
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PART-X-MLLM: PART-AWARE 3D MULTIMODAL
LARGE LANGUAGE MODEL

Anonymous authors
Paper under double-blind review

nose

arm

A rugged off-road tire
with deep, blocky treads,
mounted on a dark rim

for an all-terrain vehicle.

A dirty, tan, all-
terrain vehicle with
prominent front and

rear cargo racks.

Figure 1: Part-X-MLLM is a natively 3D, part-aware multimodal large language model that provides
comprehensive understanding of 3D shapes and supports a wide range of 3D understanding tasks. It
also seamlessly integrates with diffusion-based pipelines, enabling semantically precise part-aware
3D shape generation and editing.

ABSTRACT

We introduce Part-X-MLLM, a native 3D multimodal large language model that
unifies diverse 3D tasks by formulating them as programs in a structured, exe-
cutable grammar. Given an RGB point cloud and a natural language prompt, our
model autoregressively generates a single, coherent token sequence encoding part-
level bounding boxes, semantic descriptions, and edit commands. This structured
output serves as a versatile interface to drive downstream geometry-aware mod-
ules for part-based generation and editing. By decoupling the symbolic planning
from the geometric synthesis, our approach allows any compatible geometry en-
gine to be controlled through a single, language-native frontend. We pre-train a
dual-encoder architecture to disentangle structure from semantics and instruction-
tune the model on a large-scale, part-centric dataset. Experiments demonstrate
that our model excels at producing high-quality, structured plans, enabling state-
of-the-art performance in grounded Q&A, compositional generation, and local-
ized editing through one unified interface.

1 INTRODUCTION

The creation of rich, interactive 3D worlds is a cornerstone of modern visual computing. While
recent advances in generative AI have solved the creation of holistic 3D shapes, they largely treat
assets as static, monolithic forms. This “structural opaqueness” limits their use in essential down-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

stream tasks like fine-grained semantic understanding, compositional editing and procedural anima-
tion. Real-world objects are inherently assemblies of meaningful parts; unlocking 3D interaction
thus demands a native LLM-based tool that can reason about and manipulate this part structure.

Current 3D Multimodal Large Models (MLLMs) fall short of this goal. Scene-level 3D MLLMs
align point clouds with language and perform captioning or Q&A Xu et al. (2024); Hong et al.
(2023); Qi et al. (2024b;a), but they largely treat objects as monolithic and lack persistent part
identifiers, grounded references, and executable outputs. On the generative side, geometry-oriented
models offer high-fidelity asset synthesis via structured 3D latents Xiang et al. (2024); Zhao et al.
(2025b); Hunyuan3D et al. (2025) or tokenized 3D representations Wang et al. (2024); Ye et al.
(2025), yet expose limited semantic addressability. Part pipelines either lift 2D segmentations
to 3D Liu et al. (2024a); Chen et al. (2025a); Yang et al. (2024); Liu et al. (2025); Yang et al.
(2025a)—prone to view inconsistencies and weak 3D constraints—or generate parts natively in
3D Chen et al. (2025b); Zhang et al. (2025); Yang et al. (2025b) without a unified language in-
terface. Editing methods increasingly operate in 3D space Li et al. (2025), but are not themselves
language-native frontends. There is still no model that (i) understands and names parts, (ii) grounds
references to persistent bounding box (BBox), and (iii) compiles executable add/delete/modify pro-
grams while delegating to strong geometry engines—with controllable semantic granularity (from
coarse labels to fine descriptions)—through a single instruction-following interface.

We address this challenge with Part-X-MLLM, a native 3D part-aware Multimodal Large Lan-
guage Model that reframes 3D interaction as a language modeling problem. Our core insight is that
a spectrum of disparate tasks—generation, editing, and question answering—can be unified under a
single, geometry-aware grammar of parts. Part-X-MLLM translates user instructions and 3D visual
input into a structured program, emitting a single token sequence of part-level bounding boxes, per-
sistent references, semantic descriptions, and edit operators. This discrete, language-native interface
provides three concrete benefits. (1) Stable part identity and grounding: tokens carry persistent
references to parts via BBox symbols, enabling precise, auditable reasoning and manipulation across
steps and tasks. (2) Controllable semantic granularity: the same program can surface either coarse
labels or fine descriptions on demand, and our post-hoc clustering supports user-controlled merging
of parts. (3) Separation of structure and semantics: a dual-encoder design decouples geometry
(XYZ+normals) from appearance (RGB), avoiding the representational conflict observed in single-
encoder ablations and yielding consistent gains on box listing, multi-part grounding, and part Q&A.
Because the output program is model-agnostic, any geometry module can be driven by this token
interface—turning language into a universal control surface for 3D assets. Empirically, the resulting
plans enable strong part grounding, compositional generation, and localized editing across 11 task
families on our UniPart-Bench, establishing a general paradigm for part-centric 3D intelligence.

Our contributions are summarized as follows:

• We introduce Part-X-MLLM, a native 3D part-aware MLLM that unifies generation, edit-
ing, and reasoning as a single geometry-aware program in a part grammar with persistent
BBox tokens—providing a language-native, model-agnostic control surface for 3D assets.

• We propose a dual-encoder architecture that decouples structure (XYZ+normals) from
appearance (RGB), avoiding representational conflicts and delivering consistent gains over
a single-encoder baseline across grounding, captioning, and part Q&A.

• We enable semantic granularity control by clustering part bounding boxes using text
semantics, allowing seamless transition between coarse components and fine-grained parts
under the same programmatic interface.

• We establish UniPart-Bench, a 30k-entry part-centric benchmark spanning 11 task fami-
lies with geometric and linguistic metrics, and use it to rigorously evaluate plan quality and
downstream performance.

2 RELATED WORK

2.1 3D MULTIMODAL UNDERSTANDING AND GENERATION

Early 3D MLLMs align point clouds with language for 3D captioning, QA, and reasoning, in-
cluding PointLLM Xu et al. (2024), 3D-LLM Hong et al. (2023), Point-BERT Yu et al. (2022),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

GPT4Point Qi et al. (2024b), and ShapeLLM Qi et al. (2024a). However, point clouds’ sparsity and
limited detail constrain high-fidelity, editable asset creation. Recent work addresses this through
geometry-aware latents: TRELLIS Xiang et al. (2024) employs structured sparse voxel latents with
rectified flow for unified decoding to meshes/NeRF/3DGS. Hunyuan3D 2.x Zhao et al. (2025b);
Hunyuan3D et al. (2025) provides a production-ready pipeline with PBR materials. Discretization
enables autoregression: LLaMA-Mesh Wang et al. (2024) feeds OBJ text to LLMs but ignores mesh
topology, while ShapeLLM-Omni Ye et al. (2025) compresses 3D into discrete tokens for unified
text/image/3D understanding and generation. Despite these advances, most systems remain object-
or scene-level Wang et al. (2025); Miao et al. (2025): Existing methods often lack persistent part
identities, grounded references, and executable outputs for downstream geometry engines. We ad-
dress this by introducing a language-native interface that outputs tokenized bounding boxes and edit
programs, enabling part-aware and high-fidelity generation and editing.

2.2 PART GENERATION

2D-driven pipelines extract multi-view cues then lift to 3D: Part123 Liu et al. (2024a) and
PhyCAGE Yan et al. (2024b) uses SAM Kirillov et al. (2023) masks, PartGen Chen et al. (2025a)
segments/inpaints with inconsistency issues, SAMPart3D Yang et al. (2024) and PartField Liu et al.
(2025) distill priors, and HoloPart Yang et al. (2025a) completes parts with diffusion. These methods
suffer from weak 3D constraints. Direct 3D approaches include: PASTA Li et al. (2024a) for prim-
itive composition, AutoPartGen Chen et al. (2025b) for autoregressive generation, PartPacker Tang
et al. (2025) and Frankenstein Yan et al. (2024a) for efficient part representation with constrained
space usage, BANG Zhang et al. (2025) for exploded views, and Assembler Zhao et al. (2025a) for
assembly sampling. OmniPart Yang et al. (2025b) unifies these approaches via autoregressive box
planning followed by TRELLIS-based synthesis. X-Part Yan et al. (2025) scale up vecset-based part
generation conditioned on semantics provided by Ma et al. (2025).

2.3 3D EDITING

Optimization-based editing utilizes SDS: DreamFusion Poole et al. (2022) enables text-to-3D gen-
eration, Vox-E Sella et al. (2023) adds volumetric regularization, and Instruct-NeRF2NeRF Haque
et al. (2023) edits multi-views using InstructPix2Pix Brooks et al. (2023) while optimizing
NeRF Mildenhall et al. (2021). Faster alternatives include: Shap-Editor Chen et al. (2024b) for
feed-forward latent editing, MVEdit Chen et al. (2024a) as a training-free 3D adapter, and PrEd-
itor3D Erkoç et al. (2025) using DDPM inversion with 2D-to-3D lifting. FocalDreamer Li et al.
(2024b) enables part-wise assembly, VoxHammer Li et al. (2025) performs training-free latent edit-
ing, and Make-Your-3D Liu et al. (2024b) customizes subjects via model co-evolution. Yet these
methods are typically tool-side: they do not provide a language-native model that reasons about parts
and emits executable edit programs with precise spatial grounding. We target this gap by coupling a
part-aware planning interface with strong geometry backends.

