
Open-Det: An Efficient Learning Framework for Open-Ended Detection

Guiping Cao 1 2 Tao Wang 1 2 Wenjian Huang 1 Xiangyuan Lan 2 3 Jianguo Zhang 1 2 4 Dongmei Jiang 2

Abstract
Open-Ended object Detection (OED) is a novel
and challenging task that detects objects and gen-
erates their category names in a free-form manner,
without requiring additional vocabularies during
inference. However, the existing OED models,
such as GenerateU, require large-scale datasets
for training, suffer from slow convergence, and
exhibit limited performance. To address these is-
sues, we present a novel and efficient Open-Det
framework, consisting of four collaborative parts.
Specifically, Open-Det accelerates model training
in both the bounding box and object name genera-
tion process by reconstructing the Object Detector
and the Object Name Generator. To bridge the se-
mantic gap between Vision and Language modal-
ities, we propose a Vision-Language Aligner with
V-to-L and L-to-V alignment mechanisms, incor-
porating with the Prompts Distiller to transfer
knowledge from the VLM into VL-prompts, en-
abling accurate object name generation for the
LLM. In addition, we design a Masked Alignment
Loss to eliminate contradictory supervision and
introduce a Joint Loss to enhance classification,
resulting in more efficient training. Compared to
GenerateU, Open-Det, using only 1.5% of the
training data (0.077M vs. 5.077M), 20.8% of
the training epochs (31 vs. 149), and fewer GPU
resources (4 V100 vs. 16 A100), achieves even
higher performance (+1.0% in APr). The source
codes are available at: https://github.
com/Med-Process/Open-Det.
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Figure 1: Performance curves of GenerateU and Open-Det,
trained on the VG and evaluated on zero-shot LVIS MiniVal.

1. Introduction
Open Vocabulary object Detection (OVD) (Zareian et al.,
2021a; Gu et al., 2021; Lin et al., 2022; Wu et al., 2023b;
Cheng et al., 2024) is a fundamental task in computer vision
that largely extends detection abilities from conventional
closed-set to open-set detection, allowing the location and
identification of objects beyond fixed categories of training
data. However, OVD still depends on additional vocabu-
laries as input to obtain detection results during inference.
This reliance creates a necessary dependency on supplemen-
tary language knowledge priors, significantly restricting the
model’s detection capabilities in the open-world scenario.

Recently, Open-Ended object Detection (OED) (Lin et al.,
2024) has emerged as a more general and practical object
detection task that eliminates the need for predefined object
categories during the inference stage. The end-to-end frame-
work of GenerateU (Lin et al., 2024) formulates the OED as
a generative problem, enabling dense object detection and
associated name generation in a free-form manner.

Despite its open-ended nature, this model’s detection ca-
pabilities face notable challenges: it requires large-scale
datasets and substantial GPU resources (e.g.,16 A100 GPUs)
for training, and it suffers from low training efficiency, slow
convergence, and suboptimal detection performance. These
challenges arise from three main issues: (1) Semantic Gap:
This framework directly feeds vision queries from the object
detector into the Large Language Model (LLM) to gener-
ate object names. Although it employs Vision-Language
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alignment loss for these queries, the approach still faces
challenges in effectively bridging the semantic gap between
the Vision and Language modalities in high-dimensional fea-
ture space. This limitation negatively impacts both model
training and the accuracy of object name generation. (2)
Contradictory Supervision: The framework fails to con-
sider the relationships between object categories within the
image, resulting in contradictory supervisory losses and
gradients that degrade training efficiency (the causes of Con-
tradictory Alignment Loss are detailed in Sec. A.3). (3) The
Heavy-weight LLM Head and Noisy Alignment: Gener-
ative LLMs typically operate with a large vocabulary size
for text generation (e.g. 32,128 tokens in the T5 (Raffel
et al., 2020) model, including a heavy-weight head of linear
layer with 24.7M parameters), making training highly chal-
lenging. Additionally, during the early stages of training,
vision queries are not well-aligned with language modali-
ties, leading to noisy alignment. This sub-optimal alignment
supervision can disrupt the pre-trained weights of the LLM
Head, further reducing the training efficiency and slowing
convergence, as detailed in Sec. 3.5.

Based on the analysis, a natural question arises: Is there
a more efficient OED framework that can accelerate train-
ing convergence, enhance training efficiency, and improve
detection performance, while eliminating the reliance on
large-scale datasets?

To answer this question, we propose a novel and efficient
Open-Ended Detection framework, termed Open-Det. As
presented in Fig. 2, Open-Det consists of four key compo-
nents: (1) Object Detector (ODR); (2) Prompts Distiller; (3)
Object Name Generator; and (4) Vision-Language Aligner.
Specifically, Open-Det enhances overall convergence speed
in two key aspects: 1) Accelerating the training for the
box detector. Inspired by the one-to-many matching ap-
proach to improve training convergence (Jia et al., 2023;
Zong et al., 2023; Hu et al., 2023), we further design a
decoder in Object Detector that incorporates a decoupled
one-to-many and one-to-one matching structure. This de-
sign accelerates training without requiring an additional
branch, reducing training complexity. 2)Accelerating the
training for the object name generation. We enhance the
training of the Object Name Generator in three ways: firstly,
we freeze the heavy-weight head of the LLM (while keeping
other weights active) in the early training stage and intro-
duce a LoRa (Hu et al., 2021) head to accelerate training,
which preserves the original pre-trained weights of the head
while significantly reducing the trainable parameters of the
LLM head; secondly, we design a Text Denoising training
approach to facilitate the training and increase the robust-
ness for the LLM; thirdly, we propose a Vision-to-Language
Distillation Module (VLD-M) in Prompts Distiller to trans-
fer the Vision-Language Alignment knowledge from the
VLM into newly introduced VL-prompts for LLM. Instead

of directly using vision queries as input for the LLM in
GenerateU, we utilize these VL-prompts, which effectively
bridge the semantic gap between Vision and Language rep-
resentations, to boost the training convergence of the LLM.

To further strengthen the alignment between Vision and Lan-
guage modalities, we present a new Bidirectional Vision-
Language Alignment module (BVLA-M) within the Vision-
Language Aligner. This module is designed to improve the
alignment of vision queries with text embeddings, thereby
enhancing training efficiency and overall performance. Ad-
ditionally, we introduce a novel Masked Alignment Loss to
prevent the emergence of contradictory losses and their as-
sociated gradients, as detailed in Sec. 3.6 and Sec. A.3. We
also present a Joint Loss for improving positive and nega-
tive queries classification (detailed in Sec. 3.6 and Sec. A.4).
The main contributions are summarized as follows:

• We develop a novel and efficient end-to-end OED
framework, referred to as Open-Det. It significantly ac-
celerates training convergence in both the box Detector
and the Object Name Generator, and it further distills
the knowledge of Vision-Language alignment from
a frozen VLM into VL-prompts using the proposed
VLD-M, greatly enhancing the training for LLM.

• We improve training efficiency and performance by op-
timizing the alignment of Vision-Language modalities
with BVLA-M, correcting contradictory supervision
using Masked Alignment Loss and enhancing classi-
fication through a Joint Loss that associates IoU and
alignment scores with binary classification scores.

• Open-Det outperforms OVD models like GLIP(A),
achieving +6.8% in APr and +8.5% in AP with only
11.7% of training data. Additionally, it demonstrates
significant superior efficiency compared to the OED
model GenerateU: using just 1.5% of training data,
20.8% of training epochs, and fewer GPUs (4 V100 vs.
16 A100), it achieves a +1.0% improvement in APr.

