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ABSTRACT

Commonsense question answering (QA) requires to mine the clues in the context
to reason the answer to a question, and is a central task in natural language pro-
cessing. Despite the advances of current pre-trained models, e.g. BERT, they often
learn artifactual causality between the clues in context and the question because of
similar but artifactual clues or highly frequent question-clue pairs in training data.
To solve this issue, we propose a novel DynamIc Self-sUperviSed Erasure (DIS-
USE) which adaptively erases redundant and artifactual clues in the context and
questions to learn and establish the correct corresponding pair relations between
the questions and their clues. Specifically, DISUSE contains an erasure sampler
and a supervisor. The erasure sampler estimates the correlation scores between
all clues and the question in an attention manner, and then erases each clue (ob-
ject in image or word in question and context) according to the probability which
inversely depends on its correlation score. In this way, the redundant and arti-
factual clues to the current question are removed, while necessary and important
clues are preserved. Then the supervisor evaluates current erasure performance by
inspecting whether the erased sample and its corresponding vanilla sample have
consistent answer prediction distribution, and supervises the KL divergence be-
tween these two answer prediction distributions to progressively improve erasure
quality in a self-supervised manner. As a result, DISUSE can learn and estab-
lish more precise corresponding question-clue pairs, and thus gives more precise
answers of new questions in present of their contexts via reasoning the key and
correct corresponding clues to the questions. Extensive experiment results on the
RC dataset (ReClor) and VQA datasets (GQA and VQA 2.0) demonstrate the su-
periority of our DISUSE over the state-of-the-arts.

1 INTRODUCTION

Given a context, e.g. an image that contains comprehensive logical relations among the objects, the
commonsense question answering (QA) task aims at extracting the key clues, e.g. objects’ relations
or locations or properties (color, shape, etc), from the context to precisely reason the answer of a
question. Because it has various real applications, such as AI customer service (Yoon et al., 2016),
intelligent navigation (Das et al., 2018), and web-based QA system (Parthasarathy & Chen, 2007),
the QA task has become one of the most important tasks in natural language processing and is widely
studied in recent years.

One kind of popular and effective approaches for solving QA is pre-training methods. For example,
transformer (Vaswani et al., 2017) based models, such as BERT (Devlin et al., 2019; Liu et al., 2019)
and LXMERT (Tan & Bansal, 2019; Lu et al., 2019), are first trained from a large corpus, and then
fine-tuned on labeled data of a specific downstream task. Despite the advance achieved by these pre-
trained models, they still suffer from learning precise question-clue pairs to well reason the answer
of the question from the clues in the context. Here clues is referred to as objects in an image for
visual question answering(VQA) or words in a context for reading comprehension(RC). There are
three possible reasons that results in the incorrect question-clue pairs in the pre-training methods. 1)
The similar clues can confuse the model to well extract the exact clues for a specific question. For
instance, Figure 1 (upper left) shows an example of this incorrect question-clue weakness. When
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Figure 1: An overview of the DISUSE. The left part reveals the pre-trained models could learn
artifactual causality for the question-clue pair relations, and make incorrect prediction. The right
part reveals our DISUSE can relieve this faultiness by erasing less important clues and preserves
more important ones in the form of probability under the help of erasure sampler. The dotted boxes
represent the corresponding objects are erased, and the digits denote the probabilities of erasure.

asked the question that “What kind of furniture is behind the shoes?”, the pre-trained models cannot
learn the real positional information since the object “bed” and “closet” have a similar location when
taking shoes as a reference in the 2D image. In this way, when querying the object near the shoes, it
is hard to decide to choose bed or closet. 2) The highly frequent question-clue pair patterns can bias
the learning of the model (Tang et al., 2020; Agarwal et al., 2020). Figure 1 (lower left) explains
that when asked “What is the piece of furniture behind the bed?”, the pre-trained models predict the
erroneous ”table” since the frequency of the “bed-table” pair is larger than the “bed-closet” pair in
the training data. 3) For the abundant clues in the complicated context, it is also hard to find the key
clues. This is because the words and objects pass message with each other through the self-attention
mechanism, according to (Goyal et al., 2020), most of the clues in the context share information and
present similar and redundant features in the pre-trained models.

