

000 PART-X-MLLM: PART-AWARE 3D MULTIMODAL 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PART-AWARE 3D MULTIMODAL LARGE LANGUAGE MODEL

Anonymous authors
Paper under double-blind review

Figure 1: Part-X-MLLM is a natively 3D, part-aware multimodal large language model that provides comprehensive understanding of 3D shapes and supports a wide range of 3D understanding tasks. It also seamlessly integrates with diffusion-based pipelines, enabling semantically precise part-aware 3D shape generation and editing.

ABSTRACT

We introduce Part-X-MLLM, a native 3D multimodal large language model that unifies diverse 3D tasks by formulating them as programs in a structured, executable grammar. Given an RGB point cloud and a natural language prompt, our model autoregressively generates a single, coherent token sequence encoding part-level bounding boxes, semantic descriptions, and edit commands. This structured output serves as a versatile interface to drive downstream geometry-aware modules for part-based generation and editing. By decoupling the symbolic planning from the geometric synthesis, our approach allows any compatible geometry engine to be controlled through a single, language-native frontend. We pre-train a dual-encoder architecture to disentangle structure from semantics and instruction-tune the model on a large-scale, part-centric dataset. Experiments demonstrate that our model excels at producing high-quality, structured plans, enabling state-of-the-art performance in grounded Q&A, compositional generation, and localized editing through one unified interface.

1 INTRODUCTION

The creation of rich, interactive 3D worlds is a cornerstone of modern visual computing. While recent advances in generative AI have solved the creation of holistic 3D shapes, they largely treat assets as static, monolithic forms. **This results in a fundamental limitation we term “structural opaqueness”—where the model perceives a 3D object as a single, indivisible block of geometry rather**

than a collection of distinct components. Such opaqueness prevents downstream applications from accessing or manipulating specific parts (e.g., editing just “the chair’s left leg”), thereby hindering fine-grained control in animation and editing. Real-world objects are inherently assemblies of meaningful parts. Unlocking true 3D interaction, therefore, demands a native LLM-based interface capable of reasoning about this substructure. Unlike approaches that rely on external adapters, our model adopts a native strategy by treating 3D structure as an intrinsic part of its language—processing geometric parts and edit commands as native tokens alongside natural text.

Current 3D Multimodal Large Models (MLLMs) fall short of this goal. Scene-level 3D MLLMs align point clouds with language and perform captioning or Q&A Xu et al. (2024); Hong et al. (2023); Qi et al. (2024b;a), but they largely treat objects as monolithic and lack persistent part identifiers, grounded references, and executable outputs. On the generative side, geometry-oriented models offer high-fidelity asset synthesis via structured 3D latents Xiang et al. (2024); Zhao et al. (2025b); Hunyuan3D et al. (2025b) or tokenized 3D representations Wang et al. (2024); Ye et al. (2025), yet expose limited semantic addressability. Part pipelines either lift 2D segmentations to 3D Liu et al. (2024a); Chen et al. (2025a); Yang et al. (2024b); Liu et al. (2025); Yang et al. (2025a)—prone to view inconsistencies and weak 3D constraints—or generate parts natively in 3D Chen et al. (2025b); Zhang et al. (2025); Yang et al. (2025b) without a unified language interface. Editing methods increasingly operate in 3D space Li et al. (2025), but are not themselves language-native frontends. There is still no model that (i) understands and names parts, (ii) grounds references to persistent bounding box (BBox), and (iii) compiles executable add/delete/modify programs while delegating to strong geometry engines—with controllable semantic granularity (from coarse labels to fine descriptions)—through a single instruction-following interface.

We address this challenge with **Part-X-MLLM**, a native 3D part-aware Multimodal Large Language Model that reframes 3D interaction as a language modeling problem. Our core insight is that a spectrum of disparate tasks—generation, editing, and question answering—can be unified under a single, geometry-aware grammar of parts. Part-X-MLLM translates user instructions and 3D visual input into a structured program, emitting a single token sequence of part-level bounding boxes, persistent references, semantic descriptions, and edit operators. This discrete, language-native interface provides three concrete benefits. (1) **Stable part identity and grounding**: tokens carry persistent references to parts via BBox symbols, enabling precise, auditable reasoning and manipulation across steps and tasks. (2) **Controllable semantic granularity**: the same program can surface either coarse labels or fine descriptions on demand, and our post-hoc clustering supports user-controlled merging of parts. (3) **Separation of structure and semantics**: a dual-encoder design decouples geometry (XYZ+normals) from appearance (RGB), avoiding the representational conflict observed in single-encoder ablations and yielding consistent gains on box listing, multi-part grounding, and part Q&A. Because the output program is model-agnostic, any geometry module can be driven by this token interface—turning language into a universal control surface for 3D assets. Empirically, the resulting plans enable strong part grounding, compositional generation, and localized editing across 11 task families on our **UniPart-Bench**, establishing a general paradigm for part-centric 3D intelligence.

Our contributions are summarized as follows:

- We introduce **Part-X-MLLM**, a native 3D part-aware MLLM that unifies generation, editing, and reasoning as a single *geometry-aware program* in a part grammar with persistent BBox tokens—providing a language-native, model-agnostic control surface for 3D assets.
- We propose a **dual-encoder** architecture that decouples structure (XYZ+normals) from appearance (RGB), avoiding representational conflicts and delivering consistent gains over a single-encoder baseline across grounding, captioning, and part Q&A.
- We enable **semantic granularity control** by clustering part bounding boxes using text semantics, allowing seamless transition between coarse components and fine-grained parts under the same programmatic interface.
- We establish **UniPart-Bench**, a 30k-entry part-centric benchmark spanning 11 task families with geometric and linguistic metrics, and use it to rigorously evaluate plan quality and downstream performance.

108 **2 RELATED WORK**
109110 **2.1 3D MULTIMODAL UNDERSTANDING AND GENERATION**
111

112 Early 3D MLLMs align point clouds with language for 3D captioning, QA, and reasoning, in-
113 cluding PointLLM Xu et al. (2024), 3D-LLM Hong et al. (2023), Point-BERT Yu et al. (2022),
114 GPT4Point Qi et al. (2024b), and ShapeLLM Qi et al. (2024a). However, point clouds’ sparsity and
115 limited detail constrain high-fidelity, editable asset creation. Recent work addresses this through
116 geometry-aware latents: TRELLIS Xiang et al. (2024) employs structured sparse voxel latents with
117 rectified flow for unified decoding to meshes/NeRF/3DGS. Hunyuan3D 2.x Zhao et al. (2025b);
118 Hunyuan3D et al. (2025b) provides a production-ready pipeline with PBR materials. Discretization
119 enables autoregression: LLaMA-Mesh Wang et al. (2024) feeds OBJ text to LLMs but ignores mesh
120 topology, while ShapeLLM-Omni Ye et al. (2025) compresses 3D into discrete tokens for unified
121 text/image/3D understanding and generation. Despite these advances, most systems remain object-
122 or scene-level Wang et al. (2025); Miao et al. (2025): Existing methods often lack persistent part
123 identities, grounded references, and executable outputs for downstream geometry engines. We ad-
124 dress this by introducing a language-native interface that outputs tokenized bounding boxes and edit
125 programs, enabling part-aware and high-fidelity generation and editing.

126 **2.2 PART GENERATION**
127

128 2D-driven pipelines extract multi-view cues then lift to 3D: Part123 Liu et al. (2024a) and
129 PhyCAGE Yan et al. (2024b) uses SAM Kirillov et al. (2023) masks, PartGen Chen et al. (2025a)
130 segments/inpaints with inconsistency issues, SAMPART3D Yang et al. (2024b) and PartField Liu et al.
131 (2025) distill priors, and HoloPart Yang et al. (2025a) completes parts with diffusion. These methods
132 suffer from weak 3D constraints. Direct 3D approaches include: PASTA Li et al. (2024a) for prim-
133 itive composition, AutoPartGen Chen et al. (2025b) for autoregressive generation, PartPacker Tang
134 et al. (2025) and Frankenstein Yan et al. (2024a) for efficient part representation with constrained
135 space usage, BANG Zhang et al. (2025) for exploded views, and Assembler Zhao et al. (2025a) for
136 assembly sampling. OmniPart Yang et al. (2025b) unifies these approaches via autoregressive box
137 planning followed by TRELLIS-based synthesis. X-Part Yan et al. (2025) scale up vecset-based part
138 generation conditioned on semantics provided by Ma et al. (2025).

139 **2.3 3D EDITING**
140

141 Optimization-based editing utilizes SDS: DreamFusion Poole et al. (2022) enables text-to-3D gen-
142 eration, Vox-E Sella et al. (2023) adds volumetric regularization, and Instruct-NeRF2NeRF Haque
143 et al. (2023) edits multi-views using InstructPix2Pix Brooks et al. (2023) while optimizing
144 NeRF Mildenhall et al. (2021). Faster alternatives include: Shap-Editor Chen et al. (2024b) for
145 feed-forward latent editing, MVEdit Chen et al. (2024a) as a training-free 3D adapter, and PrEd-
146 itor3D Erkoç et al. (2025) using DDPM inversion with 2D-to-3D lifting. FocalDreamer Li et al.
147 (2024b) enables part-wise assembly, VoxHammer Li et al. (2025) performs training-free latent edit-
148 ing, and Make-Your-3D Liu et al. (2024b) customizes subjects via model co-evolution. Yet these
149 methods are typically tool-side: they do not provide a language-native model that reasons about parts
150 and emits executable edit programs with precise spatial grounding. We target this gap by coupling a
151 part-aware planning interface with strong geometry backends.

152 **3 METHODOLOGY**
153

154 An overview of our framework is shown in Figure 2. Our methodology centers on three key design
155 choices: a unified architecture that processes geometry and language, a multi-stage training curricu-
156 lum that systematically builds model capabilities, and the use of powerful, pre-existing geometry
157 engines as execution backends.

158 **3.1 MOTIVATION**
159

160 Modern 3D applications demand more than holistic shape synthesis—they require precise, language-
161 driven control over semantically meaningful parts. For example, artists want to swap handles without

Figure 2: **The Part-X-MLLM Framework.** Our pipeline begins by encoding geometry and appearance features separately using a dual-encoder architecture, which are then fused together with text prompts. These combined features are passed to an autoregressive decoder that generates a program-like token sequence representing a plan (e.g., bounding boxes, edit commands). Finally, specialized geometry heads execute this plan to enable part-aware generation and editing.

touching the body; roboticists need to reason about graspable subcomponents; and downstream pipelines rely on consistent, addressable structure for animation and simulation. Prior systems either focus on scene-level understanding or provide powerful but siloed generators/editors with bespoke interfaces. Our goal is a native, part-centric MLLM that treats parts as first-class citizens and exposes a single, executable interface that is intuitive, auditable, and robust across categories.

3.2 UNIFIED ARCHITECTURE FOR PART-AWARE PLANNING

Dual 3D Encoders. To capture both geometric structure and visual appearance, we employ a dual-pathway encoder. A **Structure Encoder** processes the raw point cloud geometry (XYZ and normals) to extract structural tokens. A parallel **Semantic Encoder** processes RGB color information to produce appearance tokens. This dual representation allows the model to disambiguate parts that may be structurally similar but visually distinct (e.g., two identical chair legs of different colors).

Structured Planning Language and Autoregressive Decoder. A decoder-only transformer, initialized from a pretrained LLM, takes the fused sequence of structural, semantic, and text tokens as input. It is trained to autoregressively generate a program-like output that follows our structured planning language. This language defines special tokens for part representation (e.g., `<boxs>` and `<boxe>`, representing box-start and box-end, wrapping six quantized coordinate tokens) and edit operations (e.g., `<adds>`, ``, `<mod>`). By formulating the output as a program, we unify diverse tasks into a single instruction-following problem, where the model’s goal is always to generate the correct token sequence representing the plan.

3.3 DOWNSTREAM GEOMETRY INTERFACES

Our model’s structured output is designed to be consumed by downstream modules capable of interpreting its geometric and semantic content.