2. Related Work
Open-Vocabulary Object Detection (OVD). Traditional
closed-set object detection (Ren et al., 2015; He et al., 2017;
Carion et al., 2020; Zhang et al., 2022a; Cao et al., 2024)
(COD) can identify only fixed object categories, requiring
additional bounding box annotations and costly model re-
training when new categories are introduced. To address this
issue, the OVD task is introduced in OVR-CNN (Zareian
et al., 2021b). OVD enables the model to generalize to
new object categories without the need for annotations by
learning a rich vocabulary during pretraining on large image-
caption datasets. Then, a series of methods related to the
large-scale Vision-Language Model (VLM) like CLIP (Rad-
ford et al., 2021) are utilized to address the challenge of
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limited training data and advance the performance of OVD,
including distilling the knowledge from CLIP into detec-
tor of ViLD (Gu et al., 2021), learning continuous shared
prompt representations of DetPro (Du et al., 2022), extend-
ing CLIP to learn region-level visual representations of Re-
gionCLIP (Zhong et al., 2022), and forming bags of regions
in BARON (Wu et al., 2023a). The transformer-based de-
tector is also extended to the OVD task. MDETR (Kamath
et al., 2021) utilizes a transformer-based architecture that
allows for detecting objects conditioned on raw text queries.
OV-DETR (Zang et al., 2022) achieves OVD through condi-
tional matching. VL-DET (Lin et al., 2022) builds a unified
framework to formulate object-language alignment as a set
matching problem. CORA (Wu et al., 2023b) enhances the
region-text distribution by introducing the region prompting
and anchor pre-matching. Although these methods achieve
advanced performance, they encounter common challenges
related to region-text alignment and limited generalization
ability in detecting new categories. Open World Object De-
tection (Joseph et al., 2021) introduces a framework that
enables the detector to label unknown objects as “unknown”
and incrementally learn these identified unknown categories
without forgetting previously learned classes. However, this
approach still requires new label priors for each incremental
learning phase, restricting its practical applicability.

Recently, learning from a diverse range of data sources,
such as image-text pairs and grounding data, has gained
more attention in OVD to enhance the generalization ability
of visual concepts. Detic (Zhou et al., 2022) employs a
dual-branch approach for classification and box prediction,
where the class branch is trained on a large-scale dataset to
achieve OVD through image-level supervision. GLIP (Li
et al., 2022b) unifies object detection and phrase ground-
ing for pre-training with grounding data and image-text
pairs. GLIPv2 (Zhang et al., 2022b) further streamlines the
training pipeline and enhances the synergy between local-
ization and understanding by integrating localization and
Vision-Language pre-training. Based on GLIP, Ground-
ing DINO (Liu et al., 2023) combines DINO (Zhang et al.,
2022a) with grounded pre-training to effectively fuse lan-
guage and vision modalities. DetCLIP (Yao et al., 2022)
enhances visual-concept modeling through a dictionary-
enriched framework for parallel OVD pre-training. Its
successor, DetCLIPv2 (Yao et al., 2023), unifies detection,
grounding, and image-text pair data under a hybrid supervi-
sion approach. The latest iteration, DetCLIPv3 (Yao et al.,
2024), advances the architecture with a high-performance
detector capable of excelling in OVD and generating hier-
archical labels for detected objects. Although DetCLIPv3
possesses generative capabilities, its reliance on large-scale
datasets (over 50M), complex multi-stage training processes,
and substantial GPU resource requirements (32/64 V100)
greatly limit its further development and applicability.

Open-Ended Object Detection (OED). LLM (Raffel
et al., 2020; Touvron et al., 2023; Achiam et al., 2023) and
multi-modal VLM models (Radford et al., 2021; Li et al.,
2022a; 2023), trained on extensive datasets of text or image-
text pairs, have demonstrated remarkable model capacity
and generalization performance in classification tasks. Nat-
urally, integrating these models with detection frameworks
presents new opportunities for achieving vocabulary-free
detection for arbitrary classes. GenerateU (Lin et al., 2024)
first introduces the OED problem, proposing an end-to-end
framework that reformulates object detection as a generative
task incorporating an LLM. The framework integrates an
object detector with an encoder-decoder-based generative
LLM, using vision queries from the detector as inputs for the
LLM to enable free-form object name generation. However,
this approach struggles with slow training convergence, low
efficiency, large GPU resource demands, and high training
costs. Thus, efficiently leveraging existing LLMs to train
OED models with limited detection data remains a critical
challenge that needs to be further addressed.

3. Method
3.1. Main Architecture of the Open-Det Framework

As illustrated in Fig. 2, the Open-Det framework comprises
four collaborative components. During the training stage,
the input image I ∈ RH×W×3 (where H and W denote
height and width) and its corresponding object names T
are fed into the Object Detector and the VLM, respectively.
This generates decoder queries Qd for bounding box predic-
tion and text embeddings Te for Vision-Language feature
alignment. To enhance this alignment, we propose a novel
Bidirectional Vision-Language Alignment module (BVLA-
M) within the Vision-Language Aligner. This module en-
hances alignment scores (detailed in Sec. 3.3) and generates
alignment indices V Lalign for query-text matching, en-
abling supervision for the Object Detector.

To improve the object name generation, we introduce a
novel Prompts Distiller into the OED framework, replac-
ing the direct use of vision queries as input for LLM in
GenerateU. The Prompts Distiller utilizes VLD-M , which
takes backbone features B, encoder features E, queries
Qd, text embeddings Te, and V Lalign as inputs, to transfer
the Vision-Language alignment knowledge from the VLM
(such as CLIP (Radford et al., 2021)) to decoder queries Qd,
producing VL-prompts (Pvl). These VL-prompts are then
fed into the LLM (e.g., T5 (Raffel et al., 2020)) to generate
more accurate object names. Finally, bounding box predic-
tions and binary classification scores are derived from the
decoder queries Qd and the object names are generated by
the generative LLM. During the inference phase, the Vision-
Language Aligner is omitted, achieving vocabulary-free
detection and effectively reducing inference complexity.
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Figure 2: Main architecture of the Open-Det framework. It consists of 4 collaborative components: (1) Object Detector
(ODR) for accelerating the bounding box training; (2) Prompts Distiller with Vision-to-Language Distillation module
(VLD-M) to bridge the semantic gap between Vision and Language; (3) Object Name Generator with the Text Denoising
approach to accelerate the training of the LoRa Head; (4) Vision-Language Aligner with BVLA-M to enhance the alignment
of Vision and Language. The Masked Alignment Loss and Joint Loss are introduced for correcting the supervision
information and enhancing binary classification consistency, respectively. Please refer to Sec. A.1 for simplified pipeline.

3.2. Object Detector

The Object Detector (ODR) plays a crucial role in gener-
ating bounding boxes and vision queries, which form the
foundation for object name generation. Inspired by the ef-
ficiency of DINO (Zhang et al., 2022a), which enhances
training through anchor box denoising, and the success
of one-to-many matching in accelerating convergence (Jia
et al., 2023; Zong et al., 2023; Hu et al., 2023), we further
design a novel decoder structure, improving training con-
vergence without requiring additional decoder branch and
enabling flexible number of objects detection.