Contributions. To resolve the above issue, we propose a novel and general DynamIc Self-
sUperviSed Erasure (DISUSE) method which adaptively erases redundant and artifactual clues in
the context and questions to learn and establish the correct corresponding question-clue pair rela-
tions. DISUSE is a general framework and can be applied to any pre-trained language models, e.g.
BERT (Devlin et al., 2019) for RC, and multi-modal models, e.g. LXMERT (Tan & Bansal, 2019)
for VQA. It consists of an erasure sampler and a supervisor. Given a context and a question, our
erasure sampler first employs a self-attention layer at each layer of a pre-trained model to estimate
1) the correlation score of each clue in the context to the current question and 2) a soft boundary
which determines how many clues will be erased. Then, based on the soft boundary, our sampler
proposes a novel min-boundary normalization for transferring the correlation score of each clue into
an erasure probability such that the clues with correlation scores lower than the soft boundary are
considered as unnecessary and have higher probabilities of erasure. Finally, according to the esti-
mated probability of erasure, our erasure sampler can erase the unnecessary and artifactual clues and
preserves the key clues to the current question, leading to more precise corresponding question-clue
pairs and better performance. For example, as shown in the right part of Figure 1, the objects of
lower correlation scores are regarded as unnecessary and artifactual clues to the question and as-
signed to a higher probability of erasure. If the object “closet” is erased in Figure 1 (upper right),
there will be less noisy information and thus the correct answer, namely, “bed”, will have higher
prediction confidence. If the object “table” are erased in the Figure 1 (lower right), the data bias can
be alleviated to some extent. In both cases, erasing unimportant and artifactual clues can give higher
change to obtain the precise clues and thus correct answers.

To evaluates the performance of the erasure sampler, the supervisor inspects whether the erased
sample and its vanilla sample have consistent answer prediction distribution, and supervises the
KL divergence between these two distributions to progressively improve erasure quality in a self-
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supervised manner. Specifically, similar to self-supervised learning (Grill et al., 2020; Chen et al.,
2020), DISUSE consists of online and target networks. It respectively feeds the vanilla context-
question pairs and the erased pairs into online and target networks to predict the answer distribution
pv and pe (probability of each answer option). If the current erasure sampler is of high quality,
then the answer distribution pe will be very similar to pv , since using the preserved key clues can
still commendably predict the answer as same as all clues. In this case, pe and pv has small KL
divergence. Otherwise, if pe and pv are far from each other and have large KL divergence, it means
the quality of the preserved clues is poor since it cannot predict the answer as same as using all
clues. Inspired by this key observation, the supervisor utilizes KL divergence to improve the erasure
sampler by feeding back the evaluation information to it. The online and target networks are trained
with cross-entropy loss over ground-truth answers as well as KL divergence and share parameters
with each other following (Chen et al., 2020).

Experimental results on the RC dataset (Reclor (Yu et al., 2020)) and VQA datasets (Goyal et al.,
2017; Hudson & Manning, 2019) demonstrate the advantages of the proposed method over pre-
trained models. More importantly, our DISUSE significantly outperforms other contrastive methods
by a large margin and achieving new state-of-the-art on all datasets. Furthermore, we also conduct
extensive ablation experiments to validate the effectiveness and robustness of the proposed DISUSE.

2 RELATED WORK

2.1 COMMONSENSE REASONING

Commonsense question answering (Yu et al., 2020; Hudson & Manning, 2019; Goyal et al., 2017)
is a sub-branch of commonsense reasoning (Davis & Marcus, 2015) requires comprehensive under-
standing and compositional reasoning for the knowledge in the real world. Although this kind of
knowledge and reasoning is natural to human beings, it is infamously disastrous for machines due
to the lack of natural language inference ability (Storks et al., 2019). To address this issue, various
approaches have been developed. (Kim et al., 2019) integrates attention mechanisms into densely
connected RNN to promote the system to make accurate entailment and contradiction decisions.
MAC network (Hudson & Manning, 2018) is proposed for VQA, consisting of chained cells each
of which maintains a separation between control and memory. Another line of this research lies in
building knowledge graphs. KG-MRC (Das et al., 2019) system is employed to construct dynamic
knowledge graphs recurrently from procedural text. Bipartite knowledge graphs are generated to
track the evolving states of entities. And ReGAT (Li et al., 2019) encodes RoIs of each image into
a graph and then exploits explicit relations between objects and implicit relations between image
regions to answer semantically-complicated questions grounded in an image.

