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Abstract

To facilitate robust and trustworthy deployment001
of large language models (LLMs), it is essential002
to quantify the reliability of their generations003
through uncertainty estimation. While recent004
efforts have made significant advancements by005
leveraging the internal logic and linguistic fea-006
tures of LLMs to estimate uncertainty scores,007
our empirical analysis highlights the pitfalls of008
these methods to strike a harmonized estima-009
tion between indication, balance, and calibra-010
tion, which hinders their broader capability for011
accurate uncertainty estimation. To address this012
challenge, we propose CUE (Corrector for013
Uncertainty Estimation): A straightforward yet014
effective method that employs a lightweight015
model trained on data aligned with the tar-016
get LLM’s performance to adjust uncertainty017
scores. Comprehensive experiments across di-018
verse models and tasks demonstrate its effec-019
tiveness, which achieves consistent improve-020
ments of up to 60% over existing methods.021

1 Introduction022

Uncertainty is the only certainty there is.023

- by John Allen Paulos024

Large Language Models (LLMs) have demon-025

strated exceptional capabilities in handling a wide026

range of downstream tasks (OpenAI, 2023; Tou-027

vron et al., 2023a,b; Dubey et al., 2024). They028

are gradually adopted as general-purpose API inter-029

faces (e.g., ChatGPT1), providing valuable services030

and assistance in human life. Despite these impres-031

sive advancements, concerns persist regarding the032

tendency of LLMs to generate hallucinations and033

factual inaccuracies with confidence (Zhang et al.,034

2023; Wachter et al., 2024), which may mislead035

users to overestimate the reliability of the informa-036

tion provided by these models. To mitigate this is-037

sue, uncertainty estimation (Loquercio et al., 2020)038
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proposed quantifying the reliability of model out- 039

puts so as to ensure the robustness and trustworthi- 040

ness of AI-driven services. 041

Harmonized uncertainty estimation is expected 042

to encompass three key aspects: 1) Indication. The 043

uncertainty score should clearly reflect the reliabil- 044

ity of model responses, with higher scores signal- 045

ing potential inaccuracies. This can be framed as a 046

classification task, with “reliable” or “unreliable” 047

as the classes. 2) Balance. Within classification 048

framework, it’s critic to strike a balance between re- 049

call and precision, ensuring that challenging cases 050

are appropriately flagged while minimizing the re- 051

sources spent on false positives. 3) Calibration. 052

The uncertainty score should align with human in- 053

tuition and probabilistic expectations, to facilitate 054

effective calibration. By striking a harmonized 055

balance between these three aspects, uncertainty 056

estimation provides an ideal measure of the models 057

reliability, offering both usability and interpretabil- 058

ity. 059

There has been growing interest in developing 060

uncertainty estimation methods tailored for LLMs. 061

However, with a thorough analysis across diverse 062

uncertainty estimation methods, we found that 063

there still remains a large performance gap between 064

existing methods to achieve the harmonized un- 065

certainty estimation. Specifically, methods that 066

excel in one aspect fall short in others. For in- 067

stance, SAR (Duan et al., 2023), the outstanding 068

and state-of-the-art method in the specific dataset 069

SciQA (Auer et al., 2023), achieves the best per- 070

formance in indication but performs poorly in the 071

view of calibration. Furthermore, we found that 072

the combination of uncertainty scores obtained by 073

existing methods provides little improvement in un- 074

certainty estimation performance, suggesting that 075

these methods are quite homogeneous. These find- 076

ings highlight considerable room for refinement in 077

uncertainty estimation. 078

In this paper, we introduce CUE , a simple 079
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yet effective framework for adjusting uncertainty080

scores, which is orthogonal to existing uncertainty081

estimation methods. Specifically, we begin by cu-082

rating dataset that are closely aligned with the tar-083

get LLM’s performance within a particular domain084

of knowledge. This dataset is then utilized to train085

an auxiliary lightweight model, which serves as086

a Corrector to adjust the uncertainty scores. By087

integrating the Corrector trained on global align-088

ment information with those uncertainty estimation089

methods that rely solely on the intrinsic logic and090

linguistic features of LLMs, we can significantly091

refine the uncertainty scores.092

Our main contributions are thus as follows:093

• According to an empirical analysis of exist-094

ing uncertainty estimation methods from both095

classification and calibration views, we found096

there is substantial room for improvement in097

their performance regarding classification in-098

dication, precision-recall balance, and calibra-099

tion.100

• We propose CUE , an uncertainty score cor-101

rection framework that employs a classifier,102

aligned with the model’s task performance, as103

a Corrector to adjust uncertainty scores. This104

Corrector allows for seamless integration with105

existing uncertainty estimation methods.106

• Extensive experiments demonstrate that our107

CUE consistently enhances various exist-108

ing uncertainty estimation methods, show-109

ing significant improvements in a harmonized110

manner across diverse data domains and target111

models.112

2 Related Work113

2.1 Uncertainty Estimation for LLMs114

As illustrated in Figure 1, uncertainty estima-115

tion methods for LLMs can be broadly catego-116

rized into logit-based methods, verbalized methods,117

consistency-based methods and internal state-based118

methods.119

Logit-based methods are the most widely used120

and effective approaches in uncertainty estimation.121

Predictive Entropy (PE) (Malinin and Gales, 2020)122

defined uncertainty as the entropy of the output123

logits distribution, which is widely adopted and124

built upon in subsequent research. Follow that,125

Kuhn et al. (2023) introduced semantic entropy126

(SE) that estimates uncertainty by marginalizing127
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Figure 1: A concise overview figure of various uncer-
tainty estimation method categories, including logit-
based methods, verbalized methods, consistency-based
methods, and internal state-based methods.