Unlike existing methods (Jia et al., 2023; Zong et al., 2023;
Hu et al., 2023) that rely on additional branches or heads
to combine one-to-one and one-to-many matching, we sim-
plify the decoder design via decoupling these two matching
approaches. Specifically, the first four layers employ one-to-
many matching with cross-attention to enhance box local-
ization, while the last two layers use one-to-one matching
with self-attention to eliminate duplicate detections. Addi-
tionally, we aim to develop a more flexible OED framework
capable of detecting a variable number of objects, to address
the limitation of existing COD, VOD, and OED frameworks
that are restricted to a fixed number of objects due to their
reliance on predefined queries. To achieve this, we introduce
a threshold-based query selection method that adaptively
chooses queries Qd from encoder tokens. This design en-
sures both efficiency and flexibility in detecting varying

numbers of objects. The process can be formulated as:

Qid = {et ∈ E|σ(Linear(et)) > λ} (1)

where Qid indexes each token et from the encoder features
E, and the decoder queries Qd are selected from E accord-
ing Qid. The probability of each token et being chosen as a
query is calculated by a Linear head layer, where σ is the
sigmoid function and λ is the threshold (default: 0.05).

3.3. Vision-Language Aligner with BVLA-M

Vision-Language modalities alignment is a core component
in the label-matching process. The alignment score is com-
puted by measuring the similarity between the vision queries
Qd and the text embeddings Te. However, the channel di-
mension of Qd is usually smaller than that of Te; for exam-
ple, Qd has 256 channels while Te has 768. This significant
dimensionality gap results in insufficient information in the
vision queries compared to text embeddings. Consequently,
directly aligning these two features by mapping Qd into a
higher-dimensional space along the channel dimension, as
done in existing methods (Gu et al., 2021; Lin et al., 2022;
2024), may lead to suboptimal Vision-Language alignment.

To address this issue, we propose a simple yet effective Bidi-
rectional Vision-Language Alignment module (BVLA-M)
to enhance the Vision-Language alignment supervision dur-
ing training. Specifically, as shown in Fig. 2, we calculate
the alignment scores from both Vision-to-Language (V-to-L)
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Figure 3: Overall architecture of the proposed VLD-M.

and Language-to-Vision (L-to-V) perspectives to strengthen
the alignment between the Vision and Language modalities.
This process can be formulated as:

Salign = cos(Qd×MV L,Te)+cos(Qd,Te×MLV ) (2)

where Qd ∈ RN×dq (N is the number of queries and dq
denotes the channel dimension), and Te ∈ RM×dt (M is
the number of text embeddings and dt is the channel dimen-
sion). Salign ∈ RN×M is the alignment score matrix, and
cos denotes the cosine similarity. MV L and MLV are the
transformation matrices for V-to-L and L-to-V, respectively.

3.4. Vision-to-Language Distillation Module

The existing VLM models (Radford et al., 2021; Jia et al.,
2021a) are usually trained with easily accessible web-scale
image-text paired data. In contrast, the fine-grained region-
text data is hard to obtain due to the challenges of complex
labeling and its high cost (Zhong et al., 2022; Wu et al.,
2023a;b). This difficulty poses a significant challenge for
achieving effective region-text alignment in VLMs.

To address this issue, we propose a Vision-to-Language
Distillation Module (VLD-M), as presented in Fig. 3. Ex-
isting methods like RegionCLIP (Zhong et al., 2022) gen-
erate additional pseudo-labels for region-text data using
VLMs, while DVDet (Jin et al., 2024) transforms regional
embeddings into image-like representations by cropping
expanded predicted bounding boxes with handcrafted pa-
rameters to include background areas. In contrast, our
VLD-M enhances queries by transforming regional em-
beddings Qd into image-like representations and further
transferring knowledge from the VLM into these queries.
This approach effectively bridges the gap between vision
queries and image-level text embeddings from the VLM.

Specifically, VLD-M adaptively enriches the background
information around Qd by interacting it with the back-
bone B and encoder features E through deformable cross-
attention (Zhu et al., 2020) operations. This process adap-
tively samples token offsets around the query object, allow-
ing it to learn relevant background information, as illus-
trated in Fig. 3. The feed-forward network (FFN) is used
to re-weight queries, producing updated Qb and Qe. These
updated queries, along with the original Qd, are then passed
through MLP layers—comprising two linear layers and an
activation layer—to project the lower-dimensional queries
into the same dimensional space as Te along the channel
dimension. Finally, a linear layer fuses these queries, gener-
ating the VL-prompts Pvl.

Knowledge distillation from the VLM into VL-prompts Pvl

is achieved using Cosine Similarity Loss as supervision to fa-
cilitate object name generation. Given the text embeddings
Te and aligned indices V Lalign from the BVLA-M, we
first select the VL-prompts and text embedding pairs based
on these aligned indices and compute the Cosine Similarity
Loss between Pvl and Te, enabling effective knowledge
distillation from the VLM to the VL-prompts Pvl.

3.5. Object Name Generator

Noisy Alignment. In the early stages of training, the de-
coder queries Qd are under-trained and exhibit a large se-
mantic gap compared to the text embeddings, leading to
noisy and low-quality query-text alignment. Training with
such noises risks disrupting the pre-trained weights of the
LLM, especially the heavy-weight head layer responsible
for text generation, leading to inefficient and noisy training.

To address this issue, we freeze the head of the LLM (while
keeping other weights active) in early training stage and in-
troduce a LoRa Head (Hu et al., 2021) to accelerate training
(detailed in Sec.A.2). This approach prevents disruption of
the pre-trained LLM head weights and significantly reduces
the trainable parameters of the LLM head. Furthermore,
we observe that when text embeddings Te are fed into the
LLM (e.g., T5 (Raffel et al., 2020)) for text reconstruction,
the training loss decreases rapidly, indicating T5 model can
effectively process these embeddings to reconstruct the text.
Leveraging this insight, as shown in Fig. 2, we enhance the
robustness of the T5 model by adding Gaussian noise into
the text embeddings and feeding them into T5 for text recon-
struction. The noise follows a normal distribution N(0, σ2),
where σ is the standard deviation of the text embeddings
Te. This Text Denoising approach stabilizes training and
improves the model’s ability to handle noisy inputs.

3.6. Masked Alignment Loss and Joint Loss

In GenerateU, the Vision-Language alignment loss (namely
the BCE loss) is used to enhance the alignment between
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queries and text embeddings. This loss strengthens the
similarity between matched query-text pairs while applying
negative constraints to increase the dissimilarity between the
query and all unmatched text embeddings in the mini-batch.
However, it fails to account for the relationships among
object names within the images or mini-batch, leading to
contradictory losses and gradients that ultimately reduce
training efficiency, as detailed in Sec. A.3.

To address this issue, we introduce a Masked Alignment
Loss (MAL), which generates a binary mask M = Te ×
T⊤
e (where M ∈ RM×M and M is the number of text

embeddings) to compute the similarity between all paired
text embeddings. The mask is binarized using a threshold τ
(default: 0.99), assigning a value of 1 for the same categories
and a value of 0 to others. The MAL can be formulated as:

LMAL =− 1

NM
[(V Lalign ×M)⊙ log(Salign)+

(1− V Lalign ×M)⊙ log(1− Salign)]
(3)

where N and M are the number of queries and text em-
beddings, respectively. The matrix V Lalign ∈ RN×M

contains the aligned Vision-Language indices in one-hot
format, while Salign ∈ RN×M represents the alignment
score matrix. Our MAL loss works by utilizing this mask
to calibrate the alignment labels, thereby preventing the
occurrence of contradictory losses and gradients.

Additionally, our MAL approach differs fundamentally from
ScaleDet (Chen et al., 2023) in both methodology and ob-
jectives: ScaleDet unifies text labels via semantic similarity
(as soft label in MSE) to combine multi-dataset training;
in contrast, MAL resolves query-text matching conflicts
through similarity-binarized BCE updates.