2.2 SELF-SUPERVISED LEARNING

BERT-like models. Learning language representations from large-scale texts in an unsupervised
manner has attracted extensive attention. Recently, there has been a large amount of pre-trained rep-
resentation models, achieving dominating performance in commonsense reasoning tasks. We will
choose several popular models to discuss in this section. Depending on the superiority of Trans-
former (Vaswani et al., 2017), unidirectional GPTs (Radford et al., 2018; 2019) which are trained
with next-word prediction, and bidirectional BERT (Devlin et al., 2019) which regards masked lan-
guage modeling (MLM) and next sentence prediction (NSP) as two pre-training tasks are proposed.
Motivated by the success of BERT (Devlin et al., 2019) , other BERT-like models have been devel-
oped to further promote the performance of it. RoBERTa (Liu et al., 2019) is a robustly optimized
method and trained with much larger mini-batches and learning rates to enhance on the MLM. Fur-
thermore, cross-modal pre-trained models such as LXMERT (Tan & Bansal, 2019) and ViLBERT
(Lu et al., 2019) are also presented for joint representations of vision and language. Since these
methods heavily rely on artifactual causality between the clues in training data, we propose an adap-
tive method, which can erase redundant and unnecessary clues to establish the correct corresponding
pair relations between the clues and their questions.

Self-supervised models. Recent unsupervised studies (Wu et al., 2018; Hjelm et al., 2019; Oord
et al., 2018) are proposed for visual representation learning by employing contrastive loss (Hadsell
et al., 2006). Since these methods build dynamic dictionaries, MoCo (He et al., 2020) maintains
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Figure 2: Framework of the proposed DISUSE for commonsense reasoning. The upper left part
expresses the vanilla context/question pair and its erased pair generated by erasure sampler which
can assign a probability of erasure to each clue and is shown in the middle part. The supervisor in
the right part is employed to progressively improve the quality of erasure sampler by maximizing
agreement between the erased sample and its vanilla sample over answer prediction distribution.

dictionaries that are large enough and consistent on-the-fly similar to BERT (Devlin et al., 2019).
SimCLR (Chen et al., 2020)is introduced which requires neither specialized architectures (Hjelm
et al., 2019) nor a memory bank (Wu et al., 2018), benefiting from the composition of data aug-
mentation, learnable transformation, larger batch sizes, and more training steps. Inspired by the
momentum update procedure in MoCo, BYOL (Grill et al., 2020) develops online and target net-
works to directly bootstrap the representation. Different from the existing contrastive loss upon
feature space, we propose a new supervisor directly performed upon answer distributions.

3 METHOD

In this section, we elaborate on the proposed DISUSE for commonsense reasoning task. As illus-
trated in Figure 2, given a question Q = {q1, q2, ..., qm} grounded in a context C = {c1, c2, ..., cn},
the goal of QA systems is to choose the most plausible correct answer â out of multiple answer
options A. For reading comprehension task, the context C denotes a paragraph and every cn ∈ c
is a word. For visual question answering (VQA) task, the context C is a set of the objects detected
by Faster R-CNN (Ren et al., 2015), in which each object is associated with its RoI feature and
bounding-box feature (Tan & Bansal, 2019).

Suppose the network p(A | C,Q,Θ) parametrized by Θ can predict the probability (vector) of the
options in A when feeding the context C and the question Q. Based on these definitions, the vanilla
training loss of the commonsense reasoning task can be formulated as

LQA = −
∑|A|

i=1
yi log pi with p = p(A | C,Q,Θ) ∈ R|A|, (1)

where the one-hot vector y = [y1,y2, · · · ,y|A|] denotes the ground-truth label of question Q
in present of the context C; |A| denotes the number of options in A. After training the network
p(A | C,Q,Θ), one can easily predict the answer â = argmaxa∈A p(A | C,Q,Θ).

