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ABSTRACT

In this paper, we provide a comprehensive toolbox for understanding and enhancing
self-supervised learning (SSL) methods through the lens of matrix information
theory. Specifically, by leveraging the principles of matrix mutual information
and joint entropy, we offer a unified analysis for both contrastive and feature
decorrelation based methods. Furthermore, we propose the matrix variational
masked auto-encoder (M-MAE) method, grounded in matrix information theory, as
an enhancement to masked image modeling. The empirical evaluations underscore
the effectiveness of M-MAE compared with the state-of-the-art methods, including
a 3.9% improvement in linear probing ViT-Base, and a 1% improvement in fine-
tuning ViT-Large, both on ImageNet.

1 INTRODUCTION

Self-supervised learning (SSL) has demonstrated remarkable advancements across various tasks,
including image classification and segmentation, often surpassing the performance of supervised
learning approaches (Chen et al., 2020; Caron et al., 2021; Li et al., 2021; Zbontar et al., 2021;
Bardes et al., 2021). Broadly, SSL methods can be categorized into three types: contrastive learning,
feature decorrelation based learning, and masked image modeling.

One prominent approach in contrastive self-supervised learning is SimCLR (Chen et al., 2020),
which employs the InfoNCE loss (Oord et al., 2018) to facilitate the learning process. Interestingly,
Oord et al. (2018) show that InfoNCE loss can serve as a surrogate loss for the mutual information
between two augmented views. Unlike contrastive learning which needs to include large amounts of
negative samples to “contrast”, another line of work usually operates without explicitly contrasting
with negative samples which we call feature decorrelation based learning. Recently, there has been a
growing interest in developing feature decorrelation based SSL methods, e.g., BYOL (Grill et al.,
2020), SimSiam (Chen & He, 2021), Barlow Twins (Zbontar et al., 2021), VICReg (Bardes et al.,
2021), etc. These methods have garnered attention from researchers seeking to explore alternative
avenues for SSL beyond contrastive approaches.

On a different note, the masked autoencoder (MAE) (He et al., 2022) introduces a different way
to tackle self-supervised learning. Unlike contrastive and feature decorrelation based methods that
learn useful representations by exploiting the invariance between augmented views, MAE employs a
masking strategy to have the model deduce the masked patches from visible patches. Therefore, the
representation of MAE carries valuable information for downstream tasks.

At first glance, these three types of self-supervised learning methods may seem distinct, but re-
searchers have made progress in understanding their connections. Garrido et al. (2022) establish a
duality between contrastive and feature decorrelation based methods, shedding light on their fun-
damental connections and complementarity. Additionally, Balestriero & LeCun (2022) unveil the
links between popular feature decorrelation based SSL methods and dimension reduction methods
commonly employed in traditional unsupervised learning. These findings contribute to our under-
standing of the theoretical underpinnings and potential applications of feature decorrelation based
SSL techniques. However, compared to connections between contrastive and feature decorrelation
based methods, the relationship between MAE and contrastive or feature decorrelation based methods
remains largely unknown. To the best of our knowledge, Zhang et al. (2022b) is the only paper that
relates MAE to the alignment term in contrastive learning.

Though progress has been made in understanding the existing self-supervised learning methods,
the tools used in the literature are diverse. As contrastive and feature decorrelation based learning
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usually use two augmented views of the same image, one prominent approach is analyzing the
mutual information between two views (Oord et al., 2018; Shwartz-Ziv et al., 2023; Shwartz-Ziv
& LeCun, 2023). A unified toolbox to understand and improve self-supervised methods is needed.
Recently, Bach (2022); Skean et al. (2023) have considered generalizing the traditional information-
theoretic quantities to the matrix regime. Interestingly, we find these quantities can be powerful tools
in understanding and improving existing self-supervised methods regardless of whether they are
contrastive, feature decorrelation-based, or masking-based (He et al., 2022).

Taking the matrix information theoretic perspective, we analyze some prominent contrastive and
feature decorrelation based losses and prove that both Barlow Twins and spectral contrastive learning
(HaoChen et al., 2021) are maximizing mutual information and joint entropy. These claims are
crucial for analyzing contrastive and feature decorrelation based methods, offering a cohesive and
elegant understanding. More interestingly, the same analytical framework extends to MAE as well,
wherein the concepts of mutual information and joint entropy gracefully degenerate to entropy.
Propelled by this observation, we augment the MAE loss with matrix entropy, giving rise to our
new method, Matrix variational Masked Auto-Encoder (M-MAE). Empirically, M-MAE stands out
with commendable performance. Specifically, it has achieved a 3.9% improvement in linear probing
ViT-Base, and a 1% improvement in fine-tuning ViT-Large, both on ImageNet. This empirical result
not only underscores the efficacy of M-MAE but also accentuates the potential of matrix information
theory in ushering advancements in self-supervised learning paradigms.

In summary, our contributions can be listed as follows:

• We use the matrix information-theoretic tools to understand existing contrastive and feature
decorrelation based self-supervised methods.

• We introduce a novel method, M-MAE, which is rooted in matrix information theory,
enhancing the capabilities of standard masked image modeling.

