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with deep, blocky treads, 
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for an all-terrain vehicle.
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Figure 1: Part-X-MLLM is a natively 3D, part-aware multimodal large language model that provides
comprehensive understanding of 3D shapes and supports a wide range of 3D understanding tasks. It
also seamlessly integrates with diffusion-based pipelines, enabling semantically precise part-aware
3D shape generation and editing.

ABSTRACT

We introduce Part-X-MLLM, a native 3D multimodal large language model that
unifies diverse 3D tasks by formulating them as programs in a structured, exe-
cutable grammar. Given an RGB point cloud and a natural language prompt, our
model autoregressively generates a single, coherent token sequence encoding part-
level bounding boxes, semantic descriptions, and edit commands. This structured
output serves as a versatile interface to drive downstream geometry-aware mod-
ules for part-based generation and editing. By decoupling the symbolic planning
from the geometric synthesis, our approach allows any compatible geometry en-
gine to be controlled through a single, language-native frontend. We pre-train a
dual-encoder architecture to disentangle structure from semantics and instruction-
tune the model on a large-scale, part-centric dataset. Experiments demonstrate
that our model excels at producing high-quality, structured plans, enabling state-
of-the-art performance in grounded Q&A, compositional generation, and local-
ized editing through one unified interface.

1 INTRODUCTION

The creation of rich, interactive 3D worlds is a cornerstone of modern visual computing. While re-
cent advances in generative AI have solved the creation of holistic 3D shapes, they largely treat assets
as static, monolithic forms. This results in a fundamental limitation we term “structural opaque-
ness”—where the model perceives a 3D object as a single, indivisible block of geometry rather
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than a collection of distinct components. Such opaqueness prevents downstream applications from
accessing or manipulating specific parts (e.g., editing just “the chair’s left leg”), thereby hindering
fine-grained control in animation and editing. Real-world objects are inherently assemblies of mean-
ingful parts. Unlocking true 3D interaction, therefore, demands a native LLM-based interface capa-
ble of reasoning about this substructure. Unlike approaches that rely on external adapters, our model
adopts a native strategy by treating 3D structure as an intrinsic part of its language—processing ge-
ometric parts and edit commands as native tokens alongside natural text.

Current 3D Multimodal Large Models (MLLMs) fall short of this goal. Scene-level 3D MLLMs
align point clouds with language and perform captioning or Q&A Xu et al. (2024); Hong et al.
(2023); Qi et al. (2024b;a), but they largely treat objects as monolithic and lack persistent part
identifiers, grounded references, and executable outputs. On the generative side, geometry-oriented
models offer high-fidelity asset synthesis via structured 3D latents Xiang et al. (2024); Zhao et al.
(2025b); Hunyuan3D et al. (2025b) or tokenized 3D representations Wang et al. (2024); Ye et al.
(2025), yet expose limited semantic addressability. Part pipelines either lift 2D segmentations to
3D Liu et al. (2024a); Chen et al. (2025a); Yang et al. (2024b); Liu et al. (2025); Yang et al.
(2025a)—prone to view inconsistencies and weak 3D constraints—or generate parts natively in
3D Chen et al. (2025b); Zhang et al. (2025); Yang et al. (2025b) without a unified language in-
terface. Editing methods increasingly operate in 3D space Li et al. (2025), but are not themselves
language-native frontends. There is still no model that (i) understands and names parts, (ii) grounds
references to persistent bounding box (BBox), and (iii) compiles executable add/delete/modify pro-
grams while delegating to strong geometry engines—with controllable semantic granularity (from
coarse labels to fine descriptions)—through a single instruction-following interface.

We address this challenge with Part-X-MLLM, a native 3D part-aware Multimodal Large Lan-
guage Model that reframes 3D interaction as a language modeling problem. Our core insight is that
a spectrum of disparate tasks—generation, editing, and question answering—can be unified under a
single, geometry-aware grammar of parts. Part-X-MLLM translates user instructions and 3D visual
input into a structured program, emitting a single token sequence of part-level bounding boxes, per-
sistent references, semantic descriptions, and edit operators. This discrete, language-native interface
provides three concrete benefits. (1) Stable part identity and grounding: tokens carry persistent
references to parts via BBox symbols, enabling precise, auditable reasoning and manipulation across
steps and tasks. (2) Controllable semantic granularity: the same program can surface either coarse
labels or fine descriptions on demand, and our post-hoc clustering supports user-controlled merging
of parts. (3) Separation of structure and semantics: a dual-encoder design decouples geometry
(XYZ+normals) from appearance (RGB), avoiding the representational conflict observed in single-
encoder ablations and yielding consistent gains on box listing, multi-part grounding, and part Q&A.
Because the output program is model-agnostic, any geometry module can be driven by this token
interface—turning language into a universal control surface for 3D assets. Empirically, the resulting
plans enable strong part grounding, compositional generation, and localized editing across 11 task
families on our UniPart-Bench, establishing a general paradigm for part-centric 3D intelligence.

Our contributions are summarized as follows:

• We introduce Part-X-MLLM, a native 3D part-aware MLLM that unifies generation, edit-
ing, and reasoning as a single geometry-aware program in a part grammar with persistent
BBox tokens—providing a language-native, model-agnostic control surface for 3D assets.

• We propose a dual-encoder architecture that decouples structure (XYZ+normals) from
appearance (RGB), avoiding representational conflicts and delivering consistent gains over
a single-encoder baseline across grounding, captioning, and part Q&A.

• We enable semantic granularity control by clustering part bounding boxes using text
semantics, allowing seamless transition between coarse components and fine-grained parts
under the same programmatic interface.

• We establish UniPart-Bench, a 30k-entry part-centric benchmark spanning 11 task fami-
lies with geometric and linguistic metrics, and use it to rigorously evaluate plan quality and
downstream performance.
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2 RELATED WORK

2.1 3D MULTIMODAL UNDERSTANDING AND GENERATION

Early 3D MLLMs align point clouds with language for 3D captioning, QA, and reasoning, in-
cluding PointLLM Xu et al. (2024), 3D-LLM Hong et al. (2023), Point-BERT Yu et al. (2022),
GPT4Point Qi et al. (2024b), and ShapeLLM Qi et al. (2024a). However, point clouds’ sparsity and
limited detail constrain high-fidelity, editable asset creation. Recent work addresses this through
geometry-aware latents: TRELLIS Xiang et al. (2024) employs structured sparse voxel latents with
rectified flow for unified decoding to meshes/NeRF/3DGS. Hunyuan3D 2.x Zhao et al. (2025b);
Hunyuan3D et al. (2025b) provides a production-ready pipeline with PBR materials. Discretization
enables autoregression: LLaMA-Mesh Wang et al. (2024) feeds OBJ text to LLMs but ignores mesh
topology, while ShapeLLM-Omni Ye et al. (2025) compresses 3D into discrete tokens for unified
text/image/3D understanding and generation. Despite these advances, most systems remain object-
or scene-level Wang et al. (2025); Miao et al. (2025): Existing methods often lack persistent part
identities, grounded references, and executable outputs for downstream geometry engines. We ad-
dress this by introducing a language-native interface that outputs tokenized bounding boxes and edit
programs, enabling part-aware and high-fidelity generation and editing.

2.2 PART GENERATION

2D-driven pipelines extract multi-view cues then lift to 3D: Part123 Liu et al. (2024a) and
PhyCAGE Yan et al. (2024b) uses SAM Kirillov et al. (2023) masks, PartGen Chen et al. (2025a)
segments/inpaints with inconsistency issues, SAMPart3D Yang et al. (2024b) and PartField Liu et al.
(2025) distill priors, and HoloPart Yang et al. (2025a) completes parts with diffusion. These methods
suffer from weak 3D constraints. Direct 3D approaches include: PASTA Li et al. (2024a) for prim-
itive composition, AutoPartGen Chen et al. (2025b) for autoregressive generation, PartPacker Tang
et al. (2025) and Frankenstein Yan et al. (2024a) for efficient part representation with constrained
space usage, BANG Zhang et al. (2025) for exploded views, and Assembler Zhao et al. (2025a) for
assembly sampling. OmniPart Yang et al. (2025b) unifies these approaches via autoregressive box
planning followed by TRELLIS-based synthesis. X-Part Yan et al. (2025) scale up vecset-based part
generation conditioned on semantics provided by Ma et al. (2025).

2.3 3D EDITING

Optimization-based editing utilizes SDS: DreamFusion Poole et al. (2022) enables text-to-3D gen-
eration, Vox-E Sella et al. (2023) adds volumetric regularization, and Instruct-NeRF2NeRF Haque
et al. (2023) edits multi-views using InstructPix2Pix Brooks et al. (2023) while optimizing
NeRF Mildenhall et al. (2021). Faster alternatives include: Shap-Editor Chen et al. (2024b) for
feed-forward latent editing, MVEdit Chen et al. (2024a) as a training-free 3D adapter, and PrEd-
itor3D Erkoç et al. (2025) using DDPM inversion with 2D-to-3D lifting. FocalDreamer Li et al.
(2024b) enables part-wise assembly, VoxHammer Li et al. (2025) performs training-free latent edit-
ing, and Make-Your-3D Liu et al. (2024b) customizes subjects via model co-evolution. Yet these
methods are typically tool-side: they do not provide a language-native model that reasons about parts
and emits executable edit programs with precise spatial grounding. We target this gap by coupling a
part-aware planning interface with strong geometry backends.