However, since manually labeled data are expensive and are not sufficient in most piratical setting,
the pure supervised learning model equation 1 cannot be well trained and usually suffers from un-
satisfactory performance. To solve this issue, pre-training methods, e.g. BERT (Devlin et al., 2019;
Liu et al., 2019) and LXMERT (Tan & Bansal, 2019; Lu et al., 2019), are developed. They first
use a large corpus to train their model in an unsupervised manner, and then fine-tune the models on
labeled data of a specific downstream task. But as aforementioned in Sec. 1, these methods cannot
well learn and establish precise question-clue pairs to well reason the answer of a question. Since
in absent of any guided information for the unsupervised pre-training, the similar clues, highly fre-
quent question-clue pair patterns, and abundant clues in the complected context can easily confuse
or bias the model to well extract the exact clues for a question (Goyal et al., 2020).
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To solve this issue, we propose DISUSE which adaptively erases redundant and artifactual clues in
the context and questions to learn and establish the correct question-clue pairs. As shown in Fig-
ure 2, DISUSE mainly contains an erasure sampler and a supervisor. DISUSE first concatenates a
question Q and its context C into a pre-trained model, such as BERT, to generate hidden features
and attention score matrics via self-attention mechanism (Vaswani et al., 2017) at each layer. For
self-attention, one can compute the similarity between the query vector and key vector that both
come from the same input as the attention scores which measures the importance of the query vec-
tor (a clue). Then the erasure sampler estimates the correlation scores between all clues and the
question by using the generated hidden features and correlation scores, and then erases each clue
according to the probability which inversely depends on its correlation score. Next, the supervisor is
designed to inspect whether the erased sample and its vanilla sample have consistent answer predic-
tion distribution and improve erasure quality in a self-supervised manner. In this way, DISUSE can
learn more precise corresponding question-clue pairs and provides better reasoning performance.
In the following, we will introduce the erasure sampler and supervisor in Sec. 3.1 and Sec. 3.2,
respectively.

3.1 ERASURE SAMPLER

Since the erasure sampler needs to adaptively erase redundant and artifactual clues in the context and
questions, it is naturally critical to determine which clues are important and should be preserved, and
which are unimportant and should be erased. Therefore, we propose a criterion called soft boundary
to determine the importance of the clues in the context and question.

Soft Boundary. Our erasure sampler determines whether to erase each clue in the input of each
layer in the pre-trained model. Here we employ a self-attention layer Att to implement our era-
sure sampler. Att takes embedding features of the context and question or hidden features de-
noted as Ĉ, Q̂ from last layer as input, and produces hidden features F and attention scores ma-
trix M: F,M = Att(Ĉ, Q̂). The overall correlation scores of the i-th clue are then accumulated
from attention scores: Cori =

∑
i′ M[i′, i]. Meanwhile, the hidden features F is fed to a MLP,

a.k.a. projection head in self-supervised learning, to predict a probability PC of each clue as
PC

i = 1 − Sigmoid(MLP(Fi)), where Sigmoid(MLP(Fi)), linearly regressed from hidden fea-
tures of each clue, measures the importance of it. Then we can determine the number of clues that
should be erased as: num = bE(PC) ∗ Nc, where N denotes the total clue number. Then the soft
boundary is found via finding the num-th smallest value of correlation scores.

[4.16, 0.74, 0.56, …, 9.08, 1.69 ,…, 3.30, 10.28, 9.63]

[0.44, 0.05, 0.03, …, 0.00, 0.24 ,…, 0.34, 1.00, 1.00]
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Context + Question + Answer Input:
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With num=95 Soft Boundary

Figure 3: Detailed procedure of the erasure
sampler. The highlight digits represent the
soft boundary and its corresponding proba-
bility of erasure.

Probability of Erasure. Ignoring the correlation scores
of clues, the aforementioned probability PC is inade-
quate to determine which clues should be erased. We can
conclude from the computing formula of correlation score
Cori: if some clues are essential, they will be attended
by other clues and of high correlation scores. So the clue
with correlation scores lower than the soft boundary is
considered as unnecessary and artifactual clue, and is as-
signed to a higher probability of erasure. Thus the era-
sure sampler produces a fine probability P F depending
on correlation scores and soft boundary. Inspired by Min-
Max normalization (Patro & Sahu, 2015), we implement
a new algorithm called Min-Boundary normalization:

P F
i = 1−min

(
max

(
Cori − boundary

boundary −Cormin
, 0

)
, 1

)
,

where Cormin indicates the minimum of correlation
scores. Our erasure sampler benefits from this normalization in two aspects: 1) the sampler is able
to generate personalized erased sample by assigning higher probabilities of erasure to unnecessary
clues; 2) compared to Min-Max normalization which normalizes the value to [0, 1], P F

i will be 1 as
long as its correlation score is no more than the soft boundary and P F

i will be 0 as long as its corre-
lation score is no less than 2 ∗ boundary −Cormin. Consequently, Min-Boundary normalization
encourages the sampler to preserve more relatively important clues and erase more redundant ones.
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Figure 3 shows an instance to how interpret the correlation score, soft boundary and probability of
erasure are generated by the erasure sampler.