• Our proposed M-MAE has demonstrated remarkable empirical performance, showcasing a
notable improvement in self-supervised learning benchmarks.

2 BACKGROUND

2.1 MATRIX INFORMATION-THEORETIC QUANTITIES

In this section, we shall briefly summarize the matrix information-theoretic quantities that we shall
use in this paper. We shall first provide the definition of (matrix) entropy as follows:
Definition 2.1 (Matrix-based α-order (Rényi) entropy (Skean et al., 2023)). Suppose matrix K1 ∈
Rn×n which K1(i, i) = 1 for every i = 1, · · · , n. α is a positive real number. The α-order (Rényi)
entropy for matrix K1 is defined as follows:

Hα (K1) =
1

1− α
log

[
tr

((
1

n
K1

)α)]
,

where Kα
1 is the matrix power.

The case of α = 1 recovers the von Neumann (matrix) entropy, i.e.

H1 (K1) = − tr

(
1

n
K1 log

1

n
K1

)
.

Using the definition of matrix entropy, we can define matrix mutual information and joint entropy as
follows.
Definition 2.2 (Matrix-based mutual information). Suppose matrix K1,K2 ∈ Rn×n which
K1(i, i) = K2(i, i) = 1 for every i = 1, · · · , n. α is a positive real number. The α-order (Rényi)
mutual information for matrix K1 and K2 is defined as follows:

Iα(K1;K2) = Hα(K1) + Hα(K2)−Hα(K1 ⊙K2).

Definition 2.3 (Matrix-based joint entropy). Suppose matrix K1,K2 ∈ Rn×n which K1(i, i) =
K2(i, i) = 1 for every i = 1, · · · , n. α is a positive real number. The α-order (Rényi) joint-entropy
for matrix K1 and K2 is defined as follows:

Hα(K1,K2) = Hα(K1 ⊙K2),
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where ⊙ is the (matrix) Hadamard product.

Another important quantity is the matrix KL divergence defined as follows.
Definition 2.4 (Matrix KL divergence (Bach, 2022)). Suppose matrix K1,K2 ∈ Rn×n which
K1(i, i) = K2(i, i) = 1 for every i = 1, · · · , n. The Kullback-Leibler (KL) divergence between
these two matrices K1 and K2 is defined as

KL (K1 || K2) = tr [K1 (logK1 − logK2)] .

2.2 CANONICAL SELF-SUPERVISED LEARNING LOSSES

We shall recap some canonical losses used in self-supervised learning. As we roughly characterize
self-supervised learning into contrastive learning, feature decorrelation based learning, and masked
image modeling. We shall introduce the canonical losses used in these areas sequentially.

In contrastive and feature decorrelation based learning, people usually adopt the Siamese architecture,
namely using two parameterized networks: the online network fθ and the target network fϕ. To
create different perspectives of a batch of B data points {xi}Bi=1, we randomly select an augmentation
T from a predefined set τ and use it to transform each data point, resulting in new representations
z
(1)
i = fθ(T (xi)) ∈ Rd and z

(2)
i = fϕ(xi) ∈ Rd generated by the online and target networks,

respectively. We then combine these representations into matrices Z1 = [z
(1)
1 , . . . , z

(1)
B ] and Z2 =

[z
(2)
1 , . . . , z

(2)
B ]. In masked image modeling, people usually adopt only one branch and do not use

Siamese architecture.

The idea of contrastive learning is to make the representation of similar objects align and dissimilar
objects apart. One of the widely adopted losses in contrastive learning is InfoNCE loss (Chen et al.,
2020), which is defined as follows:

LInfoNCE = −1

2
(

B∑
i=1

log
exp ((z

(1)
i )⊤z

(2)
i )∑B

j=1 exp ((z
(1)
i )⊤z

(2)
j )

+

B∑
i=1

log
exp ((z

(2)
i )⊤z

(1)
i )∑B

j=1 exp ((z
(2)
i )⊤z

(1)
j )

). (1)

As the InfoNCE loss may be difficult to analyze theoretically, HaoChen et al. (2021) then propose
spectral contrastive loss as a good surrogate for InfoNCE. The loss is defined as follows:

B∑
i=1

|| z(1)i − z
(2)
i ||22 +λ

∑
i ̸=j

((z
(1)
i )⊤z

(2)
j )2, (2)

where λ is a hyperparameter.

The idea of feature decorrelation based learning is to learn useful representation by decorrelating
features and do not explicit distinguishes negative samples. Some notable losses involve VICReg
(Bardes et al., 2021), Barlow Twins (Zbontar et al., 2021). The Barlow Twins loss is given as follows:

B∑
i=1

(1− Cii)2 + λ

B∑
i=1

∑
j ̸=i

Cij2, (3)

where λ is a hyperparameter and Cij is the cross-correlation coefficient.