Joint Loss for Positive and Negative Object Predictions.
The OED framework detects objects and generates their
names automatically during inference, meaning it cannot
compute the Vision-Language alignment scores of detected
objects for matching and selection of results. Additionally,
the number of detected objects is typically large, necessitat-
ing deduplication. Therefore, an additional head is applied
to perform binary classification on the decoder queries Qd,
identifying and filtering out duplicate detections.

However, the binary labels for each query are dynami-
cally assigned based on the Vision-Language alignment and
matching process: matched queries are labeled as positive
samples, while unmatched queries are labeled as negative
samples. This dynamic labeling increases the difficulty of
binary prediction for this head. In the Open-Det framework,
similar to DETR-like models (Carion et al., 2020; Zhang
et al., 2022a; Hu et al., 2023), the matching mechanism eval-
uates both the IoU score and the alignment score (analogous
to the classification score in COD detectors) between pre-
dicted boxes and ground truth boxes. Queries with higher

IoU and alignment scores are more likely to match ground-
truth boxes, while those with lower scores are more likely
to remain unmatched. Based on this insight, we propose
a novel Joint Loss to improve binary predictions by inte-
grating the binary score with IoU and alignment scores to
enhance their consistency. This loss can be formulated as:

LJL =− 1

N

N∑
i=1

[
(

√
pαi s

α
i u

1−2α
i − pi)

2yi log(pi)+

p2i (1−
√

pαi s
α
i u

1−2α
i )(1− yi) log(1− pi)

] (4)

where yi ∈ {0, 1} is the binary label, while pi, si, and ui

denote the binary score, alignment score, and IoU score,
respectively. N denotes the number of queries. α (default:
0.25) is the scale factor. The square root operation is applied
to prevent the product of these three scores from becoming
too small, which helps maintain numerical stability for train-
ing. The effectiveness analysis of Joint Loss, along with its
differences from Focal loss (Lin et al., 2017) and BCE loss,
is detailed in Sec. A.4 of the Appendix. The total losses for
model training are detailed in Sec. A.5.

4. Experiments
Datasets. We train our model with a small set of detection
data Visual Genome (VG) (Krishna et al., 2017), which con-
tains 77,398 images for training. Following the pioneering
work of GenerateU (Lin et al., 2024) in OED, our model
is evaluated on the commonly used zero-shot LVIS (Gupta
et al., 2019) dataset, which contains 1,203 categories. The
COCO2017 (Lin et al., 2014) and Objects365 (Shao et al.,
2019) are also used for performance evaluation.

Evaluation Metrics. Following the evaluation methodol-
ogy of the GenerateU framework, we compute the similarity
score between generated object names and annotated cat-
egory names using a fixed pre-trained text encoder. The
evaluation metrics include: average precision for rare cat-
egories (APr), common categories (APc), frequency cat-
egories (APf ), and all categories (AP ), respectively. To
ensure a fair comparison, we adhere to the protocols es-
tablished in popular works (Kamath et al., 2021; Li et al.,
2022b; Lin et al., 2024), evaluating on the 5k MiniVal subset
of the LVIS (Gupta et al., 2019) dataset.

Implementation Details. For a fair comparison, Open-
Det utilizes the same backbone model (e.g., Swin-Tiny and
Swin-Large (Liu et al., 2021)) and FlanT5-base (Chung
et al., 2024) generative language model as used in the Gen-
erateU framework. Unless otherwise specified, our models
are trained with a mini-batch size of 8 on 4 Tesla V100
GPUs, using the AdamW optimizer (Loshchilov, 2017) with
a weight decay of 0.05. The learning rates are configured as
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Table 1: Comparison results of the zero-shot domain transfer on LVIS MiniVal dataset. In row 2, LVIS∗ indicates that the
model is initially trained on GoldG (Kamath et al., 2021) and then fine-tuned using 10% of the LVIS data in MDETR. The
GRIT5M used for GenerateU training includes 5 million images, selected from the larger grounding dataset of GRIT (Peng
et al., 2023), which contains a total of 90.6M images. The details about the training epoch are presented in Sec. B.1.

Model Backbone Pre-Train Data Data Size Vocabulary-Free Epochs APr APc APf AP

MDETR (Kamath et al., 2021) ResNet101 GoldG,LVIS∗ 0.812M % - 20.9 24.9 24.3 24.2
MaskRCNN (He et al., 2017) ResNet101 LVIS 0.118M % - 26.3 34.0 33.9 33.3

Deformable DETR (Zhu et al., 2020) Swin-Tiny LVIS 0.118M % - 24.2 36.0 38.2 36.0

GLIP(A) (Li et al., 2022b) Swin-Tiny O365 0.660M % - 14.2 13.9 23.4 18.5
GLIP(C) (Li et al., 2022b) Swin-Tiny O365,GoldG 1.460M % - 17.7 19.5 31.0 24.9
GLIP(C) (Li et al., 2022b) Swin-Tiny O365,GoldG,CAP4M 5.456M % - 20.8 21.4 31.0 26.0

Grounding-DINO (Liu et al., 2023) Swin-Tiny O365,GoldG 1.460M % - 14.4 19.6 32.2 25.6
Grounding-DINO (Liu et al., 2023) Swin-Tiny O365,GoldG,Cap4M 5.460M % - 18.1 23.3 32.7 27.4

GenerateU (Lin et al., 2024) Swin-Tiny VG 0.077M ✓ 149 17.4 22.4 29.6 25.4
GenerateU (Lin et al., 2024) Swin-Tiny VG,GRIT5M 5.077M ✓ - 20.0 24.9 29.8 26.8

Open-Det (ours) Swin-Tiny VG 0.077M ✓ 31 21.0↑3.6 24.8↑2.4 30.1↑0.5 27.0↑1.6
Open-Det (ours) Swin-Tiny VG 0.077M ✓ 50 21.9↑4.5 25.1↑2.7 30.4↑0.8 27.4↑2.0

GenerateU (Lin et al., 2024) Swin-Large VG,GRIT5M 5.077M ✓ - 22.3 25.2 31.4 27.9
Open-Det (ours) Swin-Small VG 0.077M ✓ 31 26.0↑3.7 28.6↑3.4 32.8↑1.4 30.4↑2.5
Open-Det (ours) Swin-Large VG 0.077M ✓ 31 31.2↑8.9 32.1↑6.9 34.3↑2.9 33.1↑5.2

follows: 1×10−4 for both the Object Detector and Prompts
Distiller, and 2× 10−4 for the Object Name Generator.

4.1. Main Results

Compared to OVD models like GLIP (Li et al., 2022b),
Open-Det demonstrates significant advantages by eliminat-
ing the need for additional vocabulary priors in inference
and achieving higher model efficiency. As shown in Table 1,
Open-Det achieves superior performance with substantially
reduced training data. When trained using only 0.077M
data (11.7% of the data used by GLIP(A)), Open-Det out-
performs GLIP(A) by +6.8% in APr and +8.5% in AP.
Even compared to GLIP(C), which is trained on a much
larger dataset of 5.456M, Open-Det still achieves a +1.0%
higher AP while using just 1.4% of the training data. Ad-
ditionally, Open-Det’s data efficiency is further validated
against Grounding DINO (Liu et al., 2023), maintaining
consistent advantages with fewer training resources.