3 METHODOLOGY

An overview of our framework is shown in Figure 2. Our methodology centers on three key design
choices: a unified architecture that processes geometry and language, a multi-stage training curricu-
lum that systematically builds model capabilities, and the use of powerful, pre-existing geometry
engines as execution backends.

3.1 MOTIVATION

Modern 3D applications demand more than holistic shape synthesis—they require precise, language-
driven control over semantically meaningful parts. For example, artists want to swap handles without

3
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Figure 2: The Part-X-MLLM Framework. Our pipeline begins by encoding geometry and ap-
pearance features separately using a dual-encoder architecture, which are then fused together with
text prompts. These combined features are passed to an autoregressive decoder that generates a
program-like token sequence representing a plan (e.g., bounding boxes, edit commands). Finally,
specialized geometry heads execute this plan to enable part-aware generation and editing.

touching the body; roboticists need to reason about graspable subcomponents; and downstream
pipelines rely on consistent, addressable structure for animation and simulation. Prior systems either
focus on scene-level understanding or provide powerful but siloed generators/editors with bespoke
interfaces. Our goal is a native, part-centric MLLM that treats parts as first-class citizens and exposes
a single, executable interface that is intuitive, auditable, and robust across categories.

3.2 UNIFIED ARCHITECTURE FOR PART-AWARE PLANNING

Dual 3D Encoders. To capture both geometric structure and visual appearance, we employ a dual-
pathway encoder. A Structure Encoder processes the raw point cloud geometry (XYZ and normals)
to extract structural tokens. A parallel Semantic Encoder processes RGB color information to
produce appearance tokens. This dual representation allows the model to disambiguate parts that
may be structurally similar but visually distinct (e.g., two identical chair legs of different colors).

Structured Planning Language and Autoregressive Decoder. A decoder-only transformer, ini-
tialized from a pretrained LLM, takes the fused sequence of structural, semantic, and text tokens
as input. It is trained to autoregressively generate a program-like output that follows our structured
planning language. This language defines special tokens for part representation (e.g., <boxs> and
<boxe>, representing box-start and box-end, wrapping six quantized coordinate tokens) and edit
operations (e.g., <adds>, <dels>, <mods>). By formulating the output as a program, we unify
diverse tasks into a single instruction-following problem, where the model’s goal is always to gen-
erate the correct token sequence representing the plan.

3.3 DOWNSTREAM GEOMETRY INTERFACES

Our model’s structured output is designed to be consumed by downstream modules capable of in-
terpreting its geometric and semantic content.

Part-Aware Synthesis. For generation, the planned bounding boxes and optional part text are passed
to a synthesis module, which treats the boxes as spatial guides to generate high-fidelity, part-based
assets (e.g., in mesh, 3DGS, or NeRF format).

Localized Editing. For editing, the emitted program and associated bounding boxes are used to
define cuboid masks for localized manipulation, enabling precise edits while preserving untouched
regions.

3.4 END-TO-END TASK REALIZATION

To make the workflow concrete, Figure 3 illustrates how our structured planning language realizes
four representative tasks.

4
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Figure 3: Task realization with a planning language. A decoder outputs program tokens that unify
diverse interactions: (Top) part-aware generation guided by bounding boxes; (Middle) grounded
Q&A whose answers embed BBox tokens; (Bottom) auto-located 3D editing executed via cuboid
masks and commands. The numbered circles (e.g., x ) denote the corresponding task types.

Part-aware Mesh Generation: The decoder generates a program containing a set of bounding
boxes and optional part text. A synthesis module then uses these boxes as spatial guides to generate
a part-based asset. Q&A with Grounding: Answers are augmented with BBox tokens, yielding
language outputs that carry explicit, persistent references to parts. Auto-located 3D Editing: The
model localizes the instruction by generating bounding boxes and an edit command (e.g., <adds>).
A downstream editing module then uses this program to apply a masked edit.

Semantic Granularity Control. Beyond these core tasks, our box-and-text representation enables
dynamic control over semantic granularity. By clustering part bounding boxes based on the sim-
ilarity of their associated text descriptions (using CLIP embeddings), we can progressively merge
fine-grained parts into coarser semantic components. This allows users to control the level of detail
in the generated output without manual intervention, such as pre-defining the number of parts (cf.
PartPacker) or manually merging masks (cf. OmniPart). A qualitative example is shown in Figure 6,
with the full algorithm detailed in the appendix.

3.5 MULTI-STAGE INSTRUCTION TUNING

We adopt a two-stage curriculum. The first stage pretrains a structure-aware encoder for robust
geometry understanding. The second stage performs full instruction tuning, integrating a semantic
encoder and aligning a powerful LLM with our specialized task grammar.

Stage 1: Geometry-Only BBox Pretraining. We initialize the structure encoder with the Hunyuan
2.1 3D Shape VAE Encoder. Each training sample is a fixed-size RGB-less point cloud of shape
(40960, 6) containing (x, y, z) coordinates and surface normals. The encoder downsamples features
by 20× to produce a latent of length 2048. To force bounding-box knowledge into the encoder, we
pair it with a lightweight autoregressive decoder whose task is to predict part-level bounding boxes
from these latent features, with no textual semantics involved. After pretraining on 3.6M objects for
10 epochs, we retain the specialized structure encoder weights and discard the lightweight decoder.
This stage domain-specializes the 3D encoder to reliably disentangle and localize part BBoxes.

Stage 2: Full Instruction Tuning with a Dual-Encoder LLM. After pretraining the structure en-
coder, we proceed directly to full instruction tuning with a more powerful Qwen 2.5 VL model.
In this stage, we introduce the Semantic (RGB) Encoder, which has the same architecture as the
structure encoder and processes a point cloud of shape (10240, 6) with (x, y, z) and (r, g, b) data
to capture appearance. We also extend the vocabulary with our task-specific special tokens (e.g.,
<boxs>/<boxe>, <adds>/<adde>). During this stage, we freeze the pretrained Structure En-
coder from Stage 1 and the original Qwen 2.5 VL token embeddings. We then train only the new
Semantic Encoder, the AR transformer layers of the Qwen 2.5 VL decoder, and the embeddings
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for our newly added special tokens. This approach efficiently aligns the powerful language model
with our dual-stream (geometry and appearance) conditioning and executable grammar, preserving
its strong prior while adapting it for our specialized tasks.

3.6 IMPLEMENTATION AND EXECUTION BACKENDS

To translate plans into high-fidelity geometry, we use powerful, off-the-shelf models as execution
backends. For part-aware generation, we use the synthesis module from OmniPart Yang et al.
(2025b), feeding it our generated bounding boxes. For editing, we use the training-free volumetric
editor VoxHammer Li et al. (2025), providing it with a cuboid mask derived from our planned BBox
and the user’s instruction. This modular approach allows Part-X-MLLM to serve as a universal,
language-driven frontend for various SOTA geometry engines. The rich information encoded in the
generated token probabilities also enables advanced downstream tasks, such as confidence-aware
face segmentation (see Appendix A.5).

4 EXPERIMENTS

4.1 DATASET

We curate a high-quality, part-centric 3D dataset comprising 85,771 distinct objects with an average
of 23 parts per object. Each object is annotated with axis-aligned part bounding boxes (AABBs)
and paired natural language annotations at two granularities: a coarse part label (Q1) and a fine-
grained part description (Q2). At the object level, we include an overall caption and a small set of
instruction–answer pairs for part-aware Q&A. All annotations follow the unified box-token grammar
introduced in Section 3, enabling consistent serialization of AABBs and edit programs.

Data construction follows a two-step pipeline: (1) a structured labeling stage collecting object-level
and part-level texts and (2) a data building stage converting annotations into instruction-following
samples across multiple task families (grounding, captioning, QA, editing). Concretely, we in-
stantiate eleven task templates (Types 0–10) covering pure box listing, multi-part grounding with
coarse/fine text, single-part grounding from name or description, box-to-text captioning, part-aware
Q&A, and edit programs for deletion/modification/addition. The train/test split is obtained by deter-
ministic file list partition (≈ 99.5/0.5). Full details, prompt templates, sampling rules, and dataset
statistics are provided in the supplementary material (Tables 10 and figures therein).

4.2 EVALUATION PROTOCOL

Since existing benchmarks do not test for structured, part-aware, and executable program generation
from language, we introduce UniPart-Bench, a held-out set of 400 objects, to evaluate our model’s
core capabilities. Our evaluation focuses on the quality of the structured plans generated by the
model, as measured by the accuracy of the predicted BBox layouts. For downstream tasks, the
generated plans are passed to external geometry modules. For generation, we forward the BBoxes
to a synthesis head; for editing, we provide the instruction and a cuboid mask derived from the
planned BBox.

4.3 PART-AWARE GENERATION AND EDITING

Bounding Box Generation. To evaluate the quality of our structured generation, we report BBox
IoU, Voxel Recall, and Voxel IoU. Matching pairs each ground-truth box with its nearest predicted
box. As baselines, we include PartField Liu et al. (2025) by treating the voxel set as a point cloud
and extracting a BBox per predicted segment, and the generation model from OmniPart Yang et al.
(2025b). Our model consumes RGB point cloud tokens and a text prompt and autoregressively
emits an ordered list of bounding boxes following the box grammar of Section 3. For the PartField
baseline, we treat voxels derived from the asset as a point cloud and segment them at the ground-
truth part count, then compute bounding boxes per segment for comparison.