Part-Aware Synthesis. For generation, the planned bounding boxes and optional part text are passed to a synthesis module, which treats the boxes as spatial guides to generate high-fidelity, part-based assets (e.g., in mesh, 3DGS, or NeRF format).

Localized Editing. For editing, the emitted program and associated bounding boxes are used to define cuboid masks for localized manipulation, enabling precise edits while preserving untouched regions.

3.4 END-TO-END TASK REALIZATION

To make the workflow concrete, Figure 3 illustrates how our structured planning language realizes four representative tasks.

Figure 3: **Task realization with a planning language.** A decoder outputs program tokens that unify diverse interactions: (Top) part-aware generation guided by bounding boxes; (Middle) grounded Q&A with Grounding; (Bottom) auto-located 3D editing executed via cuboid masks and commands. The numbered circles (e.g., \mathbf{x}) denote the corresponding task types.

Part-aware Mesh Generation: The decoder generates a program containing a set of bounding boxes and optional part text. A synthesis module then uses these boxes as spatial guides to generate a part-based asset. **Q&A with Grounding:** Answers are augmented with BBox tokens, yielding language outputs that carry explicit, persistent references to parts. **Auto-located 3D Editing:** The model localizes the instruction by generating bounding boxes and an edit command (e.g., $\langle \text{adds} \rangle$). A downstream editing module then uses this program to apply a masked edit.

Semantic Granularity Control. Beyond these core tasks, our box-and-text representation enables dynamic control over semantic granularity. By clustering part bounding boxes based on the similarity of their associated text descriptions (using CLIP embeddings), we can progressively merge fine-grained parts into coarser semantic components. This allows users to control the level of detail in the generated output without manual intervention, such as pre-defining the number of parts (cf. PartPacker) or manually merging masks (cf. OmniPart). A qualitative example is shown in Figure 6, with the full algorithm **detailed in the appendix**.

3.5 MULTI-STAGE INSTRUCTION TUNING

We adopt a two-stage curriculum. The first stage pretrains a structure-aware encoder for robust geometry understanding. The second stage performs full instruction tuning, integrating a semantic encoder and aligning a powerful LLM with our specialized task grammar.

Stage 1: Geometry-Only BBox Pretraining. We initialize the structure encoder with the *Hunyuan 2.1 3D Shape VAE Encoder*. Each training sample is a fixed-size RGB-less point cloud of shape (40960, 6) containing (x, y, z) coordinates and surface normals. The encoder downsamples features by $20\times$ to produce a latent of length 2048. To force bounding-box knowledge into the encoder, we pair it with a lightweight autoregressive decoder whose task is to predict part-level bounding boxes from these latent features, with no textual semantics involved. After pretraining on 3.6M objects for 10 epochs, we retain the specialized structure encoder weights and discard the lightweight decoder. This stage domain-specializes the 3D encoder to reliably disentangle and localize part BBoxes.

Stage 2: Full Instruction Tuning with a Dual-Encoder LLM. After pretraining the structure encoder, we proceed directly to full instruction tuning with a more powerful *Qwen 2.5 VL* model. In this stage, we introduce the *Semantic (RGB) Encoder*, which has the same architecture as the structure encoder and processes a point cloud of shape (10240, 6) with (x, y, z) and (r, g, b) data to capture appearance. We also extend the vocabulary with our task-specific special tokens (e.g., $\langle \text{boxs} \rangle$ / $\langle \text{boxe} \rangle$, $\langle \text{adds} \rangle$ / $\langle \text{adde} \rangle$). During this stage, we *freeze* the pretrained Structure Encoder from Stage 1 and the *original* Qwen 2.5 VL token embeddings. We then *train only* the new Semantic Encoder, the AR transformer layers of the Qwen 2.5 VL decoder, and the embeddings

270 for our *newly added* special tokens. This approach efficiently aligns the powerful language model
 271 with our dual-stream (geometry and appearance) conditioning and executable grammar, preserving
 272 its strong prior while adapting it for our specialized tasks.
 273

274 3.6 IMPLEMENTATION AND EXECUTION BACKENDS 275

276 To translate plans into high-fidelity geometry, we use powerful, off-the-shelf models as execution
 277 backends. For part-aware generation, we use the synthesis module from OmniPart Yang et al.
 278 (2025b), feeding it our generated bounding boxes. For editing, we use the training-free volumetric
 279 editor VoxHammer Li et al. (2025), providing it with a cuboid mask derived from our planned BBox
 280 and the user’s instruction. This modular approach allows Part-X-MLLM to serve as a universal,
 281 language-driven frontend for various SOTA geometry engines. The rich information encoded in the
 282 generated token probabilities also enables advanced downstream tasks, such as **confidence-aware**
 283 **face segmentation** (see Appendix A.5).
 284

285 4 EXPERIMENTS

286 4.1 DATASET

287 We curate a high-quality, part-centric 3D dataset comprising **85,771** distinct objects with an average
 288 of **23** parts per object. Each object is annotated with axis-aligned part bounding boxes (AABBs)
 289 and paired natural language annotations at two granularities: a coarse part label (Q1) and a fine-
 290 grained part description (Q2). At the object level, we include an overall caption and a small set of
 291 instruction–answer pairs for part-aware Q&A. All annotations follow the unified box-token grammar
 292 introduced in Section 3, enabling consistent serialization of AABBs and edit programs.
 293

294 Data construction follows a two-step pipeline: (1) a structured labeling stage collecting object-level
 295 and part-level texts and (2) a data building stage converting annotations into instruction-following
 296 samples across multiple task families (grounding, captioning, QA, editing). Concretely, we in-
 297 stantiate eleven task templates (Types 0–10) covering pure box listing, multi-part grounding with
 298 coarse/fine text, single-part grounding from name or description, box-to-text captioning, part-aware
 299 Q&A, and edit programs for deletion/modification/addition. The train/test split is obtained by deter-
 300 ministic file list partition ($\approx 99.5/0.5$). Full details, prompt templates, sampling rules, and dataset
 301 statistics are provided in the supplementary material (Tables 10 and figures therein).
 302

303 4.2 EVALUATION PROTOCOL

304 Since existing benchmarks do not test for structured, part-aware, and executable program generation
 305 from language, we introduce **UniPart-Bench**, a held-out set of 400 objects, to evaluate our model’s
 306 core capabilities. Our evaluation focuses on the quality of the structured plans generated by the
 307 model, as measured by the accuracy of the predicted BBox layouts. For downstream tasks, the
 308 generated plans are passed to external geometry modules. For generation, we forward the BBoxes
 309 to a synthesis head; for editing, we provide the instruction and a cuboid mask derived from the
 310 planned BBox.
 311

312 4.3 PART-AWARE GENERATION AND EDITING

313 **Bounding Box Generation.** To evaluate the quality of our structured generation, we report BBox
 314 IoU, Voxel Recall, and Voxel IoU. Matching pairs each ground-truth box with its nearest predicted
 315 box. As baselines, we include PartField Liu et al. (2025) by treating the voxel set as a point cloud
 316 and extracting a BBox per predicted segment, and the generation model from OmniPart Yang et al.
 317 (2025b). Our model consumes RGB point cloud tokens and a text prompt and autoregressively
 318 emits an ordered list of bounding boxes following the box grammar of Section 3. For the PartField
 319 baseline, we treat voxels derived from the asset as a point cloud and segment them at the ground-
 320 truth part count, then compute bounding boxes per segment for comparison.
 321

322 **Qualitative Generation and Editing Results.** Figure 4 visualizes our qualitative shape decom-
 323 position results, where our model demonstrates superior performance in generating semantically co-

324

325

Table 1: Quantitative results for bounding box generation (%).

326

327

Method	Voxel recall \uparrow	Voxel IoU \uparrow	Bbox IoU \uparrow
PartField Liu et al. (2025)	69.65	46.04	37.33
OmniPart Yang et al. (2025b)	72.32	47.62	39.78
Part-X-MLLM (Ours)	74.11	48.74	42.55

330

331

332

herent and geometrically accurate part segmentations. It successfully captures fine-grained details and maintains structural integrity, outperforming baselines that often produce fragmented or inaccurate decompositions. We also evaluate the model’s ability to perform localized, language-driven edits. As shown in Figure 5, Part-X-MLLM successfully interprets user instructions to add, remove, or modify specific parts, executing the edits while preserving the rest of the object’s structure.

333

338

339

359

Figure 4: Qualitative shape decomposition results.

360

361

362

363

364

365

366

367

368

369

370

371

372

373

Figure 5: **Qualitative results for part-aware editing.** Our model successfully interprets natural language instructions to perform localized edits, while preserving the integrity of the original object.

374

375

376

377

Semantic Granularity Control. As introduced in Section 3, our framework supports controlling part granularity by semantically clustering bounding boxes. Figure 6 demonstrates this process, where our algorithm progressively merges components based on the CLIP similarity of their textual

descriptions, reducing the part count from 22 down to 2. This automated process allows for flexible control over the level of detail without manual intervention.

Figure 6: **Semantic granularity control via part clustering.** By clustering parts based on the semantic similarity of their descriptions, we can progressively merge fine-grained components into coarser structures. The number of components is automatically reduced from 22 to 2.

Ablation Study: Dual vs. Single Encoder. We conduct an ablation study to validate our dual-encoder design, which processes geometric structure and visual appearance in separate pathways. We compare our full model against a single-encoder variant that consumes a unified point cloud with fused geometry (XYZ) and color (RGB) information. As shown in Table 2, the dual-encoder architecture consistently outperforms the single-encoder baseline across all evaluated tasks. For pure geometric tasks like box listing, the dual encoder improves IoU by a significant margin (+7.06). For language-intensive tasks such as Part QA and Multi-Part Grounding, we observe uniform gains across all metrics. This suggests that forcing a single encoder to handle both structural and semantic information creates a conflict, whereas decoupling these responsibilities into two specialized encoders is a more effective and robust design choice.

Table 2: Ablation study on the dual-encoder architecture. We compare our full model against a single-encoder variant. All metrics are reported on **UniPart-Bench**.

Task	Model	IoU \uparrow	SBERT \uparrow	SimCSE \uparrow	BLEU-1 \uparrow	ROUGE-L \uparrow	METEOR \uparrow
Pure Box Listing	Dual Encoder (Ours)	75.53	-	-	-	-	-
	Single Encoder	68.47	-	-	-	-	-
	Δ Gain	+7.06	-	-	-	-	-
Multi-Part Grounding	Dual Encoder (Ours)	72.82	55.60	54.19	35.55	35.58	18.09
	Single Encoder	69.78	54.18	53.53	33.95	33.97	17.27
	Δ Gain	+3.04	+1.42	+0.66	+1.60	+1.61	+0.82
Part QA	Dual Encoder (Ours)	55.44	78.98	84.25	40.54	42.26	34.24
	Single Encoder	54.24	78.44	83.13	39.29	41.31	33.06
	Δ Gain	+1.20	+0.54	+1.12	+1.25	+0.95	+1.18

4.4 PART AND OBJECT UNDERSTANDING

Part Understanding Q&A. To evaluate part-level understanding and reasoning, we test on **UniPart-Bench**. We report sentence-level similarities (SBERT, SimCSE) and token-level metrics (BLEU-1, ROUGE-L, METEOR). Results in Table 3 show consistent gains of our method on part-level Q&A. We observe substantial gains over the strongest baseline across all metrics: compared to the best non-ours scores, Part-X-MLLM improves by +17.7 SBERT, +25.8 SimCSE, +17.2 BLEU-1, +9.7 ROUGE-L, and +9.8 METEOR. These gains reflect stronger part-level grounding and reasoning enabled by our box grammar and instruction tuning.

Overall 3D Object Captioning. Unlike part-level captioning, this benchmark probes holistic object understanding on **UniPart-Bench**. We report SBERT, SimCSE, BLEU-1, ROUGE-L, and METEOR following PointLLM. On overall object captioning, our model also outperforms the best prior scores, with absolute improvements of +4.3 SBERT, +2.5 SimCSE, +18.3 BLEU-1, +19.1 ROUGE-L, and +13.3 METEOR. The large gains on token-based metrics suggest stronger lexical coverage and structure in object-level descriptions.

