Under review as a conference paper at ICLR 2026

PART-X-MLLM: PART-AWARE 3D MULTIMODAL
LARGE LANGUAGE MODEL

Anonymous authors
Paper under double-blind review

A dirty, tan, all-
terrain vehicle with
prominent front and

rear cargo racks. ! B

= W
Ve

f A rugged oj%ad tire !
1 with , bl treads, |
| mounte a dark rim |
| for an all-terrain vehicle. |

Figure 1: Part-X-MLLM is a natively 3D, part-aware multimodal large language model that provides
comprehensive understanding of 3D shapes and supports a wide range of 3D understanding tasks. It
also seamlessly integrates with diffusion-based pipelines, enabling semantically precise part-aware
3D shape generation and editing.

ABSTRACT

We introduce Part-X-MLLM, a native 3D multimodal large language model that
unifies diverse 3D tasks by formulating them as programs in a structured, exe-
cutable grammar. Given an RGB point cloud and a natural language prompt, our
model autoregressively generates a single, coherent token sequence encoding part-
level bounding boxes, semantic descriptions, and edit commands. This structured
output serves as a versatile interface to drive downstream geometry-aware mod-
ules for part-based generation and editing. By decoupling the symbolic planning
from the geometric synthesis, our approach allows any compatible geometry en-
gine to be controlled through a single, language-native frontend. We pre-train a
dual-encoder architecture to disentangle structure from semantics and instruction-
tune the model on a large-scale, part-centric dataset. Experiments demonstrate
that our model excels at producing high-quality, structured plans, enabling state-
of-the-art performance in grounded Q&A, compositional generation, and local-
ized editing through one unified interface.

1 INTRODUCTION

The creation of rich, interactive 3D worlds is a cornerstone of modern visual computing. While
recent advances in generative Al have solved the creation of holistic 3D shapes, they largely treat
assets as static, monolithic forms. This “structural opaqueness” limits their use in essential down-

Under review as a conference paper at ICLR 2026

stream tasks like fine-grained semantic understanding, compositional editing and procedural anima-
tion. Real-world objects are inherently assemblies of meaningful parts; unlocking 3D interaction
thus demands a native LLM-based tool that can reason about and manipulate this part structure.

Current 3D Multimodal Large Models (MLLMs) fall short of this goal. Scene-level 3D MLLMs
align point clouds with language and perform captioning or Q&A [Xu et al.| (2024); Hong et al.
(2023); Q1 et al.| (2024bza), but they largely treat objects as monolithic and lack persistent part
identifiers, grounded references, and executable outputs. On the generative side, geometry-oriented
models offer high-fidelity asset synthesis via structured 3D latents Xiang et al.| (2024); |[Zhao et al.
(2025b); Hunyuan3D et al.| (2025) or tokenized 3D representations Wang et al.| (2024)); Ye et al.
(2025), yet expose limited semantic addressability. Part pipelines either lift 2D segmentations
to 3D [Liu et al.[(2024a)); (Chen et al.| (2025a); |Yang et al.| (2024); [Liu et al.| (2025); |Yang et al.
(2025a)—prone to view inconsistencies and weak 3D constraints—or generate parts natively in
3D |Chen et al.| (2025b); [Zhang et al.| (2025); [Yang et al.| (2025b) without a unified language in-
terface. Editing methods increasingly operate in 3D space |Li et al.[(2025)), but are not themselves
language-native frontends. There is still no model that (i) understands and names parts, (ii) grounds
references to persistent bounding box (BBox), and (iii) compiles executable add/delete/modify pro-
grams while delegating to strong geometry engines—with controllable semantic granularity (from
coarse labels to fine descriptions)—through a single instruction-following interface.

We address this challenge with Part-X-MLLM, a native 3D part-aware Multimodal Large Lan-
guage Model that reframes 3D interaction as a language modeling problem. Our core insight is that
a spectrum of disparate tasks—generation, editing, and question answering—can be unified under a
single, geometry-aware grammar of parts. Part-X-MLLM translates user instructions and 3D visual
input into a structured program, emitting a single token sequence of part-level bounding boxes, per-
sistent references, semantic descriptions, and edit operators. This discrete, language-native interface
provides three concrete benefits. (1) Stable part identity and grounding: tokens carry persistent
references to parts via BBox symbols, enabling precise, auditable reasoning and manipulation across
steps and tasks. (2) Controllable semantic granularity: the same program can surface either coarse
labels or fine descriptions on demand, and our post-hoc clustering supports user-controlled merging
of parts. (3) Separation of structure and semantics: a dual-encoder design decouples geometry
(XYZ+normals) from appearance (RGB), avoiding the representational conflict observed in single-
encoder ablations and yielding consistent gains on box listing, multi-part grounding, and part Q&A.
Because the output program is model-agnostic, any geometry module can be driven by this token
interface—turning language into a universal control surface for 3D assets. Empirically, the resulting
plans enable strong part grounding, compositional generation, and localized editing across 11 task
families on our UniPart-Bench, establishing a general paradigm for part-centric 3D intelligence.

Our contributions are summarized as follows:

* We introduce Part-X-MLLM, a native 3D part-aware MLLM that unifies generation, edit-
ing, and reasoning as a single geometry-aware program in a part grammar with persistent
BBox tokens—providing a language-native, model-agnostic control surface for 3D assets.

* We propose a dual-encoder architecture that decouples structure (XYZ+normals) from
appearance (RGB), avoiding representational conflicts and delivering consistent gains over
a single-encoder baseline across grounding, captioning, and part Q&A.

* We enable semantic granularity control by clustering part bounding boxes using text
semantics, allowing seamless transition between coarse components and fine-grained parts
under the same programmatic interface.

* We establish UniPart-Bench, a 30k-entry part-centric benchmark spanning 11 task fami-
lies with geometric and linguistic metrics, and use it to rigorously evaluate plan quality and
downstream performance.

2 RELATED WORK

2.1 3D MULTIMODAL UNDERSTANDING AND GENERATION

Early 3D MLLMs align point clouds with language for 3D captioning, QA, and reasoning, in-
cluding PointLLM [Xu et al.| (2024), 3D-LLM Hong et al.[(2023), Point-BERT |Yu et al.| (2022),

Under review as a conference paper at ICLR 2026

GPT4Point|Qi et al.|(2024b)), and ShapeLLM |Qi et al.|(2024a). However, point clouds’ sparsity and
limited detail constrain high-fidelity, editable asset creation. Recent work addresses this through
geometry-aware latents: TRELLIS Xiang et al.|(2024) employs structured sparse voxel latents with
rectified flow for unified decoding to meshes/NeRF/3DGS. Hunyuan3D 2.x Zhao et al| (2025b);
Hunyuan3D et al.|(2025) provides a production-ready pipeline with PBR materials. Discretization
enables autoregression: LLaMA-Mesh Wang et al.|(2024) feeds OBJ text to LLMs but ignores mesh
topology, while ShapeLLM-Omni |Ye et al.| (2025) compresses 3D into discrete tokens for unified
text/image/3D understanding and generation. Despite these advances, most systems remain object-
or scene-level |Wang et al.| (2025); [M1ao et al.| (2025): Existing methods often lack persistent part
identities, grounded references, and executable outputs for downstream geometry engines. We ad-
dress this by introducing a language-native interface that outputs tokenized bounding boxes and edit
programs, enabling part-aware and high-fidelity generation and editing.

2.2 PART GENERATION

2D-driven pipelines extract multi-view cues then lift to 3D: Part123 [Liu et al.| (2024a) and
PhyCAGE [Yan et al.| (2024b) uses SAM [Kirillov et al.| (2023) masks, PartGen |Chen et al.[(2025a)
segments/inpaints with inconsistency issues, SAMPart3D |Yang et al.|(2024) and PartField Liu et al.
(2025)) distill priors, and HoloPart|Yang et al.[(2025a)) completes parts with diffusion. These methods
suffer from weak 3D constraints. Direct 3D approaches include: PASTA [Li et al.|(2024a) for prim-
itive composition, AutoPartGen (Chen et al.| (2025b)) for autoregressive generation, PartPacker Tang
et al.[(2025) and Frankenstein [Yan et al. (2024a) for efficient part representation with constrained
space usage, BANG Zhang et al.| (2025) for exploded views, and Assembler Zhao et al.|(2025a)) for
assembly sampling. OmniPart [Yang et al.| (2025b)) unifies these approaches via autoregressive box
planning followed by TRELLIS-based synthesis. X-Part|Yan et al.|(2025) scale up vecset-based part
generation conditioned on semantics provided by Ma et al.| (2025).

2.3 3D EDITING

Optimization-based editing utilizes SDS: DreamFusion |[Poole et al.|(2022)) enables text-to-3D gen-
eration, Vox-E Sella et al.| (2023)) adds volumetric regularization, and Instruct-NeRF2NeRF |[Haque
et al| (2023) edits multi-views using InstructPix2Pix [Brooks et al.| (2023) while optimizing
NeRF Mildenhall et al.| (2021). Faster alternatives include: Shap-Editor Chen et al.[(2024b) for
feed-forward latent editing, MVEdit [Chen et al.| (2024a)) as a training-free 3D adapter, and PrEd-
itor3D |[Erkoc et al.| (2025) using DDPM inversion with 2D-to-3D lifting. FocalDreamer |Li et al.
(2024b)) enables part-wise assembly, VoxHammer |Li et al.| (2025) performs training-free latent edit-
ing, and Make-Your-3D [Liu et al.| (2024b)) customizes subjects via model co-evolution. Yet these
methods are typically tool-side: they do not provide a language-native model that reasons about parts
and emits executable edit programs with precise spatial grounding. We target this gap by coupling a
part-aware planning interface with strong geometry backends.