Hard Example Mining. The above strategy works well for easy and relatively hard samples which
often dominate the whole datasets, since the attention layer could well estimate the attention score of
each clues which is also demonstrated by our experimental results in Sec. 4. However, for very hard
examples, the above erasure strategy cannot handle them, since the clues in these hard samples may
be abundant and also similar and results in unreliable attention scores produced by self-attention
mechanism. To solve this issue, we propose a random-explore erasure strategy. Specifically, when
the confidence of ground-truth answers p∗ ∈ p predicted by the pre-trained model is smaller than
the threshold ps ∈ (0, 1) where p = p(A | C,Q,Θ) ∈ R|A| denotes the confidence of the options
in set A, we judge the question Q in present of the context C is a very hard problem. Please refer to
the setting of ps in Sec. 4. Then for these hard samples, we erasure each clue according to the soft
boundary and the independent erased probability PC instead of P F in equation 3.1. In this way,
the hard samples can be erased more randomly than easy ones. Once the erased samples preserve
reasonable clues, then the supervisor can detect this correct erasure by inspecting whether the erased
sample and its vanilla sample have consistent answer prediction distribution, and supervise and
encourage the pre-trained model with attention layers to learn this kind of correct question-clue
pairs. See more details of supervisor in the following subsection. As a result, DISUSE can gradually
explore and learn correct question-clue pairs to improve the overall performance.

Since the experimental results shows that P F leads to a large amount of clues to be erased, we
perform linear regression as follows (Montgomery et al.) to push P F close to a threshold thres:

LReg =−
∑N

i=1
1[p∗i <ps]thres ∗ log(P

C
i )− (1− thres) ∗ log(1− PC

i ), (0<thres<0.5) (2)

whereN denotes the total clue number, 1[p∗<ps] ∈ {0, 1} expresses an indicator function evaluating
to 1 iff p∗ < ps and thres indicates a threshold to limit PC .

3.2 SUPERVISOR

After erasure, the supervisor inspects whether the erased sample and its vanilla sample have con-
sistent answer prediction distribution. Specifically, DISUSE feeds the vanilla context-question pairs
and the erased pairs into online and target networks to predict the answer distribution pv and pe

(probability of each answer option), respectively. If the current erasure sampler is of high quality,
then the answer distribution pe will be very similar to pv , since using the preserved key clues can
still commendably predict the answer as same as all clues. Otherwise, if pe and pv are far from each
other, it means the quality of the preserved clues is poor since it cannot predict the answer as same
as using all clues. Inspired by this key observation, the supervisor measures the quality of erasure
by computing the KL divergence between pe and pv:

LSelf = −
|A|∑
i=1

pi
e log(p

i
v) with pi

v =
exp(zi

v/τ)∑
j exp(z

j
v/τ)

, pi
e =

exp(zi
e/τ)∑

j exp(z
j
e/τ)

, (3)

where zv and ze denote the logit produced by online and target networks, pv and pe represent the
answer prediction distributions, and τ is a temperature. Here pi

e denotes the i-th entry in pe. In this
way, our supervisor can minimize KL divergence to improve the erasure sampler.