Qualitative Understanding Results. Figure 7 provides qualitative examples for overall object captioning. Our model generates more accurate and detailed descriptions compared to baselines.

432

433

Table 3: Part understanding Q&A on **UniPart-Bench**.

434

435

Model	SBERT	SimCSE	BLEU-1	ROUGE-L	METEOR	GPT-5
GPT4Point Qi et al. (2024b)	48.32	45.17	15.16	22.55	16.19	36.99
PointLLM-7B Xu et al. (2024)	61.30	58.48	21.78	29.26	22.45	48.68
PointLLM-13B Xu et al. (2024)	56.36	51.47	21.40	29.16	21.80	55.83
ShapeLLM-13B Qi et al. (2024a)	61.19	57.26	23.32	32.56	24.45	42.21
ShapeLLM-Omni-7B Ye et al. (2025)	57.35	51.16	22.77	29.57	23.24	46.19
MiniGPT-3D Tang et al. (2024)	58.02	53.63	21.05	28.66	22.55	50.38
Part-X-MLLM (Ours)	78.98	84.25	40.54	42.26	34.24	60.77

441

442

443

444

Table 4: Overall 3D object captioning on **UniPart-Bench**.

445

446

Model	SBERT	SimCSE	BLEU-1	ROUGE-L	METEOR	GPT-5
GPT4Point Qi et al. (2024b)	25.60	27.00	11.50	12.00	12.70	26.34
PointLLM-7B Xu et al. (2024)	42.79	42.44	11.58	14.39	16.90	44.03
PointLLM-13B Xu et al. (2024)	43.51	43.12	13.54	15.74	17.45	44.22
ShapeLLM-13B Qi et al. (2024a)	25.15	27.14	11.77	12.14	12.84	32.24
ShapeLLM-Omni-7B Ye et al. (2025)	31.18	31.93	17.79	19.04	14.30	30.01
MiniGPT-3D Tang et al. (2024)	49.52	49.44	7.75	10.23	17.24	48.75
Part-X-MLLM (Ours)	53.82	51.97	36.04	38.11	30.71	55.88

452

453

454

455

For instance, our model correctly identifies an object as a “pink teddy bear mascot costume with a purple bow tie,” while other models provide less specific or incorrect descriptions. Additional qualitative results for part-aware Q&A, demonstrating our model’s strong grounding capabilities, are provided in the appendix (Figure 10).

459

	Input	GT	PointLLM	ShapeLLM	ShapeLLM-Omni	Ours
Overall Description		<i>A pink, teddy bear mascot costume with a purple bow tie.</i>	<i>This 3D model portrays an endearing cartoon character designed to resemble a mouse.</i>	<i>The 3D structure appears to be a futuristic vehicle with a sleek design.</i>	<i>A 3D model of a bare, leafless tree with roots and horns.</i>	<i>A pink teddy bear costume with a purple bow tie.</i>
		<i>A chibi-style character in traditional Chinese clothing with a hair ornament.</i>	<i>This is a 3D model of a toy cartoon character that has brown hair and large, expressive eyes. Notably, it's wearing a jacket and a black hat.</i>	<i>The 3D structure appears to be a futuristic, abstract design with a mix of metallic and organic elements.</i>	<i>This is a 3D model of a cartoon-like figure representing a girl.</i>	<i>A chibi character wearing a conical hat and traditional clothing.</i>
		<i>A woman with curly hair wearing a striped dress and a fox mask.</i>	<i>The 3D model represents a vibrant cartoon lady character wearing a bright red dress.</i>	<i>The 3D structure appears to be a fragmented or abstract representation of a creature, possibly a horse.</i>	<i>This is a three-dimensional model of a female cartoon character donned in a vibrant red shirt.</i>	<i>A woman with curly brown hair wearing a colorful striped halter dress.</i>

475

476

Figure 7: Qualitative results for overall object captioning.

477

478

4.5 SENSITIVITY TO POINT CLOUD RESOLUTION

We evaluate the robustness of Part-X-MLLM by randomly downampling the input point clouds to various ratios (from 5% to 100%) and measuring performance across Q&A, Captioning, and Part-Level Mesh generation tasks.

482

483

484

485

As presented in Table 5, our model demonstrates remarkable robustness to input sparsity. Performance metrics across linguistic understanding and geometric generation tasks remain stable even when the input density is reduced to 25%. This indicates that Part-X-MLLM is capable of extracting and reasoning about critical 3D structures from sparse data, ensuring reliable performance across varying input resolutions.

486

487

Table 5: Sensitivity analysis on input point density.

488

489

Density	Part Q&A					Overall Caption					Part-Level Mesh		
	SBERT	SimCSE	B-1	R-L	MET	SBERT	SimCSE	B-1	R-L	MET	CD ↓	F-0.1 ↑	F-0.05 ↑
5%	51.83	54.26	27.38	29.92	22.85	29.78	24.87	15.06	17.30	8.49	0.2590	0.3188	0.3169
25%	76.83	82.80	39.44	40.35	32.76	52.44	48.70	36.42	38.22	30.81	0.2287	0.6493	0.5640
50%	78.83	83.93	39.27	40.75	32.66	54.04	50.71	37.43	39.78	31.21	0.2318	0.6489	0.5647
75%	78.90	84.09	39.90	41.51	33.45	53.93	51.34	36.74	38.94	30.96	0.2240	0.6547	0.5671
100%	78.98	84.25	40.54	42.26	34.24	53.82	51.97	36.04	38.11	30.71	0.2226	0.6506	0.5671

494

495

Figure 8: Qualitative evaluation of generalization and robustness.

508

509

4.6 GENERALIZATION AND ROBUSTNESS ANALYSIS

510

Beyond standard object-level synthesis, we further investigate the model’s capability to handle out-of-distribution data, as shown in Figure 8. First, we explore scene-level composition using the InternScenes Zhong et al. (2025) dataset. This aligns with the emerging paradigm of compositional scene generation Zhou et al. (2024; 2025); Yang et al. (2024a); Ge et al. (2024), where complex environments are constructed from distinct entities. Although trained on object parts, Part-X-MLLM successfully generalizes to this domain by treating individual furniture items as components of a room, generating plausible layouts and meshes in a zero-shot manner. Second, to address the domain gap between synthetic and realistic data, we evaluate the model on real-world scans from OmniObject3D Wu et al. (2023). These inputs typically contain high-frequency noise, holes, and inconsistent normals. Our model demonstrates strong robustness by effectively filtering out these artifacts, producing precise bounding boxes and clean geometric reconstructions even under such challenging conditions.

524

525

526

5 CONCLUSION

528

529

Part-X-MLLM casts 3D interaction as executable program generation: from RGB point clouds and text it emits a single sequence of part AABBs that geometry engines execute, unifying generation, QA, and localized editing, and improving Voxel Recall/IoU and BBox IoU on UniPart-Bench. Appendix A.3.4 supports controllable granularity.

533

534

535

Limitations and Future Works. Longer sequences slow inference; simple compaction and hierarchical grouping mitigate latency. Our confidence-based segmentation from BBoxes remains relatively shallow; incorporating stronger features could improve segmentation quality. Fine-tuning on 3D tasks may reduce the base LLM’s general language capabilities. In the future, we plan to scale our native part-based planning capability to full indoor scene synthesis, effectively extending the bounding-box grammar from object parts to room-level furniture layouts.

540 **6 ETHICS STATEMENT**

541
 542 This work presents **Part-X-MLLM**, a part-aware 3D multimodal model that outputs executable pro-
 543 grams (e.g., tokenized AABBs and edit commands). Training uses a blend of publicly available and
 544 professionally sourced 3D assets and annotations, subjected to rigorous quality filtering and license
 545 review; we avoid personal or biometric data. The model’s outputs are grounded and auditable, and
 546 the system is intended for research and creative use. We will provide a public API and online in-
 547 terface with usage guidelines. We acknowledge residual risks such as inherited dataset biases and
 548 domain shift and will monitor and update the service accordingly. The authors declare no conflicts
 549 of interest.

550 **7 REPRODUCIBILITY STATEMENT**

551
 552 We detail the structured planning grammar, architecture, training curriculum, and evaluation pro-
 553 tocol to enable replication. We will open-source the model checkpoints and the **UniPart-Bench**
 554 introduced in this paper, together with evaluation scripts for BBox IoU and voxel metrics, config-
 555 uration files, prompts/converters for data construction, and complete training/inference code with
 556 seeds. A public API and online interface will also be available for lightweight validation.

557 **REFERENCES**

558
 559 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 560 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
 561 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
 562 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025.
 563 URL <https://arxiv.org/abs/2502.13923>.

564
 565 Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
 566 editing instructions. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 567 *recognition*, pp. 18392–18402, 2023.

568
 569 Hansheng Chen, Ruoxi Shi, Yulin Liu, Bokui Shen, Jiayuan Gu, Gordon Wetzstein, Hao Su, and
 570 Leonidas Guibas. Generic 3d diffusion adapter using controlled multi-view editing. *arXiv preprint*
 571 *arXiv:2403.12032*, 2024a.

572
 573 Minghao Chen, Junyu Xie, Iro Laina, and Andrea Vedaldi. Shap-editor: Instruction-guided latent 3d
 574 editing in seconds. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 575 *recognition*, pp. 26456–26466, 2024b.

576
 577 Minghao Chen, Roman Shapovalov, Iro Laina, Tom Monnier, Jianyuan Wang, David Novotny, and
 578 Andrea Vedaldi. Partgen: Part-level 3d generation and reconstruction with multi-view diffusion
 579 models. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 5881–
 589 5892, 2025a.

580
 581 Minghao Chen, Jianyuan Wang, Roman Shapovalov, Tom Monnier, Hyunyoung Jung, Dilin Wang,
 582 Rakesh Ranjan, Iro Laina, and Andrea Vedaldi. Autopartgen: Autogressive 3d part generation
 583 and discovery. *arXiv preprint arXiv:2507.13346*, 2025b.

584
 585 Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
 586 Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of anno-
 587 tated 3d objects, 2022. URL <https://arxiv.org/abs/2212.08051>.

588
 589 Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati,
 590 Alan Fan, Christian Laforte, Vikram Voleti, Samir Yitzhak Gadre, Eli VanderBilt, Aniruddha
 591 Kembhavi, Carl Vondrick, Georgia Gkioxari, Kiana Ehsani, Ludwig Schmidt, and Ali Farhadi.
 592 Objaverse-xl: A universe of 10m+ 3d objects, 2023. URL [https://arxiv.org/abs/](https://arxiv.org/abs/2307.05663)
 593 2307.05663.

594
 595 Ziya Erkoç, Can Gümeli, Chaoyang Wang, Matthias Nießner, Angela Dai, Peter Wonka, Hsin-Ying
 596 Lee, and Peiye Zhuang. Predictor3d: Fast and precise 3d shape editing. In *Proceedings of the*
 597 *Computer Vision and Pattern Recognition Conference*, pp. 640–649, 2025.

594 Chongjian Ge, Chenfeng Xu, Yuanfeng Ji, Chensheng Peng, Masayoshi Tomizuka, Ping Luo,
 595 Mingyu Ding, Varun Jampani, and Wei Zhan. Compgs: Unleashing 2d compositionality for com-
 596 positional text-to-3d via dynamically optimizing 3d gaussians, 2024. URL <https://arxiv.org/abs/2410.20723>.

598 Ayaan Haque, Matthew Tancik, Alexei A Efros, Aleksander Holynski, and Angjoo Kanazawa.
 599 Instruct-nerf2nerf: Editing 3d scenes with instructions. In *Proceedings of the IEEE/CVF in-
 600 ternational conference on computer vision*, pp. 19740–19750, 2023.

602 Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang
 603 Gan. 3d-llm: Injecting the 3d world into large language models. *Advances in Neural Information
 604 Processing Systems*, 36:20482–20494, 2023.