Qualitative Generation and Editing Results. Figure 4 visualizes our qualitative shape decom-
position results, where our model demonstrates superior performance in generating semantically co-
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Table 1: Quantitative results for bounding box generation (%).

Method Voxel recall ↑ Voxel IoU ↑ Bbox IoU ↑
PartField Liu et al. (2025) 69.65 46.04 37.33
OmniPart Yang et al. (2025b) 72.32 47.62 39.78

Part-X-MLLM (Ours) 74.11 48.74 42.55

herent and geometrically accurate part segmentations. It successfully captures fine-grained details
and maintains structural integrity, outperforming baselines that often produce fragmented or inac-
curate decompositions. We also evaluate the model’s ability to perform localized, language-driven
edits. As shown in Figure 5, Part-X-MLLM successfully interprets user instructions to add, remove,
or modify specific parts, executing the edits while preserving the rest of the object’s structure.

Input PartCrafter PartPacker Ours

Figure 4: Qualitative shape decomposition results.

Replace the head with black hair 
and vertical black eyes.

Replace the trousers with 
black jeans.

Replace the left shoe with a 
green-soled, polished-style shoe.

Replace the central sphere with a 
smooth red sphere.

Add appropriate padding to the base
of the turntable. 

Remove the spherical support in the 
middle of the lamp.

<add> <del> 

<mod> <mod> <mod> 

<mod> 

Figure 5: Qualitative results for part-aware editing. Our model successfully interprets natural
language instructions to perform localized edits, while preserving the integrity of the original object.

Semantic Granularity Control. As introduced in Section 3, our framework supports controlling
part granularity by semantically clustering bounding boxes. Figure 6 demonstrates this process,
where our algorithm progressively merges components based on the CLIP similarity of their textual
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descriptions, reducing the part count from 22 down to 2. This automated process allows for flexible
control over the level of detail without manual intervention.

Original Mesh Merge Step 1 Merge Step 2 Merge Step 3 Merge Step 4

#Components=22 

#Components=18 

#Components=10 

#Components=6 

#Components=2 

Figure 6: Semantic granularity control via part clustering. By clustering parts based on the
semantic similarity of their descriptions, we can progressively merge fine-grained components into
coarser structures. The number of components is automatically reduced from 22 to 2.

Ablation Study: Dual vs. Single Encoder. We conduct an ablation study to validate our dual-
encoder design, which processes geometric structure and visual appearance in separate pathways.
We compare our full model against a single-encoder variant that consumes a unified point cloud with
fused geometry (XYZ) and color (RGB) information. As shown in Table 2, the dual-encoder archi-
tecture consistently outperforms the single-encoder baseline across all evaluated tasks. For pure
geometric tasks like box listing, the dual encoder improves IoU by a significant margin (+7.06).
For language-intensive tasks such as Part QA and Multi-Part Grounding, we observe uniform gains
across all metrics. This suggests that forcing a single encoder to handle both structural and se-
mantic information creates a conflict, whereas decoupling these responsibilities into two specialized
encoders is a more effective and robust design choice.

Table 2: Ablation study on the dual-encoder architecture. We compare our full model against a
single-encoder variant. All metrics are reported on UniPart-Bench.

Task Model IoU ↑ SBERT ↑ SimCSE ↑ BLEU-1 ↑ ROUGE-L ↑ METEOR ↑

Pure Box Listing
Dual Encoder (Ours) 75.53 - - - - -
Single Encoder 68.47 - - - - -
∆ Gain +7.06 - - - - -

Multi-Part Grounding
Dual Encoder (Ours) 72.82 55.60 54.19 35.55 35.58 18.09
Single Encoder 69.78 54.18 53.53 33.95 33.97 17.27
∆ Gain +3.04 +1.42 +0.66 +1.60 +1.61 +0.82

Part QA
Dual Encoder (Ours) 55.44 78.98 84.25 40.54 42.26 34.24
Single Encoder 54.24 78.44 83.13 39.29 41.31 33.06
∆ Gain +1.20 +0.54 +1.12 +1.25 +0.95 +1.18

4.4 PART AND OBJECT UNDERSTANDING

Part Understanding Q&A. To evaluate part-level understanding and reasoning, we test on
UniPart-Bench. We report sentence-level similarities (SBERT, SimCSE) and token-level metrics
(BLEU-1, ROUGE-L, METEOR). Results in Table 3 show consistent gains of our method on part-
level Q&A. We observe substantial gains over the strongest baseline across all metrics: compared to
the best non-ours scores, Part-X-MLLM improves by +17.7 SBERT, +25.8 SimCSE, +17.2 BLEU-1,
+9.7 ROUGE-L, and +9.8 METEOR. These gains reflect stronger part-level grounding and reason-
ing enabled by our box grammar and instruction tuning.

Overall 3D Object Captioning. Unlike part-level captioning, this benchmark probes holistic ob-
ject understanding on UniPart-Bench. We report SBERT, SimCSE, BLEU-1, ROUGE-L, and ME-
TEOR following PointLLM. On overall object captioning, our model also outperforms the best prior
scores, with absolute improvements of +4.3 SBERT, +2.5 SimCSE, +18.3 BLEU-1, +19.1 ROUGE-
L, and +13.3 METEOR. The large gains on token-based metrics suggest stronger lexical coverage
and structure in object-level descriptions.

Qualitative Understanding Results. Figure 7 provides qualitative examples for overall object
captioning. Our model generates more accurate and detailed descriptions compared to baselines.
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Table 3: Part understanding Q&A on UniPart-Bench.

Model SBERT SimCSE BLEU-1 ROUGE-L METEOR GPT-5

GPT4Point Qi et al. (2024b) 48.32 45.17 15.16 22.55 16.19 36.99
PointLLM-7B Xu et al. (2024) 61.30 58.48 21.78 29.26 22.45 48.68
PointLLM-13B Xu et al. (2024) 56.36 51.47 21.40 29.16 21.80 55.83
ShapeLLM-13B Qi et al. (2024a) 61.19 57.26 23.32 32.56 24.45 42.21
ShapeLLM-Omni-7B Ye et al. (2025) 57.35 51.16 22.77 29.57 23.24 46.19
MiniGPT-3D Tang et al. (2024) 58.02 53.63 21.05 28.66 22.55 50.38

Part-X-MLLM (Ours) 78.98 84.25 40.54 42.26 34.24 60.77

Table 4: Overall 3D object captioning on UniPart-Bench.

Model SBERT SimCSE BLEU-1 ROUGE-L METEOR GPT-5

GPT4Point Qi et al. (2024b) 25.60 27.00 11.50 12.00 12.70 26.34
PointLLM-7B Xu et al. (2024) 42.79 42.44 11.58 14.39 16.90 44.03
PointLLM-13B Xu et al. (2024) 43.51 43.12 13.54 15.74 17.45 44.22
ShapeLLM-13B Qi et al. (2024a) 25.15 27.14 11.77 12.14 12.84 32.24
ShapeLLM-Omni-7B Ye et al. (2025) 31.18 31.93 17.79 19.04 14.30 30.01
MiniGPT-3D Tang et al. (2024) 49.52 49.44 7.75 10.23 17.24 48.75

Part-X-MLLM (Ours) 53.82 51.97 36.04 38.11 30.71 55.88

For instance, our model correctly identifies an object as a “pink teddy bear mascot costume with
a purple bow tie,” while other models provide less specific or incorrect descriptions. Additional
qualitative results for part-aware Q&A, demonstrating our model’s strong grounding capabilities,
are provided in the appendix (Figure 10).

Input PointLLM ShapeLLM ShapeLLM-Omni OursGT

A pink teddy bear 
costume with a 
purple bow tie.

A 3D model of a 
bare, leafless tree 

with roots and horns.

The 3D structure 
appears to be a 
futuristic vehicle 

with a sleek design.

This 3D model 
portrays an 

endearing cartoon 
character designed 

to resemble a 
mouse.

A pink, teddy bear 
mascot costume with 

a purple bow tie.

A chibi character 
wearing a conical 
hat and traditional 

clothing.

This is a 3D model 
of a cartoon-like 

figure representing a 
girl.

The 3D structure 
appears to be a 

futuristic, abstract 
design with a mix of 
metallic and organic 

elements.

This is a 3D model 
of a toy cartoon 

character that has 
brown hair and 
large, expressive 
eyes. Notably, it's 
wearing a jacket 
and a black hat.

A chibi-style 
character in 

traditional Chinese 
clothing with a hair 

ornament.

A woman with curly 
brown hair wearing 
a colorful striped 

halter dress.

This is a three-
dimensional model 
of a female cartoon 
character donned in 
a vibrant red shirt. 

The 3D structure 
appears to be a 
fragmented or 

abstract
representation of a 
creature, possibly a 

horse.

The 3D model 
represents a vibrant 

cartoon lady 
character wearing a 

bright red dress.

A woman with curly 
hair wearing a 

striped dress and a 
fox mask.

O
ve
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ll 

D
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cr
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Figure 7: Qualitative results for overall object captioning.