Now the overall objective can be written as a weighted average of two different objective functions:

L = αLQA + (1− α)τ2LSelf + βLReg, (4)

where α and β are two constant to trade off these losses. The cross-entropy loss LQA in Eq. 1 is
trained via supervised data which can well train the online network to predict the correct answer
prediction distribution pv , while the self-supervised term LSelf improves the quality of the learnt
question-clue pairs by erasing redundant and artifactual clues in the context and questions and mak-
ing consistent answer prediction distributions between erased sample and its vanilla sample. So
these two terms are complement to each other. Superior to other contrastive loss (He et al., 2020;
Grill et al., 2020) supervised upon feature space, our supervisor takes advantage of higher-level
supervisory information e.g. answer prediction distributions, and directly evaluates the sampler to
progressively improve the quality of erasure.
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Table 1: Accuracy (%) on ReClor. The top part shows the comparison between pre-trained models
(BERT, RoBERTa) and DISUSE. The bottom part shows the comparison between self-supervised
methods (MoCo, SimCLR, BYOL) and DISUSE, where all methods are based on RoBERTa.

Method Test Split
Overall Test Test-EASY Test-HARD

BERTbase (Devlin et al., 2019) 47.3 71.6 28.2
DISUSE with BERTbase 49.5 75.2 29.3

RoBERTabase (Liu et al., 2019) 48.5 71.1 30.7
MoCo (He et al., 2020) 50.3 75.5 30.5

SimCLR (Chen et al., 2020) 48.5 72.7 29.5
BYOL (Grill et al., 2020) 49.6 74.1 30.4

DISUSE 52.7 78.9 32.1
DISUSE w/o sampler 50.7 77.3 29.8

DISUSE w/o supervisor 48.7 72.5 30.0
DISUSE w/o regularizer LReg 51.4 78.2 30.4

4 EXPERIMENTS

4.1 DATAETS

We evaluate the proposed DISUSE on three commonsense QA datasets: ReClor (Yu et al., 2020),
VQA2.0 (Goyal et al., 2017) and GQA (Hudson & Manning, 2019). ReClor is a challenging reading
comprehension dataset which extracts from 239 standardized graduate admission examinations. To
facilitate comprehensive evaluation in the testing set, the data points with biases is grouped as EASY
set, with the rest as HARD set. VQA 2.0 (Goyal et al., 2017) dataset consists of real images from
MSCOCO (Lin et al., 2014). Each image is associated with 3 questions drawn from 3 categories,
i.e. 1) Y/N, 2) Number, and 3) Other answered by human annotators. GQA (Hudson & Manning,
2019) focuses on real-world visual reasoning and compositional question answering. The images of
the training set come from Visual genome (Krishna et al., 2017) and those of the testing set come
from MSCOCO (Lin et al., 2014). The questions are generated and visually grounded in the image
by leveraging Visual Genome Scene Graphs (Krishna et al., 2017).

4.2 EXPERIMENTAL SETUP

We implement DISUSE with Pytorch and conduct all experiments on a GeForce RTX 2080 GPU.
For ReClor dataset, we first fine-tune the pre-trained models e.g. RoBERTa for 10 epochs with an
initial learning rate of 1 × 10−5 and batch size of 8, and then re-train it by DISUSE for 8 epochs
with a batch size of 3. We set α = 0.1, β = 1 × 10−5, τ = 20 in Eq. 4. Other implementation
details such as optimizer, warm-up strategy, and maximum input sequence length are the same as
(Yu et al., 2020). For VQA dataset, the top 5 of pv and corresponding p′

e, and the top 5 of pe

and corresponding p′
v are fed into Eq. 3. For this dataset, we set both weights for LQA and LSelf

as one. Given pre-trained LXMERT, we directly fine-tune DISUSE for 4 epochs without revising
hyper-parameters. In addition, we modify some settings of the objective function in Eq. 4 for VQA
2.0 dataset. Due to minimizing the binary cross-entropy function (Li et al., 2019; Tan & Bansal,
2019), the KL divergence is replaced with binary cross-entropy. The threshold for important clue is
ps = 0.5 in all experiments. Code is submitted in the supplementary and will be released online.

4.3 EXPERIMENTAL RESULTS

Comparison to State-of-the-arts. We report the experimental results in Tables 1, 2, and 3. As
shown in Table 1, our DISUSE makes about 2.4% overall improvement on the ReClor dataset.
For easy (Test-Easy) and hard (Test-H) samples in ReClor, DISUSE boosts the performance of
RoBERTa by about 7.8% and 1.4%, respectively. Furthermore, to demonstrate the generalizability
of our DISUSE, we conduct experiments on two VQA datasets, where the pre-trained LXMERT
(Tan & Bansal, 2019) is regarded as the baseline, since the images of the training and testing splits
are collected from different sources. Tables 2 and 3 show that apart from beating the multi-modality
reasoning methods, our DISUSE enhance the pre-trained LXMERT on almost all evaluation metrics.
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Table 2: Accuracy (%) on Test-Dev and Test-Standard splits of VQA 2.0 dataset. The top part
represents traditional multi-modality reasoning methods. The middle part consists of pre-trained
models and the bottom part is the comparison between self-supervised methods and DISUSE.