3 METHODOLOGY

An overview of our framework is shown in Figure[2] Our methodology centers on three key design
choices: a unified architecture that processes geometry and language, a multi-stage training curricu-
lum that systematically builds model capabilities, and the use of powerful, pre-existing geometry
engines as execution backends.

3.1 MOTIVATION

Modern 3D applications demand more than holistic shape synthesis—they require precise, language-
driven control over semantically meaningful parts. For example, artists want to swap handles without
touching the body; roboticists need to reason about graspable subcomponents; and downstream
pipelines rely on consistent, addressable structure for animation and simulation. Prior systems either
focus on scene-level understanding or provide powerful but siloed generators/editors with bespoke
interfaces. Our goal is a native, part-centric MLLM that treats parts as first-class citizens and exposes
a single, executable interface that is intuitive, auditable, and robust across categories.

Under review as a conference paper at ICLR 2026

Part Seg & Cap & Ground i Interactive Part Editing

' '
: Add :

BBox’s Info. ! (<del5) Delete Edit Prompts !

1

i i

1 n 1

'

1

'

g 1

S '
" 1| <mod> Modify

'

1

'

________ \

Part-X-MLLM

PpeoH
uorjeIaua)

.

N

.

i A\

r A N f_E
0000 00C0oO 0000d

\
i

i

Structure Semantic Text E
Encoder Encoder Tokenizer 1

A A * E

(40960, 6) (10240,6)] ;o m - - A horm horm '
+norm +rg b with flowers !

Figure 2: The Part-X-MLLM Framework. Our pipeline begins by encoding geometry and ap-
pearance features separately using a dual-encoder architecture, which are then fused together with
text prompts. These combined features are passed to an autoregressive decoder that generates a
program-like token sequence representing a plan (e.g., bounding boxes, edit commands). Finally,
specialized geometry heads execute this plan to enable part-aware generation and editing.

3.2 UNIFIED ARCHITECTURE FOR PART-AWARE PLANNING

Dual 3D Encoders. To capture both geometric structure and visual appearance, we employ a dual-
pathway encoder. A Structure Encoder processes the raw point cloud geometry (XYZ and normals)
to extract structural tokens. A parallel Semantic Encoder processes RGB color information to
produce appearance tokens. This dual representation allows the model to disambiguate parts that
may be structurally similar but visually distinct (e.g., two identical chair legs of different colors).

Structured Planning Language and Autoregressive Decoder. A decoder-only transformer, ini-
tialized from a pretrained LLM, takes the fused sequence of structural, semantic, and text to-
kens as input. It is trained to autoregressively generate a program-like output that follows our
structured planning language. This language defines special tokens for part representation (e.g.,
<boxs>...<boxe> wrapping six quantized coordinate tokens) and edit operations (e.g., <adds>,
<dels>, <mods>). By formulating the output as a program, we unify diverse tasks into a sin-
gle instruction-following problem, where the model’s goal is always to generate the correct token
sequence representing the plan.

3.3 DOWNSTREAM GEOMETRY INTERFACES

Our model’s structured output is designed to be consumed by downstream modules capable of in-
terpreting its geometric and semantic content.

Part-Aware Synthesis. For generation, the planned bounding boxes and optional part text are passed
to a synthesis module, which treats the boxes as spatial guides to generate high-fidelity, part-based
assets (e.g., in mesh, 3DGS, or NeRF format).

Localized Editing. For editing, the emitted program and associated bounding boxes are used to
define cuboid masks for localized manipulation, enabling precise edits while preserving untouched
regions.

3.4 END-TO-END TASK REALIZATION

To make the workflow concrete, Figure [3]illustrates how our structured planning language realizes
four representative tasks.

Part-aware Mesh Generation: The decoder generates a program containing a set of bounding
boxes and optional part text. A synthesis module then uses these boxes as spatial guides to generate
a part-based asset. Q&A with Grounding: Answers are augmented with BBox tokens, yielding
language outputs that carry explicit, persistent references to parts. Auto-located 3D Editing: The

Under review as a conference paper at ICLR 2026

00 Captioning 000 breadstick Part-aware Mesh Generation
R Find every -
bounding boz,

)
4

X =

4 +

{captions/category}|

How many breadsticks . Q&A with Grounding
are in the basket? Answer w/ grounding bread 6

Give {details/category}
about this region:

|
b) [<box-733) (<b)l)i

......................

There appear to be

! |
4] () ' :
N > X » 6 breadstick n |
> > readsticks@oc)- (N jm——
o D T : the basket. g 22>
! ; <
d = e
X I want to replace a blue checkered basket liner Auto-Located Mesh Editing
gt the red basket liner

with a blue one.

or

(1
E “A long, shiny breadstick f o — > X

v sprinkled with coarse salt in
! a baskel.” / “breadstick” Part-X—MLLM =2
____________________________ v Unif ipeline o)

Figure 3: Task realization with a planning language. A decoder outputs program tokens that unify
diverse interactions: (Top) part-aware generation guided by bounding boxes; (Middle) grounded
Q&A whose answers embed BBox tokens; (Bottom) auto-located 3D editing executed via cuboid
masks and commands. The numbered circles (e.g., €9) denote the corresponding task types.

model localizes the instruction by generating bounding boxes and an edit command (e.g., <adds>).
A downstream editing module then uses this program to apply a masked edit.

Semantic Granularity Control. Beyond these core tasks, our box-and-text representation enables
dynamic control over semantic granularity. By clustering part bounding boxes based on the sim-
ilarity of their associated text descriptions (using CLIP embeddings), we can progressively merge
fine-grained parts into coarser semantic components. This allows users to control the level of detail
in the generated output without manual intervention, such as pre-defining the number of parts (cf.
PartPacker) or manually merging masks (cf. OmniPart). A qualitative example is shown in Figure[6]
with the full algorithm detailed in the appendix.

3.5 MULTI-STAGE INSTRUCTION TUNING

We adopt a two-stage curriculum. The first stage pretrains a structure-aware encoder for robust
geometry understanding. The second stage performs full instruction tuning, integrating a semantic
encoder and aligning a powerful LLM with our specialized task grammar.

Stage 1: Geometry-Only BBox Pretraining. We initialize the structure encoder with the Hunyuan
2.1 3D Shape VAE Encoder. Each training sample is a fixed-size RGB-less point cloud of shape
(40960, 6) containing (z, y, z) coordinates and surface normals. The encoder downsamples features
by 20x to produce a latent of length 2048. To force bounding-box knowledge into the encoder, we
pair it with a lightweight autoregressive decoder whose task is to predict part-level bounding boxes
from these latent features, with no textual semantics involved. After pretraining on 3.6M objects for
10 epochs, we retain the specialized structure encoder weights and discard the lightweight decoder.
This stage domain-specializes the 3D encoder to reliably disentangle and localize part BBoxes.

Stage 2: Full Instruction Tuning with a Dual-Encoder LLM. After pretraining the structure en-
coder, we proceed directly to full instruction tuning with a more powerful Qwen 2.5 VL model.
In this stage, we introduce the Semantic (RGB) Encoder, which has the same architecture as the
structure encoder and processes a point cloud of shape (10240, 6) with (x,y, z) and (r, g,b) data
to capture appearance. We also extend the vocabulary with our task-specific special tokens (e.g.,
<boxs>/<boxe>, <adds>/<adde>). During this stage, we freeze the pretrained Structure En-
coder from Stage 1 and the original Qwen 2.5 VL token embeddings. We then train only the new
Semantic Encoder, the AR transformer layers of the Qwen 2.5 VL decoder, and the embeddings
for our newly added special tokens. This approach efficiently aligns the powerful language model

Under review as a conference paper at ICLR 2026

with our dual-stream (geometry and appearance) conditioning and executable grammar, preserving
its strong prior while adapting it for our specialized tasks.

3.6 IMPLEMENTATION AND EXECUTION BACKENDS

To translate plans into high-fidelity geometry, we use powerful, off-the-shelf models as execution
backends. For part-aware generation, we use the synthesis module from OmniPart |Yang et al.
(2025b)), feeding it our generated bounding boxes. For editing, we use the training-free volumetric
editor VoxHammer |L1 et al.| (2025)), providing it with a cuboid mask derived from our planned BBox
and the user’s instruction. This modular approach allows Part-X-MLLM to serve as a universal,
language-driven frontend for various SOTA geometry engines. The rich information encoded in the
generated token probabilities also enables advanced downstream tasks, such as confidence-aware
face segmentation (see Appendix|A.4).

4 EXPERIMENTS

4.1 DATASET

We curate a high-quality, part-centric 3D dataset comprising 85,771 distinct objects with an average
of 23 parts per object. Each object is annotated with axis-aligned part bounding boxes (AABBs)
and paired natural language annotations at two granularities: a coarse part label (Q1) and a fine-
grained part description (Q2). At the object level, we include an overall caption and a small set of
instruction—answer pairs for part-aware Q&A. All annotations follow the unified box-token grammar
introduced in Section [3] enabling consistent serialization of AABBs and edit programs.