3 METHODOLOGY

An overview of our framework is shown in Figure 2. Our methodology centers on three key design
choices: a unified architecture that processes geometry and language, a multi-stage training curricu-
lum that systematically builds model capabilities, and the use of powerful, pre-existing geometry
engines as execution backends.

3.1 MOTIVATION

Modern 3D applications demand more than holistic shape synthesis—they require precise, language-
driven control over semantically meaningful parts. For example, artists want to swap handles without
touching the body; roboticists need to reason about graspable subcomponents; and downstream
pipelines rely on consistent, addressable structure for animation and simulation. Prior systems either
focus on scene-level understanding or provide powerful but siloed generators/editors with bespoke
interfaces. Our goal is a native, part-centric MLLM that treats parts as first-class citizens and exposes
a single, executable interface that is intuitive, auditable, and robust across categories.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Part- -MLLM

Structure
Encoder

Semantic
Encoder

𝑥𝑦𝑧
+𝑛𝑜𝑟𝑚 +𝑟𝑔𝑏

Text
Tokenizer

{Prompts / }

<box> <box>

…

BBox’s Info.

{captions/category}

(40960, 6) (10240, 6)

B
B
ox

<box> <box> …

Part Seg & Cap & GroundA Interactive Part EditingB

<edit> <edit> <box> <box> …

Edit Prompts

{prompt}

<add>

<mod>

Add
Delete
Modify <box>

<box>

…

G
eneration
H

ead

Part-Aware 3D Generation

Natural Language 3D Editing
E
diting
H

ead
<edit>

<edit>

<box>

<box>

…

prompt
A horn horn
with flowers

Figure 2: The Part-X-MLLM Framework. Our pipeline begins by encoding geometry and ap-
pearance features separately using a dual-encoder architecture, which are then fused together with
text prompts. These combined features are passed to an autoregressive decoder that generates a
program-like token sequence representing a plan (e.g., bounding boxes, edit commands). Finally,
specialized geometry heads execute this plan to enable part-aware generation and editing.

3.2 UNIFIED ARCHITECTURE FOR PART-AWARE PLANNING

Dual 3D Encoders. To capture both geometric structure and visual appearance, we employ a dual-
pathway encoder. A Structure Encoder processes the raw point cloud geometry (XYZ and normals)
to extract structural tokens. A parallel Semantic Encoder processes RGB color information to
produce appearance tokens. This dual representation allows the model to disambiguate parts that
may be structurally similar but visually distinct (e.g., two identical chair legs of different colors).

Structured Planning Language and Autoregressive Decoder. A decoder-only transformer, ini-
tialized from a pretrained LLM, takes the fused sequence of structural, semantic, and text to-
kens as input. It is trained to autoregressively generate a program-like output that follows our
structured planning language. This language defines special tokens for part representation (e.g.,
<boxs>...<boxe> wrapping six quantized coordinate tokens) and edit operations (e.g., <adds>,
<dels>, <mods>). By formulating the output as a program, we unify diverse tasks into a sin-
gle instruction-following problem, where the model’s goal is always to generate the correct token
sequence representing the plan.

3.3 DOWNSTREAM GEOMETRY INTERFACES

Our model’s structured output is designed to be consumed by downstream modules capable of in-
terpreting its geometric and semantic content.

Part-Aware Synthesis. For generation, the planned bounding boxes and optional part text are passed
to a synthesis module, which treats the boxes as spatial guides to generate high-fidelity, part-based
assets (e.g., in mesh, 3DGS, or NeRF format).

Localized Editing. For editing, the emitted program and associated bounding boxes are used to
define cuboid masks for localized manipulation, enabling precise edits while preserving untouched
regions.

3.4 END-TO-END TASK REALIZATION

To make the workflow concrete, Figure 3 illustrates how our structured planning language realizes
four representative tasks.

Part-aware Mesh Generation: The decoder generates a program containing a set of bounding
boxes and optional part text. A synthesis module then uses these boxes as spatial guides to generate
a part-based asset. Q&A with Grounding: Answers are augmented with BBox tokens, yielding
language outputs that carry explicit, persistent references to parts. Auto-located 3D Editing: The

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

a blue checkered basket liner

Find every
bounding box

Input

breadstick

basket

Generation
Head

Part-aware Mesh Generation

How many breadsticks
are in the basket?

There appear to be
6 breadsticks in

the basket.
<box> …

Q&A with Grounding

bread 1

bread 6

I want to replace
the red basket liner

with a blue one.
Editing
Head

Auto-Located Mesh Editing

Part- -MLLM
Unified Pipeline

Answer w/ grounding

<box>

<box>

{captions/category}
+

{captions}

<edit>

<box>

{prompt}

+

+
EditedM
esh

0 1 2

3

4

7

8

9

10

Give {details/category}
about this region:

Captioning5 6

<boxs> <box-27> <box-37> <box-1>

<boxe> <box-99> <box-73> <box-99>

[x_min,y_min,z_min]

[x_max,y_max,z_max]

Discretization:

128 bins

{captions}

{category}
or

“A long, shiny breadstick
sprinkled with coarse salt in

a basket.” / “breadstick”

Figure 3: Task realization with a planning language. A decoder outputs program tokens that unify
diverse interactions: (Top) part-aware generation guided by bounding boxes; (Middle) grounded
Q&A whose answers embed BBox tokens; (Bottom) auto-located 3D editing executed via cuboid
masks and commands. The numbered circles (e.g., x) denote the corresponding task types.

model localizes the instruction by generating bounding boxes and an edit command (e.g., <adds>).
A downstream editing module then uses this program to apply a masked edit.

Semantic Granularity Control. Beyond these core tasks, our box-and-text representation enables
dynamic control over semantic granularity. By clustering part bounding boxes based on the sim-
ilarity of their associated text descriptions (using CLIP embeddings), we can progressively merge
fine-grained parts into coarser semantic components. This allows users to control the level of detail
in the generated output without manual intervention, such as pre-defining the number of parts (cf.
PartPacker) or manually merging masks (cf. OmniPart). A qualitative example is shown in Figure 6,
with the full algorithm detailed in the appendix.

3.5 MULTI-STAGE INSTRUCTION TUNING

We adopt a two-stage curriculum. The first stage pretrains a structure-aware encoder for robust
geometry understanding. The second stage performs full instruction tuning, integrating a semantic
encoder and aligning a powerful LLM with our specialized task grammar.

Stage 1: Geometry-Only BBox Pretraining. We initialize the structure encoder with the Hunyuan
2.1 3D Shape VAE Encoder. Each training sample is a fixed-size RGB-less point cloud of shape
(40960, 6) containing (x, y, z) coordinates and surface normals. The encoder downsamples features
by 20× to produce a latent of length 2048. To force bounding-box knowledge into the encoder, we
pair it with a lightweight autoregressive decoder whose task is to predict part-level bounding boxes
from these latent features, with no textual semantics involved. After pretraining on 3.6M objects for
10 epochs, we retain the specialized structure encoder weights and discard the lightweight decoder.
This stage domain-specializes the 3D encoder to reliably disentangle and localize part BBoxes.

Stage 2: Full Instruction Tuning with a Dual-Encoder LLM. After pretraining the structure en-
coder, we proceed directly to full instruction tuning with a more powerful Qwen 2.5 VL model.
In this stage, we introduce the Semantic (RGB) Encoder, which has the same architecture as the
structure encoder and processes a point cloud of shape (10240, 6) with (x, y, z) and (r, g, b) data
to capture appearance. We also extend the vocabulary with our task-specific special tokens (e.g.,
<boxs>/<boxe>, <adds>/<adde>). During this stage, we freeze the pretrained Structure En-
coder from Stage 1 and the original Qwen 2.5 VL token embeddings. We then train only the new
Semantic Encoder, the AR transformer layers of the Qwen 2.5 VL decoder, and the embeddings
for our newly added special tokens. This approach efficiently aligns the powerful language model

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

with our dual-stream (geometry and appearance) conditioning and executable grammar, preserving
its strong prior while adapting it for our specialized tasks.

3.6 IMPLEMENTATION AND EXECUTION BACKENDS

To translate plans into high-fidelity geometry, we use powerful, off-the-shelf models as execution
backends. For part-aware generation, we use the synthesis module from OmniPart Yang et al.
(2025b), feeding it our generated bounding boxes. For editing, we use the training-free volumetric
editor VoxHammer Li et al. (2025), providing it with a cuboid mask derived from our planned BBox
and the user’s instruction. This modular approach allows Part-X-MLLM to serve as a universal,
language-driven frontend for various SOTA geometry engines. The rich information encoded in the
generated token probabilities also enables advanced downstream tasks, such as confidence-aware
face segmentation (see Appendix A.4).

4 EXPERIMENTS

4.1 DATASET

We curate a high-quality, part-centric 3D dataset comprising 85,771 distinct objects with an average
of 23 parts per object. Each object is annotated with axis-aligned part bounding boxes (AABBs)
and paired natural language annotations at two granularities: a coarse part label (Q1) and a fine-
grained part description (Q2). At the object level, we include an overall caption and a small set of
instruction–answer pairs for part-aware Q&A. All annotations follow the unified box-token grammar
introduced in Section 3, enabling consistent serialization of AABBs and edit programs.