over semantically-equivalent samples in NLG tasks. 128

Duan et al. (2023) proposed Shifting Attention to 129

Relevance (SAR), which focus on relevant infor- 130

mation and assigns significance weights to tokens 131

based on their contributions to the overall response. 132

Yaldiz et al. (2024) introduced a Learnable Re- 133

sponse Scoring Function (LARS), which utilizes su- 134

pervised data to capture complex token-probability 135

dependencies. 136

Verbalized methods (Xiong et al., 2023; Groot 137

and Valdenegro-Toro, 2024) leverage LLMs’ strong 138

language and instruction-following abilities to ex- 139

press uncertainty, often by prompting the model 140

to provide an uncertainty score. However, studies 141

(Ni et al., 2024; Madhusudhan et al., 2024; Becker 142

and Soatto, 2024) have shown that LLMs strug- 143

gle with faithfully conveying their uncertainties, 144

particularly due to overconfidence. Consistency- 145

based methods, such as those proposed by Li et al. 146

(2024b) and Becker and Soatto (2024), assess un- 147

certainty through multiple generated answers, us- 148

ing techniques like perturbation and aggregation 149

to improve reliability. Pedapati et al. (2024) fur- 150

ther reduced overconfidence by guiding LLMs to 151

justify their answers. Internal state-based meth- 152

ods (Azaria and Mitchell, 2023; Liu et al., 2024) 153

analyze LLM activations to predict errors, with Ka- 154

davath et al. (2022) and Ji et al. (2024) exploring 155

self-evaluation and probing estimators to enhance 156

uncertainty estimation. 157

Due to space limitations, a more detailed discus- 158

sion of related work is provided in the Appendix 159

A.1. 160
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Figure 2: The performance of existing uncertainty estimation methods, evaluated on the SciQA dataset with the
LLaMA-3-8B-Instruct model as the target, and the improvements after applying the Corrector. Note that a lower
ECE score indicates better performance, so we report its reduction.
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Figure 3: AUROC improvement across uncertainty
scores combination from different existing methods.

3 Preliminary Study161

3.1 Limitation of Existing UE Methods162

We evaluate existing UE methods from both clas-163

sification and calibration views, focusing on three164

key aspects of uncertainty scores: indication, bal-165

ance, and calibration. From the classification166

view, uncertainty scores are utilized to guide the167

classification process. Instances with scores above168

a threshold are classified as c1 (unreliable) and169

those below as c0 (reliable). We employ AUROC170

to measure how well the scores indicate unreliabil-171

ity and F1 score to evaluate their balance between172

precision and recall. The calibration view involves173

a more rigorous assessment and interpretation of174

uncertainty scores. Well-calibrated scores should175

align with human probabilistic intuition and pro-176

vide more precise instance rankings. We use ECE177

to assess calibration.178

Basic methods exhibit poor indication per-179

formance. Firstly, we focus on representative180

but naive methods including Lexical Similarity181

(LS) (Fomicheva et al., 2020), Verbal Confidence182

(VC) (Xiong et al., 2023), P(true) (Kadavath183

et al., 2022), and Predictive Entropy (PE) (Ma-184

linin and Gales, 2020) that belong to four cate-185

gories: consistency-based methods, verbal confi-186

dence methods, internal state-based methods, and 187

logit-based methods, respectively. As shown in 188

Figure 2 and Table 1, the AUROC scores for these 189

methods across the target models and datasets ex- 190

hibit general low performance, which is even close 191

to random guessing. 192

Enhanced logit-based methods typically have 193

low F1 scores. Some enhanced methods such 194

as Length-normalized Predictive Entropy (LN- 195

PE) (Malinin and Gales, 2020), SAR-t, SAR-s, 196

SAR, and Semantic Entropy (SE) (Kuhn et al., 197

2023), make tailored adjustments to refine predic- 198

tive entropy process, which show improvements 199

over PE in terms of AUROC. However, no one 200

is universally optimal for all target models and 201

datasets. Moreover, as depicted in Figure 2 and 202

Figure 5, the F1 scores of those methods are par- 203

ticularly low. This indicates that although those 204

methods provided uncertainty scores with some po- 205

tential to indicate the reliability of model response, 206

they still fall short in strike a balance between pre- 207

cision and recall. 208

Most existing methods fall short in calibration. 209

As shown in Table 1 and Figure 6, it appears that 210

prior methods have overlooked the calibration as- 211

pect, resulting in relatively poor performance in 212

terms of ECE scores. 213

3.2 Inter-method Cooperation 214

We examined whether the uncertainty scores de- 215

rived from one uncertainty estimation method 216

could refine the scores obtained from another 217

method. Specifically, we integrated the uncertainty 218

scores from each method using the weighted com- 219

bination and compared its performance with the 220

top-performing method in the pair. As illustrated 221

in Figure 3, these integrations do not enhance over- 222

all performance and may lead to a decline. This 223

underscores the limitations in the complementary 224
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Figure 4: An overview of uncertainty score correction framework. Firstly, we construct a dataset that closely aligns
with the target model’s performance. This dataset is then utilized to train a lightweight auxiliary model that serves
as a correction module, enabling seamless integration with existing uncertainty estimation methods to produce
corrected uncertainty scores.