Data construction follows a two-step pipeline: (1) a structured labeling stage collecting object-level
and part-level texts and (2) a data building stage converting annotations into instruction-following
samples across multiple task families (grounding, captioning, QA, editing). Concretely, we in-
stantiate eleven task templates (Types 0—10) covering pure box listing, multi-part grounding with
coarse/fine text, single-part grounding from name or description, box-to-text captioning, part-aware
Q&A, and edit programs for deletion/modification/addition. The train/test split is obtained by deter-
ministic file list partition (= 99.5/0.5). Full details, prompt templates, sampling rules, and dataset
statistics are provided in the supplementary material (Tables[5]and figures therein).

4.2 EVALUATION PROTOCOL

Since existing benchmarks do not test for structured, part-aware, and executable program generation
from language, we introduce UniPart-Bench, a held-out set of 400 objects, to evaluate our model’s
core capabilities. Our evaluation focuses on the quality of the structured plans generated by the
model, as measured by the accuracy of the predicted BBox layouts. For downstream tasks, the
generated plans are passed to external geometry modules. For generation, we forward the BBoxes
to a synthesis head; for editing, we provide the instruction and a cuboid mask derived from the
planned BBox.

4.3 PART-AWARE GENERATION AND EDITING

Bounding Box Generation. To evaluate the quality of our structured generation, we report BBox
IoU, Voxel Recall, and Voxel IoU. Matching pairs each ground-truth box with its nearest predicted
box. As baselines, we include PartField [Liu et al.| (2025) by treating the voxel set as a point cloud
and extracting a BBox per predicted segment, and the generation model from OmniPart|Yang et al.
(2025b). Our model consumes RGB point cloud tokens and a text prompt and autoregressively
emits an ordered list of bounding boxes following the box grammar of Section[3] For the PartField
baseline, we treat voxels derived from the asset as a point cloud and segment them at the ground-
truth part count, then compute bounding boxes per segment for comparison.

Qualitative Generation and Editing Results. Figure [visualizes our qualitative shape decom-
position results, where our model demonstrates superior performance in generating semantically co-
herent and geometrically accurate part segmentations. It successfully captures fine-grained details

Under review as a conference paper at ICLR 2026

Table 1: Quantitative results for bounding box generation (%).

Method \ Voxel recall T Voxel IoU 1+ Bbox IoU 1
PartField [Liu et al.[(2025) 69.65 46.04 37.33
OmniPart|Yang et al.| (2025b) 72.32 47.62 39.78
Part-X-MLLM (Ours) \ 74.11 48.74 42.55

and maintains structural integrity, outperforming baselines that often produce fragmented or inac-
curate decompositions. We also evaluate the model’s ability to perform localized, language-driven
edits. As shown in Figure[5] Part-X-MLLM successfully interprets user instructions to add, remove,
or modify specific parts, executing the edits while preserving the rest of the object’s structure.

Input PartCrafter PartPacker Ours

g

Replace the head with black hair Replace the trousers with Replace the left shoe with a
and vertical black eyes. black jeans. green-soled, polished-style shoe.

Replace the central sphere with a gqd appropriate padding to the base Remowve the spherical support in the
smooth red sphere. of the turntable. middle of the lamp.

Figure 5: Qualitative results for part-aware editing. Our model successfully interprets natural
language instructions to perform localized edits, while preserving the integrity of the original object.

Semantic Granularity Control. As introduced in Section 3| our framework supports controlling
part granularity by semantically clustering bounding boxes. Figure [6] demonstrates this process,
where our algorithm progressively merges components based on the CLIP similarity of their textual

Under review as a conference paper at ICLR 2026

descriptions, reducing the part count from 22 down to 2. This automated process allows for flexible
control over the level of detail without manual intervention.

Original Mesh Merge Step 1 Merge Step 2 Merge Step 3 Merge Step 4
"]] T T]]
- B . 12 . = . Vt'z(A
K2 &2 oo 2N N
\ \ \ \ S r \ r
| - \ - \ |
'C #C #C C
c"".470,,9” O”'ﬁo,-,e,7 Co”’l-’onsn o"'ﬁo,,e"t Mpope, -
tssa, tssyg tssp Ssg OS’Y

Figure 6: Semantic granularity control via part clustering. By clustering parts based on the
semantic similarity of their descriptions, we can progressively merge fine-grained components into
coarser structures. The number of components is automatically reduced from 22 to 2.

Ablation Study: Dual vs. Single Encoder. We conduct an ablation study to validate our dual-
encoder design, which processes geometric structure and visual appearance in separate pathways.
We compare our full model against a single-encoder variant that consumes a unified point cloud with
fused geometry (XYZ) and color (RGB) information. As shown in Table 2] the dual-encoder archi-
tecture consistently outperforms the single-encoder baseline across all evaluated tasks. For pure
geometric tasks like box listing, the dual encoder improves IoU by a significant margin (+7.06).
For language-intensive tasks such as Part QA and Multi-Part Grounding, we observe uniform gains
across all metrics. This suggests that forcing a single encoder to handle both structural and se-
mantic information creates a conflict, whereas decoupling these responsibilities into two specialized
encoders is a more effective and robust design choice.

Table 2: Ablation study on the dual-encoder architecture. We compare our full model against a
single-encoder variant. All metrics are reported on UniPart-Bench.

Task | Model | IoUt SBERT1 SimCSET BLEU-11 ROUGE-Lt METEOR 1
Dual Encoder (Ours) | 75.53 - - - - -
Pure Box Listing Single Encoder 68.47 - - - - -
Dual Encoder (Ours) | 72.82 55.60 54.19 35.55 35.58 18.09
Multi-Part Grounding | Single Encoder 69.78 54.18 53.53 33.95 33.97 17.27
Dual Encoder (Ours) | 55.44 78.98 84.25 40.54 42.26 34.24
Part QA Single Encoder 54.24 78.44 83.13 39.29 41.31 33.06

4.4 PART AND OBJECT UNDERSTANDING

Part Understanding Q&A. To evaluate part-level understanding and reasoning, we test on
UniPart-Bench. We report sentence-level similarities (SBERT, SimCSE) and token-level metrics
(BLEU-1, ROUGE-L, METEOR). Results in Table [3] show consistent gains of our method on part-
level Q&A. We observe substantial gains over the strongest baseline across all metrics: compared to
the best non-ours scores, Part-X-MLLM improves by +17.7 SBERT, +25.8 SimCSE, +17.2 BLEU-1,
+9.7 ROUGE-L, and +9.8 METEOR. These gains reflect stronger part-level grounding and reason-
ing enabled by our box grammar and instruction tuning.

Overall 3D Object Captioning. Unlike part-level captioning, this benchmark probes holistic ob-
ject understanding on UniPart-Bench. We report SBERT, SimCSE, BLEU-1, ROUGE-L, and ME-
TEOR following PointLLM. On overall object captioning, our model also outperforms the best
prior scores, with absolute improvements of +10.3 SBERT, +8.9 SimCSE, +18.3 BLEU-1, +19.1
ROUGE-L, and +13.3 METEOR. The large gains on token-based metrics suggest stronger lexical
coverage and structure in object-level descriptions.

Qualitative Understanding Results. Figure [/| provides qualitative examples for overall object
captioning. Our model generates more accurate and detailed descriptions compared to baselines.

Under review as a conference paper at ICLR 2026

Table 3: Part understanding Q&A on UniPart-Bench.

Model | SBERT SimCSE BLEU-1 ROUGE-L METEOR
GPT4Point Qi et al.|(2024b) 48.32 45.17 15.16 22.55 16.19
PointLLM-7B [Xu et al.[(2024) 61.30 58.48 21.78 29.26 22.45
PointLLM-13B [Xu et al.[(2024) 56.36 51.47 21.40 29.16 21.80
ShapeLLM-13B Q1 et al.|(2024a) 61.19 57.26 23.32 32.56 24.45
ShapeLLM-Omni-7B|Ye et al.|(2025) 57.35 51.16 22.717 29.57 23.24
Part-X-MLLM (Ours) | 78.98 84.25 40.54 42.26 34.24

Table 4: Overall 3D object captioning on UniPart-Bench.

Model | SBERT SimCSE BLEU-1 ROUGE-L METEOR
GPT4Point Qi et al.|(2024b) 25.60 27.00 11.50 12.00 12.70
PointLLM-7B [Xu et al.|(2024) 42.79 42.44 11.58 14.39 16.90
PointLLM-13B [Xu et al.[(2024) 43.51 43.12 13.54 15.74 17.45
ShapeLLM-13B Q1 et al.|(2024a) 25.15 27.14 11.77 12.14 12.84
ShapeLLM-Omni-7B|Ye et al.|(2025) 31.18 31.93 17.79 19.04 14.30
Part-X-MLLM (Ours) | 53.82 51.97 36.04 38.11 30.71

For instance, our model correctly identifies an object as a “pink teddy bear mascot costume with
a purple bow tie,” while other models provide less specific or incorrect descriptions. Additional
qualitative results for part-aware Q&A, demonstrating our model’s strong grounding capabilities,
are provided in the appendix (Figure 9).

Overall Description

Input

X
¥

GT

A pink, teddy bear
mascot costume with
a purple bow tie.

PointLLM

This 3D model
portrays an
endearing cartoon
character designed
to resemble a
mouse.

ShapeLLM

The 3D structure

appears to be a

Juturistic vehicle
with a sleek design.

ShapeLLM-Omni

A 3D model of a
bare, leafless tree
with roots and horns.