605 Team Hunyuan3D, Shuhui Yang, Mingxin Yang, Yifei Feng, Xin Huang, Sheng Zhang, Zebin He,
 606 Di Luo, Haolin Liu, Yunfei Zhao, Qingxiang Lin, Zeqiang Lai, Xianghui Yang, Huiwen Shi, Zibo
 607 Zhao, Bowen Zhang, Hongyu Yan, Lifu Wang, Sicong Liu, Jihong Zhang, Meng Chen, Liang
 608 Dong, Yiwen Jia, Yulin Cai, Jiaao Yu, Yixuan Tang, Dongyuan Guo, Junlin Yu, Hao Zhang, Zheng
 609 Ye, Peng He, Runzhou Wu, Shida Wei, Chao Zhang, Yonghao Tan, Yifu Sun, Lin Niu, Shirui
 610 Huang, Bojian Zheng, Shu Liu, Shilin Chen, Xiang Yuan, Xiaofeng Yang, Kai Liu, Jianchen Zhu,
 611 Peng Chen, Tian Liu, Di Wang, Yuhong Liu, Linus, Jie Jiang, Jingwei Huang, and Chunchao
 612 Guo. Hunyuan3d 2.1: From images to high-fidelity 3d assets with production-ready pbr material,
 613 2025a. URL <https://arxiv.org/abs/2506.15442>.

614 Team Hunyuan3D, Shuhui Yang, Mingxin Yang, Yifei Feng, Xin Huang, Sheng Zhang, Zebin He,
 615 Di Luo, Haolin Liu, Yunfei Zhao, et al. Hunyuan3d 2.1: From images to high-fidelity 3d assets
 616 with production-ready pbr material. *arXiv preprint arXiv:2506.15442*, 2025b.

617 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 618 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceed-
 619 ings of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.

621 Lin Li, Zehuan Huang, Haoran Feng, Gengxiong Zhuang, Rui Chen, Chunchao Guo, and Lu Sheng.
 622 Voxhammer: Training-free precise and coherent 3d editing in native 3d space. *arXiv preprint
 623 arXiv:2508.19247*, 2025.

624 Songlin Li, Despoina Paschalidou, and Leonidas Guibas. Pasta: Controllable part-aware shape
 625 generation with autoregressive transformers. *arXiv preprint arXiv:2407.13677*, 2024a.

627 Yuhuan Li, Yishun Dou, Yue Shi, Yu Lei, Xuanhong Chen, Yi Zhang, Peng Zhou, and Bingbing
 628 Ni. Focaldreamer: Text-driven 3d editing via focal-fusion assembly. In *Proceedings of the AAAI
 629 conference on artificial intelligence*, volume 38, pp. 3279–3287, 2024b.

630 Anran Liu, Cheng Lin, Yuan Liu, Xiaoxiao Long, Zhiyang Dou, Hao-Xiang Guo, Ping Luo, and
 631 Wenping Wang. Part123: part-aware 3d reconstruction from a single-view image. In *ACM SIG-
 632 GRAPH 2024 Conference Papers*, pp. 1–12, 2024a.

633 Fangfu Liu, Hanyang Wang, Weiliang Chen, Haowen Sun, and Yueqi Duan. Make-your-3d: Fast and
 634 consistent subject-driven 3d content generation. In *European Conference on Computer Vision*, pp.
 635 389–406. Springer, 2024b.

637 Minghua Liu, Mikaela Angelina Uy, Donglai Xiang, Hao Su, Sanja Fidler, Nicholas Sharp, and
 638 Jun Gao. Partfield: Learning 3d feature fields for part segmentation and beyond. *arXiv preprint
 639 arXiv:2504.11451*, 2025.

640 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL <https://arxiv.org/abs/1711.05101>.

642 Changfeng Ma, Yang Li, Xinhao Yan, Jiachen Xu, Yunhan Yang, Chunshi Wang, Zibo Zhao, Yan-
 643 wen Guo, Zhuo Chen, and Chunchao Guo. P3-sam: Native 3d part segmentation. *arXiv preprint
 644 arXiv:2509.06784*, 2025.

646 Qiaowei Miao, Kehan Li, Jinsheng Quan, Zhiyuan Min, Shaojie Ma, Yichao Xu, Yi Yang, Ping Liu,
 647 and Yawei Luo. Advances in 4d generation: A survey, 2025. URL <https://arxiv.org/abs/2503.14501>.

648 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
 649 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications*
 650 *of the ACM*, 65(1):99–106, 2021.

651

652 Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
 653 diffusion. *arXiv preprint arXiv:2209.14988*, 2022.

654

655 Zekun Qi, Runpei Dong, Shaochen Zhang, Haoran Geng, Chunrui Han, Zheng Ge, Li Yi, and
 656 Kaisheng Ma. Shapellm: Universal 3d object understanding for embodied interaction. In *Euro-
 657 pean Conference on Computer Vision*, pp. 214–238. Springer, 2024a.

658

659 Zhangyang Qi, Ye Fang, Zeyi Sun, Xiaoyang Wu, Tong Wu, Jiaqi Wang, Dahua Lin, and Heng-
 660 shuang Zhao. Gpt4point: A unified framework for point-language understanding and generation.
 661 In *Proceedings of the ieee/cvf conference on computer vision and pattern recognition*, pp. 26417–
 26427, 2024b.

662

663 Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
 664 mizations enable training deep learning models with over 100 billion parameters. In *Proceedings*
 665 *of the 26th ACM SIGKDD international conference on knowledge discovery & data mining*, pp.
 3505–3506, 2020.

666

667 Eta Sella, Gal Fiebelman, Peter Hedman, and Hadar Averbuch-Elor. Vox-e: Text-guided voxel
 668 editing of 3d objects. In *Proceedings of the IEEE/CVF international conference on computer
 669 vision*, pp. 430–440, 2023.

670

671 Jiaxiang Tang, Ruijie Lu, Zhaoshuo Li, Zekun Hao, Xuan Li, Fangyin Wei, Shuran Song, Gang
 672 Zeng, Ming-Yu Liu, and Tsung-Yi Lin. Efficient part-level 3d object generation via dual volume
 673 packing. *arXiv preprint arXiv:2506.09980*, 2025.

674

675 Yuan Tang, Xu Han, Xianzhi Li, Qiao Yu, Yixue Hao, Long Hu, and Min Chen. Minigpt-3d:
 676 Efficiently aligning 3d point clouds with large language models using 2d priors. *arXiv preprint
 677 arXiv:2405.01413*, 2024.

678

679 Chunshi Wang, Hongxing Li, and Yawei Luo. Sonicgauss: Position-aware physical sound synthesis
 680 for 3d gaussian representations, 2025.

681

682 Zhengyi Wang, Jonathan Lorraine, Yikai Wang, Hang Su, Jun Zhu, Sanja Fidler, and Xiaohui
 683 Zeng. Llama-mesh: Unifying 3d mesh generation with language models. *arXiv preprint
 684 arXiv:2411.09595*, 2024.

685

686 Tong Wu, Jiarui Zhang, Xiao Fu, Yuxin Wang, Liang Pan Jiawei Ren, Wayne Wu, Lei Yang, Jiaqi
 687 Wang, Chen Qian, Dahua Lin, and Ziwei Liu. Omniobject3d: Large-vocabulary 3d object dataset
 688 for realistic perception, reconstruction and generation. In *IEEE/CVF Conference on Computer
 689 Vision and Pattern Recognition (CVPR)*, 2023.

690

691 Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng Wang, Bowen Zhang, Dong Chen, Xin
 692 Tong, and Jiaolong Yang. Structured 3d latents for scalable and versatile 3d generation. *arXiv
 693 preprint arXiv:2412.01506*, 2024.

694

695 Runsen Xu, Xiaolong Wang, Tai Wang, Yilun Chen, Jiangmiao Pang, and Dahua Lin. Pointllm:
 696 Empowering large language models to understand point clouds. In *European Conference on
 697 Computer Vision*, pp. 131–147. Springer, 2024.

698

699 Han Yan, Yang Li, Zhennan Wu, Shenzhou Chen, Weixuan Sun, Taizhang Shang, Weizhe Liu, Tian
 700 Chen, Xiaqiang Dai, Chao Ma, et al. Frankenstein: Generating semantic-compositional 3d scenes
 701 in one tri-plane. In *SIGGRAPH Asia 2024 Conference Papers*, pp. 1–11, 2024a.

702

703 Han Yan, Mingrui Zhang, Yang Li, Chao Ma, and Pan Ji. Phycage: Physically plausible composi-
 704 tional 3d asset generation from a single image. *arXiv preprint arXiv:2411.18548*, 2024b.

705

706 Xinhao Yan, Jiachen Xu, Yang Li, Changfeng Ma, Yunhan Yang, Chunshi Wang, Zibo Zhao, Ze-
 707 qiang Lai, Yunfei Zhao, Zhuo Chen, et al. X-part: high fidelity and structure coherent shape
 708 decomposition. *arXiv preprint arXiv:2509.08643*, 2025.

702 Ling Yang, Zixiang Zhang, Junlin Han, Bohan Zeng, Runjia Li, Philip Torr, and Wentao Zhang.
 703 Semantic score distillation sampling for compositional text-to-3d generation, 2024a. URL
 704 <https://arxiv.org/abs/2410.09009>.

705 Yunhan Yang, Xiaoyang Wu, Tong He, Hengshuang Zhao, and Xihui Liu. Sam3d: Segment anything
 706 in 3d scenes, 2023. URL <https://arxiv.org/abs/2306.03908>.

708 Yunhan Yang, Yukun Huang, Yuan-Chen Guo, Liangjun Lu, Xiaoyang Wu, Edmund Y Lam,
 709 Yan-Pei Cao, and Xihui Liu. Sampart3d: Segment any part in 3d objects. *arXiv preprint*
 710 *arXiv:2411.07184*, 2024b.

711 Yunhan Yang, Yuan-Chen Guo, Yukun Huang, Zi-Xin Zou, Zhipeng Yu, Yangguang Li, Yan-
 712 Pei Cao, and Xihui Liu. Holopart: Generative 3d part amodal segmentation. *arXiv preprint*
 713 *arXiv:2504.07943*, 2025a.

714 Yunhan Yang, Yufan Zhou, Yuan-Chen Guo, Zi-Xin Zou, Yukun Huang, Ying-Tian Liu, Hao Xu,
 715 Ding Liang, Yan-Pei Cao, and Xihui Liu. Omnipart: Part-aware 3d generation with semantic
 716 decoupling and structural cohesion. *arXiv preprint arXiv:2507.06165*, 2025b.

718 Junliang Ye, Zhengyi Wang, Ruowen Zhao, Shenghao Xie, and Jun Zhu. Shapellm-omni: A native
 719 multimodal lilm for 3d generation and understanding. *arXiv preprint arXiv:2506.01853*, 2025.

720 Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-bert:
 721 Pre-training 3d point cloud transformers with masked point modeling. In *Proceedings of the*
 722 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 19313–19322, 2022.

724 Longwen Zhang, Qixuan Zhang, Haoran Jiang, Yinuo Bai, Wei Yang, Lan Xu, and Jingyi Yu. Bang:
 725 Dividing 3d assets via generative exploded dynamics. *ACM Transactions on Graphics (TOG)*, 44
 726 (4):1–21, 2025.

727 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuhui Chen, Christopher
 728 Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
 729 Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
 730 Opt: Open pre-trained transformer language models, 2022.

732 Wang Zhao, Yan-Pei Cao, Jiale Xu, Yuejiang Dong, and Ying Shan. Assembler: Scalable 3d part
 733 assembly via anchor point diffusion. *arXiv preprint arXiv:2506.17074*, 2025a.

734 Zibo Zhao, Zeqiang Lai, Qingxiang Lin, Yunfei Zhao, Haolin Liu, Shuhui Yang, Yifei Feng,
 735 Mingxin Yang, Sheng Zhang, Xianghui Yang, et al. Hunyuan3d 2.0: Scaling diffusion models for
 736 high resolution textured 3d assets generation. *arXiv preprint arXiv:2501.12202*, 2025b.

737 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 738 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Pro-
 739 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
 740 3: System Demonstrations)*, Bangkok, Thailand, 2024. Association for Computational Linguis-
 741 tics. URL [http://arxiv.org/abs/2403.13372](https://arxiv.org/abs/2403.13372).