nature of existing methods.225

Our analysis reveals a significant performance226

gap among existing methods in achieving harmo-227

nized uncertainty estimation, as individual methods228

excel in specific aspects but underperform in oth-229

ers. Furthermore, combining uncertainty scores230

from different methods yields minimal to no im-231

provement, underscoring their homogeneous and232

non-complementary nature.233

4 Method234

In this section, we introduce CUE , a correction235

framework featuring an intuitive approach to di-236

rectly optimized for uncertainty estimation, where237

a Corrector is trained using a lightweight model to238

refine the uncertainty score. Through this method,239

we provide a more robust solution for uncertainty240

estimation. As shown in Figure 4, Our method com-241

prises three main steps including dataset crafting,242

corrector training and uncertainty correcting.243

4.1 Dataset Crafting244

We begin by extracting data from existing datasets245

to create an evaluation set for assessing the tar-246

get model M ’s performance in a specific domain.247

This set consists of a collection of question-answer248

pairs, denoted as D = {(qi, ai) | i = 1, . . . , n}.249

We then prompt M to generate responses ri for250

each question qi, forming a response set R = {ri |251

i = 1, . . . , n}. Subsequently, each response ri252

is subjected to a rigorous evaluation against the253

ground truth ai, employing a hybrid approach that254

combines both rule-based and LLM-based meth-255

ods. The rule-based method compares response ri256

to the ground truth ai using the longest common257

subsequence (LCS). A response ri is considered258

equivalent to ai only if its ROUGE-L score, com- 259

puted as ROUGE-L(ri, ai) = LCS(ri,ai)
min(len(ri),len(ai))

, 260

is greater than threshold value, formalized as 261

MRule(ri, ai) = IRougeL(ri,ai)>0.7. Addition- 262

ally, we utilize GPT-turbo-3.5-0613 (Ouyang 263

et al., 2022) to assess the equivalence between 264

ri and ai by directly prompting, formalized as 265

MLLM (ri, ai) = ITrue in LLM(ri,ai). 266

To mitigate false positives, we apply rigorous 267

thresholds and strict prompting rules. The fi- 268

nal judgment is determined using an “OR” logic: 269

M(ri, ai) = MRule(ri, ai) ∨ MLLM(ri, ai), pre- 270

venting the omission of positive instances. 271

After that, a binary label ci is assigned to each 272

sample, defined as 273

ci =

{
1 if M(ri, ai) = 1

0 if M(ri, ai) = 0
(1) 274

By pairing question qi with the label ci, we form 275

a correction dataset Dcor = {(qi, ci) | i = 276

1, . . . , n}, which serves as a representation of 277

the target model’s performance in generating cor- 278

rect responses across a particular knowledge do- 279

main. To directly associate the questions with 280

uncertainty, we transform the dataset form into 281

D∗
cor = {(qi, 1− ci) | i = 1, . . . , n}. 282

4.2 Corrector Training 283

Employing the correction dataset D∗
cor, we 284

train a classifier to align with the performance 285

of the target model. Specifically, the classifier 286

integrates a fully connected layer following a 287

lightweight encoder model, such as RoBERTa (Liu, 288

2019) and Deberta (He et al., 2021a), with the 289

representation of the special token [CLS] as its 290

input, denote as h[CLS] ∈ Rd . The output of the 291

4



classifier is given by ŷi = σ
(
W · h[CLS] + b

)
,292

where σ(z) is the sigmoid function, used to293

compute the likelihood yi that a data point294

belongs to label c1. During training, we minimize295

the binary cross-entropy loss function L =296

−
∑

i = 1N [yi log(ŷi) + (1− yi) log(1− ŷi)]297

across the correction dataset.298

This results in a Corrector, an auxiliary compo-299

nent that can be integrated with existing uncertainty300

estimation methods to enhance their reliability.301

4.3 Uncertainty Correcting302

We derive the probability that an instance x belongs303

to category c1 from the Corrector. This probability,304

denoted as the correction score C(x), can be uti-305

lized to adjust the uncertainty scores to align with306

the target model’s performance, thereby refining307

the uncertainty estimation process.308

In the refinement process, we first normalize309

the uncertainty scores generated from existing UE310

methods to match human probabilistic intuition,311

ensuring they fall within the range [0, 1]. Normal-312

ization is achieved via Unorm(x) =
U(x)−min(U)

max(U)−min(U) ,313

where U(x) represents the uncertainty score for314

a specific instance x, computed by a chosen UE315

method. The terms min(U) and max(U) denote316

the minimum and maximum uncertainty scores317

across the entire dataset, respectively. Following318

normalization, we apply our correcting by combin-319

ing the normalized score Unorm(x) with the correc-320

tion score C(x) generated by the Corrector. The321

combination employs a weighted approach, where322

the corrected uncertainty score Ucor(x) is computed323

as:324

Ucor(x) = w∗ · Unorm(x) + (1− w∗) · C(x) (2)325

The optimal weight w∗ is determined through a326

grid search on the development dataset. This327

weighted method ensures that the corrected uncer-328

tainty scores balance the contributions of both the329

original and correction scores, thereby enhancing330

the reliability of the uncertainty estimation.331

5 Experiments332

5.1 Experiments Setup333

5.1.1 Models334

Target models We selected the OPT-335

6.7B2 (Zhang et al., 2022), a model widely336

utilized in previous studies (Kuhn et al., 2023;337

2huggingface.co/facebook/opt-6.7b.