Data construction follows a two-step pipeline: (1) a structured labeling stage collecting object-level
and part-level texts and (2) a data building stage converting annotations into instruction-following
samples across multiple task families (grounding, captioning, QA, editing). Concretely, we in-
stantiate eleven task templates (Types 0–10) covering pure box listing, multi-part grounding with
coarse/fine text, single-part grounding from name or description, box-to-text captioning, part-aware
Q&A, and edit programs for deletion/modification/addition. The train/test split is obtained by deter-
ministic file list partition (≈ 99.5/0.5). Full details, prompt templates, sampling rules, and dataset
statistics are provided in the supplementary material (Tables 5 and figures therein).

4.2 EVALUATION PROTOCOL

Since existing benchmarks do not test for structured, part-aware, and executable program generation
from language, we introduce UniPart-Bench, a held-out set of 400 objects, to evaluate our model’s
core capabilities. Our evaluation focuses on the quality of the structured plans generated by the
model, as measured by the accuracy of the predicted BBox layouts. For downstream tasks, the
generated plans are passed to external geometry modules. For generation, we forward the BBoxes
to a synthesis head; for editing, we provide the instruction and a cuboid mask derived from the
planned BBox.

4.3 PART-AWARE GENERATION AND EDITING

Bounding Box Generation. To evaluate the quality of our structured generation, we report BBox
IoU, Voxel Recall, and Voxel IoU. Matching pairs each ground-truth box with its nearest predicted
box. As baselines, we include PartField Liu et al. (2025) by treating the voxel set as a point cloud
and extracting a BBox per predicted segment, and the generation model from OmniPart Yang et al.
(2025b). Our model consumes RGB point cloud tokens and a text prompt and autoregressively
emits an ordered list of bounding boxes following the box grammar of Section 3. For the PartField
baseline, we treat voxels derived from the asset as a point cloud and segment them at the ground-
truth part count, then compute bounding boxes per segment for comparison.

Qualitative Generation and Editing Results. Figure 4 visualizes our qualitative shape decom-
position results, where our model demonstrates superior performance in generating semantically co-
herent and geometrically accurate part segmentations. It successfully captures fine-grained details

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Quantitative results for bounding box generation (%).

Method Voxel recall ↑ Voxel IoU ↑ Bbox IoU ↑
PartField Liu et al. (2025) 69.65 46.04 37.33
OmniPart Yang et al. (2025b) 72.32 47.62 39.78

Part-X-MLLM (Ours) 74.11 48.74 42.55

and maintains structural integrity, outperforming baselines that often produce fragmented or inac-
curate decompositions. We also evaluate the model’s ability to perform localized, language-driven
edits. As shown in Figure 5, Part-X-MLLM successfully interprets user instructions to add, remove,
or modify specific parts, executing the edits while preserving the rest of the object’s structure.

Input PartCrafter PartPacker Ours

Figure 4: Qualitative shape decomposition results.

Replace the head with black hair
and vertical black eyes.

Replace the trousers with
black jeans.

Replace the left shoe with a
green-soled, polished-style shoe.

Replace the central sphere with a
smooth red sphere.

Add appropriate padding to the base
of the turntable.

Remove the spherical support in the
middle of the lamp.

<add>

<mod> <mod> <mod>

<mod>

Figure 5: Qualitative results for part-aware editing. Our model successfully interprets natural
language instructions to perform localized edits, while preserving the integrity of the original object.

Semantic Granularity Control. As introduced in Section 3, our framework supports controlling
part granularity by semantically clustering bounding boxes. Figure 6 demonstrates this process,
where our algorithm progressively merges components based on the CLIP similarity of their textual

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

descriptions, reducing the part count from 22 down to 2. This automated process allows for flexible
control over the level of detail without manual intervention.

Original Mesh Merge Step 1 Merge Step 2 Merge Step 3 Merge Step 4

#Components=22

#Components=18

#Components=10

#Components=6

#Components=2

Figure 6: Semantic granularity control via part clustering. By clustering parts based on the
semantic similarity of their descriptions, we can progressively merge fine-grained components into
coarser structures. The number of components is automatically reduced from 22 to 2.

Ablation Study: Dual vs. Single Encoder. We conduct an ablation study to validate our dual-
encoder design, which processes geometric structure and visual appearance in separate pathways.
We compare our full model against a single-encoder variant that consumes a unified point cloud with
fused geometry (XYZ) and color (RGB) information. As shown in Table 2, the dual-encoder archi-
tecture consistently outperforms the single-encoder baseline across all evaluated tasks. For pure
geometric tasks like box listing, the dual encoder improves IoU by a significant margin (+7.06).
For language-intensive tasks such as Part QA and Multi-Part Grounding, we observe uniform gains
across all metrics. This suggests that forcing a single encoder to handle both structural and se-
mantic information creates a conflict, whereas decoupling these responsibilities into two specialized
encoders is a more effective and robust design choice.

Table 2: Ablation study on the dual-encoder architecture. We compare our full model against a
single-encoder variant. All metrics are reported on UniPart-Bench.

Task Model IoU ↑ SBERT ↑ SimCSE ↑ BLEU-1 ↑ ROUGE-L ↑ METEOR ↑

Pure Box Listing
Dual Encoder (Ours) 75.53 - - - - -
Single Encoder 68.47 - - - - -
∆ Gain +7.06 - - - - -

Multi-Part Grounding
Dual Encoder (Ours) 72.82 55.60 54.19 35.55 35.58 18.09
Single Encoder 69.78 54.18 53.53 33.95 33.97 17.27
∆ Gain +3.04 +1.42 +0.66 +1.60 +1.61 +0.82

Part QA
Dual Encoder (Ours) 55.44 78.98 84.25 40.54 42.26 34.24
Single Encoder 54.24 78.44 83.13 39.29 41.31 33.06
∆ Gain +1.20 +0.54 +1.12 +1.25 +0.95 +1.18

4.4 PART AND OBJECT UNDERSTANDING

Part Understanding Q&A. To evaluate part-level understanding and reasoning, we test on
UniPart-Bench. We report sentence-level similarities (SBERT, SimCSE) and token-level metrics
(BLEU-1, ROUGE-L, METEOR). Results in Table 3 show consistent gains of our method on part-
level Q&A. We observe substantial gains over the strongest baseline across all metrics: compared to
the best non-ours scores, Part-X-MLLM improves by +17.7 SBERT, +25.8 SimCSE, +17.2 BLEU-1,
+9.7 ROUGE-L, and +9.8 METEOR. These gains reflect stronger part-level grounding and reason-
ing enabled by our box grammar and instruction tuning.

Overall 3D Object Captioning. Unlike part-level captioning, this benchmark probes holistic ob-
ject understanding on UniPart-Bench. We report SBERT, SimCSE, BLEU-1, ROUGE-L, and ME-
TEOR following PointLLM. On overall object captioning, our model also outperforms the best
prior scores, with absolute improvements of +10.3 SBERT, +8.9 SimCSE, +18.3 BLEU-1, +19.1
ROUGE-L, and +13.3 METEOR. The large gains on token-based metrics suggest stronger lexical
coverage and structure in object-level descriptions.

Qualitative Understanding Results. Figure 7 provides qualitative examples for overall object
captioning. Our model generates more accurate and detailed descriptions compared to baselines.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Part understanding Q&A on UniPart-Bench.

Model SBERT SimCSE BLEU-1 ROUGE-L METEOR

GPT4Point Qi et al. (2024b) 48.32 45.17 15.16 22.55 16.19
PointLLM-7B Xu et al. (2024) 61.30 58.48 21.78 29.26 22.45
PointLLM-13B Xu et al. (2024) 56.36 51.47 21.40 29.16 21.80
ShapeLLM-13B Qi et al. (2024a) 61.19 57.26 23.32 32.56 24.45
ShapeLLM-Omni-7B Ye et al. (2025) 57.35 51.16 22.77 29.57 23.24

Part-X-MLLM (Ours) 78.98 84.25 40.54 42.26 34.24

Table 4: Overall 3D object captioning on UniPart-Bench.

Model SBERT SimCSE BLEU-1 ROUGE-L METEOR

GPT4Point Qi et al. (2024b) 25.60 27.00 11.50 12.00 12.70
PointLLM-7B Xu et al. (2024) 42.79 42.44 11.58 14.39 16.90
PointLLM-13B Xu et al. (2024) 43.51 43.12 13.54 15.74 17.45
ShapeLLM-13B Qi et al. (2024a) 25.15 27.14 11.77 12.14 12.84
ShapeLLM-Omni-7B Ye et al. (2025) 31.18 31.93 17.79 19.04 14.30

Part-X-MLLM (Ours) 53.82 51.97 36.04 38.11 30.71

For instance, our model correctly identifies an object as a “pink teddy bear mascot costume with
a purple bow tie,” while other models provide less specific or incorrect descriptions. Additional
qualitative results for part-aware Q&A, demonstrating our model’s strong grounding capabilities,
are provided in the appendix (Figure 9).

Input PointLLM ShapeLLM ShapeLLM-Omni OursGT

A pink teddy bear
costume with a
purple bow tie.

A 3D model of a
bare, leafless tree

with roots and horns.

The 3D structure
appears to be a
futuristic vehicle

with a sleek design.

This 3D model
portrays an

endearing cartoon
character designed

to resemble a
mouse.

A pink, teddy bear
mascot costume with

a purple bow tie.