The idea of masked image modeling is to learn useful representations by generating the representation
from partially visible patches and predicting the rest of the image from the representation, thus useful
information in the image remains in the representation. We shall briefly introduce MAE (He et al.,
2022) as an example. Given a batch of images {xi}Bi=1, we shall first partition each of the images
into n disjoint patches xi = xi(j) (1 ≤ j ≤ n). Then B random mask vectors mi ∈ {0, 1}n will be
generated, and denote the two images generated by these masks as

x
(1)
i = xi ⊙mi and x

(2)
i = xi ⊙ (1−mi). (4)

The model consists of two modules: an encoder f and a decoder g. The encoder transform each
view x

(1)
i into a representation zi = f(x

(1)
i ). The loss function is

∑B
i=1 || g(zi)− x(2) ||22. We also

denote the representations in a batch as Z = [z1, · · · , zB ].

3



Under review as a conference paper at ICLR 2024

The goal of this paper is to use matrix information maximization viewpoint to understand the
seemingly different losses in contrastive and Feature Decorrelation based methods. We would like
also to use matrix information-theoretic tools to improve MAE. We only analyze 3 popular losses:
spectral contrastive, Barlow Twins and MAE.

3 APPLYING MATRIX INFORMATION THEORY TO CONTRASTIVE AND
FEATURE DECORRELATION BASED METHODS

As we have discussed in the preliminary session, in contrastive and feature decorrelation based
methods, a common practice is to use two branches (Siamese architecture) namely an online network
and a target network to learn useful representations. However, the relationship of the two branches
during the training process is mysterious. In this section, we shall use matrix information quantities
to unveil the complicated relationship in Siamese architectures.

3.1 MEASURING THE MUTUAL INFORMATION

One interesting derivation in Oord et al. (2018) is that it can be shown that

LInfoNCE ≥ − I(Z(1);Z(2)) + logB, (5)

where Z(i) denotes the sampled distribution of the representation.

Though InfoNCE loss is a promising surrogate for estimating the mutual information between
the two branches in self-supervised learning. Sordoni et al. (2021) doubt its effectiveness when
facing high-dimensional inputs, where the mutual information may be larger than logB, making the
bound vacuous. Then a natural question arises: Can we calculate the mutual information exactly?
Unfortunately, it is hard to calculate the mutual information reliably and effectively. Thus we may
change our strategy by using the matrix mutual information instead.

As the matrix mutual information has an exact and easy-to-calculate expression, one question remains:
How to choose the matrices used in the (matrix) mutual information? We find the (batch normalized)
sample covariance matrix serves as a good candidate. The reason is that by using batch normalization,
the empirical covariance matrix naturally satisfies the requirements that: All the diagonals equal to 1,
the matrix is positive semi-definite and it is easy to estimate from data samples.

Figure 1: Visualization of matrix-
based mutual information on CIFAR10
for Barlow-Twins, BYOL and Sim-
CLR.

One vital problem with the bound Eqn. (5) is that it only
provides an inequality, and thus doesn’t directly show the
exact equivalence of contrastive learning and mutual in-
formation maximization. In the following, we will show
that two pivotal self-supervised learning methods are ex-
actly maximizing the mutual information. Specifically, we
consider setting the α in entropy to be 2.

We shall first present a proposition that relates the mutual
information with the Frobenius norm.

Proposition 3.1. I2(K1;K2) = 2 log d−log
||K1||2F ||K2||2F
||K1⊙K2||2F

,
where d is the size of matrix K1.

One thing interesting in matrix information theory that dis-
tinguishes it from traditional information theory is that it
can not only deal with samples from batches but also can
exploit the relationship among batches, which we will infor-
mally call batch-dimension duality. Specifically, the sample covariance matrix can be expressed as
ZZ⊤ ∈ Rd×d and the batch-sample Gram matrix can be expressed as Z⊤Z ∈ RB×B . The closeness
of these two matrices makes us call B and d has duality.

Notably, spectral contrastive loss (HaoChen et al., 2021) is a good surrogate loss for InfoNCE loss and
calculates the loss involving the batch Gram matrix. Another famous loss used in feature decorrelation
based methods is the Barlow Twins (Zbontar et al., 2021), which involves the batch-normalized
sample covariance matrix. As we have discussed earlier, these two losses can be seen as a natural
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duality pair. In the following, we shall prove that these two losses exactly maximize the (matrix)
mutual information at the optimal point.

Theorem 3.2. The optimal point of Barlow twins and spectral contrastive learning losses maximize
the matrix mutual information.

Proof. Please refer to Appendix A.

What about the mutual information when α = 1? We shall then plot the mutual information of
covariance matrices between branches in Figure 1. We can find out that the mutual information
increases during training, which is similar to the case of α = 2 proved by Theorem 3.2. More
interestingly, the mutual information of SimCLR and Barlow Twins meet at the end of training,
strongly emphasizing the duality of these algorithms.

3.2 MEASURING THE (JOINT) ENTROPY

After discussing the application of matrix mutual information in self-supervised learning. We wonder
how the entropy evolves during the process.

Denote K1 = Z1Z
⊤
1 and K2 = Z2Z

⊤
2 for the online network and target network respectively. We

can show that the matrix joint entropy can indeed reflect the dimensions of representations in Siamese
architectures.

