimate very different from the desired signal,
indicating that this number of IVs was not enough to deal with the bias term U(x). To circumvent this issue,
we added more IVs to our model, and for k = 10 and k = 25, we have gotten more precise estimates, even
though there is still room for improvement.

Despite the fact that the estimation using k = 10 and k = 25 IVs produced interesting results, this kind of
procedure is expensive in real-world applications: besides the data already collected in x, we would have to
collect the complementary information needed by the IVs.

As an alternative to regression IV, we performed the estimation process proposed in Figure 2. To do so, we
first used a Moving Average filter, with 10 taps, for the local estimation. Since this procedure only gives an
initial estimated, φ̃(x) that is not enough accurate (as we will present in the results), we also used a neural
network to complete the estimation.

The used neural network is depicted in Figure 7. It is a fully connected neural network, whose linear layers
are composed of 1000 neurons each, and the operation ReLU Goodfellow et al. (2016) is taken element-wise.
We feed φ̃(x) into the neural network, and then we apply twice the transformation composed by a linear
layer followed by a ReLU operation. Finally, we use one more time a linear layer to obtain the final estimate,
φ̂(x).

φ̃(x1)

φ̃(x2)

...

φ̃(xT )

Input

Linear ReLU Linear ReLU Linear

φ̂(x1)

φ̂(x2)

...

φ̂(xT )

Output

Figure 7: Architecture of the neural network used to treat 1-D signals. It is a fully connected neural network,
each linear layer has 1000 neurons and the operator ReLU is taken element-wise.

In this first experiment, we only minimized the Wasserstein distance in (5), i.e., we did not use any labelled
data, |XL| = 0. To properly solve the optimization problem at hand, we used the Adam optimizer Kingma
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& Ba (2017), with learning rate µ = 1.10−5, for 300 epochs. We present the results for the training dataset
in Figure 8.
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Figure 8: Training Set - 1-Dimensional Signals. From left to right: true data φ∗(x), observed data Y (x),
initial estimate φ̃(x) and final estimate φ̂(x).

From Figure 8, we note that the initial estimate, φ̃(x), is less affected by the noise, but it is still distant from
the desired signal. After feeding φ̃(x) into the neural network, we got the estimate presented in the fourth
figure from left to right. It is a very precise estimate, as can be verified both visually and by the low value
of the error norm.

Since we obtained a very good result for the training dataset, we evaluated the trained model in a test
dataset. To generate such a dataset, we once again generated T = 1000 uniformly spaced samples for
x ∈ [−3 + ϵ, 3 + ϵ], where ϵ ∼ U(−0.5, 0.5) and φ(x) = x2. By doing so, our test dataset corresponds to a
perturbed version of the training one, which is very interesting to assess the generalization of the model. We
present the obtained results in Figure 9.
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Figure 9: Test Set - 1-Dimensional Signals.

From Figure 9 we note a performance for the test set very similar to the one obtained with the training
one: our first estimate is less affected by the noise, but is still very different from the desired signal. After
using the neural network, though, we got a very precise estimate, with an error norm of 53.576 taken in 1000
samples (which gives us an Mean Square Error about 0.005).

As we can infer from the presented results, we obtained a better performance with our approach than that
obtained by using Instrumental Variables, even when the number of such variables was considerably high
(k = 25, for example). It is interesting to note that in this first experiment, we obtained such a good
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performance by only minimizing the Wasserstein distance, because the initial estimate, φ̃(x), was close
enough to the true solution, being necessary only to further regularize it. In more challenging scenarios, this
could not be the case, and we would have to use a few labelled data points, as we will illustrate in the next
section with 2-dimensional signals.