743 Weipeng Zhong, Peizhou Cao, Yichen Jin, Luo Li, Wenzhe Cai, Jingli Lin, Zhaoyang Lyu, Tai
 744 Wang, Bo Dai, Xudong Xu, and Jiangmiao Pang. Internscenes: A large-scale interactive indoor
 745 scene dataset with realistic layouts. In *arXiv*, 2025.

747 Xiaoyu Zhou, Xingjian Ran, Yajiao Xiong, Jinlin He, Zhiwei Lin, Yongtao Wang, Deqing Sun,
 748 and Ming-Hsuan Yang. Gala3d: Towards text-to-3d complex scene generation via layout-guided
 749 generative gaussian splatting, 2024. URL <https://arxiv.org/abs/2402.07207>.

750 Yang Zhou, Zongjin He, Qixuan Li, and Chao Wang. Layoutdreamer: Physics-guided layout for
 751 text-to-3d compositional scene generation, 2025. URL <https://arxiv.org/abs/2502.01949>.

753

754

755

756 **A APPENDIX**
757758 **A.0 THE USE OF LARGE LANGUAGE MODELS (LLMs)**
759760 Large Language Models (LLMs) are used exclusively for minor language editing—such as im-
761 proving grammar and readability—and not for method design or experimental work. All technical
762 contributions, including the methodology, equations, and results, are solely the work of the authors.
763764 **A.1 IMPLEMENTATION DETAILS**
765766 Our framework is implemented based on LLaMA-Factory Zheng et al. (2024) and trained on a
767 cluster of 32 H20 GPUs.
768769 **Data Construction Pipeline.** We curated our training data by aggregating 3D assets from large-
770 scale public repositories, primarily Objaverse Deitke et al. (2022) and Objaverse-XL Deitke et al.
771 (2023). To ensure high visual fidelity, we employed an aesthetic scoring model to filter out low-
772 quality or noise-heavy meshes. Given that raw assets often contain overly fragmented components,
773 we applied the Intersection-over-Union (IoU) merging strategy derived from PartPacker Tang et al.
774 (2025). For semantic annotation, we established a multi-view rendering pipeline to render both the
775 holistic appearance of assets and the details of individual parts. These rendered images, including
776 both the complete object renderings and part-specific renderings, were then processed by Qwen-2.5-
777 VL Bai et al. (2025), which generated high-quality, fine-grained textual descriptions.
778779 **Model Architecture.** We utilize Qwen-2.5-VL-3B Bai et al. (2025) as the core multimodal back-
780 bone for instruction following. The system features a dual-encoder design initialized from the pre-
781 trained VAE encoders of Hunyuan3D-2.1 Hunyuan3D et al. (2025a). The Structure Encoder ac-
782 cepts geometric inputs (XYZ coordinates concatenated with surface normals) with a resolution of
783 $N = 40,960$ points, projecting them into a latent sequence of length 2,048. The Semantic Encoder
784 processes appearance inputs (XYZ coordinates and RGB colors) with a resolution of $N = 10,240$
785 points, projecting them into a latent sequence of length 512. Both encoders align their feature dimen-
786 sions to the LLM’s embedding space via linear projection layers. Input point clouds are normalized
787 to the range $[-1, 1]$ along the longest axis, and bounding box coordinates are quantized into 128
788 discrete bins.
789790 **Training Protocol.** Stage 1 focuses on adapting the Structure Encoder for precise bounding box
791 localization. We employ the open-source OPT-350M Zhang et al. (2022) as a lightweight autore-
792 gressive decoder for this task. The model is trained for 10 epochs with a batch size of 128, using the
793 AdamW Loshchilov & Hutter (2019) optimizer (learning rate 1×10^{-4} , weight decay 1×10^{-5} , and
794 5,000 warmup steps). To enhance robustness against scan imperfections, we apply random rotations
795 ($\pm 15^\circ$) and a “Normal Drop” strategy, where surface normals are masked with a 50% probability. In
796 Stage 2, the Structure Encoder is frozen to preserve the learned geometric priors, while the Seman-
797 tic Encoder, the Qwen-2.5-VL backbone, and special token embeddings are fine-tuned. This stage
798 runs for 60,000 steps with a global batch size of 128 using DeepSpeed ZeRO-2 Rasley et al. (2020)
799 and `bfloat16` precision. We use AdamW Loshchilov & Hutter (2019) with a cosine learning rate
800 scheduler (peak LR 8×10^{-5}) and enable sample packing with a maximum sequence length of 5,120
801 to optimize throughput.
802803 **A.2 TASK COMPARISON**
804805 Existing 3D models typically present a trade-off between task breadth and semantic granularity.
806 As summarized in Table 6, understanding-focused MLLMs (e.g., ShapeLLM) lack generative capa-
807 bilities, while generative models (e.g., ShapeLLM-Omni) often operate at the coarse object level
808 without supporting part-level grounding and editing. In contrast, Part-X-MLLM uniquely combines
809 comprehensive understanding, fine-grained part-level operations, and localized editing capabilities
in a unified framework.

810

811

Table 6: Comparison of capabilities with state-of-the-art 3D models.

Method	Understand		Grounding		Generation		Modify
	Cap	Q&A	Obj	Part	Obj	Part	Edit
Understanding & Reasoning MLLMs							
PointLLM Xu et al. (2024)	✓	✓	✗	✗	✗	✗	✗
GPT4Point Qi et al. (2024b)	✓	✓	✗	✗	✗	✗	✗
ShapeLLM Qi et al. (2024a)	✓	✓	✓	✗	✗	✗	✗
Unified / Generative Models							
LLaMA-Mesh Wang et al. (2024)	✓	✓	✗	✗	✓	✗	✗
Hunyuan3D Zhao et al. (2025b)	✗	✗	✗	✗	✓	✗	✗
ShapeLLM-Omni Ye et al. (2025)	✓	✓	✗	✗	✓	✗	✓
Part-Based Specialists							
Part123 Liu et al. (2024a)	✗	✗	✗	✗	✗	✓	✗
OmniPart Yang et al. (2025b)	✗	✗	✗	✗	✗	✓	✗
VoxHammer Li et al. (2025)	✗	✗	✗	✗	✗	✗	✓
Ours							
Part-X-MLLM	✓	✓	✓	✓	✗	✓	✓

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

A.3 MORE EXPERIMENTAL RESULTS

831

A.3.1 HUMAN EVALUATION

832

While quantitative metrics measure geometric alignment, they do not fully reflect human perception of structural logic and editing intent. To address this, we conducted a user study with 32 participants with background in 3D vision. We randomly sampled 25 generated objects and 25 editing instructions. Participants were asked to rate the results on a Likert scale from 1 (Poor) to 5 (Excellent) across four specific dimensions: **Part Plausibility** evaluates whether the decomposed parts in generation tasks are semantically reasonable and structurally sound (e.g., chair legs are attached to the seat), while **Generation Quality** assesses the overall visual fidelity and completeness of the generated parts. For editing tasks, **Instruction Fidelity** measures whether the operation (add/delete/modify) aligns strictly with the text prompt, and **Editing Quality** evaluates the visual coherence of the edited result, including the preservation of non-edited regions. As shown in Table 7, Part-X-MLLM achieves an average score above 4 across all metrics.

833

834

835

836

837

838

839

840

841

842

843

844

845

Table 7: **Human Evaluation Results.** We report the Mean Opinion Score (MOS) on a scale of 1 to 5 (higher is better).

Task Type	Evaluation Metric	Score (1-5)
Part Generation	Structural Plausibility	4.42 ± 0.6
	Generation Quality	4.25 ± 0.7
Part Editing	Instruction Fidelity	4.03 ± 0.5
	Editing Quality	4.31 ± 0.6

846

847

848

849

850

851

852

853

854

855

856

Table 8: Evaluation on the PointLLM Benchmark.

Model	S-BERT ↑	SimCSE ↑	BLEU-1 ↑	ROUGE-L ↑	METEOR ↑
PointLLM-7B Xu et al. (2024)	47.47	48.55	3.87	7.30	11.92
PointLLM-13B Xu et al. (2024)	47.91	49.12	3.83	7.23	12.26
PointLLM-13B*	50.15	50.83	17.09	20.99	16.45
Part-X-MLLM (Ours)	53.43	51.21	16.00	18.34	13.28

862

863

*** indicates PointLLM was prompted for shorter captions with no more than 20 words..

864
865

A.3.2 ADDITIONAL EXPERIMENTS ON PUBLIC BENCHMARKS

866
867
868
869
870

As shown in Table 8, Part-X-MLLM achieves superior semantic similarity scores, outperforming all baselines. While n-gram metrics are slightly lower than PointLLM-13B*, this reflects our model’s shift toward structured, part-aware descriptions. The high semantic scores confirm that Part-X-MLLM maintains factual correctness and demonstrates excellent generalization despite part-centric training.

871
872

A.3.3 ISOLATION OF PLANNING CAPABILITIES

873
874
875
876
877

To assess the contribution of our structured planning interface independent of the downstream geometry kernels, we conducted a controlled comparison for the generation task. We compared our method against several baselines, including the native planner of OmniPart Yang et al. (2025b) and pipeline approaches using TRELLIS Xiang et al. (2024) combined with 3D segmentation tools (SAM3D Yang et al. (2023), PartField Liu et al. (2025), HoloPart Yang et al. (2025a)).

878
879
880
881

Setup. For the "Part-X-MLLM + OmniPart" entry, we use our model to generate the bounding box plan from text, which is then fed into the frozen OmniPart synthesis decoder. This allows for a direct "planner-to-planner" comparison with the original OmniPart method.

882
883

Table 9: Quantitative Comparison of Part-Level and Overall-Level Generation.

Method	Part-Level			Overall-Level		
	CD ↓	F-0.1 ↑	F-0.05 ↑	CD ↓	F-0.1 ↑	F-0.05 ↑
TRELLIS + SAM3D Yang et al. (2023)	0.58	0.25	0.20	0.11	0.89	0.72
TRELLIS + PartField Liu et al. (2025)	0.24	0.60	0.42	0.11	0.89	0.72
TRELLIS + PartField + HoloPart Yang et al. (2025a)	0.24	0.61	0.43	0.09	0.90	0.74
Part123 Liu et al. (2024a)	0.47	0.28	0.14	0.42	0.36	0.20
OmniPart Yang et al. (2025b)	0.23	0.63	0.46	0.08	0.91	0.77
Part-X-MLLM + OmniPart (Ours)	0.22	0.65	0.57	0.08	0.90	0.77

892
893
894
895
896
897

As shown in Table 9, when using the exact same generation backend, our planner outperforms the native OmniPart planner in Part-Level metrics (e.g., improving F-0.05 from 0.46 to 0.57). This indicates that Part-X-MLLM produces more geometrically accurate and semantically consistent part layouts (bounding boxes), which in turn enables the backend to synthesize higher-fidelity components.

898
899
900
901
902
903
904
905

Operational Efficiency in Editing. Beyond quantitative generation quality, our contribution to the editing task lies in a fundamental shift in usability. Native geometry engines like VoxHammer require explicit, manually crafted 3D binary masks to identify edit regions—a process that typically demands **manual modeling** in professional software (e.g., Blender). Part-X-MLLM bridges this gap by acting as an intelligent semantic agent: it translates high-level natural language instructions (e.g., "remove the armrests") directly into precise, geometrically grounded cuboid masks. This **automates the entire workflow**, transforming 3D editing from an expert-only, manual operation into an accessible, fully **language-driven interaction** where users simply "speak" to edit.

906
907

A.3.4 SEMANTIC PART CLUSTERING ALGORITHM

908
909
910
911
912

To enable dynamic control over semantic granularity, we introduce a post-processing algorithm that clusters fine-grained part bounding boxes into coarser, semantically meaningful components. This process, illustrated in Figure 6, operates without requiring manual intervention or a predefined number of target clusters. The algorithm follows a three-step pipeline: feature extraction, clustering, and merging.

913
914
915

1. Feature Extraction. For each predicted part p_i , we extract its bounding box $b_i = (\mathbf{x}_{\min}, \mathbf{x}_{\max})_i$ and textual description d_i . A hybrid feature vector \mathbf{f}_i is then generated.