Proposition 3.3. The joint entropy lower bounds the representation rank in two branches by having
the inequality as follows:

H1(K1,K2) ≤ log(rank(K1 ⊙K2)) ≤ log rank(K1) + log rank(K2). (6)

This proposition shows that the bigger the joint entropy between the two branches is, the less likely
that the representation collapse. We shall also introduce another surrogate for entropy estimation
which is closely related to matrix entropy:

Definition 3.4. Suppose B samples Z = [z1, z2, · · · , zB ] ∈ Rd×B are i.i.d. samples from a
distribution p(z). Then the total coding rate (TCR) (Yu et al., 2020) of p(z) is defined as follows:

TCRµ(Z) = log det(µId + ZZ⊤), (7)

where µ is a non-negative hyperparameter.

For notation simplicity, we shall also write TCRµ(Z) as TCRµ(ZZ
⊤). We shall then show the close

relationship between TCR and matrix entropy in the following theorem through the lens of matrix
KL divergence. The key is utilizing the asymmetries of the matrix KL divergence.

Proposition 3.5. Suppose K is a d × d matrix with the constraint that each of its diagonals is 1.
Then the following equalities holds:

H1(K) = log d− 1

d
KL(K, Id), andTCRµ(K) = d log(1 + µ)−KL(Id,

1

1 + µ
(µId +K)). (8)

Figure 2: Visualization of matrix-
based joint entropy on CIFAR10 for
Barlow-Twins, BYOL and SimCLR.

As TCR can be treated as a good surrogate for entropy, we
can obtain the following bound.

Proposition 3.6. The (joint) total coding rate upperbounds
the rate in two branches by having the inequality as follows:

TCRµ2+2µ(K1⊙K2) ≥ TCRµ(K1)+TCRµ(K2). (9)

Combining Propositions 3.5, 3.3, and 3.6, it is clear that by
using TCR as a surrogate for entropy, the bigger the entropy
is for each branch the bigger the joint entropy. Thus by
combining the conclusion from the above two theorems, it
is evident that the joint entropy strongly reflects the extent
of collapse during training.
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What about the joint entropy when α = 1 behaves empir-
ically? We shall then plot the joint entropy of covariance
matrices between branches in Figure 2. We can find out that the joint entropy increases during
training. More interestingly, the joint entropy of SimCLR and Barlow Twins meet at the end of
training, strongly reflects a duality of these algorithms. Notably, we can also show that spectral
contrastive and Barlow Twins maximize exactly the joint entropy between branches during training.
This remarkable conclusion is proved when the Renyi entropy order α = 2.

We shall first present a proposition that relates the joint entropy with the Frobenius norm.
Proposition 3.7. Suppose K1,K2 ∈ Rd×d. Then H2(K1,K2) = 2 log d − log || K1 ⊙ K2 ||2F ,
where F is the Frobenius norm.

Then we can show that the optimal point of spectral contrastive loss and Barlow twins loss can be
seen as maximizing the joint entropy between branches.
Theorem 3.8. The optimal point of Barlow twins and spectral contrastive learning losses maximize
the matrix joint entropy.

Proof. Please refer to Appendix A.

4 APPLYING MATRIX INFORMATION THEORY TO MASKED IMAGE MODELING

As contrastive and feature decorrelation based methods usually surpass MAE by a large margin on
linear probing. One may wonder if can we apply this matrix information theory to improve MAE.
From a traditional information-theoretic point of view, when the two branches merge into one branch
the mutual information I(X;X) and the joint entropy H(X,X) both equal to the Shannon entropy
H(X). Thus we would like to use the matrix entropy in MAE training. Moreover, matrix entropy can
be shown to be very close to a quantity called effective rank. And Zhang et al. (2022b); Garrido et al.
(2023) show that the effective rank is a critical quantity for better representation. The definition of
effective rank is formally stated in Definition 4.1 and it is easy to show when the matrix is positive
semi-definite and has all its diagonal being 1 the effective rank is the exponential of the matrix
entropy.
Definition 4.1 (Effective Rank (Roy & Vetterli, 2007)). For a non-all-zero matrix A ∈ Cn×n, the
effective rank, denoted as erank(A), is defined as

erank(A) ≜ exp (H (p1, p2, . . . , pn)), (10)

where pi =
σi∑n

k=1 σk
, {σi | i = 1, · · · , n} represents the singular values of A, and H denotes the

Shannon entropy.

Thus it is natural to add the matrix entropy to the MAE loss to give a new self-supervised learning
method. As the numerical instability of calculating matrix entropy is larger than its proxy TCR,
we shall use TCR loss instead. One may wonder if we can link this new loss to other traditional
unsupervised learning methods to give a better understanding. We answer this in the affirmative by
linking this to the VAE approaches.

Recall the loss for traditional variational auto-encoder which is given as follows.

LVAE = Ex∼p̃(x)[− log q(x | z) + KL(p(z | x)∥q(z))], z ∼ p(z | x).

The loss contains two terms, the first term − log q(x | z) is a reconstruction loss that measures the
decoding accuracy. The second term is a discriminative term, which measures the divergence of the
encoder distribution p(z | x) with the latent distribution q(z).