Ours

A pink teddy bear
costume with a
purple bow tie.

A chibi-style
character in
traditional Chinese
clothing with a hair
ornament.

This is a 3D model
of a toy cartoon
character that has
brown hair and
large, expressive
eyes. Notably, it's
wearing a jacket
and a black hat.

The 3D structure
appears to be a
futuristic, abstract
design with a miz of
metallic and organic
elements.

This is a 3D model
of a cartoon-like
figure representing a
girl.

A chibi character

wearing a conical

hat and traditional
clothing.

A woman with curly
hair wearing a
striped dress and a
fox mask.

The 3D model
represents a vibrant
cartoon lady
character wearing a
bright red dress.

The 3D structure
appears to be a
fragmented or

abstract
representation of a
creature, possibly a
horse.

This is a three-
dimensional model
of a female cartoon
character donned in
a vibrant red shirt.

A woman with curly
brown hair wearing
a colorful striped
halter dress.

Figure 7: Qualitative results for overall object captioning.

5 CONCLUSION

Part-X-MLLM casts 3D interaction as executable program generation: from RGB point clouds and
text it emits a single sequence of part AABBs that geometry engines execute, unifying generation,
QA, and localized editing, and improving Voxel Recall/loU and BBox IoU on UniPart-Bench. Ap-
pendix [A-2.T| supports controllable granularity.

Limitations. Longer sequences slow inference; simple compaction and hierarchical grouping mit-
igate latency. Our confidence-based segmentation from BBoxes remains relatively shallow; incor-
porating stronger features could improve segmentation quality. Fine-tuning on 3D tasks may reduce
the base LLM’s general language capabilities.

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

This work presents Part-X-MLLM, a part-aware 3D multimodal model that outputs executable pro-
grams (e.g., tokenized AABBs and edit commands). Training uses a blend of publicly available and
professionally sourced 3D assets and annotations, subjected to rigorous quality filtering and license
review; we avoid personal or biometric data. The model’s outputs are grounded and auditable, and
the system is intended for research and creative use. We will provide a public API and online in-
terface with usage guidelines. We acknowledge residual risks such as inherited dataset biases and
domain shift and will monitor and update the service accordingly. The authors declare no conflicts
of interest.

7 REPRODUCIBILITY STATEMENT

We detail the structured planning grammar, architecture, training curriculum, and evaluation pro-
tocol to enable replication. We will open-source the model checkpoints and the UniPart-Bench
introduced in this paper, together with evaluation scripts for BBox IoU and voxel metrics, config-
uration files, prompts/converters for data construction, and complete training/inference code with
seeds. A public API and online interface will also be available for lightweight validation.

REFERENCES

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
editing instructions. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 18392-18402, 2023.

Hansheng Chen, Ruoxi Shi, Yulin Liu, Bokui Shen, Jiayuan Gu, Gordon Wetzstein, Hao Su, and
Leonidas Guibas. Generic 3d diffusion adapter using controlled multi-view editing. arXiv preprint
arXiv:2403.12032, 2024a.

Minghao Chen, Junyu Xie, Iro Laina, and Andrea Vedaldi. Shap-editor: Instruction-guided latent 3d
editing in seconds. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 26456-26466, 2024b.

Minghao Chen, Roman Shapovalov, Iro Laina, Tom Monnier, Jianyuan Wang, David Novotny, and
Andrea Vedaldi. Partgen: Part-level 3d generation and reconstruction with multi-view diffusion
models. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 5881—
5892, 2025a.

Minghao Chen, Jianyuan Wang, Roman Shapovalov, Tom Monnier, Hyunyoung Jung, Dilin Wang,
Rakesh Ranjan, Iro Laina, and Andrea Vedaldi. Autopartgen: Autogressive 3d part generation
and discovery. arXiv preprint arXiv:2507.13346, 2025b.

Ziya Erkog, Can Giimeli, Chaoyang Wang, Matthias NieBner, Angela Dai, Peter Wonka, Hsin-Ying
Lee, and Peiye Zhuang. Preditor3d: Fast and precise 3d shape editing. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 640-649, 2025.

Ayaan Haque, Matthew Tancik, Alexei A Efros, Aleksander Holynski, and Angjoo Kanazawa.
Instruct-nerf2nerf: Editing 3d scenes with instructions. In Proceedings of the IEEE/CVF in-
ternational conference on computer vision, pp. 19740-19750, 2023.

Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang
Gan. 3d-llm: Injecting the 3d world into large language models. Advances in Neural Information
Processing Systems, 36:20482-20494, 2023.

Team Hunyuan3D, Shuhui Yang, Mingxin Yang, Yifei Feng, Xin Huang, Sheng Zhang, Zebin He,
Di Luo, Haolin Liu, Yunfei Zhao, et al. Hunyuan3d 2.1: From images to high-fidelity 3d assets
with production-ready pbr material. arXiv preprint arXiv:2506.15442, 2025.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 4015-4026, 2023.

10

Under review as a conference paper at ICLR 2026

Lin Li, Zehuan Huang, Haoran Feng, Gengxiong Zhuang, Rui Chen, Chunchao Guo, and Lu Sheng.
Voxhammer: Training-free precise and coherent 3d editing in native 3d space. arXiv preprint
arXiv:2508.19247, 2025.

Songlin Li, Despoina Paschalidou, and Leonidas Guibas. Pasta: Controllable part-aware shape
generation with autoregressive transformers. arXiv preprint arXiv:2407.13677, 2024a.

Yuhan Li, Yishun Dou, Yue Shi, Yu Lei, Xuanhong Chen, Yi Zhang, Peng Zhou, and Bingbing
Ni. Focaldreamer: Text-driven 3d editing via focal-fusion assembly. In Proceedings of the AAAI
conference on artificial intelligence, volume 38, pp. 3279-3287, 2024b.

Anran Liu, Cheng Lin, Yuan Liu, Xiaoxiao Long, Zhiyang Dou, Hao-Xiang Guo, Ping Luo, and
Wenping Wang. Part123: part-aware 3d reconstruction from a single-view image. In ACM SIG-
GRAPH 2024 Conference Papers, pp. 1-12, 2024a.

Fangfu Liu, Hanyang Wang, Weiliang Chen, Haowen Sun, and Yueqi Duan. Make-your-3d: Fast and
consistent subject-driven 3d content generation. In European Conference on Computer Vision, pp.
389-406. Springer, 2024b.

Minghua Liu, Mikaela Angelina Uy, Donglai Xiang, Hao Su, Sanja Fidler, Nicholas Sharp, and
Jun Gao. Partfield: Learning 3d feature fields for part segmentation and beyond. arXiv preprint
arXiv:2504.11451, 2025.

Changfeng Ma, Yang Li, Xinhao Yan, Jiachen Xu, Yunhan Yang, Chunshi Wang, Zibo Zhao, Yan-
wen Guo, Zhuo Chen, and Chunchao Guo. P3-sam: Native 3d part segmentation. arXiv preprint
arXiv:2509.06784, 2025.

Qiaowei Miao, Kehan Li, Jinsheng Quan, Zhiyuan Min, Shaojie Ma, Yichao Xu, Yi Yang, Ping Liu,
and Yawei Luo. Advances in 4d generation: A survey, 2025. URL https://arxiv.org/
abs/2503.14501l

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99-106, 2021.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988, 2022.

Zekun Qi, Runpei Dong, Shaochen Zhang, Haoran Geng, Chunrui Han, Zheng Ge, Li Yi, and
Kaisheng Ma. Shapellm: Universal 3d object understanding for embodied interaction. In Euro-
pean Conference on Computer Vision, pp. 214-238. Springer, 2024a.

Zhangyang Qi, Ye Fang, Zeyi Sun, Xiaoyang Wu, Tong Wu, Jiagi Wang, Dahua Lin, and Heng-
shuang Zhao. Gpt4point: A unified framework for point-language understanding and generation.
In Proceedings of the ieee/cvf conference on computer vision and pattern recognition, pp. 26417—
26427, 2024b.

Etai Sella, Gal Fiebelman, Peter Hedman, and Hadar Averbuch-Elor. Vox-e: Text-guided voxel
editing of 3d objects. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 430-440, 2023.

Jiaxiang Tang, Ruijie Lu, Zhaoshuo Li, Zekun Hao, Xuan Li, Fangyin Wei, Shuran Song, Gang
Zeng, Ming-Yu Liu, and Tsung-Yi Lin. Efficient part-level 3d object generation via dual volume
packing. arXiv preprint arXiv:2506.09980, 2025.

Chunshi Wang, Hongxing Li, and Yawei Luo. Sonicgauss: Position-aware physical sound synthesis
for 3d gaussian representations, 2025.

Zhengyi Wang, Jonathan Lorraine, Yikai Wang, Hang Su, Jun Zhu, Sanja Fidler, and Xiaohui

Zeng. Llama-mesh: Unifying 3d mesh generation with language models. arXiv preprint
arXiv:2411.09595, 2024.

11

https://arxiv.org/abs/2503.14501
https://arxiv.org/abs/2503.14501

Under review as a conference paper at ICLR 2026

Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng Wang, Bowen Zhang, Dong Chen, Xin
Tong, and Jiaolong Yang. Structured 3d latents for scalable and versatile 3d generation. arXiv
preprint arXiv:2412.01506, 2024.

Runsen Xu, Xiaolong Wang, Tai Wang, Yilun Chen, Jiangmiao Pang, and Dahua Lin. Pointllm:
Empowering large language models to understand point clouds. In European Conference on
Computer Vision, pp. 131-147. Springer, 2024.