4.2 2-Dimensional Signals

In this section we evaluate our approach with 2-dimensional signals, i.e., the case where x = (x1, x2). We
generated T1 = 100 uniformly spaced samples for x1 in the interval [-3, 3] and T2 = 100 uniformly spaced
samples for x2 in the interval [-3, 3] (so φ∗(x1, x2) has T = 104 samples), and considered the function
φ∗(x1, x2) = (|x1|p + |x2|p)1/p, p = 2 Mas-Colell et al. (1995). As for the bias term, we used in (2) a noise
with mean

µ(x1, x2) = α1x1 + β1x2 + γ1x1x2, α = 0.2, β = 0.2, γ = 1

and variance

σ(x1, x2) = α2|x1| + β2|x2| + γ2|x1|.|x2|, α2 = 0.5, β2 = 0.5, γ2 = 0.2.

Since we now have a 2-dimensional signal, we performed the estimation by using techniques that are common
to the image processing field. First, we used a Gaussian kernel for the local estimation, with standard
deviation equal to 5. Then, we used the neural network depicted in Figure 10.

φ̃(x1, x2)

Input

Conv. ReLU Conv. ReLU Conv. φ̂(x1, x2)

Output

Figure 10: Architecture of the neural network used to treat the 2-D signals. Each convolutional layer is a
squared kernel of dimension 100 × 100 (the same size as the input and the output) and the operator ReLU
is taken element-wise.

We present the initial estimate, φ̃(x1, x2), to the neural network, and, then, we process it by using twice
in a row a convolutional layer, made of a squared kernel of dimension 100 × 100, followed by the ReLU
operation, taken element-wise. To produce the final estimate, φ̂(x1, x2) we apply a final convolutional layer,
with the same dimension as before. Once again, the optimization procedure in (5) was carried out by the
Adam optimizer, with µ = 1.10−5 and 12000 epochs.

As we did in the 1-dimensional case, we first applied the local estimator, producing φ̃(x1, x2), as depicted in
Figure 11, but, once again, we need to further process it in order to get a more precise estimate.
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Figure 11: Initial estimation of a 2-D signal.

We first continued the estimation process by considering only the Wasserstein distance, and we present the
obtained result in Figure 12.
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Figure 12: 2-Dimensional Signals. Estimation without using the oracle. From left to right: true data
φ∗(x1, x2), observed data Y (x1, x2) and final estimate φ̂(x1, x2).

Here, we have founded the appropriate values for φ̂(x1, x2), but we could not suitably distribute them
(comparing the reference image with the estimated one, the upper and lower parts were permuted). To
circumvent this issue, we performed the estimation procedure once again, with the same neural network and
the same hyper-parameters, but this time we have used a few training pairs. In Figure 13 we present the
estimated image, after using a number of training pairs that corresponds to 1.0% of all the available data
(|XL| = T/100) and λ = 1.0 in (5).
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Figure 13: 2-dimensional signals, training dataset. Number of training pairs: |XL| = T/100. The black dots
in the first image represent the queried values.

By using a very small amount of labelled data, we have obtained a very precise estimate of φ∗(x1, x2), with
error norm of 6.584, and the associated Mean Squared Error (MSE), considering the 104 samples, about
6.5 × 10−4.

To better evaluate the performance of such a model, we evaluated its performance on a test dataset. As in
the 1-D case, the test set consists in a perturbed version of the training one, where we generated T1 = 100
samples of x1 taken in the interval [−3 + ϵ, 3 + ϵ], and T2 = 100 samples of x2 taken in the same interval,
with ϵ ∼ U(−0.5, 0.5). We present the obtained results in Figure 14.
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Figure 14: 2-dimensional signals, test dataset. Number of training pairs: |XL| = T/100.

In the test dataset, we observe, again, a very precise estimate, with an error norm of 121.593 (and an MSE
about 0.01), which indicates that the trained model has a good capacity of generalization. It is important
to note that we have used the same amount of training pairs to get such an interesting result.

To further assess the capacity of the proposed debiasing method, we have also considered another function,
φ∗(x1, x2) = sin(x2

1)+cos(x2
2). This new function is a composition of oscillatory functions, sinus and cosines,

and monomials, represented by the squared function. Such a composition poses a more challenging scenario
than the previous one.