In the context of masked image modeling, we usually use MSE loss in place of the log-likelihood.
For any input image x, the process of randomly generating a masked vector m and obtaining
z = f(x⊙m) can be seen as modeling the generating process of z | x. The decoding process x | z
can be modeled by concatenating g(z) and x⊙m by the (random) position induced by m. Thus the
reconstruction loss will be || concat(g(z),x⊙m)− x ||22=|| g(z)− x⊙ (1−m) ||22. For a batch of
images {xi}Bi=1, this exactly recovers the MAE loss.
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Recall that we assume each representation zi is l2 normalized. If we take the latent distribution
of Z as the uniform distribution on the unit hyper-sphere Sd−1, we shall get the following matrix
variational masked auto-encoder (M-MAE) loss for self-supervised learning.

LM-MAE ≜ LMAE − λ · TCRµ(Z), (11)

where λ is a loss-balancing hyperparameter.

Very interestingly, we can show that U-MAE is a second-order approximation of our proposed
M-MAE. The key point is noticing that representations are l2 normalized and using Taylor expansion
as follows:

LM-MAE = LMAE − λ log det(Id +
1

µ
ZZ⊤) + Const.

= LMAE − λ log det(IB +
1

µ
Z⊤Z) + Const.

= LMAE − λ tr log(IB +
1

µ
Z⊤Z) + Const.

= LMAE − λ tr(
1

µ
Z⊤Z− 1

2µ2
(Z⊤Z)2 + · · · )

= LU-MAE + Higher-order-terms + Const.

5 EXPERIMENTS

In this section, we rigorously evaluate our Matrix Variational Masked Auto-Encoder (M-MAE) with
TCR loss, placing special emphasis on its performance in comparison to the U-MAE model with
Square uniformity loss as a baseline. This experiment aims to shed light on the benefits that matrix
information-theoretic tools can bring to self-supervised learning algorithms.

5.1 EXPERIMENTAL SETUP

Datasets: ImageNet-1K. We utilize the ImageNet-1K dataset (Deng et al., 2009), which is one of the
most comprehensive datasets for image classification. It contains over 1 million images spread across
1000 classes, providing a robust platform for evaluating our method’s generalization capabilities.

Model Architectures. We adopt Vision Transformers (ViT) such as ViT-Base and ViT-Large for our
models, following the precedent settings by the U-MAE (Zhang et al., 2022b) paper.

Hyperparameters. For a fair comparison, we adopt U-MAE’s original hyperparameters: a mask
ratio of 0.75 and a uniformity term coefficient λ of 0.01 by default. Both models are pre-trained for
200 epochs on ImageNet-1K with a batch size of 1024, and weight decay is similarly configured
as 0.05 to ensure parity in the experimental conditions. For ViT-Base, we set the TCR coefficients
µ = 1, and for ViT-Large, we set µ = 3.

5.2 EVALUATION RESULTS

Evaluation Metrics. From Table 1, it’s evident that the M-MAE loss significantly outperforms both
MAE and U-MAE in terms of linear evaluation and fine-tuning accuracy. Specifically, for ViT-Base,
M-MAE achieves a linear probing accuracy of 62.4%, which is a substantial improvement over
MAE’s 55.4% and U-MAE’s 58.5%. Similarly, in the context of ViT-Large, M-MAE achieves an
accuracy of 66.0%, again surpassing both MAE and U-MAE. In terms of fine-tuning performance,
M-MAE also exhibits superiority, achieving 83.1% and 84.3% accuracy for ViT-Base and ViT-Large
respectively. Notably, a 1% increase in accuracy at ViT-Large is very significant. These results
empirically validate the theoretical advantages of incorporating matrix information-theoretic tools
into self-supervised learning, as encapsulated by the TCR loss term in the M-MAE loss function.

To investigate the robustness of our approach to variations in hyperparameters, we perform an ablation
study focusing on the coefficients µ in the TCR loss. The results for different µ values are summarized
as follows:
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Table 1: Linear evaluation accuracy (%) and fine-tuning accuracy (%) of pretrained models by MAE
loss, U-MAE loss, and M-MAE loss with different ViT backbones on ImageNet-1K. The uniformity
regularizer TCR loss in the M-MAE loss significantly improves the linear evaluation performance
and fine-tuning performance of the MAE loss.

Downstream Task Method ViT-Base ViT-Large

Linear Probing MAE 55.4 62.2
U-MAE 58.5 65.8
M-MAE 62.4 66.0

Fine-tuning MAE 82.9 83.3
U-MAE 83.0 83.2
M-MAE 83.1 84.3

Table 2: Linear probing accuracy (%) of M-MAE for ViT-Base with varying µ coefficients.

µ Coefficient 0.1 0.5 0.75 1 1.25 1.5 3

Accuracy 58.61 59.38 59.87 62.40 59.54 57.76 50.46

As observed in Table 2, the M-MAE model exhibits a peak performance at µ = 1 for ViT-Base.
Deviating from this value leads to a gradual degradation in performance, illustrating the importance
of careful hyperparameter tuning for maximizing the benefits of the TCR loss.