A chibi character
wearing a conical
hat and traditional

clothing.

This is a 3D model
of a cartoon-like

figure representing a
girl.

The 3D structure
appears to be a

futuristic, abstract
design with a mix of
metallic and organic

elements.

This is a 3D model
of a toy cartoon

character that has
brown hair and
large, expressive
eyes. Notably, it's
wearing a jacket
and a black hat.

A chibi-style
character in

traditional Chinese
clothing with a hair

ornament.

A woman with curly
brown hair wearing
a colorful striped

halter dress.

This is a three-
dimensional model
of a female cartoon
character donned in
a vibrant red shirt.

The 3D structure
appears to be a
fragmented or

abstract
representation of a
creature, possibly a

horse.

The 3D model
represents a vibrant

cartoon lady
character wearing a

bright red dress.

A woman with curly
hair wearing a

striped dress and a
fox mask.

O
ve

ra
ll

D
es

cr
ip

ti
on

Figure 7: Qualitative results for overall object captioning.

5 CONCLUSION

Part-X-MLLM casts 3D interaction as executable program generation: from RGB point clouds and
text it emits a single sequence of part AABBs that geometry engines execute, unifying generation,
QA, and localized editing, and improving Voxel Recall/IoU and BBox IoU on UniPart-Bench. Ap-
pendix A.2.1 supports controllable granularity.

Limitations. Longer sequences slow inference; simple compaction and hierarchical grouping mit-
igate latency. Our confidence-based segmentation from BBoxes remains relatively shallow; incor-
porating stronger features could improve segmentation quality. Fine-tuning on 3D tasks may reduce
the base LLM’s general language capabilities.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

This work presents Part-X-MLLM, a part-aware 3D multimodal model that outputs executable pro-
grams (e.g., tokenized AABBs and edit commands). Training uses a blend of publicly available and
professionally sourced 3D assets and annotations, subjected to rigorous quality filtering and license
review; we avoid personal or biometric data. The model’s outputs are grounded and auditable, and
the system is intended for research and creative use. We will provide a public API and online in-
terface with usage guidelines. We acknowledge residual risks such as inherited dataset biases and
domain shift and will monitor and update the service accordingly. The authors declare no conflicts
of interest.

7 REPRODUCIBILITY STATEMENT

We detail the structured planning grammar, architecture, training curriculum, and evaluation pro-
tocol to enable replication. We will open-source the model checkpoints and the UniPart-Bench
introduced in this paper, together with evaluation scripts for BBox IoU and voxel metrics, config-
uration files, prompts/converters for data construction, and complete training/inference code with
seeds. A public API and online interface will also be available for lightweight validation.

REFERENCES

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
editing instructions. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 18392–18402, 2023.

Hansheng Chen, Ruoxi Shi, Yulin Liu, Bokui Shen, Jiayuan Gu, Gordon Wetzstein, Hao Su, and
Leonidas Guibas. Generic 3d diffusion adapter using controlled multi-view editing. arXiv preprint
arXiv:2403.12032, 2024a.

Minghao Chen, Junyu Xie, Iro Laina, and Andrea Vedaldi. Shap-editor: Instruction-guided latent 3d
editing in seconds. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 26456–26466, 2024b.

Minghao Chen, Roman Shapovalov, Iro Laina, Tom Monnier, Jianyuan Wang, David Novotny, and
Andrea Vedaldi. Partgen: Part-level 3d generation and reconstruction with multi-view diffusion
models. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 5881–
5892, 2025a.

Minghao Chen, Jianyuan Wang, Roman Shapovalov, Tom Monnier, Hyunyoung Jung, Dilin Wang,
Rakesh Ranjan, Iro Laina, and Andrea Vedaldi. Autopartgen: Autogressive 3d part generation
and discovery. arXiv preprint arXiv:2507.13346, 2025b.

Ziya Erkoç, Can Gümeli, Chaoyang Wang, Matthias Nießner, Angela Dai, Peter Wonka, Hsin-Ying
Lee, and Peiye Zhuang. Preditor3d: Fast and precise 3d shape editing. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 640–649, 2025.

Ayaan Haque, Matthew Tancik, Alexei A Efros, Aleksander Holynski, and Angjoo Kanazawa.
Instruct-nerf2nerf: Editing 3d scenes with instructions. In Proceedings of the IEEE/CVF in-
ternational conference on computer vision, pp. 19740–19750, 2023.

Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang
Gan. 3d-llm: Injecting the 3d world into large language models. Advances in Neural Information
Processing Systems, 36:20482–20494, 2023.

Team Hunyuan3D, Shuhui Yang, Mingxin Yang, Yifei Feng, Xin Huang, Sheng Zhang, Zebin He,
Di Luo, Haolin Liu, Yunfei Zhao, et al. Hunyuan3d 2.1: From images to high-fidelity 3d assets
with production-ready pbr material. arXiv preprint arXiv:2506.15442, 2025.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 4015–4026, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lin Li, Zehuan Huang, Haoran Feng, Gengxiong Zhuang, Rui Chen, Chunchao Guo, and Lu Sheng.
Voxhammer: Training-free precise and coherent 3d editing in native 3d space. arXiv preprint
arXiv:2508.19247, 2025.

Songlin Li, Despoina Paschalidou, and Leonidas Guibas. Pasta: Controllable part-aware shape
generation with autoregressive transformers. arXiv preprint arXiv:2407.13677, 2024a.

Yuhan Li, Yishun Dou, Yue Shi, Yu Lei, Xuanhong Chen, Yi Zhang, Peng Zhou, and Bingbing
Ni. Focaldreamer: Text-driven 3d editing via focal-fusion assembly. In Proceedings of the AAAI
conference on artificial intelligence, volume 38, pp. 3279–3287, 2024b.

Anran Liu, Cheng Lin, Yuan Liu, Xiaoxiao Long, Zhiyang Dou, Hao-Xiang Guo, Ping Luo, and
Wenping Wang. Part123: part-aware 3d reconstruction from a single-view image. In ACM SIG-
GRAPH 2024 Conference Papers, pp. 1–12, 2024a.

Fangfu Liu, Hanyang Wang, Weiliang Chen, Haowen Sun, and Yueqi Duan. Make-your-3d: Fast and
consistent subject-driven 3d content generation. In European Conference on Computer Vision, pp.
389–406. Springer, 2024b.

Minghua Liu, Mikaela Angelina Uy, Donglai Xiang, Hao Su, Sanja Fidler, Nicholas Sharp, and
Jun Gao. Partfield: Learning 3d feature fields for part segmentation and beyond. arXiv preprint
arXiv:2504.11451, 2025.

Changfeng Ma, Yang Li, Xinhao Yan, Jiachen Xu, Yunhan Yang, Chunshi Wang, Zibo Zhao, Yan-
wen Guo, Zhuo Chen, and Chunchao Guo. P3-sam: Native 3d part segmentation. arXiv preprint
arXiv:2509.06784, 2025.

Qiaowei Miao, Kehan Li, Jinsheng Quan, Zhiyuan Min, Shaojie Ma, Yichao Xu, Yi Yang, Ping Liu,
and Yawei Luo. Advances in 4d generation: A survey, 2025. URL https://arxiv.org/
abs/2503.14501.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988, 2022.

Zekun Qi, Runpei Dong, Shaochen Zhang, Haoran Geng, Chunrui Han, Zheng Ge, Li Yi, and
Kaisheng Ma. Shapellm: Universal 3d object understanding for embodied interaction. In Euro-
pean Conference on Computer Vision, pp. 214–238. Springer, 2024a.

Zhangyang Qi, Ye Fang, Zeyi Sun, Xiaoyang Wu, Tong Wu, Jiaqi Wang, Dahua Lin, and Heng-
shuang Zhao. Gpt4point: A unified framework for point-language understanding and generation.
In Proceedings of the ieee/cvf conference on computer vision and pattern recognition, pp. 26417–
26427, 2024b.

Etai Sella, Gal Fiebelman, Peter Hedman, and Hadar Averbuch-Elor. Vox-e: Text-guided voxel
editing of 3d objects. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 430–440, 2023.

Jiaxiang Tang, Ruijie Lu, Zhaoshuo Li, Zekun Hao, Xuan Li, Fangyin Wei, Shuran Song, Gang
Zeng, Ming-Yu Liu, and Tsung-Yi Lin. Efficient part-level 3d object generation via dual volume
packing. arXiv preprint arXiv:2506.09980, 2025.

Chunshi Wang, Hongxing Li, and Yawei Luo. Sonicgauss: Position-aware physical sound synthesis
for 3d gaussian representations, 2025.

Zhengyi Wang, Jonathan Lorraine, Yikai Wang, Hang Su, Jun Zhu, Sanja Fidler, and Xiaohui
Zeng. Llama-mesh: Unifying 3d mesh generation with language models. arXiv preprint
arXiv:2411.09595, 2024.

11

https://arxiv.org/abs/2503.14501
https://arxiv.org/abs/2503.14501

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng Wang, Bowen Zhang, Dong Chen, Xin
Tong, and Jiaolong Yang. Structured 3d latents for scalable and versatile 3d generation. arXiv
preprint arXiv:2412.01506, 2024.