916
917

First, the semantic feature vector $\mathbf{f}_{\text{sem},i}$ is obtained by encoding the description with a pretrained CLIP model:

$$\mathbf{f}_{\text{sem},i} = \text{CLIP-Encode}(d_i). \quad (1)$$

918 Next, we compute the spatial feature vector $\mathbf{f}_{\text{spat},i}$ from the bounding box's center $\mathbf{c}_i = (\mathbf{x}_{\min} +$
 919 $\mathbf{x}_{\max})/2$ and size $\mathbf{s}_i = \mathbf{x}_{\max} - \mathbf{x}_{\min}$. The raw spatial vector is normalized across all N parts in the
 920 object to produce $\hat{\mathbf{f}}_{\text{spat},i}$:

$$\mathbf{f}_{\text{spat},i} = [\mathbf{c}_i, \mathbf{s}_i], \quad \hat{\mathbf{f}}_{\text{spat},i} = \text{Normalize}(\{\mathbf{f}_{\text{spat},j}\}_{j=1}^N)_i. \quad (2)$$

923 Finally, the semantic and spatial features are combined using a weighting factor $\alpha \in [0, 1]$, and the
 924 resulting vector is L2-normalized:

$$\mathbf{f}_i = \frac{(1 - \alpha)\mathbf{f}_{\text{sem},i} \oplus \alpha\hat{\mathbf{f}}_{\text{spat},i}}{\|(1 - \alpha)\mathbf{f}_{\text{sem},i} \oplus \alpha\hat{\mathbf{f}}_{\text{spat},i}\|_2}, \quad (3)$$

925 where \oplus denotes concatenation.

930 **2. Clustering.** We apply DBSCAN to the set of feature vectors $\{\mathbf{f}_i\}_{i=1}^N$. DBSCAN groups points
 931 based on two parameters: a distance threshold ϵ and a minimum number of points ‘minPts’. A
 932 point \mathbf{f}_i is a *core point* if its ϵ -neighborhood contains at least ‘minPts’ points. A cluster is formed
 933 by a set of *density-connected* points, starting from a core point and recursively expanding to all
 934 reachable neighbors. This approach allows us to automatically identify a variable number of clusters
 935 K without prior specification, returning a set of clusters $\mathcal{C} = \{C_1, \dots, C_K\}$ and a set of noise points
 936 \mathcal{N} .

937 **3. Merging.** For each cluster $C_k \in \mathcal{C}$, we compute a single merged bounding box $B_k =$
 938 $(\mathbf{X}_{\min,k}, \mathbf{X}_{\max,k})$. This is done by taking the component-wise minimum and maximum over all
 939 bounding boxes $b_i \in C_k$:

$$\mathbf{X}_{\min,k} = \min_{i|b_i \in C_k} (\mathbf{x}_{\min,i}), \quad \mathbf{X}_{\max,k} = \max_{i|b_i \in C_k} (\mathbf{x}_{\max,i}). \quad (4)$$

943 The final output is a set of K merged bounding boxes, representing a coarser, semantically-grouped
 944 decomposition of the object.

945 This automated approach provides a flexible and powerful way to adjust the granularity of the generated
 946 3D assets, bridging the gap between fine-grained part generation and high-level semantic
 947 understanding.

949 A.4 ADDITIONAL QUALITATIVE RESULTS

951 Figure 10 provides qualitative examples for part-aware question answering. Our model demonstrates
 952 strong grounding capabilities by providing detailed, box-annotated answers that accurately describe
 953 object parts in response to user queries.

955 A.5 CONFIDENCE-AWARE FACE SEGMENTATION FROM BOUNDING BOXES

956 As mentioned in Section 3, the rich information encoded in our model’s autoregressive output can be
 957 leveraged for advanced downstream tasks beyond simple generation or editing. One such application
 958 is fine-grained, confidence-aware face segmentation, as shown in Figure 9. This process requires no
 959 additional training and relies solely on the generated bounding boxes and the token probabilities
 960 from the decoding process.

961 The algorithm follows a three-step process:

963 **1. Confidence-Aware BBox Inference.** During autoregressive decoding, the model generates a
 964 sequence of tokens $T = (t_1, t_2, \dots, t_L)$ that represent a series of bounding boxes. For each token t_i ,
 965 the model also outputs a probability distribution over the entire vocabulary, from which we derive
 966 a confidence score. The confidence of a bounding box B_j , which is composed of a sequence of k
 967 tokens (typically 6), is calculated as the arithmetic mean of the probabilities of its constituent tokens:

$$\text{Conf}(B_j) = \frac{1}{k} \sum_{i=1}^k P(t_i|t_{<i}) \quad (5)$$

969 This provides a per-box confidence score that reflects the model’s certainty in its prediction.

Figure 9: **Confidence-aware face segmentation.** By leveraging the generated bounding boxes and their associated confidence scores, we can achieve high-quality, fine-grained face-level segmentation of 3D objects without any additional training.

Input	GT	PointLLM	Ours
	<p><i>He is wearing a yellow puffer vest</i></p> <p><i><box><box-45><box-73><box-48><box-80><box-117><box-78><box> over a light blue long-sleeved shirt</i></p> <p><i><box><box-48><box-66><box-51><box-78><box-109><box-76><box>, dark blue pants</i></p> <p><i><box><box-49><box-16><box-54><box-77><box-74><box>, and bright green sneakers</i></p> <p><i><box><box-48><box-1><box-55><box-56><box-11><box-75><box><box><box-70><box-1><box-55><box-78><box-11><box-75><box>.</i></p>	<p><i>The man is wearing a yellow shirt and black pants.</i></p>	<p><i>He is wearing a yellow puffer vest</i></p> <p><i><box><box-45><box-73><box-48><box-81><box-117><box-78><box> over a blue shirt</i></p> <p><i><box><box-48><box-66><box-51><box-78><box-109><box-76><box>, dark blue pants</i></p> <p><i><box><box-49><box-16><box-54><box-77><box-77><box-74><box>, and green sneakers</i></p> <p><i><box><box-48><box-1><box-55><box-56><box-11><box-75><box> <box><box-70><box-1><box-55><box-78><box-11><box-75><box>.</i></p>
	<p><i>What type of firearm is this?</i></p> <p><i>This is a modern-style sniper rifle.</i></p>	<p><i>This is a rifle.</i></p>	<p><i>This is a bolt-action sniper rifle.</i></p>
	<p><i>What is the overall structure of the object?</i></p> <p><i>The object consists of a large main casing</i></p> <p><i><box><box-1><box-28><box-25><box-125><box-105><box-92><box> that rests on two long, parallel bars</i></p> <p><i><box><box-5><box-21><box-20><box-18><box-28><box-106><box> and <box><box-100><box-21><box-20><box-112><box-28><box-106><box> which act as its feet.</i></p>	<p><i>The object appears to be a tall, rectangular structure with a protruding section on one side, a window on the front, and multiple ventilation slits on its sides.</i></p>	<p><i>The object consists of a main rectangular casing</i></p> <p><i><box><box-1><box-28><box-25><box-125><box-105><box-92><box> with a large circular fan assembly</i></p> <p><i><box><box-12><box-38><box-89><box-68><box-95><box-94><box> and two small feet</i></p> <p><i><box><box-5><box-21><box-20><box-18><box-28><box-106><box> and <box><box-100><box-21><box-20><box-113><box-28><box-106><box> at bottom.</i></p>

Figure 10: **Qualitative results for part-aware Q&A.** Our model provides more accurate and descriptive answers, with precise part grounding indicated by bounding box tokens.

2. Face-to-Box Assignment. Given a mesh with a set of faces $F = \{f_1, f_2, \dots, f_M\}$ and a set of inferred bounding boxes $\mathcal{B} = \{B_1, B_2, \dots, B_N\}$, we first determine which faces belong to which boxes. A face f_m is considered a candidate for B_j if its centroid \mathbf{c}_m lies within the volume of B_j :

$$\mathbf{c}_m \in B_j \iff (\mathbf{c}_m \geq \mathbf{x}_{\min, j}) \wedge (\mathbf{c}_m \leq \mathbf{x}_{\max, j}) \quad (6)$$

where $\mathbf{x}_{\min, j}$ and $\mathbf{x}_{\max, j}$ are the minimum and maximum coordinates of box B_j , and the comparison is element-wise.

3. Conflict Resolution. A face’s centroid may lie within multiple overlapping bounding boxes, creating an ambiguity. We resolve this using a two-tiered rule system:

- **Containment Rule:** If a face f_m is a candidate for two boxes, B_i and B_j , and one box is strictly contained within the other (e.g., $B_i \subset B_j$), the face is assigned to the box with the smallest volume. This prioritizes more specific, fine-grained predictions.
- **Confidence Rule:** If the boxes overlap but neither contains the other, the face is assigned to the box with the highest confidence score, $\text{Conf}(B_j)$. This leverages the model’s own uncertainty estimate to make the most likely assignment.

This process results in a deterministic assignment of each face to a single bounding box, producing a high-quality, fine-grained segmentation of the object, as shown in Figure 9.

A.6 ANALYSIS OF SPECIAL TOKEN EMBEDDINGS

To better understand how our model interprets the specialized grammar, we visualize the embeddings of our newly added special tokens using t-SNE, as shown in Figure 11. The visualization reveals a highly structured and semantically meaningful latent space.

Figure 11: **t-SNE visualization of special token embeddings.** The tokens form distinct, well-structured clusters based on their function, indicating a meaningful learned representation.

We observe three key phenomena. First, the tokens form distinct clusters based on their function: Point, Box, and Edit tokens occupy separate regions of the embedding space. Second, the 128 box tokens, which represent quantized coordinates, form a continuous, ordered manifold. This demonstrates that the model has learned the ordinal nature of spatial coordinates rather than treating them as independent categorical variables. Third, tokens with similar functions, such as the start/end pairs for edits (e.g., <adds>/<adde>), are positioned closely together. This structured organization confirms that the model has successfully learned a robust and interpretable representation of our executable grammar, which is crucial for precise, language-driven 3D planning.

A.7 DATASET CONSTRUCTION AND LABELING

Scope. We build a high-quality, part-centric dataset tailored for Part-X-MLLM. The corpus contains **85,771** unique 3D objects with an average of **23** parts per object. Each part is annotated with an axis-aligned bounding box (AABB) and two levels of text: a coarse name (Q1) and a fine-grained description (Q2). At the object level, we include a concise overall caption and a small set

1080

1081 Figure 12: Model-assisted labeling pipeline. Left: inputs (full-asset + per-part crops). Middle:
 1082 structured tool schema drives the LMM to output object-level and part-level JSON. Right: validated
 1083 JSON is stored and used by the data builder.

1084

1085

1086 of instruction–answer pairs for part-aware Q&A. All annotations are serialized using the unified
 1087 box-token grammar described in Section 3.

1088

1089

A.7.1 MODEL-ASSISTED LABELING

1090

1091

To scale high-quality labels consistently, we adopt a model-assisted pipeline guided by a structured
 1092 tool schema. Given a full-asset render and a sequence of part close-ups, we collect:

1093

1094

1095

1096

- Q1: short part name.
- Q2: fine-grained natural description (≤ 15 words; avoid irrelevant rendering terms).
- Q3: confidence flag (Yes/No).

1097

1098

1099

Concretely, we follow the schema implemented in our labeling tool, which calls an external LMM
 1100 with a JSON response format and deterministic field ordering. For each object, we provide: (1) one
 1101 full-asset image (front view); and (2) K part crops (one per part).

1102

1103

A.7.2 BUILDING INSTRUCTION-FOLLOWING SAMPLES

1104

1105

1106

We convert raw labels into diverse instruction-following pairs covering grounding, captioning,
 1107 QA, and editing. A central convenience is a *box-token grammar* with opening/closing tokens
 1108 `<boxs>` and `<boxe>` wrapping six quantized coordinates, and edit verbs `<adds>/<adde>`,
 1109 `<delets>/<dele>`, and `<mods>/<mode>`.

