All are Worth Words: a ViT Backbone for Score-based Diffusion Models

Anonymous Author(s) Affiliation Address email

Abstract

1	Vision transformers (ViT) have shown promise in various vision tasks including low-
2	level ones while the U-Net remains dominant in score-based diffusion models. In
3	this paper, we perform a systematical empirical study on the ViT-based architectures
4	in diffusion models. Our results suggest that adding extra long skip connections
5	(like the U-Net) to ViT is crucial to diffusion models. The new ViT architecture,
6	together with other improvements, is referred to as U-ViT. On several popular
7	visual datasets, U-ViT achieves competitive generation results to SOTA U-Net
8	while requiring comparable amount of parameters and computation if not less.

9 1 Introduction

Along with the development of algorithms, the revolution of backbones plays a central role in the success of (score-based) diffusion models. A representative example is the U-Net architecture employed in prior work [15, 5], which remains dominant in diffusion models for image generation tasks. A very natural question is whether the reliance of the U-Net is necessary in such models.

On the other hand, vision transformers (ViT) [3] have shown promise in various vision tasks [1, 4] including low-level ones [17, 19]. Compared to CNN, ViT is preferable at a large scale because of its scalability and efficiency [3]. Although the score-based diffusion models have been scaled up dramatically [12], it is still not clear whether ViT is suitable for score modeling or not.

¹⁸ In this paper, we perform a systematical empirical study on the ViT-based architectures in diffusion ¹⁹ models. We modify the standard ViT as follows:

- ·
- 20 1. adding extra long skip connections (like the U-Net),
- 2. adding an extra 3x3 convolutional block before output, and
- 22
 3. treating everything including the time embedding, label embedding and patches of the noisy
 23 image as tokens.
- ²⁴ The resulting architecture is referred to as *U-ViT*.

25 On several popular visual datasets, U-ViT achieves competitive generation results to SOTA U-Net

- 26 architectures while requires comparable amount of parameters and computation if not less. Our 27 results suggest that
- 1. ViT is promising for score-based diffusion models;
- 29 2. the long skip connections play a central role in the success of diffusion models; and
- 30 3. the down-sampling and up-sampling operators are not necessary for diffusion models.

31 We believe that future diffusion models on large scale or cross-modality datasets potentially benefit

32 from U-ViT.

Under review at the NeurIPS 2022 Workshop on Score-Based Methods. Do not distribute.

Figure 1: The U-ViT architecture.

33 2 Development of the U-ViT Architecture

We first attempt to train a diffusion model using a vanilla ViT [3] on CIFAR10. For simplicity, we
treat everything including the time embedding, label embedding and patches of the noisy image as
tokens. With carefully tuned hyperparameters, a 13-layer ViT of size 41M achieves a FID 5.97, which
is significantly better than 20.20 of the prior ViT-based diffusion models [18]. We conjecture that this
is mainly because our model is larger. However, this is clearly worse than 3.17 of the U-Net [5] of a
similar size.
The importance of the skip connections in U-Net has been realized for a long time in low-level vision

tasks [13]. Since all local information are also crucial in score modeling (or noise prediction), we
 hypothesize that the skip connections play a central role in such tasks as well. Therefore, we add
 extra skip connections to ViT and obtain a FID of 4.24.

Finally, we add a 3x3 convolutional block before the output to avoid potential artifacts between patches and obtain a FID of 3.11, which is competitive to the results of DDPM [5]. The overall architecture is illustrated in Fig. 1 and the ablation results are summarized in Table 1 for clarity.

Skip connection	Conv3x3	FID
\checkmark	\checkmark	3.11
\checkmark	×	4.24
×	\checkmark	7.37
×	×	5.97

Table 1: Ablation study on the architecture design on CIFAR10.

47 **3** Experiments

⁴⁸ We evaluate U-ViT on CIFAR10 [7], CelebA 64x64 [8], and ImageNet 64x64 [2]. We provide ⁴⁹ detailed experimental settings in Table 2.

Dataset	CIFAR10	CelebA 64x64	ImageNet 64x64
Patch size	2	4	4
Layers	13	13	17
Hidden size	512	512	768
MLP size	2048	2048	3072
Heads	8	8	12
Params	44M	44M	131M
Noise schedule	VP SDE [16]	VP SDE	VP SDE
Batch size	128	128	1024
Training steps	500K	500K	300K
Warm-up steps	5K	5K	5K
Optimizer	AdamW [9]	AdamW	AdamW
Learning rate	2e-4	2e-4	3e-4
Weight decay	0.03	0.03	0.03
Betas	(0.99, 0.999)	(0.99, 0.99)	(0.99, 0.99)
Sampler	EM	EM	DPM-Solver [10]
Sampling steps	1K	1K	50

Table 2: The experimental settings. EM represents the Euler-Maruyama sampler.