4.5 SENSITIVITY TO POINT CLOUD RESOLUTION

We evaluate the robustness of Part-X-MLLM by randomly downsampling the input point clouds to
various ratios (from 5% to 100%) and measuring performance across Q&A, Captioning, and Part-
Level Mesh generation tasks.

As presented in Table 5, our model demonstrates remarkable robustness to input sparsity. Perfor-
mance metrics across linguistic understanding and geometric generation tasks remain stable even
when the input density is reduced to 25%. This indicates that Part-X-MLLM is capable of extract-
ing and reasoning about critical 3D structures from sparse data, ensuring reliable performance across
varying input resolutions.
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Table 5: Sensitivity analysis on input point density.

Density Part Q&A Overall Caption Part-Level Mesh
SBERT SimCSE B-1 R-L MET SBERT SimCSE B-1 R-L MET CD ↓ F-0.1 ↑ F-0.05 ↑

5% 51.83 54.26 27.38 29.92 22.85 29.78 24.87 15.06 17.30 8.49 0.2590 0.3188 0.3169
25% 76.83 82.80 39.44 40.35 32.76 52.44 48.70 36.42 38.22 30.81 0.2287 0.6493 0.5640
50% 78.83 83.93 39.27 40.75 32.66 54.04 50.71 37.43 39.78 31.21 0.2318 0.6489 0.5647
75% 78.90 84.09 39.90 41.51 33.45 53.93 51.34 36.74 38.94 30.96 0.2240 0.6547 0.5671
100% 78.98 84.25 40.54 42.26 34.24 53.82 51.97 36.04 38.11 30.71 0.2226 0.6506 0.5671

Input Generated
MeshBounding Boxes Generated Mesh Input Bounding 

Boxes

(a) InternScenes (b) OmniObject3D

Figure 8: Qualitative evaluation of generalization and robustness.

4.6 GENERALIZATION AND ROBUSTNESS ANALYSIS

Beyond standard object-level synthesis, we further investigate the model’s capability to handle out-
of-distribution data, as shown in Figure 8. First, we explore scene-level composition using the
InternScenes Zhong et al. (2025) dataset. This aligns with the emerging paradigm of compositional
scene generation Zhou et al. (2024; 2025); Yang et al. (2024a); Ge et al. (2024), where complex en-
vironments are constructed from distinct entities. Although trained on object parts, Part-X-MLLM
successfully generalizes to this domain by treating individual furniture items as components of a
room, generating plausible layouts and meshes in a zero-shot manner. Second, to address the do-
main gap between synthetic and realistic data, we evaluate the model on real-world scans from
OmniObject3D Wu et al. (2023). These inputs typically contain high-frequency noise, holes, and
inconsistent normals. Our model demonstrates strong robustness by effectively filtering out these
artifacts, producing precise bounding boxes and clean geometric reconstructions even under such
challenging conditions.

5 CONCLUSION

Part-X-MLLM casts 3D interaction as executable program generation: from RGB point clouds and
text it emits a single sequence of part AABBs that geometry engines execute, unifying generation,
QA, and localized editing, and improving Voxel Recall/IoU and BBox IoU on UniPart-Bench. Ap-
pendix A.3.4 supports controllable granularity.

Limitations and Future Works. Longer sequences slow inference; simple compaction and hi-
erarchical grouping mitigate latency. Our confidence-based segmentation from BBoxes remains
relatively shallow; incorporating stronger features could improve segmentation quality. Fine-tuning
on 3D tasks may reduce the base LLM’s general language capabilities. In the future, we plan to
scale our native part-based planning capability to full indoor scene synthesis, effectively extending
the bounding-box grammar from object parts to room-level furniture layouts.
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6 ETHICS STATEMENT

This work presents Part-X-MLLM, a part-aware 3D multimodal model that outputs executable pro-
grams (e.g., tokenized AABBs and edit commands). Training uses a blend of publicly available and
professionally sourced 3D assets and annotations, subjected to rigorous quality filtering and license
review; we avoid personal or biometric data. The model’s outputs are grounded and auditable, and
the system is intended for research and creative use. We will provide a public API and online in-
terface with usage guidelines. We acknowledge residual risks such as inherited dataset biases and
domain shift and will monitor and update the service accordingly. The authors declare no conflicts
of interest.

7 REPRODUCIBILITY STATEMENT

We detail the structured planning grammar, architecture, training curriculum, and evaluation pro-
tocol to enable replication. We will open-source the model checkpoints and the UniPart-Bench
introduced in this paper, together with evaluation scripts for BBox IoU and voxel metrics, config-
uration files, prompts/converters for data construction, and complete training/inference code with
seeds. A public API and online interface will also be available for lightweight validation.
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A APPENDIX

A.0 THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) are used exclusively for minor language editing—such as im-
proving grammar and readability—and not for method design or experimental work. All technical
contributions, including the methodology, equations, and results, are solely the work of the authors.

A.1 IMPLEMENTATION DETAILS

Our framework is implemented based on LLaMA-Factory Zheng et al. (2024) and trained on a
cluster of 32 H20 GPUs.

Data Construction Pipeline. We curated our training data by aggregating 3D assets from large-
scale public repositories, primarily Objaverse Deitke et al. (2022) and Objaverse-XL Deitke et al.
(2023). To ensure high visual fidelity, we employed an aesthetic scoring model to filter out low-
quality or noise-heavy meshes. Given that raw assets often contain overly fragmented components,
we applied the Intersection-over-Union (IoU) merging strategy derived from PartPacker Tang et al.
(2025). For semantic annotation, we established a multi-view rendering pipeline to render both the
holistic appearance of assets and the details of individual parts. These rendered images, including
both the complete object renderings and part-specific renderings, were then processed by Qwen-2.5-
VL Bai et al. (2025), which generated high-quality, fine-grained textual descriptions.

Model Architecture. We utilize Qwen-2.5-VL-3B Bai et al. (2025) as the core multimodal back-
bone for instruction following. The system features a dual-encoder design initialized from the pre-
trained VAE encoders of Hunyuan3D-2.1 Hunyuan3D et al. (2025a). The Structure Encoder ac-
cepts geometric inputs (XYZ coordinates concatenated with surface normals) with a resolution of
N = 40, 960 points, projecting them into a latent sequence of length 2,048. The Semantic Encoder
processes appearance inputs (XYZ coordinates and RGB colors) with a resolution of N = 10, 240
points, projecting them into a latent sequence of length 512. Both encoders align their feature dimen-
sions to the LLM’s embedding space via linear projection layers. Input point clouds are normalized
to the range [−1, 1] along the longest axis, and bounding box coordinates are quantized into 128
discrete bins.

Training Protocol. Stage 1 focuses on adapting the Structure Encoder for precise bounding box
localization. We employ the open-source OPT-350M Zhang et al. (2022) as a lightweight autore-
gressive decoder for this task. The model is trained for 10 epochs with a batch size of 128, using the
AdamW Loshchilov & Hutter (2019) optimizer (learning rate 1×10−4, weight decay 1×10−5, and
5,000 warmup steps). To enhance robustness against scan imperfections, we apply random rotations
(±15◦) and a “Normal Drop” strategy, where surface normals are masked with a 50% probability. In
Stage 2, the Structure Encoder is frozen to preserve the learned geometric priors, while the Seman-
tic Encoder, the Qwen-2.5-VL backbone, and special token embeddings are fine-tuned. This stage
runs for 60,000 steps with a global batch size of 128 using DeepSpeed ZeRO-2 Rasley et al. (2020)
and bfloat16 precision. We use AdamW Loshchilov & Hutter (2019) with a cosine learning rate
scheduler (peak LR 8×10−5) and enable sample packing with a maximum sequence length of 5,120
to optimize throughput.

A.2 TASK COMPARISON

Existing 3D models typically present a trade-off between task breadth and semantic granularity.
As summarized in Table 6, understanding-focused MLLMs (e.g., ShapeLLM) lack generative ca-
pabilities, while generative models (e.g., ShapeLLM-Omni) often operate at the coarse object level
without supporting part-level grounding and editing. In contrast, Part-X-MLLM uniquely combines
comprehensive understanding, fine-grained part-level operations, and localized editing capabilities
in a unified framework.
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Table 6: Comparison of capabilities with state-of-the-art 3D models.

Method Understand Grounding Generation Modify

Cap Q&A Obj Part Obj Part Edit

Understanding & Reasoning MLLMs
PointLLM Xu et al. (2024) ✓ ✓ × × × × ×
GPT4Point Qi et al. (2024b) ✓ ✓ × × × × ×
ShapeLLM Qi et al. (2024a) ✓ ✓ ✓ × × × ×
Unified / Generative Models
LLaMA-Mesh Wang et al. (2024) ✓ ✓ × × ✓ × ×
Hunyuan3D Zhao et al. (2025b) × × × × ✓ × ×
ShapeLLM-Omni Ye et al. (2025) ✓ ✓ × × ✓ × ✓

Part-Based Specialists
Part123 Liu et al. (2024a) × × × × × ✓ ×
OmniPart Yang et al. (2025b) × × × × × ✓ ×
VoxHammer Li et al. (2025) × × × × × × ✓

Ours
Part-X-MLLM ✓ ✓ ✓ ✓ × ✓ ✓

A.3 MORE EXPERIMENTAL RESULTS

A.3.1 HUMAN EVALUATION

While quantitative metrics measure geometric alignment, they do not fully reflect human percep-
tion of structural logic and editing intent. To address this, we conducted a user study with 32
participants with background in 3D vision. We randomly sampled 25 generated objects and 25 edit-
ing instructions. Participants were asked to rate the results on a Likert scale from 1 (Poor) to 5
(Excellent) across four specific dimensions: Part Plausibility evaluates whether the decomposed
parts in generation tasks are semantically reasonable and structurally sound (e.g., chair legs are
attached to the seat), while Generation Quality assesses the overall visual fidelity and complete-
ness of the generated parts. For editing tasks, Instruction Fidelity measures whether the operation
(add/delete/modify) aligns strictly with the text prompt, and Editing Quality evaluates the visual
coherence of the edited result, including the preservation of non-edited regions. As shown in Table 7,
Part-X-MLLM achieves an average score above 4 across all metrics.