Han Yan, Yang Li, Zhennan Wu, Shenzhou Chen, Weixuan Sun, Taizhang Shang, Weizhe Liu, Tian
Chen, Xiaqiang Dai, Chao Ma, et al. Frankenstein: Generating semantic-compositional 3d scenes
in one tri-plane. In SIGGRAPH Asia 2024 Conference Papers, pp. 1-11, 2024a.

Han Yan, Mingrui Zhang, Yang Li, Chao Ma, and Pan Ji. Phycage: Physically plausible composi-
tional 3d asset generation from a single image. arXiv preprint arXiv:2411.18548, 2024b.

Xinhao Yan, Jiachen Xu, Yang Li, Changfeng Ma, Yunhan Yang, Chunshi Wang, Zibo Zhao, Ze-
giang Lai, Yunfei Zhao, Zhuo Chen, et al. X-part: high fidelity and structure coherent shape
decomposition. arXiv preprint arXiv:2509.08643, 2025.

Yunhan Yang, Yukun Huang, Yuan-Chen Guo, Liangjun Lu, Xiaoyang Wu, Edmund Y Lam,
Yan-Pei Cao, and Xihui Liu. Sampart3d: Segment any part in 3d objects. arXiv preprint
arXiv:2411.07184,2024.

Yunhan Yang, Yuan-Chen Guo, Yukun Huang, Zi-Xin Zou, Zhipeng Yu, Yangguang Li, Yan-
Pei Cao, and Xihui Liu. Holopart: Generative 3d part amodal segmentation. arXiv preprint
arXiv:2504.07943, 2025a.

Yunhan Yang, Yufan Zhou, Yuan-Chen Guo, Zi-Xin Zou, Yukun Huang, Ying-Tian Liu, Hao Xu,
Ding Liang, Yan-Pei Cao, and Xihui Liu. Omnipart: Part-aware 3d generation with semantic
decoupling and structural cohesion. arXiv preprint arXiv:2507.06165, 2025b.

Junliang Ye, Zhengyi Wang, Ruowen Zhao, Shenghao Xie, and Jun Zhu. Shapellm-omni: A native
multimodal 1lm for 3d generation and understanding. arXiv preprint arXiv:2506.01853, 2025.

Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-bert:
Pre-training 3d point cloud transformers with masked point modeling. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 19313-19322, 2022.

Longwen Zhang, Qixuan Zhang, Haoran Jiang, Yinuo Bai, Wei Yang, Lan Xu, and Jingyi Yu. Bang:
Dividing 3d assets via generative exploded dynamics. ACM Transactions on Graphics (TOG), 44
(4):1-21, 2025.

Wang Zhao, Yan-Pei Cao, Jiale Xu, Yuejiang Dong, and Ying Shan. Assembler: Scalable 3d part
assembly via anchor point diffusion. arXiv preprint arXiv:2506.17074, 2025a.

Zibo Zhao, Zeqiang Lai, Qingxiang Lin, Yunfei Zhao, Haolin Liu, Shuhui Yang, Yifei Feng,
Mingxin Yang, Sheng Zhang, Xianghui Yang, et al. Hunyuan3d 2.0: Scaling diffusion models for
high resolution textured 3d assets generation. arXiv preprint arXiv:2501.12202, 2025b.

12

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) are used exclusively for minor language editing—such as im-
proving grammar and readability—and not for method design or experimental work. All technical
contributions, including the methodology, equations, and results, are solely the work of the authors.

A.2 MORE EXPERIMENTAL RESULTS
A.2.1 SEMANTIC PART CLUSTERING ALGORITHM

To enable dynamic control over semantic granularity, we introduce a post-processing algorithm
that clusters fine-grained part bounding boxes into coarser, semantically meaningful components.
This process, illustrated in Figure[6] operates without requiring manual intervention or a predefined
number of target clusters. The algorithm follows a three-step pipeline: feature extraction, clustering,
and merging.

1. Feature Extraction. For each predicted part p;, we extract its bounding box b; = (Xmin, Xmax)i
and textual description d;. A hybrid feature vector f; is then generated.

First, the semantic feature vector fn ; is obtained by encoding the description with a pretrained
CLIP model:

fiem,; = CLIP-Encode(d;). (D
Next, we compute the spatial feature vector i, ; from the bounding box’s center ¢; = (Xmin +
Xmax)/2 and size $; = Xmax — Xmin. The raw spatial vector is normalized across all N parts in the
object to produce fspat7i:

fspal,i = [Ci7 Si]a f'spatﬂ’ = Normalize({fspal,j }?;1)1 2)

Finally, the semantic and spatial features are combined using a weighting factor o € [0, 1], and the
resulting vector is L2-normalized:

£ — (1 - O‘)fsem,i S Oéfspat,i 3)
H(l - O‘)fsem,i ® afspal,?l”Q ’

where @ denotes concatenation.

2. Clustering. We apply DBSCAN to the set of feature vectors {f;}Y,. DBSCAN groups points
based on two parameters: a distance threshold ¢ and a minimum number of points ‘minPts‘. A
point f; is a core point if its e-neighborhood contains at least ‘minPts* points. A cluster is formed
by a set of density-connected points, starting from a core point and recursively expanding to all
reachable neighbors. This approach allows us to automatically identify a variable number of clusters
K without prior specification, returning a set of clusters C = {C', ..., Ck } and a set of noise points

N.

3. Merging. For each cluster C;; € C, we compute a single merged bounding box B, =
(Ximin,ky Xmax,k). This is done by taking the component-wise minimum and maximum over all
bounding boxes b; € Cj:

Xmin,k = _min (Xmin,i); Xmax,k: = max (Xmax,i)- (4)
1|b7',€ck l‘bq‘,ECk

The final output is a set of K merged bounding boxes, representing a coarser, semantically-grouped
decomposition of the object.

This automated approach provides a flexible and powerful way to adjust the granularity of the gen-
erated 3D assets, bridging the gap between fine-grained part generation and high-level semantic
understanding.

13

Under review as a conference paper at ICLR 2026

A.3 ADDITIONAL QUALITATIVE RESULTS

Figure 9] provides qualitative examples for part-aware question answering. Our model demonstrates
strong grounding capabilities by providing detailed, box-annotated answers that accurately describe
object parts in response to user queries.

Figure 8: Confidence-aware face segmentation. By leveraging the generated bounding boxes and
their associated confidence scores, we can achieve high-quality, fine-grained face-level segmentation
of 3D objects without any additional training.

Questions and Answers

What is the

man wearing?

GT

He is wearing a yellow puffer
vest<boxs><box-46><box-73><box-
48><box-80><box-117><box-78><boxe>
over a light blue long-sleeved
shirt<boxs><box-48><box-66><box-
51><box-78><box-109><box-76><boxe>,
dark blue pants<boxs><box-49><box-
16><box-54><box-77><box-77><box-
74><boxe>, and bright green
sneakers<boxs><box-48><box-1><box-
55><box-56><box-11><box-
75><boxe><boxs><box-70><box-1><box-
55><box-78><box-11><box-75><boxe>.

PointLLM

The man is wearing
a yellow shirt and
black pants.

He is wearing a yellow puffer vest
<boxs><box-45><box-73><box-48><box-
81><box-117><box-78><boxe> over a blue
shirt <boxs><box-48><box-66><box-
51><box-78><box-109><box-76><boxe>,
dark blue pants <boxs><box-49><box-
16><box-54><box-77><box-77><box-
74><boxe>, and green sneakers
<boxs><box-48><box-1><box-55><box-
56><box-11><box-75><boxe> <boxs><box-
70><box-1><box-55><box-78><box-
11><box-75><boxe>.

What type of
firearm is this?

This is a modern-style sniper rifle.

This is a rifle.

This is a bolt-action sniper rifle.

What is the

The object consists of a large main casing
<boxs><box-1><box-28><box-25><box-
125><box-105><box-92><boxe> that rests
on two long, parallel bars <boxs><box-
5><box-21><box-20><box-18><box-
28><box-106><boxe> and <boxs><box-
100><box-21><box-20><box-112><box-

overall structure 28><box-106><boxe> which act as its feet.
of the object?

The object appears
to be a tall,
rectangular

structure with a
protruding section
on one side, a
window on the front,
and multiple
ventilation slits on
its sides.

The object consists of a main rectangular
casing <boxs><box-1><box-28><box-
25><box-125><box-105><box-92><boxe>
with a large circular fan assembly
<boxs><box-12><box-38><box-89><box-
68><box-95><box-94><boxe> and two small
feet <boxs><box-5><box-21><box-20><box-
18><box-28><box-106><boxe> and
<boxs><box-100><box-21><box-20><box-
113><box-28><box-106><boxe> at bottom.

Figure 9: Qualitative results for part-aware Q&A. Our model provides more accurate and de-
scriptive answers, with precise part grounding indicated by bounding box tokens.

A.4 CONFIDENCE-AWARE FACE SEGMENTATION FROM BOUNDING BOXES

As mentioned in Section 3] the rich information encoded in our model’s autoregressive output can be
leveraged for advanced downstream tasks beyond simple generation or editing. One such application
is fine-grained, confidence-aware face segmentation, as shown in Figure[8] This process requires no

14

Under review as a conference paper at ICLR 2026

additional training and relies solely on the generated bounding boxes and the token probabilities
from the decoding process.