Method Test-Dev Test-Standard
Binary Number Other Accuracy

BUTD (Anderson et al., 2018) 65.3 81.8 44.2 56.1 65.7
ReGAT (Li et al., 2019) 70.3 - - - 70.6

CMR (Zheng et al., 2020) 72.6 88.1 54.7 63.2 72.6
ViLBERT (Lu et al., 2019) 72.2 87.9 54.8 62.6 72.5

LXMERT (Tan & Bansal, 2019) 72.4 88.0 54.9 63.1 72.5
MoCo (He et al., 2020) 72.5 88.3 54.4 63.2 72.7

BYOL (Grill et al., 2020) 72.2 87.8 54.1 63.0 72.3
SimCLR (Chen et al., 2020) 72.5 88.3 54.6 63.2 72.7

DISUSE 72.7 88.4 54.3 63.5 72.8

Table 3: Accuracy (%) on the Test-Dev and Test-Standard splits of GQA.

Method Test-Dev Test-Standard
Binary Open Con. Pla. Val. Dis. Acc.

BUTD (Anderson et al., 2018) - 66.6 34.8 78.7 84.6 96.2 6.0 49.7
MAC (Hudson & Manning, 2018) - 71.2 38.9 81.6 96.2 84.5 5.3 54.1
LXMERT (Tan & Bansal, 2019) 60.0 77.2 45.5 89.6 84.5 96.4 5.7 60.3

MoCo (He et al., 2020) 59.6 77.1 45.1 89.4 84.4 96.2 5.3 60.1
BYOL (Grill et al., 2020) 59.8 76.9 45.1 89.4 84.3 96.2 5.0 60.0

SimCLR (Chen et al., 2020) 59.6 77.1 45.0 89.4 84.4 96.2 5.3 60.1
DISUSE 60.5 77.4 46.3 90.9 84.9 96.3 5.4 60.9

We also apply recent self-supervised learning frameworks, e.g. MoCo (He et al., 2020), SimCLR
(Chen et al., 2020) and BYOL (Grill et al., 2020), into pre-trained models, and randomly mask
clues like BERT to implement the comparison. Experimental results on the three datasets well
demonstrate that our DISUSE outperforms them. Besides, we find that the self-supervised learning
methods are inferior to the pre-trained models, because they attenuate the performance of RoBERTa
in the Test-HARD splits of the ReClor dataset and GQA dataset. The possible reasons lie in two
aspects: 1) the random masking procedure may make the models blind to essential clues; 2) the
contrastive loss performed upon feature space is insufficient to supervise effectively for this task.

Ablation Study. To demonstrate the benefits of each component in DISUSE, we independently
remove each component, i.e. erasure sampler or supervisor and evaluate the new models on Re-
Color. The bottom part of Table 1 reports the performances. By removing erasure sampler and
using random clue masks, the accuracy degrades by 2.0%, 1.6% and 2.3% in the three splits. This
testifies that the erasure sampler plays an essential role in erasing redundant and unimportant clues.
Similarly, when replacing the KL measure in answer prediction distribution space of erasure sampler
with InfoNCE loss in (Oord et al., 2018; He et al., 2020; Chen et al., 2020) which encourages feature
similarity of the erased sample and vanilla sample, the accuracy of DISUSE also becomes worse,
which shows the effectiveness and superiority of our supervisor. Table 1 also shows the effectiveness
of the regularizer LReg.

5 CONCLUSION

In this paper, we propose a novel DynamIc Self-sUperviSed Erasure (DISUSE) for commonsense
reasoning. DISUSE designs an erasure sampler and a supervisor which respectively erases redundant
clues in the context and questions and supervise the erasure quality in self-supervised manner. In
this way, DISUSE can learn more precise corresponding question-clue pairs, and thus achieves better
performance. Extensive experimental results demonstrate the superiority of our DISUSE.
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