As we did in the previous case, we performed the local estimation with the same Gaussian kernel, and we
got the results presented in Figure 15. Once again, the local estimator reduced the noise effect, but was not
able to completely restore the desired signal.
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Figure 15: Initial estimation of the second 2-D signal evaluated.

We continued the estimation process by only minimizing the Wasserstein distance between the probability
distribution of the model’s output and the reference one. As can be seen in Figure 16, we could not properly
estimate the desired signal with such a procedure, observing, once again, the permutation on the estimated
samples.
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Figure 16: Another example of a 2D signal, estimated by only using the Wasserstein distance.

Hence, to properly estimate the signal, we once again used a few labelled data points, again with |XL| = T/100
and λ = 1.0. In Figure 17, we present the obtained result for the training dataset. As we can note, we got
an error norm of 60.782, which leads to an MSE about 6.1 × 10−3, indicating a very precise estimation.

18



Under review as submission to TMLR

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ
(x

)

ϕ(x) (True Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

Y
(x

)

Y (x) (Observed Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ̂
(x

)

ϕ̂(x) (Final Estimate)
Error Norm = 60.782

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−15

−10

−5

0

5

10

15

20

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Figure 17: Estimation of the second 2D signal with |XL| = T/100. Training dataset.

We also evaluated this model using a test dataset, generated in the same manner as in the previous 2-D case;
we present the obtained result in Figure 18.
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Figure 18: Estimation of the second 2D signal with |XL| = T/100. Test dataset.

From the results depicted in Figure 18, we observe, once again, a very precise estimate, with error norm of
5711.917 (and an MSE about 0.52), despite the more complex nature of this second function.

After presenting the results obtained from the estimation of the 2-D signals, we note that only a small
amount of labelled data (here, 1.0% of all the samples), alongside a distributional constraint given by the
Wasserstein distance, was sufficient to produce very precise estimates, mitigating the bias. It is important
to note that we have randomly collected labelled samples from the all available data, indicating that most of
the work was done by the regularization term, in an unsupervised manner. Another very interesting point
is that the investigation with 2-dimensional signals highlighted the required steps to mitigate the bias in a
model: first, it is necessary to find the unbiased score values and, then, to properly distribute them.
Remark. It is important to note that an implicit prior information is encoded into the architecture of the
neural network. Here, we have used the ReLU function (Agarap (2018)) as an activation function. This
activation function assumes that the signals to be approximated are piecewise linear, at least in a small
neighbourhood, or can be well approximated by such linear signals. This fact is very interesting in the
context of using few labelled samples, since by knowing the value of the true function in a point, the neural
network can estimate, with a good precision, the values of the other points around. This is the reason why,
since the economics functions we consider satisfy such assumptions, only a small amount of labelled data
is required in this work to yet achieve a good approximation. For less smooth functions, for instance with
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several discontinuities, it could be necessary to use an amount of data considerably higher than the amount
that we used here.

5 Conclusions

In this work, we addressed the problem of debiasing Machine Learning models by post-processing their
outputs. Following the most recent results in Inverse Problems, we trained a neural network to learn how to
automatically treat the bias. Here, we used the paradigm of Weakly Supervised, alongside a distributional
constraint, given by the Wasserstein distance.

Besides the theoretical analysis made, we also evaluated our approach by means of numerical simulations.
First, we considered 1-dimensional signals, which represents a more controlled scenario, less biased. In this
case, we mitigate the bias by only minimizing the Wasserstein distance, i.e., in an unsupervised manner. We
also studied 2-dimensional signals, a scenario where the bias term was more complex, and we had to use a
few labelled data points.

Other than its technical importance to the problem, leading to very precise estimates by using a small
fraction of labelled data, the Weakly Supervised Learning is an interesting choice for social applications of
Machine Learning models. First, it requires only a few training pairs, that could have been obtained after
performing a polling on a small fraction of the whole population. Second, by performing such a polling, we are
incorporating knowledge from specialists into the model, contributing to its accountability and explainability,
both desired characteristics for ethical algorithms.
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