Table 7: Human Evaluation Results. We report the Mean Opinion Score (MOS) on a scale of 1 to
5 (higher is better).

Task Type Evaluation Metric Score (1-5)

Part Generation Structural Plausibility 4.42 ± 0.6
Generation Quality 4.25 ± 0.7

Part Editing Instruction Fidelity 4.03 ± 0.5
Editing Quality 4.31 ± 0.6

Table 8: Evaluation on the PointLLM Benchmark.

Model S-BERT ↑ SimCSE ↑ BLEU-1 ↑ ROUGE-L ↑ METEOR ↑
PointLLM-7B Xu et al. (2024) 47.47 48.55 3.87 7.30 11.92
PointLLM-13B Xu et al. (2024) 47.91 49.12 3.83 7.23 12.26
PointLLM-13B* 50.15 50.83 17.09 20.99 16.45
Part-X-MLLM (Ours) 53.43 51.21 16.00 18.34 13.28

”*” indicates PointLLM was prompted for shorter captions with no more than 20 words..
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A.3.2 ADDITIONAL EXPERIMENTS ON PUBLIC BENCHMARKS

As shown in Table 8, Part-X-MLLM achieves superior semantic similarity scores, outperforming all
baselines. While n-gram metrics are slightly lower than PointLLM-13B*, this reflects our model’s
shift toward structured, part-aware descriptions. The high semantic scores confirm that Part-X-
MLLM maintains factual correctness and demonstrates excellent generalization despite part-centric
training.

A.3.3 ISOLATION OF PLANNING CAPABILITIES

To assess the contribution of our structured planning interface independent of the downstream ge-
ometry kernels, we conducted a controlled comparison for the generation task. We compared our
method against several baselines, including the native planner of OmniPart Yang et al. (2025b)
and pipeline approaches using TRELLIS Xiang et al. (2024) combined with 3D segmentation tools
(SAM3D Yang et al. (2023), PartField Liu et al. (2025), HoloPart Yang et al. (2025a)).

Setup. For the ”Part-X-MLLM + OmniPart” entry, we use our model to generate the bounding box
plan from text, which is then fed into the frozen OmniPart synthesis decoder. This allows for a direct
”planner-to-planner” comparison with the original OmniPart method.

Table 9: Quantitative Comparison of Part-Level and Overall-Level Generation.

Method Part-Level Overall-Level
CD ↓ F-0.1 ↑ F-0.05 ↑ CD ↓ F-0.1 ↑ F-0.05 ↑

TRELLIS + SAM3D Yang et al. (2023) 0.58 0.25 0.20 0.11 0.89 0.72
TRELLIS + PartField Liu et al. (2025) 0.24 0.60 0.42 0.11 0.89 0.72

TRELLIS + PartField + HoloPart Yang et al. (2025a) 0.24 0.61 0.43 0.09 0.90 0.74
Part123 Liu et al. (2024a) 0.47 0.28 0.14 0.42 0.36 0.20

OmniPart Yang et al. (2025b) 0.23 0.63 0.46 0.08 0.91 0.77
Part-X-MLLM + OmniPart (Ours) 0.22 0.65 0.57 0.08 0.90 0.77

As shown in Table 9, when using the exact same generation backend, our planner outperforms the
native OmniPart planner in Part-Level metrics (e.g., improving F-0.05 from 0.46 to 0.57). This in-
dicates that Part-X-MLLM produces more geometrically accurate and semantically consistent part
layouts (bounding boxes), which in turn enables the backend to synthesize higher-fidelity compo-
nents.

Operational Efficiency in Editing. Beyond quantitative generation quality, our contribution to
the editing task lies in a fundamental shift in usability. Native geometry engines like VoxHammer
require explicit, manually crafted 3D binary masks to identify edit regions—a process that typically
demands manual modeling in professional software (e.g., Blender). Part-X-MLLM bridges this
gap by acting as an intelligent semantic agent: it translates high-level natural language instructions
(e.g., “remove the armrests”) directly into precise, geometrically grounded cuboid masks. This
automates the entire workflow, transforming 3D editing from an expert-only, manual operation
into an accessible, fully language-driven interaction where users simply “speak” to edit.

A.3.4 SEMANTIC PART CLUSTERING ALGORITHM

To enable dynamic control over semantic granularity, we introduce a post-processing algorithm
that clusters fine-grained part bounding boxes into coarser, semantically meaningful components.
This process, illustrated in Figure 6, operates without requiring manual intervention or a predefined
number of target clusters. The algorithm follows a three-step pipeline: feature extraction, clustering,
and merging.

1. Feature Extraction. For each predicted part pi, we extract its bounding box bi = (xmin,xmax)i
and textual description di. A hybrid feature vector fi is then generated.

First, the semantic feature vector fsem,i is obtained by encoding the description with a pretrained
CLIP model:

fsem,i = CLIP-Encode(di). (1)
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Next, we compute the spatial feature vector fspat,i from the bounding box’s center ci = (xmin +
xmax)/2 and size si = xmax − xmin. The raw spatial vector is normalized across all N parts in the
object to produce f̂spat,i:

fspat,i = [ci, si], f̂spat,i = Normalize({fspat,j}Nj=1)i. (2)

Finally, the semantic and spatial features are combined using a weighting factor α ∈ [0, 1], and the
resulting vector is L2-normalized:

fi =
(1− α)fsem,i ⊕ αf̂spat,i

∥(1− α)fsem,i ⊕ αf̂spat,i∥2
, (3)

where ⊕ denotes concatenation.

2. Clustering. We apply DBSCAN to the set of feature vectors {fi}Ni=1. DBSCAN groups points
based on two parameters: a distance threshold ϵ and a minimum number of points ‘minPts‘. A
point fi is a core point if its ϵ-neighborhood contains at least ‘minPts‘ points. A cluster is formed
by a set of density-connected points, starting from a core point and recursively expanding to all
reachable neighbors. This approach allows us to automatically identify a variable number of clusters
K without prior specification, returning a set of clusters C = {C1, . . . , CK} and a set of noise points
N .

3. Merging. For each cluster Ck ∈ C, we compute a single merged bounding box Bk =
(Xmin,k,Xmax,k). This is done by taking the component-wise minimum and maximum over all
bounding boxes bi ∈ Ck:

Xmin,k = min
i|bi∈Ck

(xmin,i), Xmax,k = max
i|bi∈Ck

(xmax,i). (4)

The final output is a set of K merged bounding boxes, representing a coarser, semantically-grouped
decomposition of the object.

This automated approach provides a flexible and powerful way to adjust the granularity of the gen-
erated 3D assets, bridging the gap between fine-grained part generation and high-level semantic
understanding.

A.4 ADDITIONAL QUALITATIVE RESULTS

Figure 10 provides qualitative examples for part-aware question answering. Our model demonstrates
strong grounding capabilities by providing detailed, box-annotated answers that accurately describe
object parts in response to user queries.

A.5 CONFIDENCE-AWARE FACE SEGMENTATION FROM BOUNDING BOXES

As mentioned in Section 3, the rich information encoded in our model’s autoregressive output can be
leveraged for advanced downstream tasks beyond simple generation or editing. One such application
is fine-grained, confidence-aware face segmentation, as shown in Figure 9. This process requires no
additional training and relies solely on the generated bounding boxes and the token probabilities
from the decoding process.

The algorithm follows a three-step process:

1. Confidence-Aware BBox Inference. During autoregressive decoding, the model generates a
sequence of tokens T = (t1, t2, . . . , tL) that represent a series of bounding boxes. For each token ti,
the model also outputs a probability distribution over the entire vocabulary, from which we derive
a confidence score. The confidence of a bounding box Bj , which is composed of a sequence of k
tokens (typically 6), is calculated as the arithmetic mean of the probabilities of its constituent tokens:

Conf(Bj) =
1

k

k∑
i=1

P (ti|t<i) (5)

This provides a per-box confidence score that reflects the model’s certainty in its prediction.
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Figure 9: Confidence-aware face segmentation. By leveraging the generated bounding boxes and
their associated confidence scores, we can achieve high-quality, fine-grained face-level segmentation
of 3D objects without any additional training.

He is wearing a yellow puffer vest 
<boxs><box-45><box-73><box-48><box-
81><box-117><box-78><boxe> over a blue 

shirt <boxs><box-48><box-66><box-
51><box-78><box-109><box-76><boxe>, 
dark blue pants <boxs><box-49><box-
16><box-54><box-77><box-77><box-
74><boxe>, and green sneakers 

<boxs><box-48><box-1><box-55><box-
56><box-11><box-75><boxe> <boxs><box-

70><box-1><box-55><box-78><box-
11><box-75><boxe>. 