Duan et al., 2023), and the advanced open-source 338

model LLaMA-3-8B-Instruct3 (Dubey et al., 2024) 339

as the target models for our main experiments. 340

Base Models We employed many lightweight 341

encoder model as the base model to train the Cor- 342

rector, including models from the RoBERTa se- 343

ries (Liu, 2019) and DeBERTa series (He et al., 344

2021a,b). 345

5.1.2 Metrics 346

AUROC We use the area under the receiver op- 347

erating characteristic curve (AUROC) to evaluate 348

uncertainty estimation methods from a classifica- 349

tion view. In our setting, an AUROC of 1 signifies 350

perfect indicative performance to distinguish be- 351

tween samples the target model can answer reliably 352

and those it cannot, while an AUROC of 0.5 indi- 353

cates that the estimation is no better than random 354

guessing. 355

F1 Score F1 score is used to evaluate the bal- 356

ance between precision and recall in classification 357

tasks. It is the harmonic mean of precision and 358

recall, where both are equally important. The F1 359

score ranges from 0 to 1, with 1 indicating perfect 360

precision and recall. 361

F1 Score = 2× Precision × Recall
Precision + Recall

(3) 362

ECE We use Expected Calibration Error (ECE) 363

to evaluate the performance of calibration, which 364

is calculated by partitioning predicted confidence 365

scores into bins and comparing the average confi- 366

dence in each bin to the actual fraction of correct 367

predictions, formalized as 368

ECE =
M∑

m=1

|Bm|
n

|acc(Bm)− conf(Bm)| (4) 369

In the computing of ECE, we treat the confidence 370

score as 1 minus uncertainty score. 371

5.1.3 Datasets 372

We focus on the question-answering task using two 373

representative datasets in the main experiments: 374

TriviaQA (Joshi et al., 2017), and SciQA (Auer 375

et al., 2023). TriviaQA comprises 95,000 question- 376

answer pairs created by trivia enthusiasts, supple- 377

mented with independently sourced evidence doc- 378

uments. SciQA contains 2,565 question-answer 379

3huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct.
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pairs fetched from the open research knowledge380

graph, covering several research fields ranging381

from science and technology like Computer Sci-382

ence, Engineering, Chemistry, and Geology, life383

sciences like Immunology and Genetics to social384

sciences like Economics and Urban Studies.385

5.1.4 Baselines386

We select a variety of representative uncertainty387

estimation methods as baselines, with a particular388

focus on logits-based methods.389

Among the baselines, we cover multiple cat-390

egories, including logit-based, verbalized, inter-391

nal state-based, and consistency-based methods,392

including: Lexical Similarity (LS) (Fomicheva393

et al., 2020), which computes the similarity be-394

tween multiple sentences as a measure of con-395

sistency; Verbal Confidence (VC) (Xiong et al.,396

2023), which requires the target model to respond397

and provide a confidence score; P(True) (Kada-398

vath et al., 2022), which first asks the target model399

to propose an answer and then evaluates it using400

an internal probability mechanism; and Predictive401

Entropy (PE) (Malinin and Gales, 2020), which402

calculates uncertainty by measuring the entropy of403

the predictive posterior.404

We also explore a series of advanced logit-based405

methods including: Length-normalized Predic-406

tive Entropy (LN-PE) (Malinin and Gales, 2020),407

which adjusts PE by normalizing it according to408

sentence length; Semantic Entropy (SE) (Kuhn409

et al., 2023), which clusters sentences with equiva-410

lent meanings and calculating cluster-wise entropy;411

and Shifting Attention to Relevance (SAR) (Duan412

et al., 2023), which encompasses SAR-t, SAR-s413

and SAR, donated as the token-shifted predictive414

entropy, sentence-shifted predictive entropy, and415

both token- and sentence-shifted predictive entropy416

respectively.417

5.1.5 Implementation Details418

Dataset Splitting For the TriviaQA dataset, we419

randomly selected 5,000 samples from the training420

set for data crafting and corrector training. For421

datasets with limited data, SciQA, we utilized the422

entire training set. We then used half of the test423

set to search for the optimal hyperparameter w,424

while the other half was employed to evaluate the425

method’s effectiveness.426

Hyperparameter For each dataset and model427

pair, we train a corresponding Corrector, which428

is universally applicable across various methods.429

Additionally, for every method, dataset, and model 430

combination, we derive the weight using the devel- 431

opment set respectively. 432

5.2 Main Result 433

We has evaluated existing methods in Section 3 434

and found that there still remains a large perfor- 435

mance gap between existing methods to achieve 436

the harmonized uncertainty estimation. In this part, 437

we present the performance of CUE from both 438

classification and calibration views, demonstrat- 439

ing that integrating a Corrector with existing UE 440

methods significantly enhances uncertainty estima- 441

tion across multiple dimensions, including classi- 442

fication indication, precision-recall balance, and 443

calibration. 444

Classification View As illustrated in Table 1, 445

the Corrector has brought in significant improve- 446

ments, with an average AUROC score increase of 447

0.27 for TriviaQA and 0.09 for SciQA. Even when 448

applied to challenging methods such as SE and 449

SAR, the Corrector boosts AUROC scores by 0.01 450

to 0.03. Since AUROC reflects the UE methods 451

ability to assign higher scores to instances where 452

the target model responds unreliably compared to 453

those it responds to reliably, these improvements 454

indicate that the deployment of the Corrector en- 455

hances the overall indicative capacity of the un- 456

certainty scores, making it more effective for 457

users in determining whether to trust the models 458

responses. 459

Furthermore, as illustrated in Figure 5, the F1 460

score is also boosted by the Corrector, achieving 461

an average increase of 38.97%. This notable im- 462

provement demonstrates the Corrector’s ability to 463

help balance precision and recall, effectively miti- 464

gating the polarization tendency in the uncertainty 465

scores observed in previous methods. 466

Calibration View Although calibration is not 467

the direct training objective of our Corrector, its 468

application yields favorable calibration results. 469

When employing the OPT-6.7B model as the target, 470

we observed average ECE reductions of 0.34 on 471

TriviaQA and 0.21 on SciQA. With the LLaMA- 472

3-8B-Instruct model as the target, the reductions 473

are 0.11 and 0.07, respectivelystill considerable. 474

To further illustrate the calibration performance 475

facilitated by the Corrector, we provide calibration 476

plots in Figure 6. 477

In summary, integrating the Corrector helps 478

achieve harmonized uncertainty estimation. With 479
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TriviaQA SciQA