Runsen Xu, Xiaolong Wang, Tai Wang, Yilun Chen, Jiangmiao Pang, and Dahua Lin. Pointllm:
Empowering large language models to understand point clouds. In European Conference on
Computer Vision, pp. 131–147. Springer, 2024.

Han Yan, Yang Li, Zhennan Wu, Shenzhou Chen, Weixuan Sun, Taizhang Shang, Weizhe Liu, Tian
Chen, Xiaqiang Dai, Chao Ma, et al. Frankenstein: Generating semantic-compositional 3d scenes
in one tri-plane. In SIGGRAPH Asia 2024 Conference Papers, pp. 1–11, 2024a.

Han Yan, Mingrui Zhang, Yang Li, Chao Ma, and Pan Ji. Phycage: Physically plausible composi-
tional 3d asset generation from a single image. arXiv preprint arXiv:2411.18548, 2024b.

Xinhao Yan, Jiachen Xu, Yang Li, Changfeng Ma, Yunhan Yang, Chunshi Wang, Zibo Zhao, Ze-
qiang Lai, Yunfei Zhao, Zhuo Chen, et al. X-part: high fidelity and structure coherent shape
decomposition. arXiv preprint arXiv:2509.08643, 2025.

Yunhan Yang, Yukun Huang, Yuan-Chen Guo, Liangjun Lu, Xiaoyang Wu, Edmund Y Lam,
Yan-Pei Cao, and Xihui Liu. Sampart3d: Segment any part in 3d objects. arXiv preprint
arXiv:2411.07184, 2024.

Yunhan Yang, Yuan-Chen Guo, Yukun Huang, Zi-Xin Zou, Zhipeng Yu, Yangguang Li, Yan-
Pei Cao, and Xihui Liu. Holopart: Generative 3d part amodal segmentation. arXiv preprint
arXiv:2504.07943, 2025a.

Yunhan Yang, Yufan Zhou, Yuan-Chen Guo, Zi-Xin Zou, Yukun Huang, Ying-Tian Liu, Hao Xu,
Ding Liang, Yan-Pei Cao, and Xihui Liu. Omnipart: Part-aware 3d generation with semantic
decoupling and structural cohesion. arXiv preprint arXiv:2507.06165, 2025b.

Junliang Ye, Zhengyi Wang, Ruowen Zhao, Shenghao Xie, and Jun Zhu. Shapellm-omni: A native
multimodal llm for 3d generation and understanding. arXiv preprint arXiv:2506.01853, 2025.

Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-bert:
Pre-training 3d point cloud transformers with masked point modeling. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 19313–19322, 2022.

Longwen Zhang, Qixuan Zhang, Haoran Jiang, Yinuo Bai, Wei Yang, Lan Xu, and Jingyi Yu. Bang:
Dividing 3d assets via generative exploded dynamics. ACM Transactions on Graphics (TOG), 44
(4):1–21, 2025.

Wang Zhao, Yan-Pei Cao, Jiale Xu, Yuejiang Dong, and Ying Shan. Assembler: Scalable 3d part
assembly via anchor point diffusion. arXiv preprint arXiv:2506.17074, 2025a.

Zibo Zhao, Zeqiang Lai, Qingxiang Lin, Yunfei Zhao, Haolin Liu, Shuhui Yang, Yifei Feng,
Mingxin Yang, Sheng Zhang, Xianghui Yang, et al. Hunyuan3d 2.0: Scaling diffusion models for
high resolution textured 3d assets generation. arXiv preprint arXiv:2501.12202, 2025b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) are used exclusively for minor language editing—such as im-
proving grammar and readability—and not for method design or experimental work. All technical
contributions, including the methodology, equations, and results, are solely the work of the authors.

A.2 MORE EXPERIMENTAL RESULTS

A.2.1 SEMANTIC PART CLUSTERING ALGORITHM

To enable dynamic control over semantic granularity, we introduce a post-processing algorithm
that clusters fine-grained part bounding boxes into coarser, semantically meaningful components.
This process, illustrated in Figure 6, operates without requiring manual intervention or a predefined
number of target clusters. The algorithm follows a three-step pipeline: feature extraction, clustering,
and merging.

1. Feature Extraction. For each predicted part pi, we extract its bounding box bi = (xmin,xmax)i
and textual description di. A hybrid feature vector fi is then generated.

First, the semantic feature vector fsem,i is obtained by encoding the description with a pretrained
CLIP model:

fsem,i = CLIP-Encode(di). (1)

Next, we compute the spatial feature vector fspat,i from the bounding box’s center ci = (xmin +
xmax)/2 and size si = xmax − xmin. The raw spatial vector is normalized across all N parts in the
object to produce f̂spat,i:

fspat,i = [ci, si], f̂spat,i = Normalize({fspat,j}Nj=1)i. (2)

Finally, the semantic and spatial features are combined using a weighting factor α ∈ [0, 1], and the
resulting vector is L2-normalized:

fi =
(1− α)fsem,i ⊕ αf̂spat,i

∥(1− α)fsem,i ⊕ αf̂spat,i∥2
, (3)

where ⊕ denotes concatenation.

2. Clustering. We apply DBSCAN to the set of feature vectors {fi}Ni=1. DBSCAN groups points
based on two parameters: a distance threshold ϵ and a minimum number of points ‘minPts‘. A
point fi is a core point if its ϵ-neighborhood contains at least ‘minPts‘ points. A cluster is formed
by a set of density-connected points, starting from a core point and recursively expanding to all
reachable neighbors. This approach allows us to automatically identify a variable number of clusters
K without prior specification, returning a set of clusters C = {C1, . . . , CK} and a set of noise points
N .

3. Merging. For each cluster Ck ∈ C, we compute a single merged bounding box Bk =
(Xmin,k,Xmax,k). This is done by taking the component-wise minimum and maximum over all
bounding boxes bi ∈ Ck:

Xmin,k = min
i|bi∈Ck

(xmin,i), Xmax,k = max
i|bi∈Ck

(xmax,i). (4)

The final output is a set of K merged bounding boxes, representing a coarser, semantically-grouped
decomposition of the object.

This automated approach provides a flexible and powerful way to adjust the granularity of the gen-
erated 3D assets, bridging the gap between fine-grained part generation and high-level semantic
understanding.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.3 ADDITIONAL QUALITATIVE RESULTS

Figure 9 provides qualitative examples for part-aware question answering. Our model demonstrates
strong grounding capabilities by providing detailed, box-annotated answers that accurately describe
object parts in response to user queries.

Figure 8: Confidence-aware face segmentation. By leveraging the generated bounding boxes and
their associated confidence scores, we can achieve high-quality, fine-grained face-level segmentation
of 3D objects without any additional training.

He is wearing a yellow puffer vest
<boxs><box-45><box-73><box-48><box-
81><box-117><box-78><boxe> over a blue

shirt <boxs><box-48><box-66><box-
51><box-78><box-109><box-76><boxe>,
dark blue pants <boxs><box-49><box-
16><box-54><box-77><box-77><box-
74><boxe>, and green sneakers

<boxs><box-48><box-1><box-55><box-
56><box-11><box-75><boxe> <boxs><box-

70><box-1><box-55><box-78><box-
11><box-75><boxe>.

The man is wearing
a yellow shirt and

black pants.

He is wearing a yellow puffer
vest<boxs><box-46><box-73><box-

48><box-80><box-117><box-78><boxe>
over a light blue long-sleeved

shirt<boxs><box-48><box-66><box-
51><box-78><box-109><box-76><boxe>,
dark blue pants<boxs><box-49><box-
16><box-54><box-77><box-77><box-

74><boxe>, and bright green
sneakers<boxs><box-48><box-1><box-

55><box-56><box-11><box-
75><boxe><boxs><box-70><box-1><box-
55><box-78><box-11><box-75><boxe>.

This is a bolt-action sniper rifle. This is a rifle. This is a modern-style sniper rifle.

The object consists of a main rectangular
casing <boxs><box-1><box-28><box-

25><box-125><box-105><box-92><boxe>
with a large circular fan assembly

<boxs><box-12><box-38><box-89><box-
68><box-95><box-94><boxe> and two small
feet <boxs><box-5><box-21><box-20><box-

18><box-28><box-106><boxe> and
<boxs><box-100><box-21><box-20><box-
113><box-28><box-106><boxe> at bottom.

The object appears
to be a tall,
rectangular

structure with a
protruding section

on one side, a
window on the front,

and multiple
ventilation slits on

its sides.

The object consists of a large main casing
<boxs><box-1><box-28><box-25><box-

125><box-105><box-92><boxe> that rests
on two long, parallel bars <boxs><box-
5><box-21><box-20><box-18><box-

28><box-106><boxe> and <boxs><box-
100><box-21><box-20><box-112><box-

28><box-106><boxe> which act as its feet.

What is the
man wearing?

What type of
firearm is this?

What is the
overall structure
of the object?

PointLLM OursGTInput

Q
ue

st
io

ns
 a

nd
 A

ns
w

er
s

Figure 9: Qualitative results for part-aware Q&A. Our model provides more accurate and de-
scriptive answers, with precise part grounding indicated by bounding box tokens.

A.4 CONFIDENCE-AWARE FACE SEGMENTATION FROM BOUNDING BOXES

As mentioned in Section 3, the rich information encoded in our model’s autoregressive output can be
leveraged for advanced downstream tasks beyond simple generation or editing. One such application
is fine-grained, confidence-aware face segmentation, as shown in Figure 8. This process requires no

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

additional training and relies solely on the generated bounding boxes and the token probabilities
from the decoding process.