The man is wearing 
a yellow shirt and 

black pants.

He is wearing a yellow puffer 
vest<boxs><box-46><box-73><box-

48><box-80><box-117><box-78><boxe>
over a light blue long-sleeved 

shirt<boxs><box-48><box-66><box-
51><box-78><box-109><box-76><boxe>, 
dark blue pants<boxs><box-49><box-
16><box-54><box-77><box-77><box-

74><boxe>, and bright green 
sneakers<boxs><box-48><box-1><box-

55><box-56><box-11><box-
75><boxe><boxs><box-70><box-1><box-
55><box-78><box-11><box-75><boxe>. 

This is a bolt-action sniper rifle. This is a rifle. This is a modern-style sniper rifle. 

The object consists of a main rectangular 
casing <boxs><box-1><box-28><box-

25><box-125><box-105><box-92><boxe>
with a large circular fan assembly 

<boxs><box-12><box-38><box-89><box-
68><box-95><box-94><boxe> and two small 
feet <boxs><box-5><box-21><box-20><box-

18><box-28><box-106><boxe> and 
<boxs><box-100><box-21><box-20><box-
113><box-28><box-106><boxe> at bottom. 

The object appears 
to be a tall, 
rectangular 

structure with a 
protruding section 

on one side, a 
window on the front, 

and multiple 
ventilation slits on 

its sides. 

The object consists of a large main casing 
<boxs><box-1><box-28><box-25><box-

125><box-105><box-92><boxe> that rests 
on two long, parallel bars <boxs><box-
5><box-21><box-20><box-18><box-

28><box-106><boxe> and <boxs><box-
100><box-21><box-20><box-112><box-

28><box-106><boxe> which act as its feet. 

What is the 
man wearing?

What type of 
firearm is this?

What is the 
overall structure 
of the object?
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Q
ue

st
io

ns
 a

nd
 A

ns
w

er
s

Figure 10: Qualitative results for part-aware Q&A. Our model provides more accurate and de-
scriptive answers, with precise part grounding indicated by bounding box tokens.

2. Face-to-Box Assignment. Given a mesh with a set of faces F = {f1, f2, . . . , fM} and a set of
inferred bounding boxes B = {B1, B2, . . . , BN}, we first determine which faces belong to which
boxes. A face fm is considered a candidate for Bj if its centroid cm lies within the volume of Bj :

cm ∈ Bj ⇐⇒ (cm ≥ xmin,j) ∧ (cm ≤ xmax,j) (6)

where xmin,j and xmax,j are the minimum and maximum coordinates of box Bj , and the comparison
is element-wise.

3. Conflict Resolution. A face’s centroid may lie within multiple overlapping bounding boxes,
creating an ambiguity. We resolve this using a two-tiered rule system:
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• Containment Rule: If a face fm is a candidate for two boxes, Bi and Bj , and one box is
strictly contained within the other (e.g., Bi ⊂ Bj), the face is assigned to the box with the
smallest volume. This prioritizes more specific, fine-grained predictions.

• Confidence Rule: If the boxes overlap but neither contains the other, the face is assigned
to the box with the highest confidence score, Conf(Bj). This leverages the model’s own
uncertainty estimate to make the most likely assignment.

This process results in a deterministic assignment of each face to a single bounding box, producing
a high-quality, fine-grained segmentation of the object, as shown in Figure 9.

A.6 ANALYSIS OF SPECIAL TOKEN EMBEDDINGS

To better understand how our model interprets the specialized grammar, we visualize the embeddings
of our newly added special tokens using t-SNE, as shown in Figure 11. The visualization reveals a
highly structured and semantically meaningful latent space.

15 10 5 0 5 10 15 20
t-SNE Dimension 1

15

10

5

0

5

10

15

t-
SN

E 
D

im
en

si
on

 2

<|point_pad|>

<|point_start|><|point_end|>
<boxs>

<boxe>

<box-10>

<box-25>

<box-40>

<box-55>

<box-70>

<box-85>

<box-100>

<box-115>

<adds>

<adde>

<mods>
<mode> <dels>

<dele>

t-SNE Visualization of Special Token Embeddings

Point tokens
Box tokens
Edit tokens

Figure 11: t-SNE visualization of special token embeddings. The tokens form distinct, well-
structured clusters based on their function, indicating a meaningful learned representation.

We observe three key phenomena. First, the tokens form distinct clusters based on their function:
Point, Box, and Edit tokens occupy separate regions of the embedding space. Second, the 128
box tokens, which represent quantized coordinates, form a continuous, ordered manifold. This
demonstrates that the model has learned the ordinal nature of spatial coordinates rather than treating
them as independent categorical variables. Third, tokens with similar functions, such as the start/end
pairs for edits (e.g., <adds>/<adde>), are positioned closely together. This structured organization
confirms that the model has successfully learned a robust and interpretable representation of our
executable grammar, which is crucial for precise, language-driven 3D planning.

A.7 DATASET CONSTRUCTION AND LABELING

Scope. We build a high-quality, part-centric dataset tailored for Part-X-MLLM. The corpus con-
tains 85,771 unique 3D objects with an average of 23 parts per object. Each part is annotated
with an axis-aligned bounding box (AABB) and two levels of text: a coarse name (Q1) and a fine-
grained description (Q2). At the object level, we include a concise overall caption and a small set
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Figure 12: Model-assisted labeling pipeline. Left: inputs (full-asset + per-part crops). Middle:
structured tool schema drives the LMM to output object-level and part-level JSON. Right: validated
JSON is stored and used by the data builder.

of instruction–answer pairs for part-aware Q&A. All annotations are serialized using the unified
box-token grammar described in Section 3.

A.7.1 MODEL-ASSISTED LABELING

To scale high-quality labels consistently, we adopt a model-assisted pipeline guided by a structured
tool schema. Given a full-asset render and a sequence of part close-ups, we collect:

• Q1: short part name.

• Q2: fine-grained natural description (≤ 15 words; avoid irrelevant rendering terms).

• Q3: confidence flag (Yes/No).

Concretely, we follow the schema implemented in our labeling tool, which calls an external LMM
with a JSON response format and deterministic field ordering. For each object, we provide: (1) one
full-asset image (front view); and (2) K part crops (one per part).

A.7.2 BUILDING INSTRUCTION-FOLLOWING SAMPLES

We convert raw labels into diverse instruction-following pairs covering grounding, captioning,
QA, and editing. A central convenience is a box-token grammar with opening/closing tokens
<boxs> and <boxe> wrapping six quantized coordinates, and edit verbs <adds>/<adde>,
<dels>/<dele>, and <mods>/<mode>.

Quantization and serialization. Each coordinate x ∈ [−1, 1] is quantized into K = 128 bins as

q(x) = round
(
x+1
2 (K − 1)

)
, x̃ = 2 q(x)

K−1 − 1, (7)

then serialized as six tokens inside <boxs>...<boxe>. For reproducibility, parts in a list are deter-
ministically ordered by (q(zmin), q(ymin), q(xmin)).

Task families. We instantiate eleven templates (Types 0–10):

• Type 0: pure box listing from a point cloud (“detect all bounding boxes”).

• Type 1: multi-part grounding with coarse text (AABBs + Q1 per part).

• Type 2: multi-part grounding with fine text (overall description first, then AABBs + Q2).

• Type 3: single-part grounding from coarse text (locate all Q1 parts; return AABBs + de-
scription).

• Type 4: single-part grounding from fine text (locate part by Q2; return a single AABB).

• Type 5: box-to-text (given a box, answer Q1).

• Type 6: box-to-text (given a box, answer Q2).

• Type 7: part-aware QA (replace textual part references <Part i> with the corresponding
box tokens in answers).

• Type 8: deletion program (emit <dels> [boxes] <dele>).

• Type 9: modification program (emit <mods> [box] new text <mode>).

• Type 10: addition program (emit <adds> [box] text <adde>).

Train/test split and balancing. We partition the file list deterministically at 0.5% for test and 99.5%
for train. Templates 1–2 are lightly duplicated to increase multi-part coverage; for templates 3–7 we
downsample to a fixed budget; for edit templates (8–10) we cap the number per shard. See Table 10.
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Algorithm 1 Data building (simplified)
1: Load datas
2: for each object o do
3: Serialize each part AABB to tokens; sort by (zmin, ymin, xmin)
4: for each template t ∈ {0, . . . , 10} do
5: Instantiate a natural-language prompt from a template pool
6: Emit the target sequence (boxes, text, or edit program)
7: Append conversation pair to the corpus
8: Shuffle and save shards; optionally balance per-template counts

Table 10: Task families and sizes. “Raw” denotes counts before optional balancing; “Final” denotes
the target budget after balancing.