6 RELATED WORK

Self-supervised learning. Contrastive and feature decorrelation based methods have emerged as
powerful approaches for unsupervised representation learning. These methods offer an alternative
paradigm to traditional supervised learning, eliminating the reliance on human-annotated labels.
By leveraging diverse views or augmentations of input data, they aim to capture meaningful and
informative representations that can generalize across different tasks and domains (Chen et al.,
2020; Hjelm et al., 2018; Wu et al., 2018; Tian et al., 2019; Chen & He, 2021; Gao et al., 2021;
Bachman et al., 2019; Oord et al., 2018; Ye et al., 2019; Henaff, 2020; Misra & Maaten, 2020; Caron
et al., 2020; HaoChen et al., 2021; Caron et al., 2021; Li et al., 2021; Zbontar et al., 2021; Tsai
et al., 2021; Bardes et al., 2021; Tian et al., 2020; Robinson et al., 2021; Dubois et al., 2022). These
representations can be used for various of downstream tasks, achieving remarkable performance and
even outperforming supervised feature representations. These self-supervised learning methods have
the potential to unlock the latent information present in unlabeled data, enabling the development of
more robust and versatile models in various domains.

In recent times, Masked Image Modeling (MIM) (Zhang et al., 2022a) has gained attention as a visual
representation learning approach inspired by the widely adopted Masked Language Modeling (MLM)
paradigm in NLP, such as exemplified by BERT (Devlin et al., 2018). Notably, several MIM methods,
including iBOT Zhou et al. (2021), SimMIM (Xie et al., 2022), and MAE (He et al., 2022), have
demonstrated promising results in this domain. While iBOT and SimMIM share similarities with
BERT and have direct connections to contrastive learning, MAE diverges from BERT-like methods.
MAE, aptly named, deviates from being solely a token predictor and leans towards the autoencoder
paradigm. It distinguishes itself by employing a pixel-level reconstruction loss, excluding the masked
tokens from the encoder input, and employing a fully non-linear encoder-decoder architecture. This
unique design allows MAE to capture intricate details and spatial information within the input images.

Matrix information theory. Information theory that provides a framework for understanding the
relationship between probability and information. Recently, apart from traditional information theory
which usually involves calculating information-theoretic quantities on sample distributions. Recently,
there have been attempts to generalize information theory to measure the relationships between
matrices (Bach, 2022; Skean et al., 2023; Zhang et al., 2023b;a). The idea is to apply the traditional
information-theoretic quantities on the spectrum of matrices. Compared to (traditional) information
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theory, matrix information theory can be seen as measuring the ”second-order” relationship between
distributions (Zhang et al., 2023b).

Theoretical understanding of self-supervised learning. The practical achievements of contrastive
learning have ignited a surge of theoretical investigations into the understanding how contrastive loss
works Arora et al. (2019); HaoChen et al. (2021; 2022); Tosh et al. (2020; 2021); Lee et al. (2020);
Wang et al. (2022); Nozawa & Sato (2021); Huang et al. (2021); Tian (2022); Hu et al. (2022); Tan
et al. (2023). Wang & Isola (2020) provide an insightful analysis of the optimal solutions of the
InfoNCE loss, providing insights into the alignment term and uniformity term that constitute the loss,
thus contributing to a deeper understanding of self-supervised learning. HaoChen et al. (2021); Wang
et al. (2022); Tan et al. (2023) explore contrastive self-supervised learning methods from a spectral
graph perspective. In addition to these interpretations of contrastive losses, Saunshi et al. (2022);
HaoChen & Ma (2022) find that inductive bias plays a pivotal and influential role in shaping the
downstream performance of self-supervised learning. In their seminal work, Cabannes et al. (2023)
present a comprehensive theoretical framework that sheds light on the intricate interplay between
the selection of data augmentation techniques, the network architectures, and the choice of training
algorithms.

Several theoretical investigations have delved into the realm of feature decorrelation based methods
within the domain of self-supervised learning, as evidenced by a collection of notable studies (Wen &
Li, 2022; Tian et al., 2021; Garrido et al., 2022; Balestriero & LeCun, 2022; Tsai et al., 2021; Pokle
et al., 2022; Tao et al., 2022; Lee et al., 2021). Balestriero & LeCun (2022) have unveiled intriguing
connections between variants of SimCLR, Barlow Twins, and VICReg, and classical unsupervised
learning techniques. The resilience of methods like SimSiam against collapse has been a subject of
investigation, as analyzed by Tian et al. (2021). Pokle et al. (2022) have undertaken a comparative
exploration of the loss landscape between SimSiam and SimCLR, thereby revealing the presence of
suboptimal minima in the latter. In another study, (Tsai et al., 2021) have established a connection
between a variant of the Barlow Twins’ criterion and a variant of the Hilbert-Schmidt Independence
Criterion (HSIC). In addition to these findings, the theoretical aspects of data augmentation in sample-
contrastive learning have been thoroughly examined by (Huang et al., 2021; Wen & Li, 2021), adding
further depth to the understanding of this area of research.

Compared to contrastive and feature decorrelation based methods, the theoretical understanding of
masked image modeling is still in an early stage. Cao et al. (2022) use the viewpoint of the integral
kernel to understand MAE. Zhang et al. (2022b) use the idea of a masked graph to relate MAE with
the alignment loss in contrastive learning. Recently, Kong et al. (2023) show MAE effectively detects
and identifies a specific group of latent variables using a hierarchical model.