The algorithm follows a three-step process:

1. Confidence-Aware BBox Inference. During autoregressive decoding, the model generates a
sequence of tokens T = (t1, t2, . . . , tL) that represent a series of bounding boxes. For each token ti,
the model also outputs a probability distribution over the entire vocabulary, from which we derive
a confidence score. The confidence of a bounding box Bj , which is composed of a sequence of k
tokens (typically 6), is calculated as the arithmetic mean of the probabilities of its constituent tokens:

Conf(Bj) =
1

k

k∑
i=1

P (ti|t<i) (5)

This provides a per-box confidence score that reflects the model’s certainty in its prediction.

2. Face-to-Box Assignment. Given a mesh with a set of faces F = {f1, f2, . . . , fM} and a set of
inferred bounding boxes B = {B1, B2, . . . , BN}, we first determine which faces belong to which
boxes. A face fm is considered a candidate for Bj if its centroid cm lies within the volume of Bj :

cm ∈ Bj ⇐⇒ (cm ≥ xmin,j) ∧ (cm ≤ xmax,j) (6)

where xmin,j and xmax,j are the minimum and maximum coordinates of box Bj , and the comparison
is element-wise.

3. Conflict Resolution. A face’s centroid may lie within multiple overlapping bounding boxes,
creating an ambiguity. We resolve this using a two-tiered rule system:

• Containment Rule: If a face fm is a candidate for two boxes, Bi and Bj , and one box is
strictly contained within the other (e.g., Bi ⊂ Bj), the face is assigned to the box with the
smallest volume. This prioritizes more specific, fine-grained predictions.

• Confidence Rule: If the boxes overlap but neither contains the other, the face is assigned
to the box with the highest confidence score, Conf(Bj). This leverages the model’s own
uncertainty estimate to make the most likely assignment.

This process results in a deterministic assignment of each face to a single bounding box, producing
a high-quality, fine-grained segmentation of the object, as shown in Figure 8.

A.5 ANALYSIS OF SPECIAL TOKEN EMBEDDINGS

To better understand how our model interprets the specialized grammar, we visualize the embeddings
of our newly added special tokens using t-SNE, as shown in Figure 10. The visualization reveals a
highly structured and semantically meaningful latent space.

We observe three key phenomena. First, the tokens form distinct clusters based on their function:
Point, Box, and Edit tokens occupy separate regions of the embedding space. Second, the 128
box tokens, which represent quantized coordinates, form a continuous, ordered manifold. This
demonstrates that the model has learned the ordinal nature of spatial coordinates rather than treating
them as independent categorical variables. Third, tokens with similar functions, such as the start/end
pairs for edits (e.g., <adds>/<adde>), are positioned closely together. This structured organization
confirms that the model has successfully learned a robust and interpretable representation of our
executable grammar, which is crucial for precise, language-driven 3D planning.

A.6 DATASET CONSTRUCTION AND LABELING

Scope. We build a high-quality, part-centric dataset tailored for Part-X-MLLM. The corpus con-
tains 85,771 unique 3D objects with an average of 23 parts per object. Each part is annotated
with an axis-aligned bounding box (AABB) and two levels of text: a coarse name (Q1) and a fine-
grained description (Q2). At the object level, we include a concise overall caption and a small set
of instruction–answer pairs for part-aware Q&A. All annotations are serialized using the unified
box-token grammar described in Section 3.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

15 10 5 0 5 10 15 20
t-SNE Dimension 1

15

10

5

0

5

10

15

t-
SN

E
D

im
en

si
on

 2

<|point_pad|>

<|point_start|><|point_end|>
<boxs>

<boxe>

<box-10>

<box-25>

<box-40>

<box-55>

<box-70>

<box-85>

<box-100>

<box-115>

<adds>

<adde>

<mods>
<mode> <dels>

<dele>

t-SNE Visualization of Special Token Embeddings

Point tokens
Box tokens
Edit tokens

Figure 10: t-SNE visualization of special token embeddings. The tokens form distinct, well-
structured clusters based on their function, indicating a meaningful learned representation.

Figure 11: Model-assisted labeling pipeline. Left: inputs (full-asset + per-part crops). Middle:
structured tool schema drives the LMM to output object-level and part-level JSON. Right: validated
JSON is stored and used by the data builder.

A.6.1 MODEL-ASSISTED LABELING

To scale high-quality labels consistently, we adopt a model-assisted pipeline guided by a structured
tool schema. Given a full-asset render and a sequence of part close-ups, we collect:

• Q1: short part name.

• Q2: fine-grained natural description (≤ 15 words; avoid irrelevant rendering terms).

• Q3: confidence flag (Yes/No).

Concretely, we follow the schema implemented in our labeling tool, which calls an external LMM
with a JSON response format and deterministic field ordering. For each object, we provide: (1) one
full-asset image (front view); and (2) K part crops (one per part).

A.6.2 BUILDING INSTRUCTION-FOLLOWING SAMPLES

We convert raw labels into diverse instruction-following pairs covering grounding, captioning,
QA, and editing. A central convenience is a box-token grammar with opening/closing tokens
<boxs> and <boxe> wrapping six quantized coordinates, and edit verbs <adds>/<adde>,
<dels>/<dele>, and <mods>/<mode>.

Quantization and serialization. Each coordinate x ∈ [−1, 1] is quantized into K = 128 bins as

q(x) = round
(
x+1
2 (K − 1)

)
, x̃ = 2 q(x)

K−1 − 1, (7)

then serialized as six tokens inside <boxs>...<boxe>. For reproducibility, parts in a list are deter-
ministically ordered by (q(zmin), q(ymin), q(xmin)).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1 Data building (simplified)
1: Load datas
2: for each object o do
3: Serialize each part AABB to tokens; sort by (zmin, ymin, xmin)
4: for each template t ∈ {0, . . . , 10} do
5: Instantiate a natural-language prompt from a template pool
6: Emit the target sequence (boxes, text, or edit program)
7: Append conversation pair to the corpus
8: Shuffle and save shards; optionally balance per-template counts

Table 5: Task families and sizes. “Raw” denotes counts before optional balancing; “Final” denotes
the target budget after balancing.

Name Input Output Raw % Type Final

Single-Part Grounding point + coarse text 1 box + fine text 506,755 7.30 T3 506,755
Single-Part Grounding point + fine text 1 box 887,590 12.78 T4 506,755
Multi-Part Grounding point + text all boxes + Q1 85,771 1.24 T1 257,313
Multi-Part Grounding point + text all boxes + Q2 85,771 1.24 T2 257,313
Box-to-Text (coarse) point + box + text Q1 887,590 12.78 T5 506,755
Box-to-Text (fine) point + box + text Q2 887,590 12.78 T6 506,755
Part QA point + text text 577,369 8.31 T7 506,755
Edit—Add point + text program (box + text) 247,998 3.57 T10 247,998
Edit—Remove point + text program (boxes) 1,394,345 20.08 T8 247,998
Edit—Replace point + text program (box + text) 883,941 12.73 T9 247,998
Pure box listing point + text all boxes 500,000 7.20 T0 500,000

Total 6,944,720 100.00 4,292,395

Task families. We instantiate eleven templates (Types 0–10):

• Type 0: pure box listing from a point cloud (“detect all bounding boxes”).

• Type 1: multi-part grounding with coarse text (AABBs + Q1 per part).

• Type 2: multi-part grounding with fine text (overall description first, then AABBs + Q2).

• Type 3: single-part grounding from coarse text (locate all Q1 parts; return AABBs + de-
scription).

• Type 4: single-part grounding from fine text (locate part by Q2; return a single AABB).

• Type 5: box-to-text (given a box, answer Q1).

• Type 6: box-to-text (given a box, answer Q2).

• Type 7: part-aware QA (replace textual part references <Part i> with the corresponding
box tokens in answers).

• Type 8: deletion program (emit <dels> [boxes] <dele>).

• Type 9: modification program (emit <mods> [box] new text <mode>).

• Type 10: addition program (emit <adds> [box] text <adde>).

Train/test split and balancing. We partition the file list deterministically at 0.5% for test and 99.5%
for train. Templates 1–2 are lightly duplicated to increase multi-part coverage; for templates 3–7 we
downsample to a fixed budget; for edit templates (8–10) we cap the number per shard. See Table 5.

A.7 DATASET STATISTICS

Task families and sizes. Table 5 summarizes per-task counts before/after balancing. Counts follow
our build scripts.

Category distribution. Our corpus spans everyday objects and scenes. Table 6 lists the main
categories (top-12 by frequency).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Category distribution (top-19).

Rank Category Count Share (%)

1 Human 20,426 23.74
2 Industrial goods 7,139 8.30
3 Home goods 7,010 8.15
4 Buildings 6,909 8.03
5 Personal items 6,730 7.82
6 Animals 6,582 7.65
7 Weapons 6,406 7.45
8 Vehicles 5,996 6.97
9 Cultural artifacts 5,995 6.97

10 Food 5,885 6.84
11 Technology & electronics 5,183 6.02
12 Others 1,774 2.06

Table 7: All-task results on the 400-case unseen benchmark. “Type/Name” follows the template
definitions in Table 5. Blank entries indicate that the GT for that task does not contain the corre-
sponding modality.