Name Input Output Raw % Type Final

Single-Part Grounding point + coarse text 1 box + fine text 506,755 7.30 T3 506,755
Single-Part Grounding point + fine text 1 box 887,590 12.78 T4 506,755
Multi-Part Grounding point + text all boxes + Q1 85,771 1.24 T1 257,313
Multi-Part Grounding point + text all boxes + Q2 85,771 1.24 T2 257,313
Box-to-Text (coarse) point + box + text Q1 887,590 12.78 T5 506,755
Box-to-Text (fine) point + box + text Q2 887,590 12.78 T6 506,755
Part QA point + text text 577,369 8.31 T7 506,755
Edit—Add point + text program (box + text) 247,998 3.57 T10 247,998
Edit—Remove point + text program (boxes) 1,394,345 20.08 T8 247,998
Edit—Replace point + text program (box + text) 883,941 12.73 T9 247,998
Pure box listing point + text all boxes 500,000 7.20 T0 500,000

Total 6,944,720 100.00 4,292,395

A.8 DATASET STATISTICS

Task families and sizes. Table 10 summarizes per-task counts before/after balancing. Counts follow
our build scripts.

Category distribution. Our corpus spans everyday objects and scenes. Table 11 lists the main
categories (top-12 by frequency).

A.9 COMPREHENSIVE RESULTS ON UNIPART-BENCH

We report per-task results on UniPart-Bench. Note that UniPart-Bench is a held-out subset of
our 85,771-object training dataset, ensuring identical data construction pipeline and distribution
characteristics. Following our data construction, each ground-truth (GT) item may contain both
BBox tokens and text. When both are present, we evaluate BBoxes with IoU and text with
SBERT/SimCSE/BLEU-1/ROUGE-L/METEOR. If a GT contains only BBoxes or only text, we
evaluate the available modality and leave the other columns blank. Table 12 summarizes results for
Tasks 0–10 while mapping each task to its template Type and name as in Table 10.

Discussion. Language-intensive tasks (T7 Part QA, T10 Edit—Add) obtain the highest
SBERT/SimCSE and strong lexical metrics, indicating robust alignment between our planned
box-conditioned answers/programs and textual GT. Among IoU-based tasks, T0/T2/T10 show the
strongest geometric alignment, reflecting reliable planning for pure detection, fine grounding, and
edit addition respectively. Blank text or IoU entries arise by design when a task’s GT lacks the
corresponding modality.

A.10 PROMPT TEMPLATES FOR DATA CONSTRUCTION

To ensure the reproducibility of our dataset construction, this section provides the complete set of
English prompt templates used to generate the instruction-following samples for each of the 11 task
types, as described in Section A.7.2. These templates are presented in the tables below.
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Table 11: Category distribution.

Rank Category Count Share (%)

1 Human 20,426 23.74
2 Industrial goods 7,139 8.30
3 Home goods 7,010 8.15
4 Buildings 6,909 8.03
5 Personal items 6,730 7.82
6 Animals 6,582 7.65
7 Weapons 6,406 7.45
8 Vehicles 5,996 6.97
9 Cultural artifacts 5,995 6.97

10 Food 5,885 6.84
11 Technology & electronics 5,183 6.02
12 Others 1,774 2.06

Table 12: All-task results on the 400-case unseen benchmark. “Type/Name” follows the template
definitions in Table 10. Blank entries indicate that the GT for that task does not contain the corre-
sponding modality.

Task Type Name IoU SBERT SimCSE BLEU-1 ROUGE-L METEOR

0 T0 Pure box listing 0.755
1 T1 Multi-Part Grounding (Q1) 0.728 55.60 54.19 35.55 35.58 18.09
2 T2 Multi-Part Grounding (Q2) 0.736 63.68 60.68 31.01 33.68 27.72
3 T3 Single-Part Grounding (Q1) 0.528 73.28 71.70 36.29 38.94 33.21
4 T4 Single-Part Grounding (Q2) 0.443
5 T5 Box-to-Text (Q1) 57.35 56.49 38.12 38.14 19.49
6 T6 Box-to-Text (Q2) 64.64 61.96 31.35 33.73 28.13
7 T7 Part QA 0.554 78.98 84.25 40.54 42.26 34.24
8 T8 Edit—Remove (program) 0.473
9 T9 Edit—Replace (program) 0.409

10 T10 Edit—Add (program) 0.700 80.38 79.71 47.62 51.66 46.63

A.10.1 TYPE 0: PURE BOX LISTING

ID Prompt Template
1 "Detect all bounding boxes in this point cloud"
2 "Show me all the bounding boxes"
3 "Generate bounding boxes for all objects"
4 "Find all object boundaries"
5 "Extract all bounding boxes from this scene"
6 "Locate all object bounding boxes"
7 "Output all detected bounding boxes"
8 "Provide bounding boxes for all components"
9 "Identify all object boundaries in this model"

10 "Return all bounding box coordinates"
11 "Detect and output all object boxes"
12 "Find all rectangular boundaries"
13 "Generate all object bounding boxes"
14 "Show all detection boxes"
15 "Output bounding box coordinates for all objects"
16 "Detect all objects and return their boxes"
17 "Find every bounding box in this point cloud"
18 "Extract object boundaries from this 3D data"
19 "Provide all object detection boxes"
20 "Return coordinates of all detected objects"
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A.10.2 TYPE 1: MULTI-PART GROUNDING (COARSE TEXT)

ID Prompt Template
1 "What distinct components does this contain? Please

annotate with bounding boxes and provide short
labels"

2 "What functional parts make up this object? First
provide 6 box-tokens then write the name"

3 "What structural elements can be decomposed? Output
in the specified format"

4 "What key components does this have? Please locate
and name them"

5 "What identifiable parts are there? Mark with AABB
tokens"

6 "What construction units can be distinguished?
Please list them"

7 "What parts need to be annotated in this?"
8 "What basic components does this contain? Please

output bounding box + label"
9 "What main parts is this composed of? Please

enumerate using token format"
10 "What recognizable sub-parts are there? Use the

specified format for output"
11 "Which distinct parts exist here? Provide

box-tokens and short labels"
12 "Identify every component and prepend its 6

quantized box tokens"
13 "List all separable elements; each line starts with

tokens"
14 "Locate and name each part of the object"
15 "Enumerate all components with their bounding-box

tokens"
16 "Break the shape into parts, output AABB tokens then

a concise tag"
17 "Mark every structural unit. Format: tokens

followed by NAME"
18 "Point out all functional pieces and give their

tokenized boxes"
19 "Provide the set of parts and their six token

indices"
20 "Give every recognized section together with its

AABB tokens"
21 "List all structural elements using 6 box-tokens +

name format"
22 "Return the quantized bounding box and short name

for each part"
23 "Please enumerate in the format of tokens followed

by NAME"
24 "Output part AABB (tokens) and their names"
25 "Give the list of components together with their

quantized boxes"
26 "Return each element as six tokens followed by a

short label"
27 "Provide AABB tokens plus name for every

distinguishable component"
28 "Enumerate all parts with their bounding-box tokens

and a brief tag"
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ID Prompt Template
29 "Please identify all parts and output bounding box

tokens + short name"
30 "After completion, only return the parts list

without extra explanation"
31 "Output strictly according to the specified format,

no additional text"
32 "No extra description at the end, only list the

parts"
33 "List the token AABB and name for each part"
34 "Give tokens and labels in order of appearance"
35 "Use six tokens followed by space and name"
36 "Example line: tokens label, please output

according to this example"
37 "Return all components and their quantized

coordinate indices"

A.10.3 TYPE 2: MULTI-PART GROUNDING (FINE TEXT)

ID Prompt Template
1 "Please describe the overall appearance of this

point cloud in detail, then introduce each part one
by one (with AABB tokens)"

2 "First give an overall impression, then explain each
part in turn with bounding box tokens"

3 "Please provide an overview of this model, and
describe each component with tokens"

4 "What is the overall shape like? What are the
materials and functions of each part?"

5 "Please first introduce the complete structure, then
list parts with tokens + detailed explanations"

6 "From this point cloud, give an overall description
then detail each part with its bounding box"

7 "Describe the complete object, followed by part-wise
details using quantized tokens"

8 "Provide a holistic view and then list all elements
with 6 box tokens and properties"

9 "Summarize the scene, then output each component in
the required token format"

10 "Give a full description first, then annotate every
part with its box tokens and long caption"

11 "Please first present the overall features, then
elaborate on each functional component"

12 "After summarizing the appearance, list each part
item by item (format: tokens description)"

13 "Give the global appearance, then each part line
starts with 6 tokens"

14 "Present the overall structure and afterwards the
detailed attributes of all components"

15 "Explain the general design; afterwards specify each
element with its tokens and features"

16 "First output an overall description, then write a
detailed explanation for each part with tokens"

17 "Describe holistically, then provide component-wise
explanations with bounding-box indices"
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ID Prompt Template
18 "Begin with the object overview; subsequently list

parts and their detailed properties"
19 "Offer a complete summary and then enumerate parts

with tokenized boxes"
20 "Return the overall description and AABB + detailed

explanation for each part"
21 "Finally, please list all components and their

features in the specified format"
22 "Please output in the format of ’overall description

tokens description’"
23 "Provide each part in turn (including token bounding

box and function/material description)"
24 "Provide the overall description followed by every

part in the required tokenized box format"
25 "Please finish by listing each component’s six box

tokens and an informative sentence"
26 "Return first the global description, then each

element as tokens LONG DESCRIPTION"
27 "Include a holistic summary, then annotate each part

with its quantized AABB and details"
28 "Conclude with the part-wise list using bounding-box

tokens plus their detailed attributes"
29 "Output the parts list, each line starting with

tokens"
30 "Please output the description of this object or

scene and its parts’ BBox information, overall first
then parts, format and order cannot be changed"

31 "End by outputting all parts and their respective
detailed features"

32 "Summary first, then component lines with tokens and
descriptions"

33 "Output strictly in two sections: overview +
per-part details"

34 "After the overview, enumerate every part with its
quantized box tokens"

35 "Overall + parts format example: tokens The left
handle is ..."