The algorithm follows a three-step process:

1. Confidence-Aware BBox Inference. During autoregressive decoding, the model generates a
sequence of tokens T = (¢1,ta,. .., tr) that represent a series of bounding boxes. For each token ¢;,
the model also outputs a probability distribution over the entire vocabulary, from which we derive
a confidence score. The confidence of a bounding box B;, which is composed of a sequence of k&
tokens (typically 6), is calculated as the arithmetic mean of the probabilities of its constituent tokens:

k
1
Conf(B;) = - Z; P(ti|t<) (5)
This provides a per-box confidence score that reflects the model’s certainty in its prediction.

2. Face-to-Box Assignment. Given a mesh with a set of faces F' = {f1, f2,..., fas} and a set of
inferred bounding boxes B = {Bj, Bs, ..., Bn}, we first determine which faces belong to which
boxes. A face f,, is considered a candidate for B if its centroid c,;, lies within the volume of Bj:

Cm € Bj — (Cm 2 Xmin,j) A (cm S Xmax,j) (6)

where Xmin,j and Xmax, ; are the minimum and maximum coordinates of box 55, and the comparison
is element-wise.

3. Conflict Resolution. A face’s centroid may lie within multiple overlapping bounding boxes,
creating an ambiguity. We resolve this using a two-tiered rule system:

* Containment Rule: If a face f,, is a candidate for two boxes, B; and B;, and one box is
strictly contained within the other (e.g., B; C B;), the face is assigned to the box with the
smallest volume. This prioritizes more specific, fine-grained predictions.

* Confidence Rule: If the boxes overlap but neither contains the other, the face is assigned
to the box with the highest confidence score, Conf(B;). This leverages the model’s own
uncertainty estimate to make the most likely assignment.

This process results in a deterministic assignment of each face to a single bounding box, producing
a high-quality, fine-grained segmentation of the object, as shown in Figure 8]

A.5 ANALYSIS OF SPECIAL TOKEN EMBEDDINGS

To better understand how our model interprets the specialized grammar, we visualize the embeddings
of our newly added special tokens using t-SNE, as shown in Figure The visualization reveals a
highly structured and semantically meaningful latent space.

We observe three key phenomena. First, the tokens form distinct clusters based on their function:
Point, Box, and Edit tokens occupy separate regions of the embedding space. Second, the 128
box tokens, which represent quantized coordinates, form a continuous, ordered manifold. This
demonstrates that the model has learned the ordinal nature of spatial coordinates rather than treating
them as independent categorical variables. Third, tokens with similar functions, such as the start/end
pairs for edits (e.g., <adds>/<adde>), are positioned closely together. This structured organization
confirms that the model has successfully learned a robust and interpretable representation of our
executable grammar, which is crucial for precise, language-driven 3D planning.

A.6 DATASET CONSTRUCTION AND LABELING

Scope. We build a high-quality, part-centric dataset tailored for Part-X-MLLM. The corpus con-
tains 85,771 unique 3D objects with an average of 23 parts per object. Each part is annotated
with an axis-aligned bounding box (AABB) and two levels of text: a coarse name (Q1) and a fine-
grained description (Q2). At the object level, we include a concise overall caption and a small set
of instruction—answer pairs for part-aware Q&A. All annotations are serialized using the unified
box-token grammar described in Section 3]

15

Under review as a conference paper at ICLR 2026

t-SNE Visualization of Special Token Embeddings

154 g = @ Point tokens
m m m m_<b O Boxtokens
= DD DD D,—‘ A Edit tokens
]
]
10 DD<box-as> =
mE =]
(] 7] m
u i g
] F 2) By [r
DD = B _pox7ok = gl g <bo115>
(: 5 o = Em g -
=
]]
@ “mg - @ 5]
< <boxe> siteoh <addss]
g 01 sts o= DD g®
<box-55> ehov
g DD Ogm Bm [A“’j'”‘d?imt_padp =]
w g = <r‘n‘ode> Resis=
2 =] =] A A<|nods>
ul' =5 = DD DD D<b0x 40-9
- E_m b
[}
DD
m =
~104 <box-25> oy
" =
. C
m m® = -
—-15 , - DD g <10
T T T T T - . .
-15 -10 -5 0 5 10 15 20

t-SNE Dimension 1
Figure 10: t-SNE visualization of special token embeddings. The tokens form distinct, well-
structured clusters based on their function, indicating a meaningful learned representation.

Figure 11: Model-assisted labeling pipeline. Left: inputs (full-asset + per-part crops). Middle:
structured tool schema drives the LMM to output object-level and part-level JSON. Right: validated
JSON is stored and used by the data builder.

A.6.1 MODEL-ASSISTED LABELING

To scale high-quality labels consistently, we adopt a model-assisted pipeline guided by a structured
tool schema. Given a full-asset render and a sequence of part close-ups, we collect:

* Q1: short part name.

* Q2: fine-grained natural description (< 15 words; avoid irrelevant rendering terms).

* Q3: confidence flag (Yes/No).
Concretely, we follow the schema implemented in our labeling tool, which calls an external LMM

with a JSON response format and deterministic field ordering. For each object, we provide: (1) one
full-asset image (front view); and (2) K part crops (one per part).

A.6.2 BUILDING INSTRUCTION-FOLLOWING SAMPLES

We convert raw labels into diverse instruction-following pairs covering grounding, captioning,
QA, and editing. A central convenience is a box-token grammar with opening/closing tokens
<boxs> and <boxe> wrapping six quantized coordinates, and edit verbs <adds>/<adde>,
<dels>/<dele>, and <mods>/<mode>.

Quantization and serialization. Each coordinate = € [—1, 1] is quantized into K = 128 bins as

g(z) =round(2(K — 1)), #=242 1)

then serialized as six tokens inside <boxs>...<boxe>. For reproducibility, parts in a list are deter-
ministically ordered by (¢(2min), ¢(Ymin), ¢(Tmin))-

16

Under review as a conference paper at ICLR 2026

Algorithm 1 Data building (simplified)

1: Load datas

2: for each object o do
3: Serialize each part AABB to tokens; sort by (Zmin, Ymins Tmin)
for each template ¢ € {0,...,10} do
Instantiate a natural-language prompt from a template pool

Append conversation pair to the corpus

4
5:
6: Emit the target sequence (boxes, text, or edit program)
7
8

: Shuffle and save shards; optionally balance per-template counts

Table 5: Task families and sizes. “Raw” denotes counts before optional balancing; “Final” denotes
the target budget after balancing.

Name Input Output Raw % Type Final
Single-Part Grounding point + coarse text 1 box + fine text 506,755 7.30 T3 506,755
Single-Part Grounding point + fine text 1 box 887,590 12.78 T4 506,755
Multi-Part Grounding point + text all boxes + Q1 85,771 124 TI1 257,313
Multi-Part Grounding point + text all boxes + Q2 85,771 1.24 T2 257,313
Box-to-Text (coarse) point + box + text QI 887,590 12.78 TS5 506,755
Box-to-Text (fine) point + box + text Q2 887,590 12.78 T6 506,755
Part QA point + text text 577,369 831 T7 506,755
Edit—Add point + text program (box + text) 247,998 357 TI10 247,998
Edit—Remove point + text program (boxes) 1,394,345 20.08 T8 247,998
Edit—Replace point + text program (box + text) 883,941 1273 T9 247,998
Pure box listing point + text all boxes 500,000 720 TO 500,000
Total 6,944,720 100.00 4,292,395

Task families. We instantiate eleven templates (Types 0—10):

* Type O: pure box listing from a point cloud (“detect all bounding boxes”).
* Type 1: multi-part grounding with coarse text (AABBs + Q1 per part).
* Type 2: multi-part grounding with fine text (overall description first, then AABBs + Q2).

» Type 3: single-part grounding from coarse text (locate all Q1 parts; return AABBs + de-
scription).

* Type 4: single-part grounding from fine text (locate part by Q2; return a single AABB).
* Type 5: box-to-text (given a box, answer Q1).
* Type 6: box-to-text (given a box, answer Q2).

» Type 7: part-aware QA (replace textual part references <Part_i> with the corresponding
box tokens in answers).

* Type 8: deletion program (emit <dels> [boxes] <dele>).
* Type 9: modification program (emit <mods> [box] new text <mode>).
* Type 10: addition program (emit <adds> [box] text <adde>).
Train/test split and balancing. We partition the file list deterministically at 0.5% for test and 99.5%

for train. Templates 1-2 are lightly duplicated to increase multi-part coverage; for templates 3—7 we
downsample to a fixed budget; for edit templates (8—10) we cap the number per shard. See Table 3]

A.7 DATASET STATISTICS

Task families and sizes. Table [5| summarizes per-task counts before/after balancing. Counts follow
our build scripts.

Category distribution. Our corpus spans everyday objects and scenes. Table [] lists the main
categories (top-12 by frequency).

17

Under review as a conference paper at ICLR 2026

Table 6: Category distribution (top-19).

Rank Category Count Share (%)
1 Human 20,426 23.74
2 Industrial goods 7,139 8.30
3 Home goods 7,010 8.15
4 Buildings 6,909 8.03
5 Personal items 6,730 7.82
6 Animals 6,582 7.65
7 Weapons 6,406 7.45
8 Vehicles 5,996 6.97
9 Cultural artifacts 5,995 6.97

10 Food 5,885 6.84
11 Technology & electronics 5,183 6.02
12 Others 1,774 2.06

Table 7: All-task results on the 400-case unseen benchmark. “Type/Name” follows the template
definitions in Table [Sl Blank entries indicate that the GT for that task does not contain the corre-
sponding modality.