1110

1111

Quantization and serialization. Each coordinate $x \in [-1, 1]$ is quantized into $K = 128$ bins as

1112

1113

$$q(x) = \text{round}\left(\frac{x+1}{2}(K-1)\right), \quad \tilde{x} = 2 \frac{q(x)}{K-1} - 1, \quad (7)$$

then serialized as six tokens inside `<boxs>...<boxe>`. For reproducibility, parts in a list are deter-
 1114 ministically ordered by $(q(z_{\min}), q(y_{\min}), q(x_{\min}))$.

1115

1116

Task families. We instantiate eleven templates (Types 0–10):

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

- Type 0: pure box listing from a point cloud (“detect all bounding boxes”).
- Type 1: multi-part grounding with coarse text (AABBs + Q1 per part).
- Type 2: multi-part grounding with fine text (overall description first, then AABBs + Q2).
- Type 3: single-part grounding from coarse text (locate all Q1 parts; return AABBs + de-
 1120 scription).
- Type 4: single-part grounding from fine text (locate part by Q2; return a single AABB).
- Type 5: box-to-text (given a box, answer Q1).
- Type 6: box-to-text (given a box, answer Q2).
- Type 7: part-aware QA (replace textual part references `<Part_i>` with the corresponding
 1121 box tokens in answers).
- Type 8: deletion program (emit `<delets> [boxes] <dele>`).
- Type 9: modification program (emit `<mods> [box] new text <mode>`).
- Type 10: addition program (emit `<adds> [box] text <adde>`).

1132

1133

Train/test split and balancing. We partition the file list deterministically at 0.5% for test and 99.5%
 for train. Templates 1–2 are lightly duplicated to increase multi-part coverage; for templates 3–7 we
 downsample to a fixed budget; for edit templates (8–10) we cap the number per shard. See Table 10.

1134 **Algorithm 1** Data building (simplified)
 1135 1: Load datas
 1136 2: **for** each object o **do**
 1137 3: Serialize each part AABB to tokens; sort by $(z_{\min}, y_{\min}, x_{\min})$
 1138 4: **for** each template $t \in \{0, \dots, 10\}$ **do**
 1139 5: Instantiate a natural-language prompt from a template pool
 1140 6: Emit the target sequence (boxes, text, or edit program)
 1141 7: Append conversation pair to the corpus
 1142 8: Shuffle and save shards; optionally balance per-template counts
 1143
 1144

1145 Table 10: Task families and sizes. ‘‘Raw’’ denotes counts before optional balancing; ‘‘Final’’ denotes
 1146 the target budget after balancing.

Name	Input	Output	Raw	%	Type	Final
Single-Part Grounding	point + coarse text	1 box + fine text	506,755	7.30	T3	506,755
Single-Part Grounding	point + fine text	1 box	887,590	12.78	T4	506,755
Multi-Part Grounding	point + text	all boxes + Q1	85,771	1.24	T1	257,313
Multi-Part Grounding	point + text	all boxes + Q2	85,771	1.24	T2	257,313
Box-to-Text (coarse)	point + box + text	Q1	887,590	12.78	T5	506,755
Box-to-Text (fine)	point + box + text	Q2	887,590	12.78	T6	506,755
Part QA	point + text	text	577,369	8.31	T7	506,755
Edit—Add	point + text	program (box + text)	247,998	3.57	T10	247,998
Edit—Remove	point + text	program (boxes)	1,394,345	20.08	T8	247,998
Edit—Replace	point + text	program (box + text)	883,941	12.73	T9	247,998
Pure box listing	point + text	all boxes	500,000	7.20	T0	500,000
Total			6,944,720	100.00		4,292,395

1158 A.8 DATASET STATISTICS

1160
 1161 **Task families and sizes.** Table 10 summarizes per-task counts before/after balancing. Counts follow
 1162 our build scripts.

1163 **Category distribution.** Our corpus spans everyday objects and scenes. Table 11 lists the main
 1164 categories (top-12 by frequency).

1165 A.9 COMPREHENSIVE RESULTS ON UNIPART-BENCH

1166
 1167 We report per-task results on **UniPart-Bench**. Note that UniPart-Bench is a held-out subset of
 1168 our 85,771-object training dataset, ensuring identical data construction pipeline and distribution
 1169 characteristics. Following our data construction, each ground-truth (GT) item may contain both
 1170 BBox tokens and text. When both are present, we evaluate BBoxes with IoU and text with
 1171 SBERT/SimCSE/BLEU-1/ROUGE-L/METEOR. If a GT contains only BBoxes or only text, we
 1172 evaluate the available modality and leave the other columns blank. Table 12 summarizes results for
 1173 Tasks 0–10 while mapping each task to its template Type and name as in Table 10.

1174
 1175 **Discussion.** Language-intensive tasks (T7 Part QA, T10 Edit—Add) obtain the highest
 1176 SBERT/SimCSE and strong lexical metrics, indicating robust alignment between our planned
 1177 box-conditioned answers/programs and textual GT. Among IoU-based tasks, T0/T2/T10 show the
 1178 strongest geometric alignment, reflecting reliable planning for pure detection, fine grounding, and
 1179 edit addition respectively. Blank text or IoU entries arise by design when a task’s GT lacks the
 1180 corresponding modality.

1181 A.10 PROMPT TEMPLATES FOR DATA CONSTRUCTION

1182
 1183 To ensure the reproducibility of our dataset construction, this section provides the complete set of
 1184 English prompt templates used to generate the instruction-following samples for each of the 11 task
 1185 types, as described in Section A.7.2. These templates are presented in the tables below.

1188

1189

Table 11: Category distribution.

1190

1191

Rank	Category	Count	Share (%)
1	Human	20,426	23.74
2	Industrial goods	7,139	8.30
3	Home goods	7,010	8.15
4	Buildings	6,909	8.03
5	Personal items	6,730	7.82
6	Animals	6,582	7.65
7	Weapons	6,406	7.45
8	Vehicles	5,996	6.97
9	Cultural artifacts	5,995	6.97
10	Food	5,885	6.84
11	Technology & electronics	5,183	6.02
12	Others	1,774	2.06

1203

1204

Table 12: All-task results on the 400-case unseen benchmark. “Type/Name” follows the template definitions in Table 10. Blank entries indicate that the GT for that task does not contain the corresponding modality.

1205

1206

1207

Task	Type	Name	IoU	SBERT	SimCSE	BLEU-1	ROUGE-L	METEOR
0	T0	Pure box listing	0.755					
1	T1	Multi-Part Grounding (Q1)	0.728	55.60	54.19	35.55	35.58	18.09
2	T2	Multi-Part Grounding (Q2)	0.736	63.68	60.68	31.01	33.68	27.72
3	T3	Single-Part Grounding (Q1)	0.528	73.28	71.70	36.29	38.94	33.21
4	T4	Single-Part Grounding (Q2)	0.443					
5	T5	Box-to-Text (Q1)		57.35	56.49	38.12	38.14	19.49
6	T6	Box-to-Text (Q2)		64.64	61.96	31.35	33.73	28.13
7	T7	Part QA	0.554	78.98	84.25	40.54	42.26	34.24
8	T8	Edit—Remove (program)	0.473					
9	T9	Edit—Replace (program)	0.409					
10	T10	Edit—Add (program)	0.700	80.38	79.71	47.62	51.66	46.63

1218

1219

1220

A.10.1 TYPE 0: PURE BOX LISTING

1221

1222

1223

ID Prompt Template

1	"Detect all bounding boxes in this point cloud"
2	"Show me all the bounding boxes"
3	"Generate bounding boxes for all objects"
4	"Find all object boundaries"
5	"Extract all bounding boxes from this scene"
6	"Locate all object bounding boxes"
7	"Output all detected bounding boxes"
8	"Provide bounding boxes for all components"
9	"Identify all object boundaries in this model"
10	"Return all bounding box coordinates"
11	"Detect and output all object boxes"
12	"Find all rectangular boundaries"
13	"Generate all object bounding boxes"
14	"Show all detection boxes"
15	"Output bounding box coordinates for all objects"
16	"Detect all objects and return their boxes"
17	"Find every bounding box in this point cloud"
18	"Extract object boundaries from this 3D data"
19	"Provide all object detection boxes"
20	"Return coordinates of all detected objects"

1242 A.10.2 TYPE 1: MULTI-PART GROUNDING (COARSE TEXT)
1243

1244	1245	ID	Prompt Template
1246	1		"What distinct components does this contain? Please annotate with bounding boxes and provide short labels"
1247	2		"What functional parts make up this object? First provide 6 box-tokens then write the name"
1248	3		"What structural elements can be decomposed? Output in the specified format"
1249	4		"What key components does this have? Please locate and name them"
1250	5		"What identifiable parts are there? Mark with AABB tokens"
1251	6		"What construction units can be distinguished? Please list them"
1252	7		"What parts need to be annotated in this?"
1253	8		"What basic components does this contain? Please output bounding box + label"
1254	9		"What main parts is this composed of? Please enumerate using token format"
1255	10		"What recognizable sub-parts are there? Use the specified format for output"
1256	11		"Which distinct parts exist here? Provide box-tokens and short labels"
1257	12		"Identify every component and prepend its 6 quantized box tokens"
1258	13		"List all separable elements; each line starts with tokens"
1259	14		"Locate and name each part of the object"
1260	15		"Enumerate all components with their bounding-box tokens"
1261	16		"Break the shape into parts, output AABB tokens then a concise tag"
1262	17		"Mark every structural unit. Format: tokens followed by NAME"
1263	18		"Point out all functional pieces and give their tokenized boxes"
1264	19		"Provide the set of parts and their six token indices"
1265	20		"Give every recognized section together with its AABB tokens"
1266	21		"List all structural elements using 6 box-tokens + name format"
1267	22		"Return the quantized bounding box and short name for each part"
1268	23		"Please enumerate in the format of tokens followed by NAME"
1269	24		"Output part AABB (tokens) and their names"
1270	25		"Give the list of components together with their quantized boxes"
1271	26		"Return each element as six tokens followed by a short label"
1272	27		"Provide AABB tokens plus name for every distinguishable component"
1273	28		"Enumerate all parts with their bounding-box tokens and a brief tag"

ID	Prompt Template
1296	
1297	
1298	29 "Please identify all parts and output bounding box tokens + short name"
1299	30 "After completion, only return the parts list without extra explanation"
1300	31 "Output strictly according to the specified format, no additional text"
1301	32 "No extra description at the end, only list the parts"
1302	33 "List the token AABB and name for each part"
1303	34 "Give tokens and labels in order of appearance"
1304	35 "Use six tokens followed by space and name"
1305	36 "Example line: tokens label, please output according to this example"
1306	37 "Return all components and their quantized coordinate indices"
1311	
1312	
1313	
1314	A.10.3 TYPE 2: MULTI-PART GROUNDING (FINE TEXT)
1315	
1316	
ID	Prompt Template
1317	1 "Please describe the overall appearance of this point cloud in detail, then introduce each part one by one (with AABB tokens)"
1318	2 "First give an overall impression, then explain each part in turn with bounding box tokens"
1319	3 "Please provide an overview of this model, and describe each component with tokens"
1320	4 "What is the overall shape like? What are the materials and functions of each part?"
1321	5 "Please first introduce the complete structure, then list parts with tokens + detailed explanations"
1322	6 "From this point cloud, give an overall description then detail each part with its bounding box"
1323	7 "Describe the complete object, followed by part-wise details using quantized tokens"
1324	8 "Provide a holistic view and then list all elements with 6 box tokens and properties"
1325	9 "Summarize the scene, then output each component in the required token format"
1326	10 "Give a full description first, then annotate every part with its box tokens and long caption"
1327	11 "Please first present the overall features, then elaborate on each functional component"
1328	12 "After summarizing the appearance, list each part item by item (format: tokens description)"
1329	13 "Give the global appearance, then each part line starts with 6 tokens"
1330	14 "Present the overall structure and afterwards the detailed attributes of all components"
1331	15 "Explain the general design; afterwards specify each element with its tokens and features"
1332	16 "First output an overall description, then write a detailed explanation for each part with tokens"
1333	17 "Describe holistically, then provide component-wise explanations with bounding-box indices"
1349	