AUROC(↑) ECE(↓) AUROC(↑) ECE(↓)

Method Vanilla +Corrector Improv Vanilla +Corrector Improv Vanilla +Corrector Improv Vanilla +Corrector Improv

OPT-6.7B
LS 46.49 65.11 +18.62 72.71 41.76 -30.94 44.12 49.40 +5.29 76.38 32.78 -43.60
VC 60.41 70.55 +10.15 49.13 27.61 -21.52 51.69 56.55 +4.86 62.65 38.99 -23.66
P(True) 66.74 72.29 +5.84 45.00 32.63 -12.80 56.12 59.49 +3.37 58.79 34.52 -24.27
PE 56.36 66.62 +10.25 42.39 20.28 -22.12 50.07 56.02 +5.95 62.05 36.92 -25.13
LN-PE 78.37 79.93 +1.57 32.29 20.80 -11.49 60.88 64.23 +3.35 49.52 34.68 -14.84
SE 80.66 81.00 +0.34 36.64 27.05 -9.59 64.52 66.15 +1.63 52.66 42.23 -10.43
SAR-t 78.24 80.21 +1.97 40.14 37.85 -2.30 60.00 63.75 +3.74 45.33 44.19 -1.14
SAR-s 51.77 55.83 +4.06 53.78 49.65 -4.13 53.20 54.15 +0.95 76.21 34.83 -41.38
SAR 75.32 78.67 +3.35 40.61 31.02 -9.59 60.04 62.72 +2.68 49.40 38.99 -10.41

LLaMA-3-8B-Instruct
LS 19.57 69.82 +50.25 70.25 7.41 -62.84 53.67 65.38 +11.71 38.64 18.19 -20.45
VC 62.34 74.89 +12.55 23.41 16.78 -6.63 68.22 72.15 +3.93 31.88 19.47 -12.36
P(True) 57.14 72.29 +15.15 24.67 19.84 -4.83 65.63 71.41 +5.78 34.56 31.92 -2.64
PE 64.52 69.76 +5.25 21.38 17.24 -4.13 66.54 67.98 +1.44 40.67 34.07 -6.60
LN-PE 72.55 74.79 +2.24 14.31 11.53 -2.79 69.48 71.56 +2.08 29.38 23.76 -5.62
SE 80.92 82.12 +1.20 13.07 12.76 -0.31 71.59 72.93 +1.34 30.54 25.23 -5.30
SAR-t 79.55 79.93 +0.38 16.40 13.70 -2.70 72.26 73.87 +1.61 30.37 26.81 -3.56
SAR-s 69.87 77.09 +2.95 23.17 20.00 -3.17 74.96 75.72 +0.76 38.54 36.18 -2.37
SAR 80.92 81.90 +0.98 16.17 13.76 -2.41 73.88 75.19 +1.31 28.97 25.60 -3.37

Table 1: AUROC and ECE scores on the TriviaQA and SciQA datasets obtained by applying the Corrector to
existing uncertainty estimation methods. LS denotes the Lexical Similarity method. VC denotes the Verbal
Confidence method. PE denote the Predictive Entropy method. LN-PE denotes the Length-normalized Predictive
Entropy method. SE denote the Semantic Entropy. SAR-t refers to the token-level version of the SAR method,
while SAR-s denotes the sentence-level version.
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Figure 5: The performance gains of using the Corrector to adjust the uncertainty scores for various methods on the
datasets of TriviaQA and SciQA, and the target models of LLaMA-3-8B-Instruct and OPT-6.7B, are evaluated in
terms of F1 score.

the Corrector, we can improve the reliability of480

uncertainty scores and alignment with the actual481

performance of the model.482

5.3 Ablation Study483

We conducted ablation studies to scrutinize the im-484

pact of the base model, the correction score formats485

and its acquisition methods.486

Formats We compared the efficacy of probabilis-487

tic values versus label values for correction. As488

shown in Table 2, probabilistic correction scores489

demonstrate clear superiority, as they allow finer-490

grained adjustments by leveraging a broader spec-491

trum for integration. Conversely, discrete values,492

such as 0 and 1, tend to introduce significant biases493

in the corrected uncertainty scores.494

Base Model We utilized various encoder models 495

as base models to train the Corrector and assess 496

the impact on correction performance. Specifically, 497

we employed models from the RoBERTa series, 498

including RoBERTa-base4 and RoBERTa-large5, as 499

well as models from the DeBERTa series, such as 500

DeBERTa-base6, DeBERTa-v3-large7, DeBERTa- 501

v3-base8, DeBERTa-v3-small9, and DeBERTa-v3- 502

xsmall10. These models represent different types, 503

series, and sizes. As illustrated in Figure 7, more 504

advanced, later-generation, and larger models yield 505

4huggingface.co/FacebookAI/roberta-base
5huggingface.co/FacebookAI/roberta-large
6huggingface.co/microsoft/deberta-base
7huggingface.co/microsoft/deberta-v3-large
8huggingface.co/microsoft/deberta-v3-base
9huggingface.co/microsoft/deberta-v3-small

10huggingface.co/microsoft/deberta-v3-xsmall

7
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Figure 6: Calibration Plots. These plots depict the relationship between predicted confidence and observed
frequencies. The diagonal line represents perfect calibration, where predicted confidence aligns precisely with
actual outcomes. Bars extending above the diagonal indicate underestimation of confidence, while bars below the
diagonal reflect overestimation. The final plot highlights the optimal calibration performance achieved through our
Corrector.
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Figure 7: The overall AUROC gains achieved by Cor-
rectors trained on different base models across various
UE methods on the SciQA dataset and Llama-3-8B-
Instruct target model.