Compared to the pioneering OED framework of Genera-
teU (Lin et al., 2024), Open-Det framework demonstrates
faster convergence and higher performance. Specifically,
Open-Det achieves significant performance improvements,
with +3.6% in APr and +1.6% in AP, while requiring only
20.8% of the training epochs compared to GenerateU. Fur-
thermore, even when GenerateU is trained with additional
grounding data from GRIT5M (Peng et al., 2023), Open-
Det still outperforms it by +1.0% in APr, while using only
1.5% of the training data. Fig 1 illustrates the performance
curves in relation to the training epochs, clearly highlight-
ing Open-Det’s advantages in both performance and faster
convergence speed. These results underscore Open-Det’s

efficiency, scalability, and effectiveness in the OED task.

Extending Open-Det’s training from 31 to 50 epochs yielded
a +0.9% improvement in APr and +0.4% in AP. Notably,
Open-Det trained solely on VG dataset outperforms Gen-
erateU (trained on both VG and GRIT5M), demonstrating
+1.9% higher APr and +0.6% higher AP.

We further evaluate Open-Det with two larger backbones:
Swin-Small (using 4 V100 GPUs) and Swin-Large (using
4 A800 GPUs). As shown in Table 1, using only 1.5%
training data, Open-Det-Swin-S achieves an improvement
of +3.7% in APr (26.0% vs. 22.3%) and +2.5% in AP
(30.4% vs. 27.9%) than GenerateU-Swin-Large, demon-
strating its efficiency. When utilizing the larger backbone
of Swin-Large, Open-Det-Swin-Large significantly outper-
forms GenerateU-Swin-Large by +8.9% in APr (31.2%
vs. 22.3%) and +5.2% in AP (33.1% vs. 27.9%), further
confirming its superior effectiveness and efficiency.

Evaluation on COCO and Objects 365. Compared to
OVD, OED can directly detect objects in novel data under
zero-shot setting without requiring text priors. The results
in Table 2 indicate that using less training data, Open-Det
outperforms GenerateU by +2.2% AP on COCO2017 (Lin
et al., 2014) and +3.3% AP on Objects365 (Shao et al.,
2019), demonstrating both higher data efficiency and im-
proved detection accuracy.

4.2. Ablation Studies

Effectiveness of Open-Det Components. In Table 3, the
ablation results for each component in Open-Det demon-
strate their contributions: (1) The proposed ODR and
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Table 2: Evaluation on COCO and Objects 365 in a zero-
shot setting. The evaluation metric is AP.

Methods Backbone Pre-Train Data COCO Objects365

GenerateU Swin-Large VG 33.0 10.1
GenerateU Swin-Large VG,GRIT 33.6 10.5
Open-Det Swin-Large VG 35.8↑2.2 13.8↑3.3

BVLA-M improve the performance by enhancing both the
box convergence and the alignment between Vision and
Language modalities. (2) The VLD-M further boosts perfor-
mance by transferring knowledge from the VLM to the VL-
prompts, achieving notable gains of +1.6% in APr, +3.9%
in APc, and +2.8% in AP. This result demonstrates its criti-
cal effectiveness in bridging the semantic gap between vi-
sion and language domains. (3) The Object Name Generator
(ONG), incorporating the LoRa Head and Text Denoising
training approach, plays a critical role in improving the rare
class and overall performance. When combined with spe-
cially designed loss functions—Masked Alignment Loss
and Joint Loss—Open-Det achieves significant improve-
ments of +4.1% in APr and +0.7% in AP. These results
effectively confirm their roles in accelerating convergence,
enhancing training efficiency, and improving performance.

Table 3: Ablations on the components of the Open-Det.
“Losses” means the combination of the MAL and Joint Loss.

ODR BVLA-M VLD-M ONG Losses Eps APr APc APf AP

31 10.2 17.4 23.2 19.6
✓ 31 13.9 19.8 27.6 23.1
✓ ✓ 31 14.7 20.3 27.9 23.5
✓ ✓ ✓ 31 16.3 24.2 29.9 26.3
✓ ✓ ✓ ✓ 31 16.9 24.5 29.7 26.3
✓ ✓ ✓ ✓ ✓ 31 21.0 24.8 30.1 27.0

Ablations on the Losses. We propose the Masked Align-
ment Loss to eliminate contradictory losses and the Joint
Loss to enhance the binary classification. Table 4 indicates
that both losses contribute to performance improvements,
particularly for rare classes with limited training samples:
the Masked Alignment Loss increases APr by +1.7%, while
the Joint Loss boosts APr by +2.6%. When the two losses
are combined, the model achieves the best performance,
with significant gains of +4.1% in APr and +0.7% in AP.

Ablations on Object Name Generator Components. We
conduct ablation studies on the LoRa Head and Text De-
noising training approach, both designed to enhance LLM
convergence efficiency. As presented in Table 5, each com-
ponent individually improves performance, especially for
rare classes. When combined, they achieve optimal results

Table 4: Ablations on the proposed loss functions.

Masked Alignment Loss Joint Loss APr APc APf AP

16.9 24.5 29.7 26.3
✓ 18.6 24.2 30.1 26.6

✓ 19.5 23.9 30.0 26.5
✓ ✓ 21.0 24.8 30.1 27.0

than baseline, with APr and AP increasing by +5.7% and
+1.0%, respectively, confirming their effectiveness.

Table 5: Ablations on elements of Object Name Generator.

LoRa Head Text Denoising APr APc APf AP

15.3 23.5 30.1 26.0
✓ 16.5 24.5 29.9 26.4

✓ 19.9 23.2 29.9 26.2
✓ ✓ 21.0 24.8 30.1 27.0

4.3. Improvements in VL Alignment Scores

The Open-Det framework enhances Vision-Language (VL)
alignment through two innovative components: the BVLA-
M and the VLD-M. The BVLA-M focuses on improving
query-text alignment, while the VLD-M distills image-
text knowledge from a pre-trained VLM into aligned VL-
prompts, enabling more accurate object name generation. To
quantify the improvements in VL alignment, we compared
the alignment scores for Open-Det and GenerateU on the
LVIS MiniVal dataset (over 50,000 object instances) under
a zero-shot transfer setting. As shown in Fig. 8, Open-Det
achieves a higher alignment score of 0.555 ± 0.074, sig-
nificantly outperforming GenerateU (0.448 ± 0.026). This
demonstrates the superior capability of Open-Det in achiev-
ing robust VL alignment.

Furthermore, Open-Det outperforms GenerateU (as shown
in Table 1), which can be further supported by the higher
similarity score between the generated texts and ground
truth category names, as illustrated in Fig. 9 of the Ap-
pendix. Specifically, Open-Det achieves a similarity score
of 0.628 ± 0.067, while GenerateU scores 0.620 ± 0.077.
This demonstrates that the VLD-M distillation method for
VL-prompts in Open-Det is highly effective, enabling the
LLM to generate more precise and accurate object names.

4.4. Visualization and Analysis

As an efficient OED framework, Open-Det provides sig-
nificant advantages by detecting potential objects for any
images without requiring additional vocabulary priors, mak-
ing it highly practical and applicable in real-world scenarios.
In Fig. 4, we visualize the detection results on the LVIS
MiniVal data. Compared to human-labeled annotations and
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Figure 4: Visualization results for Ground Truth, GenerateU, and Open-Det on the LVIS MiniVal dataset. Open-Det
demonstrates superior capability in detecting a broader range of potential objects in images (indicated by yellow arrows),
covering large-scale objects, small objects, and fine-grained details, such as cabinet, rug, light, radiator, and fireplace in (a);
sidewalk, shadows, street, and small sign in (b); and sky, sky lift, head, and pole in (c); wall, ear, eye, and pillow in (d).

the results of GenerateU, our model shows the superior ca-
pability to detect a broader spectrum of potential objects and
accurately identify objects across varying sizes and granu-
larity in the images, effectively highlighting its advanced
capabilities and overall effectiveness. More visualizations
and analysis are presented in Sec. C.2 of the Appendix.