T8 Edit—Remove (program) 0.473
T9 Edit—Replace (program) 0.409
T10 Edit—Add (program) 0.700 | 80.38 79.71 47.62 51.66 46.63

Task Type Name | IoU | SBERT SimCSE BLEU-1 ROUGE-L METEOR

0 TO Pure box listing 0.755

1 TI Multi-Part Grounding (Q1) | 0.728 | 55.60 54.19 35.55 35.58 18.09
2 T2 Multi-Part Grounding (Q2) | 0.736 | 63.68 60.68 31.01 33.68 27.72
3 T3 Single-Part Grounding (Q1) | 0.528 | 73.28 71.70 36.29 38.94 33.21
4 T4 Single-Part Grounding (Q2) | 0.443

5 T5 Box-to-Text (Q1) 57.35 56.49 38.12 38.14 19.49
6 T6 Box-to-Text (Q2) 64.64 61.96 31.35 33.73 28.13
7 T7 Part QA 0.554 | 78.98 84.25 40.54 42.26 34.24
8

9

0

—_

A.8 COMPREHENSIVE RESULTS ON UNIPART-BENCH

We report per-task results on UniPart-Bench. Note that UniPart-Bench is a held-out subset of
our 85,771-object training dataset, ensuring identical data construction pipeline and distribution
characteristics. Following our data construction, each ground-truth (GT) item may contain both
BBox tokens and text. When both are present, we evaluate BBoxes with IoU and text with
SBERT/SimCSE/BLEU-1/ROUGE-L/METEOR. If a GT contains only BBoxes or only text, we
evaluate the available modality and leave the other columns blank. Table [7| summarizes results for
Tasks 010 while mapping each task to its template Type and name as in Table 3]

Discussion. = Language-intensive tasks (T7 Part QA, T10 Edit—Add) obtain the highest
SBERT/SimCSE and strong lexical metrics, indicating robust alignment between our planned
box-conditioned answers/programs and textual GT. Among IoU-based tasks, TO/T2/T10 show the
strongest geometric alignment, reflecting reliable planning for pure detection, fine grounding, and
edit addition respectively. Blank text or IoU entries arise by design when a task’s GT lacks the
corresponding modality.

A.9 PROMPT TEMPLATES FOR DATA CONSTRUCTION

To ensure the reproducibility of our dataset construction, this section provides the complete set of
English prompt templates used to generate the instruction-following samples for each of the 11 task
types, as described in Section[A.6.2] These templates are presented in the tables below.

A.9.1 TYPE O: PURE BOX LISTING

18

Under review as a conference paper at ICLR 2026

o
S

Prompt Template

O 00NN K~ Wi —

"Detect all bounding boxes in this point cloud"
"Show me all the bounding boxes"

"Generate bounding boxes for all objects”

"Find all object boundaries"

"Extract all bounding boxes from this scene"
"Locate all object bounding boxes"

"Output all detected bounding boxes"

"Provide bounding boxes for all components”
"Identify all object boundaries in this model"
"Return all bounding box coordinates"

"Detect and output all object boxes"

"Find all rectangular boundaries"”

"Generate all object bounding boxes"

"Show all detection boxes"

"Output bounding box coordinates for all objects"
"Detect all objects and return their boxes"
"Find every bounding box in this point cloud”
"Extract object boundaries from this 3D data"
"Provide all object detection boxes"

"Return coordinates of all detected objects"

A.9.2 TYPE 1: MULTI-PART GROUNDING (COARSE TEXT)

ID

Prompt Template

10

11

12

13

14
15

16

"What distinct components does this contain? Please
annotate with bounding boxes and provide short
labels™"

"What functional parts make up this object? First
provide 6 box-tokens then write the name"

"What structural elements can be decomposed? Output
in the specified format"

"What key components does this have? Please locate
and name them"

"What identifiable parts are there? Mark with AABB
tokens"

"What construction units can be distinguished?
Please list them"

"What parts need to be annotated in this?"

"What basic components does this contain? Please
output bounding box + label"

"What main parts is this composed of? Please
enumerate using token format"

"What recognizable sub-parts are there? Use the
specified format for output”

"Which distinct parts exist here? Provide
box-tokens and short labels"

"Identify every component and prepend its 6
quantized box tokens"

"List all separable elements; each line starts with
tokens"

"Locate and name each part of the object”
"Enumerate all components with their bounding-box
tokens"

"Break the shape into parts, output AABB tokens then
a concise tag"

19

Under review as a conference paper at ICLR 2026

ID Prompt Template

17 "Mark every structural unit. Format: tokens
followed by NAME"

18 "Point out all functional pieces and give their
tokenized boxes"

19 "Provide the set of parts and their six token
indices"

20 "Give every recognized section together with its
AABB tokens"

21 "List all structural elements using 6 box-tokens +
name format"

22 "Return the quantized bounding box and short name
for each part"

23 "Please enumerate in the format of tokens followed
by NAME"

24 "Output part AABB (tokens) and their names"

25 "Give the list of components together with their
quantized boxes"

26 "Return each element as six tokens followed by a
short label"

27 "Provide AABB tokens plus name for every
distinguishable component"

28 TM"Enumerate all parts with their bounding-box tokens
and a brief tag"

29 "Please identify all parts and output bounding box
tokens + short name"

30 "After completion, only return the parts list
without extra explanation”

31 "Output strictly according to the specified format,
no additional text"

32 "No extra description at the end, only list the
parts"

33 "List the token AABB and name for each part"

34 "Give tokens and labels in order of appearance"

35 "Use six tokens followed by space and name"

36 "Example line: tokens label, please output
according to this example"

37 "Return all components and their quantized

coordinate indices"

A.9.3 TYPE 2: MULTI-PART GROUNDING (FINE TEXT)

ID

Prompt Template

"Please describe the overall appearance of this
point cloud in detail, then introduce each part one
by one (with AABB tokens)"

"First give an overall impression, then explain each
part in turn with bounding box tokens"

"Please provide an overview of this model, and
describe each component with tokens"

"What is the overall shape like? What are the
materials and functions of each part?"

"Please first introduce the complete structure, then
list parts with tokens + detailed explanations"
"From this point cloud, give an overall description
then detail each part with its bounding box"

20

Under review as a conference paper at ICLR 2026

ID

Prompt Template

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

"Describe the complete object, followed by part-wise
details using quantized tokens"

"Provide a holistic view and then list all elements
with 6 box tokens and properties"

"Summarize the scene, then output each component in
the required token format"

"Give a full description first, then annotate every
part with its box tokens and long caption"

"Please first present the overall features, then
elaborate on each functional component"

"After summarizing the appearance, list each part
item by item (format: tokens description)"

"Give the global appearance, then each part line
starts with 6 tokens"

"Present the overall structure and afterwards the
detailed attributes of all components"

"Explain the general design; afterwards specify each
element with its tokens and features"

"First output an overall description, then write a
detailed explanation for each part with tokens"
"Describe holistically, then provide component-wise
explanations with bounding-box indices"

"Begin with the object overview; subsequently list
parts and their detailed properties”

"Offer a complete summary and then enumerate parts
with tokenized boxes"

"Return the overall description and AABB + detailed
explanation for each part"

"Finally, please list all components and their
features in the specified format"

"Please output in the format of ’"overall description
tokens description’"

"Provide each part in turn (including token bounding
box and function/material description)"

"Provide the overall description followed by every
part in the required tokenized box format"

"Please finish by listing each component’s six box
tokens and an informative sentence"

"Return first the global description, then each
element as tokens LONG.DESCRIPTION"

"Include a holistic summary, then annotate each part
with its quantized AABB and details"

"Conclude with the part-wise list using bounding-box
tokens plus their detailed attributes"

"Output the parts list, each line starting with
tokens"

"Please output the description of this object or
scene and its parts’ BBox information, overall first
then parts, format and order cannot be changed"

"End by outputting all parts and their respective
detailed features"

"Summary first, then component lines with tokens and
descriptions™"

"Output strictly in two sections: overview +
per-part details"

"After the overview, enumerate every part with its
quantized box tokens"

21

Under review as a conference paper at ICLR 2026

ID

Prompt Template

35

"Overall + parts format example: tokens The left
handle is ..."

A.9.4 TYPE 3: SINGLE-PART GROUNDING (FROM COARSE TEXT)

]
S

Prompt Template

O 00NN B~ Wi —

"Find the {part_name} in this model"

"Locate the {part_name} in this model™"

"Point out the {part_name} in this point cloud"
"Mark the {part_name} in this object"

"Where is the {part.name} in this 3D model?"
"Identify the {part.name} in this point cloud"
"Please show all {part_name} in this object"
"Where is the position of {part_name} in this scene?"
"Locate the {part_name} in this model"

"Find the {part_name} in this point cloud"
"Point out the {part.name} in this object"
"Where is the {part_name} in this 3D shape?"
"Mark the {part_name} in this model"

"Show all {part_name} in this object™

"Identify the {part._name} in this point cloud"
"Highlight the position of {part_name}"

A.9.5 TYPE 4: SINGLE-PART GROUNDING (FROM FINE TEXT)

ID

Prompt Template

10
11
12

13
14

15

"Where is the part corresponding to this
description: {part_description}"

"Help me locate this part: {part_description}"
"Find the corresponding part based on this
description: {part_description}"

"In this point cloud, which part does
{part_description} refer to?"