Task Type Name IoU SBERT SimCSE BLEU-1 ROUGE-L METEOR

0 T0 Pure box listing 0.755
1 T1 Multi-Part Grounding (Q1) 0.728 55.60 54.19 35.55 35.58 18.09
2 T2 Multi-Part Grounding (Q2) 0.736 63.68 60.68 31.01 33.68 27.72
3 T3 Single-Part Grounding (Q1) 0.528 73.28 71.70 36.29 38.94 33.21
4 T4 Single-Part Grounding (Q2) 0.443
5 T5 Box-to-Text (Q1) 57.35 56.49 38.12 38.14 19.49
6 T6 Box-to-Text (Q2) 64.64 61.96 31.35 33.73 28.13
7 T7 Part QA 0.554 78.98 84.25 40.54 42.26 34.24
8 T8 Edit—Remove (program) 0.473
9 T9 Edit—Replace (program) 0.409

10 T10 Edit—Add (program) 0.700 80.38 79.71 47.62 51.66 46.63

A.8 COMPREHENSIVE RESULTS ON UNIPART-BENCH

We report per-task results on UniPart-Bench. Note that UniPart-Bench is a held-out subset of
our 85,771-object training dataset, ensuring identical data construction pipeline and distribution
characteristics. Following our data construction, each ground-truth (GT) item may contain both
BBox tokens and text. When both are present, we evaluate BBoxes with IoU and text with
SBERT/SimCSE/BLEU-1/ROUGE-L/METEOR. If a GT contains only BBoxes or only text, we
evaluate the available modality and leave the other columns blank. Table 7 summarizes results for
Tasks 0–10 while mapping each task to its template Type and name as in Table 5.

Discussion. Language-intensive tasks (T7 Part QA, T10 Edit—Add) obtain the highest
SBERT/SimCSE and strong lexical metrics, indicating robust alignment between our planned
box-conditioned answers/programs and textual GT. Among IoU-based tasks, T0/T2/T10 show the
strongest geometric alignment, reflecting reliable planning for pure detection, fine grounding, and
edit addition respectively. Blank text or IoU entries arise by design when a task’s GT lacks the
corresponding modality.

A.9 PROMPT TEMPLATES FOR DATA CONSTRUCTION

To ensure the reproducibility of our dataset construction, this section provides the complete set of
English prompt templates used to generate the instruction-following samples for each of the 11 task
types, as described in Section A.6.2. These templates are presented in the tables below.

A.9.1 TYPE 0: PURE BOX LISTING

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

ID Prompt Template
1 "Detect all bounding boxes in this point cloud"
2 "Show me all the bounding boxes"
3 "Generate bounding boxes for all objects"
4 "Find all object boundaries"
5 "Extract all bounding boxes from this scene"
6 "Locate all object bounding boxes"
7 "Output all detected bounding boxes"
8 "Provide bounding boxes for all components"
9 "Identify all object boundaries in this model"

10 "Return all bounding box coordinates"
11 "Detect and output all object boxes"
12 "Find all rectangular boundaries"
13 "Generate all object bounding boxes"
14 "Show all detection boxes"
15 "Output bounding box coordinates for all objects"
16 "Detect all objects and return their boxes"
17 "Find every bounding box in this point cloud"
18 "Extract object boundaries from this 3D data"
19 "Provide all object detection boxes"
20 "Return coordinates of all detected objects"

A.9.2 TYPE 1: MULTI-PART GROUNDING (COARSE TEXT)

ID Prompt Template
1 "What distinct components does this contain? Please

annotate with bounding boxes and provide short
labels"

2 "What functional parts make up this object? First
provide 6 box-tokens then write the name"

3 "What structural elements can be decomposed? Output
in the specified format"

4 "What key components does this have? Please locate
and name them"

5 "What identifiable parts are there? Mark with AABB
tokens"

6 "What construction units can be distinguished?
Please list them"

7 "What parts need to be annotated in this?"
8 "What basic components does this contain? Please

output bounding box + label"
9 "What main parts is this composed of? Please

enumerate using token format"
10 "What recognizable sub-parts are there? Use the

specified format for output"
11 "Which distinct parts exist here? Provide

box-tokens and short labels"
12 "Identify every component and prepend its 6

quantized box tokens"
13 "List all separable elements; each line starts with

tokens"
14 "Locate and name each part of the object"
15 "Enumerate all components with their bounding-box

tokens"
16 "Break the shape into parts, output AABB tokens then

a concise tag"

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

ID Prompt Template
17 "Mark every structural unit. Format: tokens

followed by NAME"
18 "Point out all functional pieces and give their

tokenized boxes"
19 "Provide the set of parts and their six token

indices"
20 "Give every recognized section together with its

AABB tokens"
21 "List all structural elements using 6 box-tokens +

name format"
22 "Return the quantized bounding box and short name

for each part"
23 "Please enumerate in the format of tokens followed

by NAME"
24 "Output part AABB (tokens) and their names"
25 "Give the list of components together with their

quantized boxes"
26 "Return each element as six tokens followed by a

short label"
27 "Provide AABB tokens plus name for every

distinguishable component"
28 "Enumerate all parts with their bounding-box tokens

and a brief tag"
29 "Please identify all parts and output bounding box

tokens + short name"
30 "After completion, only return the parts list

without extra explanation"
31 "Output strictly according to the specified format,

no additional text"
32 "No extra description at the end, only list the

parts"
33 "List the token AABB and name for each part"
34 "Give tokens and labels in order of appearance"
35 "Use six tokens followed by space and name"
36 "Example line: tokens label, please output

according to this example"
37 "Return all components and their quantized

coordinate indices"

A.9.3 TYPE 2: MULTI-PART GROUNDING (FINE TEXT)

ID Prompt Template
1 "Please describe the overall appearance of this

point cloud in detail, then introduce each part one
by one (with AABB tokens)"

2 "First give an overall impression, then explain each
part in turn with bounding box tokens"

3 "Please provide an overview of this model, and
describe each component with tokens"

4 "What is the overall shape like? What are the
materials and functions of each part?"

5 "Please first introduce the complete structure, then
list parts with tokens + detailed explanations"

6 "From this point cloud, give an overall description
then detail each part with its bounding box"

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

ID Prompt Template
7 "Describe the complete object, followed by part-wise

details using quantized tokens"
8 "Provide a holistic view and then list all elements

with 6 box tokens and properties"
9 "Summarize the scene, then output each component in

the required token format"
10 "Give a full description first, then annotate every

part with its box tokens and long caption"
11 "Please first present the overall features, then

elaborate on each functional component"
12 "After summarizing the appearance, list each part

item by item (format: tokens description)"
13 "Give the global appearance, then each part line

starts with 6 tokens"
14 "Present the overall structure and afterwards the

detailed attributes of all components"
15 "Explain the general design; afterwards specify each

element with its tokens and features"
16 "First output an overall description, then write a

detailed explanation for each part with tokens"
17 "Describe holistically, then provide component-wise

explanations with bounding-box indices"
18 "Begin with the object overview; subsequently list

parts and their detailed properties"
19 "Offer a complete summary and then enumerate parts

with tokenized boxes"
20 "Return the overall description and AABB + detailed

explanation for each part"
21 "Finally, please list all components and their

features in the specified format"
22 "Please output in the format of ’overall description

tokens description’"
23 "Provide each part in turn (including token bounding

box and function/material description)"
24 "Provide the overall description followed by every

part in the required tokenized box format"
25 "Please finish by listing each component’s six box

tokens and an informative sentence"
26 "Return first the global description, then each

element as tokens LONG DESCRIPTION"
27 "Include a holistic summary, then annotate each part

with its quantized AABB and details"
28 "Conclude with the part-wise list using bounding-box

tokens plus their detailed attributes"
29 "Output the parts list, each line starting with

tokens"
30 "Please output the description of this object or

scene and its parts’ BBox information, overall first
then parts, format and order cannot be changed"

31 "End by outputting all parts and their respective
detailed features"

32 "Summary first, then component lines with tokens and
descriptions"

33 "Output strictly in two sections: overview +
per-part details"

34 "After the overview, enumerate every part with its
quantized box tokens"

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

ID Prompt Template
35 "Overall + parts format example: tokens The left

handle is ..."