A.10.4 TYPE 3: SINGLE-PART GROUNDING (FROM COARSE TEXT)

ID Prompt Template
1 "Find the {part name} in this model"
2 "Locate the {part name} in this model"
3 "Point out the {part name} in this point cloud"
4 "Mark the {part name} in this object"
5 "Where is the {part name} in this 3D model?"
6 "Identify the {part name} in this point cloud"
7 "Please show all {part name} in this object"
8 "Where is the position of {part name} in this scene?"
9 "Locate the {part name} in this model"

10 "Find the {part name} in this point cloud"
11 "Point out the {part name} in this object"
12 "Where is the {part name} in this 3D shape?"
13 "Mark the {part name} in this model"
14 "Show all {part name} in this object"
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ID Prompt Template
15 "Identify the {part name} in this point cloud"
16 "Highlight the position of {part name}"

A.10.5 TYPE 4: SINGLE-PART GROUNDING (FROM FINE TEXT)

ID Prompt Template
1 "Where is the part corresponding to this

description: {part description}"
2 "Help me locate this part: {part description}"
3 "Find the corresponding part based on this

description: {part description}"
4 "In this point cloud, which part does

{part description} refer to?"
5 "Mark the position of this part: {part description}"
6 "Please provide the bounding box for the

part corresponding to this description:
{part description}"

7 "Find the part that matches this description:
{part description}"

8 "Locate the component described as:
{part description}"

9 "Which part is this referring to:
{part description}"

10 "Mark the boundary of: {part description}"
11 "Show the box coordinates for: {part description}"
12 "Provide the bounding box for this described

element: {part description}"
13 "Where exactly is: {part description}"
14 "Given this description, locate the corresponding

part: {part description}"
15 "Locate the part based on this text and provide its

AABB: {part description}"
16 "Which specific part does this description

correspond to? {part description}"

A.10.6 TYPE 5: BOX-TO-TEXT (COARSE)

ID Prompt Template
1 "What is this part?"
2 "What is this marked area?"
3 "What is contained in this box?"
4 "What is this marked portion called?"
5 "What part is inside this bounding box?"
6 "What is this part called?"
7 "Name this highlighted component"
8 "What is contained in this bounding box?"
9 "Identify this marked region"

10 "Give the name of this part"
11 "What is inside this AABB box?"
12 "Name this area with one word"
13 "What’s the simple label for this bounded area?"
14 "What would you call this boxed element?"
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ID Prompt Template
15 "What part does this bounding box point to? Please

answer briefly"
16 "What is this outlined section?"
17 "Provide the name for this demarcated part"

A.10.7 TYPE 6: BOX-TO-TEXT (FINE)

ID Prompt Template
1 "Describe this part in detail"
2 "What does this area contain? Please explain in

detail"
3 "Please describe the part within this bounding box,

including appearance, material and function"
4 "What is in this box? Please provide detailed

information"
5 "What is the marked portion? Please provide a

complete description"
6 "Describe this part in detail"
7 "What can you tell me about this highlighted

component?"
8 "Provide a comprehensive description of what’s in

this box"
9 "Explain the appearance, material and function of

this marked area"
10 "Give details about this bounded region"
11 "What are the characteristics of this marked area?

Please describe comprehensively"
12 "Elaborate on the appearance and purpose of this

part"
13 "What is contained in this bounding box? Elaborate

on its features"
14 "Tell me everything about this outlined element"
15 "What is the material, shape and function of the

object in this box?"
16 "Please characterize this demarcated component

thoroughly"
17 "What’s inside this box? Include all relevant

details"

A.10.8 TYPE 7: PART-AWARE Q&A

This task reuses the questions from the ‘QA‘ field in the raw annotations and replaces textual part
references with box tokens in the answer. No new templates are generated for the questions them-
selves.

A.10.9 TYPE 8: DELETION PROGRAM

ID Prompt Template
By part name

1 "Please remove the {part name} from this object"
2 "Get rid of every {part name}"
3 "I want to delete the {part name} here"
4 "Can you erase all instances of the {part name}?"
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ID Prompt Template
5 "Show me this model but without the {part name}"
6 "Take out the {part name}"
7 "The {part name} needs to be removed"
8 "Omit the {part name} from this scene"
9 "I don’t want to see the {part name} anymore"

10 "Could you proceed with deleting the {part name}?"
11 "Let’s see what it looks like if we remove the

{part name}"
12 "Exclude the {part name} from the final output"
13 "The task is to get rid of the {part name}"
14 "Wipe out the {part name} from the 3D model"
15 "Please filter out the {part name}"
16 "Delete the component identified as {part name}"
17 "I require the removal of the {part name}"
18 "Make the {part name} disappear"
19 "This model would be better without the {part name}"
20 "Execute the deletion of the {part name}"

By part description
21 "Please remove this specific part:

"̈part description"̈
22 "I don’t want the component described as

p̈art description"̈
23 "Delete the part that is p̈art description"̈
24 "Get rid of this particular element:

p̈art description"̈
25 "Find the part matching p̈art descriptionänd remove

it"
26 "The element characterized by p̈art descriptions̈hould

be deleted"
27 "Erase the component with this description:

p̈art description"̈
28 "I want to exclude the part that is p̈art description"̈
29 "Locate and then delete this item: p̈art description"̈
30 "Take out the part that looks like this:

p̈art description"̈
31 "The target for deletion is the part described as:

p̈art description"̈
32 "Can you remove the part with these features:

p̈art description"̈
33 "Please omit this from the model: p̈art description"̈
34 "Based on the description p̈art description,̈ remove

the corresponding part"
35 "I’ve identified a part to remove: p̈art description"̈
36 "Wipe the following item from the scene:

p̈art description"̈
37 "The part to be erased is: p̈art description"̈
38 "Remove the object that fits this profile:

p̈art description"̈
39 "Please execute a deletion on the component

identified as p̈art description"̈
40 "Let’s remove one specific part: p̈art description"̈

A.10.10 TYPE 9: MODIFICATION PROGRAM
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ID Prompt Template
1 "Please edit the {part name} to be {new description}"
2 "Change the {part name} into {new description}"
3 "Replace the {part name} with this:

{new description}"
4 "I want the {part name} to look like this:

{new description}"
5 "Modify the {part name} to become {new description}"
6 "Update the {part name} so it is now

{new description}"
7 "Let’s alter the {part name}. It should be

{new description}"
8 "Transform the {part name} into {new description}"
9 "Could you make the {part name} to be

{new description}"
10 "My instruction is to change the {part name} to

{new description}"
11 "The {part name} needs an update. Here are the new

details: {new description}"
12 "Let’s swap the current {part name} with a new one:

{new description}"
13 "The {part name} should be revised to be

{new description}"
14 "Please perform an edit on the {part name}. It

should now be {new description}"
15 "Adjust the {part name} to match this description:

{new description}"

A.10.11 TYPE 10: ADDITION PROGRAM

ID Prompt Template
1 "Add the {part name} to this 3D asset."
2 "Please add a {part name} to the model."
3 "Insert the {part name} component."
4 "Attach the {part name} to this object."
5 "Place the {part name} on this model."
6 "Include the {part name} in this design."
7 "Incorporate the {part name} into this structure."
8 "This model is missing its {part name}. Please add

it."
9 "Complete this 3D model by adding the {part name}."

10 "The {part name} is missing. Add it back."
11 "Restore the {part name} to this object."
12 "Fill in the missing {part name}."
13 "This asset needs a {part name}. Add it."
14 "Enhance this model with a {part name}."
15 "Improve this design by adding the {part name}."
16 "Augment this object with the {part name}."
17 "Extend this model to include the {part name}."
18 "Could you add the {part name} to complete this

model?"
19 "I need you to add the {part name} to this 3D

object."
20 "Would you please attach the {part name}?"
21 "Can you help me add the {part name} component?"
22 "Mount the {part name} in the appropriate position."
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ID Prompt Template
23 "Install the {part name} where it belongs."
24 "Position the {part name} correctly on this model."
25 "Generate and add the {part name} to this asset."
26 "Create the {part name} component for this model."
27 "Design and attach the {part name}."
28 "This looks incomplete without the {part name}. Add

it."
29 "To make this functional, add the {part name}."
30 "The model requires a {part name} to be complete."

Part-specific templates
31 "Add the head section to complete this figure."
32 "This model needs its head. Please attach it."
33 "The top part is missing. Add the head."
34 "Install the wheels to make this vehicle complete."
35 "Add wheels for mobility."
36 "Mount the wheels on this vehicle."
37 "Install the door to complete the entrance."
38 "Add a door for access."
39 "Place the door in the opening."
40 "Attach the handle for better grip."
41 "Add the handle component."
42 "Install the handle mechanism."
43 "Add the legs to support this structure."
44 "Attach the leg components."
45 "Install the supporting legs."
46 "Add wings to complete this model."
47 "Attach the wing components."
48 "Install the wings on both sides."
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