7 CONCLUSION

In conclusion, this study delves into self-supervised learning (SSL), examining contrastive, non-
contrastive learning, and masked image modeling through the lens of matrix information theory. Our
exploration reveals that many SSL methods are maximizing matrix information-theoretic quantities on
Siamese architectures at their optimal point. We also introduce a novel method, the matrix variational
masked auto-encoder (M-MAE), enhancing masked image modeling by adding matrix entropy. This
not only deepens our understanding of existing SSL methods but also propels performance in linear
probing and fine-tuning tasks to surpass state-of-the-art metrics.

The insights underscore matrix information theory’s potency in analyzing and refining SSL methods,
paving the way towards a unified toolbox for advancing SSL, irrespective of the methodological
approach. This contribution augments the theoretical and practical landscape of SSL, hoping to spark
further research and innovations in SSL. Future endeavors could explore refining SSL methods on
Siamese architectures and advancing masked image modeling methods using matrix information
theory tools, like new estimators for matrix entropy.
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REPRODUCIBILITY STATEMENT

To foster reproducibility, we submit our experiment code as supplementary material. One can directly
reproduce the experiment results following the instructions in the README document. We also give
experiment details in Section 5.
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A APPENDIX FOR PROOFS

Proof of Propositions 3.1 and 3.7

Proof. The proof is straightforward by using the definition of matrix mutual information when α = 2
and the fact that when K is symmetric tr(K2) = tr(KTK) =|| K ||2F .

Proof of Theorem 3.2. We shall first present a lemma as follows:
Lemma A.1. Given two positive integers n,m. Denote two sequences x = (x1, · · · , xm) and
y = (y1, · · · , ym). Then x = y = 0 is the unique solution to the following optimization problem:

min0≤x≤1,0≤y≤1
(n+

∑m
i=1 xi)(n+

∑m
i=1 yi)

n+
∑m

i=1 xiyi
.

Proof. Notice that

(n+
∑m

i=1 xi)(n+
∑m

i=1 yi)

n+
∑m

i=1 xiyi
−n =

n(
∑m

i=1 xi +
∑m

i=1 yi)− n
∑m

i=1 xiyi + (
∑m

i=1 xi)(
∑m

i=1 yi)

n+
∑m

i=1 xiyi

Note xi ≥ x2
i and yi ≥ y2i . Then we shall get inequality as follows:

m∑
i=1

xi +

m∑
i=1

yi ≥ 2

√√√√(

m∑
i=1

xi)(

m∑
i=1

yi) ≥ 2

√√√√(

m∑
i=1

x2
i )(

m∑
i=1

y2i ) ≥ 2

m∑
i=1

xiyi.

Thus the above optimization problem gets a minimum of n, with x = y = 0 the unique solution.

Proof. Denote the (batch normalized) vectors for each dimension i (1 ≤ i ≤ d) of the online and
target networks as z̄(1)i and z̄

(2)
i .

Take K1 = [z̄
(1)
1 · · · z̄(1)d ]⊤[z̄

(1)
1 · · · z̄(1)d ] and K2 = [z̄

(2)
1 · · · z̄(2)d ]⊤[z̄

(2)
1 · · · z̄(2)d ].

From Proposition 3.1, it is clear that the mutual information I2(K1;K2) is maximized iff
||K1||2F ||K2||2F
||K1⊙K2||2F

is minimized. Take ((z̄
(1)
i )⊤z̄

(1)
j )2 and ((z̄

(2)
i )⊤z̄

(2)
j )2 as elements of x and y in

Lemma A.1, then we can see the maximal mutual information is attained iff (z̄(1)i )⊤z̄
(1)
j = 0 and

(z̄
(2)
i )⊤z̄

(2)
j = 0.

As the optimal point of Barlow Twins loss has z̄(1)i = z̄
(2)
i for each i ∈ {1, · · · , d} and (z̄

(1)
i )⊤z̄

(2)
j =

0 for each i ̸= j. Then for each i ̸= j, (z̄(1)i )⊤z̄
(1)
j = (z̄

(1)
i )⊤z̄

(2)
j = 0. Similarly, (z̄(2)i )⊤z̄

(2)
j = 0.

Then the matrix mutual information is maximized.

When performing spectral contrastive learning, the loss is
∑B

i=1 || z
(1)
i − z

(2)
i ||22

+λ
∑

i ̸=j((z
(1)
i )⊤z

(2)
j )2. Take K1 = ZT

1 Z1 and K2 = ZT
2 Z2, the results follows similarly. Thus

concludes the proof.

Proof of Proposition 3.3.

Proof. The first inequality comes from the fact that effective rank lower bounds the rank. The second
inequality comes from the rank inequality of Hadamard product.

Proof of Proposition 3.5.

Proof. The proof is from directly using the definition of matrix KL divergence.

Proof of Proposition 3.6.

Proof. The inequality comes from the determinant inequality of Hadamard products and the fact that
(K1 + µI)⊙ (K1 + µI) = K1 ⊙K2 + (µ2 + 2µ)I.
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Proof of Theorem 3.8.