4.5. Limitations and Future Works

Similarly to the existing OED framework of GenerateU,
Open-Det’s performance is primarily constrained by cross-
modal semantic discrepancies between visual regions and
image-like textual embeddings. These discrepancies arise
from the interactions among the backbone, the detector,
the VLM, and the LLM. To mitigate this limitation, em-
ploying stronger foundation models, such as InternIm-
age (Wang et al., 2023) and Strip-MLP (Cao et al., 2023)
for vision backbone models, ALIGN (Jia et al., 2021b)
and CogVLM (Wang et al., 2024) for VLM models and
DeepSeek (Guo et al., 2025) for generative language model,
is an efficient method for further performance improving.
Additionally, training on supplementary datasets can serve
as an effective approach to enhance performance.

Furthermore, integrating a segmentation decoder module
into Open-Det framework will offer mask priors for more
precise regional and semantic feature extraction. This
enhancement can further address semantic gap in cross-
modal representations, transforming Open-Det into a uni-
fied detection-segmentation framework and boosting perfor-
mance in both tasks.

5. Conclusion
This paper presents Open-Det, a novel and efficient genera-
tive framework for the OED task. It accelerates the model
training for both the box detector and the LLM through
the specifically designed architecture and enhancing region-
text alignment between Vision and Language modalities.
This is achieved through two key components: the Bidirec-
tional Vision-Language Alignment module and the Vision-
to-Language Distillation module, incorporated by the pro-
posed Masked Alignment Loss and Joint Loss to further
improve training efficiency and performance. In summary,
Open-Det advances OED research by offering a robust and
efficient framework, paving the way for future exploration
of more flexible and practical OED approaches.
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A. Appendix for Method.
A.1. Main Pipeline of the Open-Det Framework

In Fig. 2 of the main text, we present the main architecture of Open-Det. To further clarify its workflow, we provide a
simplified pipeline in Fig. 5. During training, the input image is processed by the Detector to generate queries, which predict
bounding boxes and binary classification (positive and negative samples) results. Simultaneously, the text corresponding to
the objects in the image is fed into a frozen text encoder of the Vision-Language Model (VLM) to produce text embeddings.
Then, Open-Det distills Vision-Language alignment knowledge from the VLM into queries, generating VL-prompts. These
VL-prompts, along with text embeddings augmented with Gaussian noise, are input into the Large Language Model (LLM)
for text reconstruction. Finally, the LLM automatically generates the names of the objects detected by the box Detector.

The Text Denoising training approach improves the LLM’s training efficiency and robustness. The distillation module
bridges the semantic gap between VL-prompts and text embeddings, reducing reliance on large-scale datasets through
prompt distillation. The LoRa Head in the LLM reduces trainable parameters, further enhancing the overall training
efficiency. As a result, our model achieves significantly higher performance than GenerateU while being trained on just 4
V100 GPUs (compared to 16 A100 GPUs used by GenerateU).
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Figure 5: The simplified pipeline of the Open-Det framework. The Vision-Language Model (VLM) model and input texts

are only used in the training phase. The symbols and represent that the model weights are activated and frozen,
respectively.

A.2. Effectiveness of the LoRa Head in the LLM

Generative language models, such as T5, often feature a heavy-weight head, making training challenging. For example,
in the popular T5 (Raffel et al., 2020) model, the head layer responsible for generating object names contains 24.7M
parameters, mapping an input dimension of 768 to an output dimension of 32,128 (the vocabulary size of T5). By replacing
the standard head with a LoRa Head, the number of trainable parameters is reduced to 0.526M, which is only 2.12% of the
original parameter count. Additionally, the original pre-trained weights of the LLM head are frozen, preventing disruption
when noisy training occurs in the early stages. This significant reduction in trainable parameters of LLM Head enhances
computational efficiency while maintaining model performance.

A.3. Causes of Contradictory Alignment Loss

In Sec. 3.6 of the main text, we analyze the contradictory losses that arise in the existing query-text alignment loss (Lin
et al., 2024) for the OED task. In this section, we provide a detailed explanation of how these contradictory losses and their
associated gradients are generated.

The existing alignment loss in GenerateU is calculated using the binary cross-entropy (BCE) loss, based on the similarity
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Figure 6: Illustration of contradictory loss generation in the query-text alignment process.

between the query feature and text embeddings from a fixed CLIP (Radford et al., 2021) text encoder. For each object query,
the corresponding word in the text encoder is treated as a positive sample, while all other words in the same mini-batch are
treated as negative samples. This arrangement establishes a contrastive learning framework, where the model maximizes the
similarity between the query and its positive text embedding while simultaneously minimizing the similarity with negative
text embeddings.

However, this formulation introduces a potential conflict in the optimization process, leading to contradictory losses. As
shown in Fig. 6 (a), the image contains multiple instances of the same category, such as some people wearing hats. For
the alignment loss in GenerateU, as illustrated in Fig. 6 (b), only one text embedding is matched with each single query
(indicated by the red line as positive sample), while all other text embeddings are treated as unmatched (represented by black
dashed lines as negative samples). Consequently, the query generates a positive loss with the matched text embedding for
hat, while simultaneously generating negative losses with multiple unmatched text embeddings (including hat). However,
the text embeddings generated by the CLIP encoder for the same text (like “hat”) are identical. Therefore, the contradiction
arises because the gradients computed for the query feature during back-propagation are influenced by two opposing forces:

• Positive Gradient: The gradient from the positive sample (the corresponding text embedding) encourages the query
feature to move closer to the positive text embedding in the latent space.

• Negative Gradients: The gradients from the negative samples (all other text embeddings in the mini-batch) push the
query feature away from the negative text embeddings.

In summary, when positive and negative text embeddings are semantically similar (e.g., multiple instances of “hat”),
contradictory alignment loss arises, resulting in opposing gradients. This conflict leads to unstable updates and suboptimal
alignment. To address this issue, we introduce the Masked Alignment Loss, which corrects the labels to avoid generating
contradictory losses. Experimental results in Table 3 and Table 4 demonstrate its effectiveness.

A.4. Joint Loss: Effectiveness Analysis and Comparisons with Focal Loss and BCE Loss

As discussed in Sec. 3.6 of the main text, the positive and negative attributes of detected bounding boxes are predicted by a
binary head. During training, the binary classification label for each query is dynamically determined through the matching
process with ground truth boxes: matched queries are labeled as positive samples, while unmatched queries are labeled as
negative samples. This dynamic matching process is determined by the cost of the GIoU (Rezatofighi et al., 2019), the L1
distance between predicted boxes and ground truth boxes, and the alignment score between queries and text embeddings.
During model training, the matching status of each query can dynamically shift between matched and unmatched. This
fluctuation may result in conflicting supervision, generating contradictory gradients and causing unstable training.

To address this issue, we propose a novel Joint Loss, defined in Eq. 4, which integrates the IoU score ui, Alignment Score si,
and the binary classification score pi. To further illustrate its effectiveness, Fig. 7 visualizes the positive weights, negative
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weights, and Joint Loss in relation to variations in the IoU score, Alignment score, and binary classification probability.

(a) (b) (c)

Figure 7: 3D surface plots of (a) positive weights, (b) negative weights, and (c) Joint Loss. To simplify the visualization in
3D space, we assume that the IoU score ui and the alignment score si in Joint Loss have the same value (i.e. ui = si) for
queries.