Acquisition We compare correction scores from507

a lightweight classifier with those estimated using508

GPT-4o. We attempt not to rigorously assess the509

target models answers but to predict its reliability.510

Despite GPT-4’s strong performance in question511

answering, our results show it is less effective than512

the classifier in directly predicting reliability of513

target models when faced with questions. Addi-514

tionally, as detailed in Section ??, combining un-515

certainty scores from different UE methods does516

not improve and may even degrade performance.517

This highlights the Corrector’s unique role as a518

complement to existing methods. 519

Methods AUROC (↑) ECE (↓)

Corrector 69.87 6.73
Original Best 80.92 11.53
+Corrector Probability 82.12 10.46
+Corrector Label 80.92 11.53
+GPT-4o Score 80.92 11.53

Table 2: Ablation Study. LLaMA-3-8B-Instruct as the
target model and TriviaQA as the test dataset. Original
Best refers to the peak performance achieved by various
baseline when the Corrector is not incorporated.

6 Conclusion 520

Our study highlights the limitations of current un- 521

certainty estimation methods in terms of classifi- 522

cation accuracy, precision-recall balance, and cal- 523

ibration. We introduce an innovative uncertainty 524

score correction framework that utilizes a classi- 525

fier as a Corrector to refine these scores, ensuring 526

alignment with the model’s true task performance. 527

This Corrector integrates seamlessly with exist- 528

ing methods, enhancing their effectiveness. Exten- 529

sive experiments validate that the Corrector con- 530

sistently improves performance across various met- 531

rics, data domains, and target models. Furthermore, 532

our ablation study underscores the Corrector’s ca- 533

pacity to provide substantial and heterogeneous 534

improvements to existing uncertainty estimation 535

techniques. 536
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Limitations537

Although the CUE method proposed in the paper538

demonstrates good performance, its generalization539

ability across different data domains and target540

models may be limited. We only compared our541

method with works that have open-source code,542

which are often designed for white-box models.543

Therefore, the effectiveness of our method on black-544

box models has not been demonstrated through545

experiments. However, our method does not ne-546

cessitate access to the inner states of target models,547

making it a general enhancement strategy for both548

black-box and white-box uncertainty estimation.549

Ethics Statement550

In this study, we introduce a method for improv-551

ing uncertainty estimation in the context of LLMs,552

which presents no immediate ethical concerns, but553

certain considerations must be addressed. Uncer-554

tainty estimation has significant potential to evalu-555

ate the reliability and safety of LLM outputs. How-556

ever, this potential benefit comes with the risk that557

systematic mistakes in the uncertainty assessment558

could foster unfounded and misplaced confidence.559

Consequently, even re-calibrated uncertainty esti-560

mates should be interpreted cautiously, particularly561

in critical decision-making scenarios where the con-562

sequences of inaccuracies can be profound.563

The datasets used in our experiment are publicly564

released and labeled through interaction with hu-565

mans in English. In this process, user privacy is566

protected, and no personal information is contained567

in the dataset. The scientific artifacts that we used568

are available for research with permissive licenses.569

And the use of these artifacts in this paper is consis-570

tent with their intended use. Therefore, we believe571

that our research work meets the ethics of ACL.572
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A Appendix784

A.1 Related Work785

Uncertainty estimation methods for LLMs have786

gained significant attention, with approaches can787

be broadly categorized into logit- based methods,788

verbalized methods, consistency-based methods,789

and internal state-based methods..790

Logit-based methods Logit-based methods are791

the most widely used and effective approaches in792

uncertainty estimation. As a foundational method,793

Predictive Entropy (PE) (Malinin and Gales, 2020),794

defines total uncertainty as the entropy of the out-795

put logits distribution. After that, researchers pro-796

posed a series of methods based on the inherent797

characteristics of natural language generation to798

improve upon PE methods. Kuhn et al. (2023)799

introduced semantic entropy (SE) that estimates800

uncertainty by marginalizing over semantically- 801

equivalent samples in NLG tasks. In the similar 802

framework, Nikitin et al. (2024) employed posi- 803

tive semi-definite kernels and von Neumann en- 804

tropy to capture semantic similarities. Furthermore, 805

Wang et al. (2024) proposed Word-Sequence En- 806

tropy (WSE) to adjust uncertainty proportions at 807

both the word and sequence levels based on seman- 808

tic relevance, ensuring that uncertainty is aligned 809

with the semantic importance of words within a 810

response. In addition to measuring the similarity 811

between generated responses, Wang et al. (2024) 812

proposed to judge the similarity between the target 813

response and the generations. Duan et al. (2023) 814

proposed Shifting Attention to Relevance (SAR), 815

which focus on relevant components and assigns 816

significance weights to tokens based on their con- 817

tributions to the overall response. Unlike these 818

carefully designed methods, Yaldiz et al. (2024) 819

introduced a Learnable Response Scoring Function 820

(LARS), which utilizes supervised data to capture 821

complex token-probability dependencies. While 822

effective, the above methods are computationally 823

expensive. To alleviate these computational cost, 824

Kossen et al. (2024) proposed Semantic Entropy 825

Probes (SEPs) to approximate semantic entropy by 826

leveraging hidden states from a single generation. 827

Verbal confidence methods Due to LLMs’ 828

strong language abilities and adherence to instruc- 829

tions, Verbal confidence methods are proposed. For 830

instance, one may attach the question with a prompt 831

like “Please respond and provide your confidence 832

score ranging from 0 to 100.”. Xiong et al. (2023) 833

constructed a prompting, sampling, and aggrega- 834

tion framework to systematically evaluate various 835

strategies and their integration, enabling LLMs to 836

express their confidence in response. Groot and 837

Valdenegro-Toro (2024) proposed FaR prompting 838

strategy, which improves the confidence calibra- 839

tion of LLMs by separating the fact retrieval and 840

reflective reasoning steps. However, verbal con- 841

fidence methods face significant challenges with 842

over-confidence. Ni et al. (2024) found that LLMs 843

cannot convey their uncertainties faithfully in natu- 844

ral language. Becker and Soatto (2024) found that 845

combining language confidence and proxy model 846

probability estimation can improve the estimation 847

of uncertainty. Madhusudhan et al. (2024) noted 848

LLMs’ language perception accuracy often lags 849

behind probability perception, especially in spe- 850

cific domains Furthermore, Tao et al. (2024) found 851

that LLMs often exhibit a high degree of overcon- 852
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fidence when expressing their own confidence by853