A.9.4 TYPE 3: SINGLE-PART GROUNDING (FROM COARSE TEXT)

ID Prompt Template
1 "Find the {part name} in this model"
2 "Locate the {part name} in this model"
3 "Point out the {part name} in this point cloud"
4 "Mark the {part name} in this object"
5 "Where is the {part name} in this 3D model?"
6 "Identify the {part name} in this point cloud"
7 "Please show all {part name} in this object"
8 "Where is the position of {part name} in this scene?"
9 "Locate the {part name} in this model"

10 "Find the {part name} in this point cloud"
11 "Point out the {part name} in this object"
12 "Where is the {part name} in this 3D shape?"
13 "Mark the {part name} in this model"
14 "Show all {part name} in this object"
15 "Identify the {part name} in this point cloud"
16 "Highlight the position of {part name}"

A.9.5 TYPE 4: SINGLE-PART GROUNDING (FROM FINE TEXT)

ID Prompt Template
1 "Where is the part corresponding to this

description: {part description}"
2 "Help me locate this part: {part description}"
3 "Find the corresponding part based on this

description: {part description}"
4 "In this point cloud, which part does

{part description} refer to?"
5 "Mark the position of this part: {part description}"
6 "Please provide the bounding box for the

part corresponding to this description:
{part description}"

7 "Find the part that matches this description:
{part description}"

8 "Locate the component described as:
{part description}"

9 "Which part is this referring to:
{part description}"

10 "Mark the boundary of: {part description}"
11 "Show the box coordinates for: {part description}"
12 "Provide the bounding box for this described

element: {part description}"
13 "Where exactly is: {part description}"
14 "Given this description, locate the corresponding

part: {part description}"
15 "Locate the part based on this text and provide its

AABB: {part description}"

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

ID Prompt Template
16 "Which specific part does this description

correspond to? {part description}"

A.9.6 TYPE 5: BOX-TO-TEXT (COARSE)

ID Prompt Template
1 "What is this part?"
2 "What is this marked area?"
3 "What is contained in this box?"
4 "What is this marked portion called?"
5 "What part is inside this bounding box?"
6 "What is this part called?"
7 "Name this highlighted component"
8 "What is contained in this bounding box?"
9 "Identify this marked region"

10 "Give the name of this part"
11 "What is inside this AABB box?"
12 "Name this area with one word"
13 "What’s the simple label for this bounded area?"
14 "What would you call this boxed element?"
15 "What part does this bounding box point to? Please

answer briefly"
16 "What is this outlined section?"
17 "Provide the name for this demarcated part"

A.9.7 TYPE 6: BOX-TO-TEXT (FINE)

ID Prompt Template
1 "Describe this part in detail"
2 "What does this area contain? Please explain in

detail"
3 "Please describe the part within this bounding box,

including appearance, material and function"
4 "What is in this box? Please provide detailed

information"
5 "What is the marked portion? Please provide a

complete description"
6 "Describe this part in detail"
7 "What can you tell me about this highlighted

component?"
8 "Provide a comprehensive description of what’s in

this box"
9 "Explain the appearance, material and function of

this marked area"
10 "Give details about this bounded region"
11 "What are the characteristics of this marked area?

Please describe comprehensively"
12 "Elaborate on the appearance and purpose of this

part"
13 "What is contained in this bounding box? Elaborate

on its features"
14 "Tell me everything about this outlined element"

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

ID Prompt Template
15 "What is the material, shape and function of the

object in this box?"
16 "Please characterize this demarcated component

thoroughly"
17 "What’s inside this box? Include all relevant

details"

A.9.8 TYPE 7: PART-AWARE Q&A

This task reuses the questions from the ‘QA‘ field in the raw annotations and replaces textual part
references with box tokens in the answer. No new templates are generated for the questions them-
selves.

A.9.9 TYPE 8: DELETION PROGRAM

ID Prompt Template
By part name

1 "Please remove the {part name} from this object"
2 "Get rid of every {part name}"
3 "I want to delete the {part name} here"
4 "Can you erase all instances of the {part name}?"
5 "Show me this model but without the {part name}"
6 "Take out the {part name}"
7 "The {part name} needs to be removed"
8 "Omit the {part name} from this scene"
9 "I don’t want to see the {part name} anymore"

10 "Could you proceed with deleting the {part name}?"
11 "Let’s see what it looks like if we remove the

{part name}"
12 "Exclude the {part name} from the final output"
13 "The task is to get rid of the {part name}"
14 "Wipe out the {part name} from the 3D model"
15 "Please filter out the {part name}"
16 "Delete the component identified as {part name}"
17 "I require the removal of the {part name}"
18 "Make the {part name} disappear"
19 "This model would be better without the {part name}"
20 "Execute the deletion of the {part name}"

By part description
21 "Please remove this specific part:

"̈part description"̈
22 "I don’t want the component described as

p̈art description"̈
23 "Delete the part that is p̈art description"̈
24 "Get rid of this particular element:

p̈art description"̈
25 "Find the part matching p̈art descriptionänd remove

it"
26 "The element characterized by p̈art descriptions̈hould

be deleted"
27 "Erase the component with this description:

p̈art description"̈
28 "I want to exclude the part that is p̈art description"̈
29 "Locate and then delete this item: p̈art description"̈

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

ID Prompt Template
30 "Take out the part that looks like this:

p̈art description"̈
31 "The target for deletion is the part described as:

p̈art description"̈
32 "Can you remove the part with these features:

p̈art description"̈
33 "Please omit this from the model: p̈art description"̈
34 "Based on the description p̈art description,̈ remove

the corresponding part"
35 "I’ve identified a part to remove: p̈art description"̈
36 "Wipe the following item from the scene:

p̈art description"̈
37 "The part to be erased is: p̈art description"̈
38 "Remove the object that fits this profile:

p̈art description"̈
39 "Please execute a deletion on the component

identified as p̈art description"̈
40 "Let’s remove one specific part: p̈art description"̈

A.9.10 TYPE 9: MODIFICATION PROGRAM

ID Prompt Template
1 "Please edit the {part name} to be {new description}"
2 "Change the {part name} into {new description}"
3 "Replace the {part name} with this:

{new description}"
4 "I want the {part name} to look like this:

{new description}"
5 "Modify the {part name} to become {new description}"
6 "Update the {part name} so it is now

{new description}"
7 "Let’s alter the {part name}. It should be

{new description}"
8 "Transform the {part name} into {new description}"
9 "Could you make the {part name} to be

{new description}"
10 "My instruction is to change the {part name} to

{new description}"
11 "The {part name} needs an update. Here are the new

details: {new description}"
12 "Let’s swap the current {part name} with a new one:

{new description}"
13 "The {part name} should be revised to be

{new description}"
14 "Please perform an edit on the {part name}. It

should now be {new description}"
15 "Adjust the {part name} to match this description:

{new description}"

A.9.11 TYPE 10: ADDITION PROGRAM

ID Prompt Template
1 "Add the {part name} to this 3D asset."

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

ID Prompt Template
2 "Please add a {part name} to the model."
3 "Insert the {part name} component."
4 "Attach the {part name} to this object."
5 "Place the {part name} on this model."
6 "Include the {part name} in this design."
7 "Incorporate the {part name} into this structure."
8 "This model is missing its {part name}. Please add

it."
9 "Complete this 3D model by adding the {part name}."

10 "The {part name} is missing. Add it back."
11 "Restore the {part name} to this object."
12 "Fill in the missing {part name}."
13 "This asset needs a {part name}. Add it."
14 "Enhance this model with a {part name}."
15 "Improve this design by adding the {part name}."
16 "Augment this object with the {part name}."
17 "Extend this model to include the {part name}."
18 "Could you add the {part name} to complete this

model?"
19 "I need you to add the {part name} to this 3D

object."
20 "Would you please attach the {part name}?"
21 "Can you help me add the {part name} component?"
22 "Mount the {part name} in the appropriate position."
23 "Install the {part name} where it belongs."
24 "Position the {part name} correctly on this model."
25 "Generate and add the {part name} to this asset."
26 "Create the {part name} component for this model."
27 "Design and attach the {part name}."
28 "This looks incomplete without the {part name}. Add

it."
29 "To make this functional, add the {part name}."
30 "The model requires a {part name} to be complete."

Part-specific templates
31 "Add the head section to complete this figure."
32 "This model needs its head. Please attach it."
33 "The top part is missing. Add the head."
34 "Install the wheels to make this vehicle complete."
35 "Add wheels for mobility."
36 "Mount the wheels on this vehicle."
37 "Install the door to complete the entrance."
38 "Add a door for access."
39 "Place the door in the opening."
40 "Attach the handle for better grip."
41 "Add the handle component."
42 "Install the handle mechanism."
43 "Add the legs to support this structure."
44 "Attach the leg components."
45 "Install the supporting legs."
46 "Add wings to complete this model."
47 "Attach the wing components."
48 "Install the wings on both sides."

26

	Introduction
	Related Work
	3D Multimodal Understanding and Generation
	Part Generation
	3D Editing

	Methodology
	Motivation
	Unified Architecture for Part-Aware Planning
	Downstream Geometry Interfaces
	End-to-End Task Realization
	Multi-Stage Instruction Tuning
	Implementation and Execution Backends

	Experiments
	Dataset
	Evaluation Protocol
	Part-Aware Generation and Editing
	Part and Object Understanding

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Appendix
	The Use of Large Language Models (LLMs)
	More Experimental Results
	Semantic Part Clustering Algorithm

	Additional Qualitative Results
	Confidence-Aware Face Segmentation from Bounding Boxes
	Analysis of Special Token Embeddings
	Dataset Construction and Labeling
	Model-Assisted Labeling
	Building Instruction-Following Samples

	Dataset Statistics
	Comprehensive Results on UniPart-Bench
	Prompt Templates for Data Construction
	Type 0: Pure Box Listing
	Type 1: Multi-Part Grounding (Coarse Text)
	Type 2: Multi-Part Grounding (Fine Text)
	Type 3: Single-Part Grounding (from Coarse Text)
	Type 4: Single-Part Grounding (from Fine Text)
	Type 5: Box-to-Text (Coarse)
	Type 6: Box-to-Text (Fine)
	Type 7: Part-Aware Q&A
	Type 8: Deletion Program
	Type 9: Modification Program
	Type 10: Addition Program

