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Abstract

Vision transformers (ViT) have shown promise in various vision tasks including low-1

level ones while the U-Net remains dominant in score-based diffusion models. In2

this paper, we perform a systematical empirical study on the ViT-based architectures3

in diffusion models. Our results suggest that adding extra long skip connections4

(like the U-Net) to ViT is crucial to diffusion models. The new ViT architecture,5

together with other improvements, is referred to as U-ViT. On several popular6

visual datasets, U-ViT achieves competitive generation results to SOTA U-Net7

while requiring comparable amount of parameters and computation if not less.8

1 Introduction9

Along with the development of algorithms, the revolution of backbones plays a central role in10

the success of (score-based) diffusion models. A representative example is the U-Net architecture11

employed in prior work [15, 5], which remains dominant in diffusion models for image generation12

tasks. A very natural question is whether the reliance of the U-Net is necessary in such models.13

On the other hand, vision transformers (ViT) [3] have shown promise in various vision tasks [1, 4]14

including low-level ones [17, 19]. Compared to CNN, ViT is preferable at a large scale because of15

its scalability and efficiency [3]. Although the score-based diffusion models have been scaled up16

dramatically [12], it is still not clear whether ViT is suitable for score modeling or not.17

In this paper, we perform a systematical empirical study on the ViT-based architectures in diffusion18

models. We modify the standard ViT as follows:19

1. adding extra long skip connections (like the U-Net),20

2. adding an extra 3x3 convolutional block before output, and21

3. treating everything including the time embedding, label embedding and patches of the noisy22

image as tokens.23

The resulting architecture is referred to as U-ViT.24

On several popular visual datasets, U-ViT achieves competitive generation results to SOTA U-Net25

architectures while requires comparable amount of parameters and computation if not less. Our26

results suggest that27

1. ViT is promising for score-based diffusion models;28

2. the long skip connections play a central role in the success of diffusion models; and29

3. the down-sampling and up-sampling operators are not necessary for diffusion models.30

We believe that future diffusion models on large scale or cross-modality datasets potentially benefit31

from U-ViT.32
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Figure 1: The U-ViT architecture.

2 Development of the U-ViT Architecture33

We first attempt to train a diffusion model using a vanilla ViT [3] on CIFAR10. For simplicity, we34

treat everything including the time embedding, label embedding and patches of the noisy image as35

tokens. With carefully tuned hyperparameters, a 13-layer ViT of size 41M achieves a FID 5.97, which36

is significantly better than 20.20 of the prior ViT-based diffusion models [18]. We conjecture that this37

is mainly because our model is larger. However, this is clearly worse than 3.17 of the U-Net [5] of a38

similar size.39

The importance of the skip connections in U-Net has been realized for a long time in low-level vision40

tasks [13]. Since all local information are also crucial in score modeling (or noise prediction), we41

hypothesize that the skip connections play a central role in such tasks as well. Therefore, we add42

extra skip connections to ViT and obtain a FID of 4.24.43

Finally, we add a 3x3 convolutional block before the output to avoid potential artifacts between44

patches and obtain a FID of 3.11, which is competitive to the results of DDPM [5]. The overall45

architecture is illustrated in Fig. 1 and the ablation results are summarized in Table 1 for clarity.46
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Table 1: Ablation study on the architecture design on CIFAR10.

Skip connection Conv3x3 FID

✓ ✓ 3.11
✓ × 4.24
× ✓ 7.37
× × 5.97

3 Experiments47

We evaluate U-ViT on CIFAR10 [7], CelebA 64x64 [8], and ImageNet 64x64 [2]. We provide48

detailed experimental settings in Table 2.49

Dataset CIFAR10 CelebA 64x64 ImageNet 64x64

Patch size 2 4 4
Layers 13 13 17
Hidden size 512 512 768
MLP size 2048 2048 3072
Heads 8 8 12
Params 44M 44M 131M

Noise schedule VP SDE [16] VP SDE VP SDE
Batch size 128 128 1024
Training steps 500K 500K 300K
Warm-up steps 5K 5K 5K

Optimizer AdamW [9] AdamW AdamW
Learning rate 2e-4 2e-4 3e-4
Weight decay 0.03 0.03 0.03
Betas (0.99, 0.999) (0.99, 0.99) (0.99, 0.99)

Sampler EM EM DPM-Solver [10]
Sampling steps 1K 1K 50

Table 2: The experimental settings. EM represents the Euler-Maruyama sampler.

We compare U-ViT with commonly used U-Net in diffusion models [5, 11, 16]. We also compare with50

GenViT [18], a smaller ViT which does not employ long skip connections and the 3x3 convolutional51

block, and incorporates time before normalization layers. As shown in Table 3, the FID results on52

CIFAR10 and CelebA 64x64 are comparable to U-Net. As shown in Table 4, on ImageNet 64x64,53

U-ViT is comparable to IDDPM U-Net (small), which has a comparable number of parameters.54

Note that there is still a gap between U-ViT and IDDPM U-Net (large), which could potentially be55

narrowed by further increasing the U-ViT size or increasing the batch size and training steps. We56

provide generated samples of U-ViT in Figure 2, which have good quality and clear semantics.57

Table 3: FID ↓ results on unconditional datasets.

Architecture CIFAR10 CelebA 64x64

DDPM U-Net [5] 3.17 3.26 [14]
IDDPM U-Net [11] 2.90 - [0]0
DDPM++ U-Net [16] 2.55 1.90 [6]0

GenViT [18] 20.20 - [0]0
U-ViT (ours) 3.11 3.13 [0]0
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(a) CIFAR10 (b) CelebA 64x64 (c) ImageNet 64x64

Figure 2: Generated samples of U-ViT.

Table 4: FID ↓ results on class-conditional ImageNet 64x64 and comparison of experimental setting.

Architecture FID ↓ Params Batch size Training steps

IDDPM U-Net (small) [11] 6.92 100M 2048 1700K
IDDPM U-Net (large) [11] 2.92 270M 2048 250K

U-ViT (ours) 6.75 131M 1024 300K

3.1 Efficiency Comparison58

We compare efficiency of U-Net and U-ViT on CIFAR10 in Table 5. U-ViT has fewer parameters.59

When the computation resource is unsaturated, e.g., using a batch size of 1, U-ViT has a much higher60

throughput than U-Net. When the computation resource is saturated, e.g., using a large batch size of61

500, U-ViT has a slightly lower throughput than U-Net. This means that U-ViT has a slightly larger62

computational cost, but meanwhile enjoys a better parallelism than U-Net.63

Table 5: Efficiency comparison on CIFAR10 in one A40 GPU. Throughput is measured by the
number of processed inputs in a second.

Method FID ↓ Params Throughput
(batch size=1)

Throughput
(batch size=500)

IDDPM U-Net [11] 2.90 53M 22/s 1297/s
U-ViT (ours) 3.11 44M 55/s 1125/s
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