In Fig. 7, we simplify the three-dimensional problem (pi, ui, si) to a two-dimensional plane by assuming ui = si.
This assumption implies that the model exhibits a consistent correlation between the predicted bounding boxes and the
target categories, meaning that the localization accuracy (IoU) and semantic alignment (alignment score) are aligned (for
convenience, we refer to these two scores as the IA Score). This simplification facilitates easier visualization and analysis of
the relationships among the variables. Specifically, the effectiveness of our Joint Loss can be summarized as follows:

• Positive Weights: As shown in Fig. 7 (a), when the IA Score and probability pi are close (or consistent) in value, it
indicates that the binary head accurately predicts the binary classification, aligning well with both localization accuracy
and semantic alignment. In this scenario, the positive weight remains relatively small (in the diagonal area at the center
of the figure), which contributes to training stability. This consistency allows the model to quickly adjust its gradients
and converge when the matching state changes. Conversely, when the IA Score or probability is significantly higher
than the other—indicating inconsistent—it suggests an incorrect probability prediction. This inconsistency stimulates
an increase in positive weights (in both the left and right corners of the figure), thereby enhancing the loss of weight for
positive samples.

• Negative Weights: During training, positive samples are typically scarce, whereas negative samples are more abundant,
leading to a significant imbalance of samples. This imbalance challenges the model to effectively detect the rare
positive samples. In addition, large negative weights can drive the binary head’s predicted probability closer to 0,
potentially further reducing the prediction of positive samples. To address this, we carefully design the negative weights
in the Joint Loss, as illustrated in Fig. 7 (b): (1) When the probability pi is close to the IA score (indicating they are
consistent), it suggests that the binary head predicts an accurate binary classification score, regardless of whether
the current dynamic matching is correct or not. Specifically: if both scores are high or low (along the diagonal in
the figure), the probability prediction is relatively accurate; if the IA score is high but the probability score is low
(in the right corner of the figure), it likely indicates an incorrect label, and the negative weights should be small to
avoid introducing incorrect supervision. In both scenarios, small negative weights help mitigate training instability
caused by label changes in dynamic matching and maintain the model’s ability to detect positive samples. (2) Only
when the IA score is low and the probability score is high (in the left corner of the figure), do the negative weights
increase significantly. This indicates that the current matching and labels are correct, but the binary head’s prediction is
incorrect. In this case, the negative weights are increased to reduce the predicted probability score for the negative
sample, improving the model’s predictions.

• Joint Loss: The 3D surface plot of the Joint Loss is presented in Fig. 7 (c). From the plot, we can observe that: (1)
When the IA score and the probability score are consistent (along the diagonal of the figure), it indicates accurate
probability predictions, resulting in a smaller loss. (2) In contrast, when they are inconsistent (in both the left and right
corners), it suggests inaccurate probability predictions, leading to a larger loss.
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In summary, the Joint Loss effectively integrates the alignment score, IoU score, and probability score, mitigating incorrect
supervision and training instability caused by dynamic matching. This results in a significant improvement in model
performance, as demonstrated in Table 3 and Table 4 of the main text. Both theoretical analysis and experimental results
validate the effectiveness of the Joint Loss.

Differences from Focal Loss and BCE Loss: Compared to Focal loss (Lin et al., 2017) and BCE loss, the proposed
Joint loss adjusts the binary loss weights using consistent weights by associating the IoU score, alignment score, and binary
score (), adaptively generating a “soft loss”. For positive samples, the weight increases as the difference between the binary
score and the IA Score grows; for negative samples, the weight increases only when the IA Score is notably high. This
design effectively mitigates the negative impact of noisy labels from matched queries during dynamic matching and benefits
rare-class detection, enhancing both training efficiency and accuracy. In contrast, Focal Loss and BCE Loss are limited to
computing a “hard loss” based solely on the matching results of queries. This hard loss can lead to contradictory supervisory
and gradients when the matching state of a query changes during the dynamic matching process in model training.

A.5. Composition of Multiple Loss Functions

As presented in Fig. 2, the end-to-end OED framework of Open-Det consists of four collaborative components. The loss
functions are also comprised of four parts: the loss from the Object Detector, the loss from the Prompts Distiller, the loss
from the Vision-Language Aligner, and the loss from the Object Name Generator. The total loss can be formulated as:

L = LODR + LVLD + LVLA + LONG (5)

where LODR represents the loss associated with the Object Detector for bounding box generation; LVLD denotes the
distillation loss from the Vision-Language Model to the VL-prompts; LVLA indicates the alignment loss between the query
and the text embeddings; and LONG refers to the loss from the Large Language Model for generating object names.

The details of these loss functions are as follows:

(1) The Object Detector Loss. This loss is similar to those used in most transformer-based detectors (Carion et al., 2020;
Zhang et al., 2022a; Hu et al., 2023; Lin et al., 2024), including the GIoU (Rezatofighi et al., 2019), L1 loss for bounding
box generation. Additionally, it incorporates our proposed Joint Loss for positive and negative object predictions:

LODR = LGIoU + LL1 + LJL (6)

(2) The Vision-Language Distillation Loss. This loss is the cosine similarity loss for mapping the query to its associate
text-embedding:

LVLD = 1− cosine(Qd,Te) (7)

where Qd and Te represent the query features and text-embeddings, respectively.

(3) The Vision-Language Alignment Loss. This loss is the proposed Masked Alignment Loss:

LVLA = LMAL (8)

(4) The Object Name Generator Loss. Similar to the language modeling loss used in GenerateU (Lin et al., 2024), we
adopt cross-entropy loss to train its sequence-to-sequence architecture of the T5 (Raffel et al., 2020) model in our Object
Name Generator. This loss measures the difference between the model’s predicted token probabilities and the actual target
tokens. It is a standard loss function for text generation tasks and is widely used in natural language processing (NLP). This
loss can be formulated as:

LONG = −
N∑
i=1

V∑
j=1

yi,j log(ŷi,j) (9)

where N and V represent the number of tokens in the output sequence and the size of the model’s vocabulary, respectively.
yi,j denotes the ground truth label for the i-th position in the output sequence and the j-th token in the vocabulary. It is a
one-hot encoded vector where the correct token is 1, and all others are 0. ŷi,j represents the predicted probability for the i-th
position in the output sequence and the j-th token in the vocabulary. This is the probability assigned by the model to each
token in the vocabulary.
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B. Appendix for Experiments.
B.1. Details of Training Epochs

As shown in Table 1 of the main text, the results in rows 8, 9, and 11 correspond to the GenerateU and Open-Det models,
both trained using Iteration-based training on the same VG (Krishna et al., 2017) dataset. However, due to differences in
their training devices and batch sizes, directly comparing the number of iterations is not feasible. To enable a fair comparison,
we convert iterations into epochs, providing a consistent measure of how many times each model has seen the entire dataset,
independent of batch size or hardware differences.

Specifically, GenerateU (Lin et al., 2024) is trained using 16 A100 GPUs with a batch size of 64 for 180,000 iterations, while
Open-Det is trained using 4 V100 GPUs with a batch size of 8 for 300,000 iterations. As presented in Table 6, Open-Det
achieves higher performance with only 31 training epochs, which is 20.8% of the epochs required by GenerateU (149
training epochs). This highlights that our model significantly accelerates training convergence while maintaining superior
performance.

Table 6: Training epochs for GenerateU and Open-Det.