1350	ID	Prompt Template
1351	18	"Begin with the object overview; subsequently list parts and their detailed properties"
1352	19	"Offer a complete summary and then enumerate parts with tokenized boxes"
1353	20	"Return the overall description and AABB + detailed explanation for each part"
1354	21	"Finally, please list all components and their features in the specified format"
1355	22	"Please output in the format of 'overall description tokens description'"
1356	23	"Provide each part in turn (including token bounding box and function/material description)"
1357	24	"Provide the overall description followed by every part in the required tokenized box format"
1358	25	"Please finish by listing each component's six box tokens and an informative sentence"
1359	26	"Return first the global description, then each element as tokens LONG_DESCRIPTION"
1360	27	"Include a holistic summary, then annotate each part with its quantized AABB and details"
1361	28	"Conclude with the part-wise list using bounding-box tokens plus their detailed attributes"
1362	29	"Output the parts list, each line starting with tokens"
1363	30	"Please output the description of this object or scene and its parts' BBox information, overall first then parts, format and order cannot be changed"
1364	31	"End by outputting all parts and their respective detailed features"
1365	32	"Summary first, then component lines with tokens and descriptions"
1366	33	"Output strictly in two sections: overview + per-part details"
1367	34	"After the overview, enumerate every part with its quantized box tokens"
1368	35	"Overall + parts format example: tokens The left handle is ..."
1369		
1370		
1371		
1372		
1373		
1374		
1375		
1376		
1377		
1378		
1379		
1380		
1381		
1382		
1383		
1384		
1385		
1386		
1387		
1388	A.10.4 TYPE 3: SINGLE-PART GROUNDING (FROM COARSE TEXT)	
1389		

1390	ID	Prompt Template
1391	1	"Find the {part_name} in this model"
1392	2	"Locate the {part_name} in this model"
1393	3	"Point out the {part_name} in this point cloud"
1394	4	"Mark the {part_name} in this object"
1395	5	"Where is the {part_name} in this 3D model?"
1396	6	"Identify the {part_name} in this point cloud"
1397	7	"Please show all {part_name} in this object"
1398	8	"Where is the position of {part_name} in this scene?"
1399	9	"Locate the {part_name} in this model"
1400	10	"Find the {part_name} in this point cloud"
1401	11	"Point out the {part_name} in this object"
1402	12	"Where is the {part_name} in this 3D shape?"
1403	13	"Mark the {part_name} in this model"
	14	"Show all {part_name} in this object"

1404

1405

1406

1407

1408

1409

1410

1411

1412

A.10.5 TYPE 4: SINGLE-PART GROUNDING (FROM FINE TEXT)

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

ID Prompt Template

- 15 "Identify the {part_name} in this point cloud"
- 16 "Highlight the position of {part_name}"

- 1 "Where is the part corresponding to this description: {part_description}"
- 2 "Help me locate this part: {part_description}"
- 3 "Find the corresponding part based on this description: {part_description}"
- 4 "In this point cloud, which part does {part_description} refer to?"
- 5 "Mark the position of this part: {part_description}"
- 6 "Please provide the bounding box for the part corresponding to this description: {part_description}"
- 7 "Find the part that matches this description: {part_description}"
- 8 "Locate the component described as: {part_description}"
- 9 "Which part is this referring to: {part_description}"
- 10 "Mark the boundary of: {part.description}"
- 11 "Show the box coordinates for: {part_description}"
- 12 "Provide the bounding box for this described element: {part_description}"
- 13 "Where exactly is: {part_description}"
- 14 "Given this description, locate the corresponding part: {part_description}"
- 15 "Locate the part based on this text and provide its AABB: {part_description}"
- 16 "Which specific part does this description correspond to? {part_description}"

1442

A.10.6 TYPE 5: BOX-TO-TEXT (COARSE)

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

ID Prompt Template

- 1 "What is this part?"
- 2 "What is this marked area?"
- 3 "What is contained in this box?"
- 4 "What is this marked portion called?"
- 5 "What part is inside this bounding box?"
- 6 "What is this part called?"
- 7 "Name this highlighted component"
- 8 "What is contained in this bounding box?"
- 9 "Identify this marked region"
- 10 "Give the name of this part"
- 11 "What is inside this AABB box?"
- 12 "Name this area with one word"
- 13 "What's the simple label for this bounded area?"
- 14 "What would you call this boxed element?"

1458
1459
1460
1461
1462
1463
1464
1465
1466

ID	Prompt Template
15	"What part does this bounding box point to? Please answer briefly"
16	"What is this outlined section?"
17	"Provide the name for this demarcated part"

A.10.7 TYPE 6: BOX-TO-TEXT (FINE)

1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499

ID	Prompt Template
1	"Describe this part in detail"
2	"What does this area contain? Please explain in detail"
3	"Please describe the part within this bounding box, including appearance, material and function"
4	"What is in this box? Please provide detailed information"
5	"What is the marked portion? Please provide a complete description"
6	"Describe this part in detail"
7	"What can you tell me about this highlighted component?"
8	"Provide a comprehensive description of what's in this box"
9	"Explain the appearance, material and function of this marked area"
10	"Give details about this bounded region"
11	"What are the characteristics of this marked area? Please describe comprehensively"
12	"Elaborate on the appearance and purpose of this part"
13	"What is contained in this bounding box? Elaborate on its features"
14	"Tell me everything about this outlined element"
15	"What is the material, shape and function of the object in this box?"
16	"Please characterize this demarcated component thoroughly"
17	"What's inside this box? Include all relevant details"

A.10.8 TYPE 7: PART-AWARE Q&A

1500
1501
1502
1503
1504
1505

This task reuses the questions from the ‘QA’ field in the raw annotations and replaces textual part references with box tokens in the answer. No new templates are generated for the questions themselves.

A.10.9 TYPE 8: DELETION PROGRAM

1506
1507
1508
1509
1510
1511

ID	Prompt Template
	<i>By part name</i>
1	"Please remove the {part_name} from this object"
2	"Get rid of every {part_name}"
3	"I want to delete the {part_name} here"
4	"Can you erase all instances of the {part_name}?"

1512	ID	Prompt Template
1513	5	"Show me this model but without the {part_name}"
1514	6	"Take out the {part_name}"
1515	7	"The {part_name} needs to be removed"
1516	8	"Omit the {part_name} from this scene"
1517	9	"I don't want to see the {part_name} anymore"
1518	10	"Could you proceed with deleting the {part_name}?"
1519	11	"Let's see what it looks like if we remove the {part_name}" "Exclude the {part_name} from the final output"
1520	12	"The task is to get rid of the {part_name}"
1521	13	"Wipe out the {part_name} from the 3D model"
1522	14	"Please filter out the {part_name}"
1523	15	"Delete the component identified as {part_name}"
1524	16	"I require the removal of the {part_name}"
1525	17	"Make the {part_name} disappear"
1526	18	"This model would be better without the {part_name}"
1527	19	"Execute the deletion of the {part_name}"
1528	20	
1529	<i>By part description</i>	
1530	21	"Please remove this specific part:
1531		"part_description"
1532	22	"I don't want the component described as part_description"
1533	23	"Delete the part that is part_description"
1534	24	"Get rid of this particular element: part_description"
1535	25	"Find the part matching part_description and remove it"
1536	26	"The element characterized by part_description should be deleted"
1537	27	"Erase the component with this description: part_description"
1538	28	"I want to exclude the part that is part_description"
1539	29	"Locate and then delete this item: part_description"
1540	30	"Take out the part that looks like this: part_description"
1541	31	"The target for deletion is the part described as: part_description"
1542	32	"Can you remove the part with these features: part_description"
1543	33	"Please omit this from the model: part_description"
1544	34	"Based on the description part_description, remove the corresponding part"
1545	35	"I've identified a part to remove: part_description"
1546	36	"Wipe the following item from the scene: part_description"
1547	37	"The part to be erased is: part_description"
1548	38	"Remove the object that fits this profile: part_description"
1549	39	"Please execute a deletion on the component identified as part_description"
1550	40	"Let's remove one specific part: part_description"
1551		
1552		
1553		
1554		
1555		
1556		
1557		
1558		
1559		
1560		
1561		
1562		
1563	A.10.10	TYPE 9: MODIFICATION PROGRAM
1564		
1565		

1566	ID	Prompt Template
1567	1	"Please edit the {part_name} to be {new_description}"
1568	2	"Change the {part_name} into {new_description}"
1569	3	"Replace the {part_name} with this: {new_description}"
1570	4	"I want the {part_name} to look like this: {new_description}"
1571	5	"Modify the {part_name} to become {new_description}"
1572	6	"Update the {part_name} so it is now {new_description}"
1573	7	"Let's alter the {part_name}. It should be {new_description}"
1574	8	"Transform the {part_name} into {new_description}"
1575	9	"Could you make the {part_name} to be {new_description}"
1576	10	"My instruction is to change the {part_name} to {new_description}"
1577	11	"The {part_name} needs an update. Here are the new details: {new_description}"
1578	12	"Let's swap the current {part_name} with a new one: {new_description}"
1579	13	"The {part_name} should be revised to be {new_description}"
1580	14	"Please perform an edit on the {part.name}. It should now be {new_description}"
1581	15	"Adjust the {part_name} to match this description: {new_description}"
1592		
1593		
1594		
1595		
1596		

A.10.11 TYPE 10: ADDITION PROGRAM

1597	ID	Prompt Template
1598	1	"Add the {part_name} to this 3D asset."
1599	2	"Please add a {part_name} to the model."
1600	3	"Insert the {part_name} component."
1601	4	"Attach the {part_name} to this object."
1602	5	"Place the {part_name} on this model."
1603	6	"Include the {part_name} in this design."
1604	7	"Incorporate the {part_name} into this structure."
1605	8	"This model is missing its {part_name}. Please add it."
1606	9	"Complete this 3D model by adding the {part_name}."
1607	10	"The {part_name} is missing. Add it back."
1608	11	"Restore the {part_name} to this object."
1609	12	"Fill in the missing {part_name}."
1610	13	"This asset needs a {part_name}. Add it."
1611	14	"Enhance this model with a {part_name}."
1612	15	"Improve this design by adding the {part_name}."
1613	16	"Augment this object with the {part_name}."
1614	17	"Extend this model to include the {part_name}."
1615	18	"Could you add the {part_name} to complete this model?"
1616	19	"I need you to add the {part.name} to this 3D object."
1617	20	"Would you please attach the {part_name}?"
1618	21	"Can you help me add the {part_name} component?"
1619	22	"Mount the {part_name} in the appropriate position."

1620	ID	Prompt Template
1621		
1622	23	"Install the {part_name} where it belongs."
1623	24	"Position the {part_name} correctly on this model."
1624	25	"Generate and add the {part_name} to this asset."
1625	26	"Create the {part_name} component for this model."
1626	27	"Design and attach the {part_name}."
1627	28	"This looks incomplete without the {part_name}. Add it."
1628	29	"To make this functional, add the {part_name}."
1629	30	"The model requires a {part_name} to be complete."
1630		
1631		<i>Part-specific templates</i>
1632	31	"Add the head section to complete this figure."
1633	32	"This model needs its head. Please attach it."
1634	33	"The top part is missing. Add the head."
1635	34	"Install the wheels to make this vehicle complete."
1636	35	"Add wheels for mobility."
1637	36	"Mount the wheels on this vehicle."
1638	37	"Install the door to complete the entrance."
1639	38	"Add a door for access."
1640	39	"Place the door in the opening."
1641	40	"Attach the handle for better grip."
1642	41	"Add the handle component."
1643	42	"Install the handle mechanism."
1644	43	"Add the legs to support this structure."
1645	44	"Attach the leg components."
1646	45	"Install the supporting legs."
1647	46	"Add wings to complete this model."
1648	47	"Attach the wing components."
1649	48	"Install the wings on both sides."
1650		
1651		
1652		
1653		
1654		
1655		
1656		
1657		
1658		
1659		
1660		
1661		
1662		
1663		
1664		
1665		
1666		
1667		
1668		
1669		
1670		
1671		
1672		
1673		