Proof. Denote the (along batch normalized) vectors for each dimension i (1 ≤ i ≤ d) of the
online and target networks as z̄

(1)
i and z̄

(2)
i . Take K1 = [z̄

(1)
1 · · · z̄(1)d ]⊤[z̄

(1)
1 · · · z̄(1)d ] and K2 =

[z̄
(2)
1 · · · z̄(2)d ]⊤[z̄

(2)
1 · · · z̄(2)d ]. From Proposition 3.7, it is clear that the joint entropy H2(K1,K2)

is maximized iff || K1 ⊙ K2 ||2F is minimized. Note from the definition of Frobenius norm,
|| K1 ⊙K2 ||2F=

∑
i,j((K1 ⊙K2)(i, j))

2 =
∑

i,j(K1(i, j)K2(i, j))
2. As the optimal point of of

Barlow Twins loss has z̄
(1)
i = z̄

(2)
i for each i ∈ {1, · · · , d} and (z̄

(1)
i )⊤z̄

(2)
j = 0 for each i ̸= j.

Then for each i ̸= j, (z̄(1)i )⊤z̄
(1)
j = (z̄

(1)
i )⊤z̄

(2)
j = 0. Similarly, (z̄(2)i )⊤z̄

(2)
j = 0. When performing

spectral contrastive learning, the loss is
∑B

i=1 || z(1)i − z
(2)
i ||22 +λ

∑
i ̸=j((z

(1)
i )⊤z

(2)
j )2. Take

K1 = ZT
1 Z1 and K2 = ZT

2 Z2, the results follows similarly.

Remark: Following the proof of our Theorems 3.2 and 3.8, our theoretical results can be generalized
to sample contrastive and dimension contrastive methods defined in (Garrido et al., 2022). As pointed
out by (Garrido et al., 2022), sample and dimension contrastive methods contain many famous
self-supervised methods (Proposition 3.2 of (Garrido et al., 2022)).

B MEASURING THE DIFFERENCE BETWEEN SIAMESE BRANCHES

As we have discussed the total or shared information in the Siamese architectures, we haven’t used
the matrix information-theoretic tools to analyze the differences in the two branches.

From information theory, we know that KL divergence is a special case of f -divergence defined as
follows:

Definition B.1. For two probability distributions P and Q, where P is absolutely continuous with
respect to Q. Suppose P and Q has density p(x) and q(x) respectively. Then for a convex function
f is defined on non-negative numbers which is right-continuous at 0 and satisfies f(1) = 0. The
f -divergence is defined as:

Df (P || Q) =

∫
f

(
p(x)

q(x)

)
q(x)dx. (12)

When f(x) = x log x will recover the KL divergence. Then a natural question arises: are there
other f divergences that can be easily generalized to matrices? Note by taking f(x) = −(x +
1) log x+1

2 + x log x, we shall retrieve JS divergence. Recently, Hoyos-Osorio & Sanchez-Giraldo
(2023) generalized JS divergence to the matrix regime.

Definition B.2 (Matrix JS divergence (Hoyos-Osorio & Sanchez-Giraldo, 2023)). Suppose matrix
K1,K2 ∈ Rn×n which K1(i, i) = K2(i, i) = 1 for every i = 1, · · · , n. The Jensen-Shannon (JS)
divergence between these two matrices K1 and K2 is defined as

JS (K1 || K2) = H1

(
K1 +K2

2

)
− H1(K1) +H1(K2)

2
.

One may think the matrix KL divergence is a good candidate, but this quantity has some severe
problems making it not a good choice. One problem is that the matrix KL divergence is not
symmetric. Another problem is that the matrix KL divergence is not bounded, and sometimes
may even be undefined. Recall these drawbacks are similar to that of KL divergence in traditional
information theory. In traditional information theory, JS divergence successfully overcomes these
drawbacks, thus we may use the matrix JS divergence to measure the differences between branches.
As matrix JS divergence considers the interactions between branches, we shall also include the JS
divergence between eigenspace distributions as another difference measure.

Specifically, the online and target batch normalized feature correlation matrices can be calculated by
K1 = Z1Z

⊤
1 and K2 = Z2Z

⊤
2 . Denote p1 and p2 the online and target (normalized) eigen distribu-

tion respectively. We plot the matrix JS divergence JS(K1,K2) between branches in Figure 3(a). It
is evident that throughout the whole training, the JS divergence is a small value, indicating a small gap
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between the branches. More interestingly, the JS divergence increases during training, which means
that an effect of ”symmetry-breaking” may exist in self-supervised learning. Additionally, we plot
the plain JS divergence JS(p1,p2) between branches in Figure 3(b). It is evident that JS(p1,p2)
is very small, even compared to JS(K1,K2). Thus we hypothesize that the ”symmetry-breaking”
phenomenon is mainly due to the interactions between Siamese branches.

(a) Matrix JS Divergence (b) Eigenspace JS Divergence

Figure 3: Visualization of matrix JS divergence and eigenspace JS divergence on CIFAR10 for
Barlow-Twins, BYOL and SimCLR.
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