Model Training Data Image Size Training Devices Batch Size Iteration Epochs APr APc APf AP

GenereteU (Lin et al., 2024) VG (Krishna et al., 2017) 77,398 16 A100 64 180,000 149 17.4 22.4 29.6 25.4
Open-Det (ours) VG (Krishna et al., 2017) 77,398 4 V100 8 300,000 31 21.0↑3.6 24.8↑2.4 30.1↑0.5 27.0↑1.6

B.2. Ablation Study: Freezing vs. Training LLM

The LLM is a core component of the Open-Det framework, enabling object category recognition and name generation. To
assess its impact, we compare two training strategies for the OED task:

• Freezing the LLM weights (only activating the head);

• Activating all of the LLM weights.

As shown in Table 7, our Open-Det framework achieves superior performance compared to GenerateU in both training
strategies, with improvements of +5.6% and +3.6% in APr, and +7.7% and +1.6% in AP, demonstrating consistent and
significant superiority over GenerateU.

Notably, activating the LLM weights of Open-Det further boosts performance, yielding additional gains of +10.5% in APr

and +7.0% in AP. These performance stem from the domain shift between the image-text data used for LLM pre-training
and the region-text alignment required for detection tasks. Experimental results demonstrate that Open-Det effectively
enhances the region-text alignment, leading to superior overall performance.

Table 7: Ablation results on the training strategy of Freezing LLM vs. Training LLM. The symbol “†” indicates that the
model was trained by us using the public official code of GenerateU, utilizing 4 V100 GPUs.

Model Backbone LLM Pre-train Data Data Size Epochs APr APc APf AP

GenerateU† (Lin et al., 2024) Swin-Tiny Freeze VG 0.077M 31 4.9 6.1 19.2 12.3
Open-Det(ours) Swin-Tiny Freeze VG 0.077M 31 10.55.6 15.08.9 26.16.9 20.07.7

GenerateU (Lin et al., 2024) Swin-Tiny Train VG 0.077M 149 17.4 22.4 29.6 25.4
Open-Det(ours) Swin-Tiny Train VG 0.077M 31 21.0↑3.6 24.8↑2.4 30.1↑0.5 27.0↑1.6

C. Appendix for Results Visualization.
C.1. Visualization of Query-Text Alignment Score and Text Similarity Score

For each matched query, we can compute the query-text alignment score and text similarity score, simultaneously. The
query-text alignment score measures the cosine similarity between the query and the matched text embedding. The text
similarity score evaluates the cosine similarity of text embeddings between the generated text and ground truth object names.
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In Sec. 4.3 of the main text, we compare the Vision-Language alignment scores (query-text alignment) and text similarity
scores of Open-Det and GenerateU (Lin et al., 2024). The results show that:

• Vision-Language Alignment: Open-Det achieves significantly higher query-text alignment scores than GenerateU,
with scores of 0.555 compared to 0.448, as shown in Fig. 8. This represents a +23.88% improvement over GenerateU,
confirming Open-Det’s superior ability to align visual and textual information.

• Text Generation Accuracy. Open-Det also achieves higher text-embedding similarity scores between generated object
names and ground truth object names, demonstrating its ability to generate more accurate object names.

Figure 8: Comparison of VL alignment scores between GenerateU and Open-Det using violin and box plots.

In Fig. 9 (a), we visualize the alignment scores and text similarity scores for matched queries in a 2D space. The figure
illustrates that Open-Det achieves higher alignment scores and text similarity scores, with points being more densely
distributed. This suggests that Open-Det is more robust in both query-text alignment and object name generation.

In Fig. 9 (b), we further visualize these two scores alongside the Integrated Alignment-Similarity Score (the product of the
two scores for each query) in a 3D space. The figure shows that most points for Open-Det are consistently positioned above
those of GenerateU, further confirming our model’s higher consistency and superior ability in accurate alignment and object
name generation.

C.2. Visualization and Analysis for Open-Ended Detection Results

Due to space constraints, Fig. 4 in the main text includes partial images of zero-shot domain transfer results on the LVIS
MiniVal dataset. To further demonstrate the effectiveness of the Open-Det model, we provide additional visual comparisons
in Fig. 10 and Fig. 11, showcasing results from Ground Truth, GenerateU, and Open-Det. These visualizations offer a
comprehensive evaluation of the model’s performance across various conditions, as detailed below:

• Variety of Object Types: The evaluation includes both single and multiple objects, covering specific categories such
as humans, animals, vehicles, buildings, food, and various other objects.

• Diverse Scenarios: The results span a wide range of environments, including indoor and outdoor settings, as well as
scenes featuring skies, streets, oceans, static scenes, and dynamic scenes.

• Scale and Granularity: The visualized objects vary in scale, from small to large, and include both coarse-grained and
fine-grained object types.

Specifically, detection results that surpass GenerateU are marked with yellow arrows. Open-Det demonstrates superior
performance in the following key aspects of Open-Ended Detection:

• Superior detection ability from coarse-grained to fine-grained objects detection: Open-Det is capable of detecting
both coarse-grained and fine-grained objects, demonstrating superior region-text alignment compared to GenerateU.
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(a) (b)

Figure 9: Visualization of query-text alignment score and text similarity score in zero-shot domain transfer on LVIS
MiniVal dataset. (a) Visualization of alignment scores and text similarity scores for each matched query in a 2D space. (b)
Visualization of both scores along with the Integrated Alignment-Similarity Score in a 3D space.

For instance, as shown in Fig. 10 (a) Open-Det detects coarse-grained objects like large-scale grass and fine-grained
details such as the bear’s eye and mouth, outperforming GenerateU. Similar detection results can be observed in Fig. 10
(b) ∼ (h) and Fig. 11, across objects of humans, animals, vehicles, buildings, and so on.

• Capability to detect more potential objects: For example, as shown in Fig. 11 (e), Open-Det identifies various objects
on the table, such as a lanyard, a pen, and even the woman depicted within the book cover, which is not detected by
Ground Truth or GenerateU. Similar detection results can be observed in Fig. 10 and Fig. 11.

• More accurate object name generation: For example, in Fig. 11 (b), Open-Det generates more precise object names,
such as detecting the yellow traffic line on the street as a “yellow line”, and identifying the yellow school bus as a
“school bus” and ”yellow bus”, providing more accurate and descriptive categories.

• Enhanced detection accuracy for occluded and blurred objects: We also observe that Open-Det excels in detecting
occluded and blurred objects. Examples include: 1) In Fig. 10: the occluded elephant in (b), the blurred plants and
occluded person in (e), the occluded car in (f), and the blurred shoes in (h); 2) In Fig. 11: the occluded skis (with more
accurate detection boxes than Ground Truth and GenerateU) in (f) and the occluded person in (h). These instances are
highlighted with red arrows for clarity.

In conclusion, our Open-Det framework demonstrates several key advantages: faster training convergence, higher training
efficiency with smaller datasets and fewer GPU resources, and superior overall performance. These strengths, supported by
the accompanying visualizations, highlight the model’s ability to automatically detect a wide range of potential objects from
coarse-grained to fine-grained without requiring additional vocabulary priors. This capability holds significant practical
value for real-world applications, such as autonomous driving, security, and intelligent transportation systems.
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Figure 10: Visualization of detection results for Ground Truth, GenerateU, and Open-Det models on the LVIS MiniVal
dataset. The scenes feature a variety of object types and levels of granularity.
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Figure 11: Visualization of detection results for Ground Truth, GenerateU, and Open-Det on the LVIS MiniVal dataset. The
results feature diverse scenarios, such as streets, oceans, skies, and so on.
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