comparing language-based methods, consistency-854

based methods, and their hybrid benchmark test-855

ing methods. Their research indicates that some856

prompt strategies can improve the calibration of857

verbal confidence.858

Internal state-based method Internal state-859

based methods suggest that the activation of the860

target model can be analyzed to predict the model861

errors. Azaria and Mitchell (2023) proposed862

SAPLMA by training a classifier on the hidden863

layer activations of an LLM to assess statement864

truthfulness. Similarly, Liu et al. (2024) also in-865

troduced a supervised method by training a model866

on labeled datasets that analyze hidden layer acti-867

vations and probability-related features. Focusing868

on the self-assessment capabilities of LLMs, Ka-869

davath et al. (2022) trained models to explore the870

LLMs’ ability to evaluate the accuracy of their re-871

sponses through calibration on multiple-choice and872

true/false questions. Ji et al. (2024) employed a873

probing estimator to analyze the internal mecha-874

nisms of LLMs across various NLG tasks, assess-875

ing uncertainty before response generation. Ad-876

ditionally, some works introduced novel interven-877

tions to refine the uncertainty estimation perfor-878

mance during inference. Han et al. (2024) pro-879

posed to learn from past experience (LePe) method880

by leveraging historical performance records and881

fine-tuning instructions. Li et al. (2024a) presented882

Inference-Time Intervention (ITI) to adjust model883

activations selectively during inference across a884

limited number of attention heads, guided by a pre-885

defined set of directions.886

Consistency-based method The consistency-887

based method is to evaluate the uncertainty of the888

large model through multiple generated answers.889

Recently, Li et al. (2024b) employed UQ sampling890

with perturbation and an aggregation module to891

quantify sampling uncertainty in text generation892

tasks. Pedapati et al. (2024) proposed a paradigm893

to reduce overconfidence in incorrect answers by894

having LLMs reflect on and justify each candidate895

answer, then aggregating these justifications to cal-896

ibrate confidence estimates. Becker and Soatto897

(2024) proposed extracting semantic diversity and898

syntactic similarity from perturbed prompts, train-899

ing a model on these features to estimate confi-900

dence. Yang et al. (2024) explored the stability of901

explanations generated by LLMs to estimate the902

model’s confidence in its answers. Lin et al. (2023)903

discussed combining observed consistency and self-904

reflection to assess language model uncertainty 905

A.2 Preliminary 906

In this section, we commence by clarifying the two 907

scales of uncertainty: relative uncertainty and ab- 908

solute uncertainty. We then formalize the relative 909

uncertainty estimation as a classification task to de- 910

termine whether the target model can correctly re- 911

spond to a given question. Subsequently, we delve 912

into the theoretical foundations of widely-used 913

logit-based uncertainty estimation methods, and 914

critically examine the inherent limitations shared 915

by those approaches that rely exclusively on target 916

model outputs. 917

A.2.1 Relative Uncertainty and Absolute 918

Uncertainty 919

Research on uncertainty estimation has led to two 920

key concepts (Kamath et al., 2020; Vazhentsev 921

et al., 2023): relative uncertainty and absolute 922

uncertainty, each providing distinct methods for 923

assessing and interpreting levels of uncertainty. 924

Given an input x, a ground truth answer y, and 925

the predictive distribution of Y , the predictive un- 926

certainty for the target model regarding the input x 927

is denoted as UE(x, θ). Relative uncertainty scores 928

emphasize the accuracy of sample ranking, espe- 929

cially in discerning questions that the target model 930

can correctly respond to from those it struggles 931

with. Ideally, for every pair (xi, yi) and (xj , yj) 932

with their predictive distributions Yi and Yj , we 933

should have 934

UE(xi, θ) ≤ UE(xj , θ) ⇐⇒
P (Yi = yi|xi, θ) ≥ P (Yj = yj |xj , θ).

(5) 935

Stricter than relative uncertainty scores, absolute 936

uncertainty scores support to represent the model’s 937

accuracy. In cases where there is an 80% uncer- 938

tainty prediction, it implies that the question is 939

expected to be answered correctly only 20% of the 940

time under similar conditions. This relationship 941

can be mathematically expressed as 942

P (Y = y|UE(x, θ) = q) = 1− q. (6) 943

As relative uncertainty concerns solely with the 944

relative rankings of h(x) = UE(x, θ), it can be 945

framed as a classification problem aimed at finding 946

a function h that minimizes the expected loss of 947

misclassification (Allikivi et al., 2024; Tao et al., 948

2023). Consider two class labels, C = {c0, c1}, 949

indicating whether the targrt model can correctly 950
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answer the question or not, respectively. This leads951

to the formulation of a decision rule952

g(h; τ) =

{
c0 if h(x) ≤ τ (confident)
c1 if h(x) > τ (uncertain)