"Mark the position of this part: {part.-description}"
"Please provide the bounding box for the

part corresponding to this description:
{part_description}"

"Find the part that matches this description:
{part_description}"

"Locate the component described as:
{part_description}"

"Which part is this referring to:
{part_description}"

"Mark the boundary of: {part._description}"

"Show the box coordinates for: {part_description}"
"Provide the bounding box for this described
element: {part_description}"

"Where exactly is: {part._description}"

"Given this description, locate the corresponding
part: {part._description}"

"Locate the part based on this text and provide its
AABB: {part._description}"

22

Under review as a conference paper at ICLR 2026

ID

Prompt Template

16

"Which specific part does this description
correspond to? {part._description}"

A.9.6 TYPE 5: BOX-TO-TEXT (COARSE)

]
S

Prompt Template

O 00 IO WUk~ Wi —

"What is this part?"

"What is this marked area?"

"What 1is contained in this box?"

"What is this marked portion called?"

"What part is inside this bounding box?"

"What 1is this part called?"

"Name this highlighted component"

"What is contained in this bounding box?"
"Identify this marked region"

"Give the name of this part"

"What is inside this AABB box?"

"Name this area with one word"

"What’s the simple label for this bounded area?"
"What would you call this boxed element?"

"What part does this bounding box point to? Please
answer briefly"

"What is this outlined section?"

"Provide the name for this demarcated part"

A.9.7 TYPE 6: BoX-TO-TEXT (FINE)

ID

Prompt Template

—_—

10
11

12

13

14

"Describe this part in detail"

"What does this area contain? Please explain in
detail"

"Please describe the part within this bounding box,
including appearance, material and function"

"What is in this box? Please provide detailed
information"

"What is the marked portion? Please provide a
complete description”

"Describe this part in detail"

"What can you tell me about this highlighted
component?"

"Provide a comprehensive description of what’s in
this box"

"Explain the appearance, material and function of
this marked area"

"Give details about this bounded region"

"What are the characteristics of this marked area?
Please describe comprehensively"

"Elaborate on the appearance and purpose of this
part"

"What is contained in this bounding box? Elaborate
on its features"

"Tell me everything about this outlined element"

23

Under review as a conference paper at ICLR 2026

ID

Prompt Template

15

16

17

"What is the material, shape and function of the
object in this box?"

"Please characterize this demarcated component
thoroughly"

"What’s inside this box? Include all relevant
details"

A.9.8 TYPE 7: PART-AWARE Q&A

This task reuses the questions from the ‘QA°* field in the raw annotations and replaces textual part
references with box tokens in the answer. No new templates are generated for the questions them-

selves.

A.9.9 TYPE 8: DELETION PROGRAM

ID

Prompt Template

— OO0 ION N A W~

—_

13
14
15
16
17
18
19
20

By part name
"Please remove the {part.name} from this object"
"Get rid of every {part_name}"
"I want to delete the {part_name} here"
"Can you erase all instances of the {part_name}?"
"Show me this model but without the {part_name}"
"Take out the {part_name}"
"The {part_name} needs to be removed"
"Omit the {part_name} from this scene"
"I don’t want to see the {part_name} anymore"
"Could you proceed with deleting the {part_name}?"
"Let’s see what it looks like if we remove the
{part_name}"
"Exclude the {part_name} from the final output"
"The task is to get rid of the {part_name}"
"Wipe out the {part_name} from the 3D model"
"Please filter out the {part_name}"
"Delete the component identified as {part_name}"
"I require the removal of the {part_name}"
"Make the {part_name} disappear"
"This model would be better without the {part_name}"
"Execute the deletion of the {part_name}"

21

22

23
24

25

26

27

28
29

By part description
"Please remove this specific part:
ipart_descriptionf
"I don’t want the component described as
part_description
"Delete the part that is Part_descriptionf
"Get rid of this particular element:
part_description
"Find the part matching part_descriptiondnd remove
lt n
"The element characterized by part_descriptionsShould
be deleted”
"Erase the component with this description:
part_description
"I want to exclude the part that is part_description®
"Locate and then delete this item: part_descriptionf

24

Under review as a conference paper at ICLR 2026

ID

Prompt Template

30

31

32

33
34

35
36

37
38

39

40

"Take out the part that looks like this:
part_descriptionf

"The target for deletion is the part described as:
part_description

"Can you remove the part with these features:
part_descriptionf

"Please omit this from the model: part_description®
"Based on the description part_description, remove
the corresponding part"

"I’ve identified a part to remove: Ppart_description’
"Wipe the following item from the scene:
part_description

"The part to be erased is: part_descriptionf
"Remove the object that fits this profile:
part_description

"Please execute a deletion on the component
identified as part_description®

"Let’s remove one specific part: part_descriptionf

A.9.10 TYPE 9: MODIFICATION PROGRAM

ID

Prompt Template

W N =

10

11

12

13

14

15

"Please edit the {part.name} to be {new.description}"
"Change the {part_name} into {new._description}"
"Replace the {part_name} with this:
{new_description}"

"I want the {part.name} to look like this:
{new_description}"

"Modify the {part_name} to become {new._description}"
"Update the {part_name} so it is now
{new_description}"

"Let’s alter the {part.name}. It should be
{new_description}"

"Transform the {part_name} into {new_description}"
"Could you make the {part._name} to be
{new_description}"

"My instruction is to change the {part_name} to
{new_description}"

"The {part_name} needs an update. Here are the new
details: {new_description}"

"Let’s swap the current {part.name} with a new one:
{new_description}"

"The {part_-name} should be revised to be
{new_description}"

"Please perform an edit on the {part_name}. It
should now be {new._description}"

"Adjust the {part_name} to match this description:
{new_description}"

A9.11

TYPE 10: ADDITION PROGRAM

ID

Prompt Template

1

"Add the {part._name} to this 3D asset."

25

Under review as a conference paper at ICLR 2026

ID

Prompt Template

0NN N B W

10
11
12
13
14
15
16
17
18

19

20
21
22
23
24
25
26
27
28

29
30

"Please add a {part.name} to the model."
"Insert the {part_name} component."
"Attach the {part_name} to this object."

"Place the {part_name} on this model."

"Include the {part_name} in this design."
"Incorporate the {part._name} into this structure."
"This model is missing its {part_name}. Please add
it."

"Complete this 3D model by adding the {part._name}."
"The {part.name} is missing. Add it back."
"Restore the {part_name} to this object."

"Fill in the missing {part_name}."

"This asset needs a {part_name}. Add it."

"Enhance this model with a {part_name}."

"Improve this design by adding the {part._name}."
"Augment this object with the {part_name}."

"Extend this model to include the {part_name}."
"Could you add the {part_name} to complete this
model?"

"I need you to add the {part_name} to this 3D
object."”

"Would you please attach the {part_name}?"

"Can you help me add the {part_name} component?"
"Mount the {part_name} in the appropriate position."
"Install the {part_name} where it belongs."
"Position the {part_name} correctly on this model."
"Generate and add the {part_name} to this asset."
"Create the {part_name} component for this model."
"Design and attach the {part_name}."

"This looks incomplete without the {part.name}. Add
it."

"To make this functional, add the {part_name}."
"The model requires a {part,name} to be complete."

31
32
33
34
35
36
37
38
39

41
42
43
44
45
46
47
48

Part-specific templates
"Add the head section to complete this figure."
"This model needs its head. Please attach it."
"The top part is missing. Add the head."
"Install the wheels to make this vehicle complete.”
"Add wheels for mobility."
"Mount the wheels on this vehicle."
"Install the door to complete the entrance."
"Add a door for access."
"Place the door in the opening.”
"Attach the handle for better grip."
"Add the handle component."
"Install the handle mechanism."
"Add the legs to support this structure."
"Attach the leg components."”
"Install the supporting legs."
"Add wings to complete this model."
"Attach the wing components."
"Install the wings on both sides."

26

	Introduction
	Related Work
	3D Multimodal Understanding and Generation
	Part Generation
	3D Editing

	Methodology
	Motivation
	Unified Architecture for Part-Aware Planning
	Downstream Geometry Interfaces
	End-to-End Task Realization
	Multi-Stage Instruction Tuning
	Implementation and Execution Backends

	Experiments
	Dataset
	Evaluation Protocol
	Part-Aware Generation and Editing
	Part and Object Understanding

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Appendix
	The Use of Large Language Models (LLMs)
	More Experimental Results
	Semantic Part Clustering Algorithm

	Additional Qualitative Results
	Confidence-Aware Face Segmentation from Bounding Boxes
	Analysis of Special Token Embeddings
	Dataset Construction and Labeling
	Model-Assisted Labeling
	Building Instruction-Following Samples

	Dataset Statistics
	Comprehensive Results on UniPart-Bench
	Prompt Templates for Data Construction
	Type 0: Pure Box Listing
	Type 1: Multi-Part Grounding (Coarse Text)
	Type 2: Multi-Part Grounding (Fine Text)
	Type 3: Single-Part Grounding (from Coarse Text)
	Type 4: Single-Part Grounding (from Fine Text)
	Type 5: Box-to-Text (Coarse)
	Type 6: Box-to-Text (Fine)
	Type 7: Part-Aware Q&A
	Type 8: Deletion Program
	Type 9: Modification Program
	Type 10: Addition Program