⁵⁰ We compare U-ViT with commonly used U-Net in diffusion models [5, 11, 16]. We also compare with

51 GenViT [18], a smaller ViT which does not employ long skip connections and the 3x3 convolutional

⁵² block, and incorporates time before normalization layers. As shown in Table 3, the FID results on

53 CIFAR10 and CelebA 64x64 are comparable to U-Net. As shown in Table 4, on ImageNet 64x64,

54 U-ViT is comparable to IDDPM U-Net (small), which has a comparable number of parameters.

⁵⁵ Note that there is still a gap between U-ViT and IDDPM U-Net (large), which could potentially be

⁵⁶ narrowed by further increasing the U-ViT size or increasing the batch size and training steps. We

⁵⁷ provide generated samples of U-ViT in Figure 2, which have good quality and clear semantics.

Architecture	CIFAR10	CelebA 64x64
DDPM U-Net [5] IDDPM U-Net [11] DDPM++ U-Net [16]	3.17 2.90 2.55	3.26 [14] 1.90 [6]
GenViT [18] U-ViT (ours)	20.20 3.11	3.13

Table 3: FID \downarrow results on unconditional datasets.

(a) CIFAR10

(b) CelebA 64x64

(c) ImageNet 64x64

Figure 2: Generated samples of U-ViT.

Table 4: FID \downarrow results on class-conditional ImageNet 64x64 and comparison of experimental setting.

Architecture	$FID\downarrow$	Params	Batch size	Training steps
IDDPM U-Net (small) [11] IDDPM U-Net (large) [11]	6.92 2.92	100M 270M	2048 2048	1700K 250K
U-ViT (ours)	6.75	131M	1024	300K

58 3.1 Efficiency Comparison

⁵⁹ We compare efficiency of U-Net and U-ViT on CIFAR10 in Table 5. U-ViT has fewer parameters.

- 60 When the computation resource is unsaturated, e.g., using a batch size of 1, U-ViT has a much higher
- throughput than U-Net. When the computation resource is saturated, e.g., using a large batch size of
- 500, U-ViT has a slightly lower throughput than U-Net. This means that U-ViT has a slightly larger

63 computational cost, but meanwhile enjoys a better parallelism than U-Net.

Table 5: Efficiency comparison on CIFAR10 in one A40 GPU. Throughput is measured by the number of processed inputs in a second.

Method	$\mathrm{FID}\downarrow$	Params	Throughput (batch size=1)	Throughput (batch size=500)
IDDPM U-Net [11]	2.90	53M	22/s	1297/s
U-ViT (ours)	3.11	44M	55/s	1125/s

64 **References**

- [1] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised
 vision transformers. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 9640–9649, 2021.
- [2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
 recognition, pages 248–255. Ieee, 2009.
- [3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
 Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
 An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.

- [4] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 16000–16009, 2022.
- [5] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *arXiv preprint arXiv:2006.11239*, 2020.
- [6] Dongjun Kim, Seungjae Shin, Kyungwoo Song, Wanmo Kang, and Il-Chul Moon. Soft
 truncation: A universal training technique of score-based diffusion model for high precision
 score estimation. In *International Conference on Machine Learning*, pages 11201–11228.
 PMLR, 2022.
- [7] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 2009.
- [8] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
 wild. In 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile,
 December 7-13, 2015, pages 3730–3738. IEEE Computer Society, 2015.
- [9] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.
- [10] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A
 fast ode solver for diffusion probabilistic model sampling in around 10 steps. *arXiv preprint arXiv:2206.00927*, 2022.
- [11] Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. *arXiv preprint arXiv:2102.09672*, 2021.
- [12] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
 text-conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 2022.
- [13] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
 biomedical image segmentation. In *International Conference on Medical image computing and computer-assisted intervention*, pages 234–241. Springer, 2015.
- [14] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv preprint arXiv:2010.02502*, 2020.
- [15] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
 distribution. *arXiv preprint arXiv:1907.05600*, 2019.
- [16] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
 Ben Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint arXiv:2011.13456*, 2020.
- [17] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Segmenter: Transformer
 for semantic segmentation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 7262–7272, 2021.
- 111 [18] Xiulong Yang, Sheng-Min Shih, Yinlin Fu, Xiaoting Zhao, and Shihao Ji. Your vit is secretly a 112 hybrid discriminative-generative diffusion model. *arXiv preprint arXiv:2208.07791*, 2022.
- [19] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang, Yanwei
 Fu, Jianfeng Feng, Tao Xiang, Philip HS Torr, et al. Rethinking semantic segmentation
 from a sequence-to-sequence perspective with transformers. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 6881–6890, 2021.