, (7)953

where h(x) is a scalar measure of uncertainty and954

τ is the threshold.955

Drawing from decision theory, we derive the956

expected loss as conditional risk for the sample x:957

Risk(x) = λci,c1−ihc1−i(x), (8)958

where ci, i ∈ {0, 1} denotes the true label of the959

sample x, and hc1−i(x) = P (c1−i | x) is the pos-960

terior probability of misclassifying the sample x as961

class c1−i. λci,c1−i represents the loss associated962

with this misclassificationspecifically, a penalty in-963

curred when the sample with the label ci is classi-964

fied as c1−i. Our task is to find h∗ that minimizes965

the overall risk966

Risk(h) = Ex [Risk(h(x)) | x] . (9)967

A.2.2 Theoretical Foundations of Uncertainty968

Estimation for LLM969

LLMs typically generate outputs in an auto-970

regressive manner, which iteratively predict the971

probability distribution of the subsequent token972

based on the evolving context (Gregor et al.,973

2014). Given an input sequence x with the ob-974

jective of generating an output sequence y =975

{y1, y2, . . . , yL}, the conditional probability of the976

l-th token yl is denoted as P (yl|y<l, x; θ). This977

probability depends on all previously generated978

tokens y<l = {y1, y2, . . . , yl−1} as well as the in-979

put x. The probability of generating the entire980

sequence y can be expressed as the product of the981

conditional probabilities of each individual token:982

P (y|x; θ) =
L∏
l=1

P (yl|y<l, x; θ), (10)983

where P (yl|y<l, x; θ) = ezl/T∑
j e

zj/T
, z is the raw984

logit, and T is the temperature that controls the985

smoothness of the probability distribution. This986

posterior probability provides a probabilistic frame-987

work for sequence generation. Moreover, accord-988

ing to prior research (Malinin and Gales, 2020), the989

total uncertainty for the generation of y is given by990

the entropy of the predictive posterior: 991

PE(x) = H[P (y | x, θ)]
= EP (y|x,θ)[− lnP (y | x, θ)]

= −
∑
y∈Y

P (y | x, θ) lnP (y | x, θ).
(11) 992

In practice, due to the exponential computational 993

complexity of traversing the entire response set, 994

Monte Carlo approximation method (Papadopoulos 995

and Yeung, 2001) is employed via beam search 996

with a single target model for generation. The 997

approximate entropy is defined as 998

PE(x) ≈ − 1

B

B∑
b=1

lnP (yb|x, θ), (12) 999

where P (yb|x, θ) denotes the posterior probability 1000

of the b-th beam search candidate. Base on these, 1001

Kuhn et al. (2023) proposed to cluster generations 1002

with similar meanings and compute entropy us- 1003

ing the probabilities associated with each semantic 1004

cluster. This approach is formulated as 1005

SE(x, θ) = − 1

C

C∑
i=1

lnP (ci|x, θ), (13) 1006

where ci denotes each semantic cluster and C rep- 1007

resents the set of all clusters. 1008

Another form of improvement is to assign 1009

weights to each token in the generation when cal- 1010

culating posterior probabilities (Duan et al., 2023; 1011

Bakman et al., 2024), either through a manually 1012

designed algorithm or a training way, which can be 1013

formulated as 1014

P̃ (y | x; θ) =
L∏
l=1

P (yl | y<l, x; θ) · wl, (14) 1015

where wl represents the weight assigned to the l-th 1016

token. 1017

A.3 Generalization 1018

The above results indicate that the Corrector per- 1019

forms effectively on the evaluation set comprising 1020

in-distribution data. However, our analysis high- 1021

lights two primary variables that can lead to out-of- 1022

distribution scenarios: domain of data and target 1023

model. The generalization performance of the Cor- 1024

rector is evaluated through the average improve- 1025

ment of AUROC scores across all baselines from 1026

both RBS and CBS. 1027

13



TriviaQA SciQA

TriviaQA 19.59 4.05
SciQA 6.03 10.20

(a) Generalization for Domain of Data

OPT-2.7B OPT-6.7B LLaMA3-8B

OPT-2.7B 19.59 11.80 3.23
OPT-6.7B 6.08 11.21 3.43

(b) Generalization for Target Model

Table 3: Average AUROC scores improvement of after appling our method to baselines. (a) The leftmost column
indicates the domains of data used in training, while the topmost row represents the domains of data used for
evaluating, with OPT-2.7B serving as the target model. (b) The leftmost column denotes the target model during
training, whereas the topmost row signifies the target model during evaluating, with TriviaQA utilized as the target
domain of data.

Domain of Data To evaluate the generalization1028

capability of our Corrector across different data1029

domains, we conduct experiments by training the1030

Corrector on the dataset D∗
cor, crafted from either1031

TriviaQA or SciQA, and then evaluating it on the al-1032

ternate one. As illustrated in Table 3, the Corrector1033

achieves optimal performance when both training1034

and evaluating occur within the same data domain.1035

Remarkably, even when training and evaluating on1036

different domains, the Corrector still demonstrates1037

a enhancement, yielding an average improvement1038

of approximately 0.05. One possibility is that the1039

target model exhibits comparable knowledge profi-1040

ciency across both data domains.1041

Target Model We investigate the generalization1042

for target model by training Corrector on D∗
cor1043

sourced from a different target model than the one1044

used for evaluating. As shown in Table 3, in cases1045

where models exhibit relatively comparable knowl-1046

edge capabilities, such as OPT-2.7B and OPT-6.7B,1047

the Correcter exhibits generalization ability, yield-1048

ing average AUROC improvements of 0.11 and1049

0.06, respectively. Conversely, when a substantial1050

performance gap exists between models, such as1051

OPT-2.7B and LLaMA-3-8B-Instruct, we achieve1052

an average AUROC improvement of 0.03. When1053

focusing solely on the challenging baselines from1054

CBS, the improvement drops to 0.01.1055

1056
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