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ABSTRACT

Anomaly detection in sequence data is widely applicable to many fields and has1

significant commercial value to the financial industry. The focus of this paper is its2

utility as means to control credit card delinquency risk. Transactions that deviate3

from the typical data sequence are a common precursor of payment difficulty. Cur-4

rent detection methods do not effectively use transaction data to detect abnormal5

transactions. This makes it difficult to control the overdue payment risk. We pro-6

pose a Multi-Instance Learning based anomaly detection (MILAD) method with7

well designed learning networks to address this problem. MILAD analyze users8

monthly transactions and payment history, and detect exceptions through well de-9

signed deep learning networks. By comparing the performance of MILAD and10

DAGMM, which is currently the most commonly used unsupervised deep learn-11

ing algorithm for credit card risk control, MILAD best controls overdue risk by12

utilizing both transaction and payment information.13

1 INTRODUCTION14

In recent years, research on the anomaly detection of the sequential data has gradually become15

a hot topic. It has a very wide range of applications in many industry fields. Especially in the16

financial field, sequence data anomaly detection has a great commercial value. Traditional sequence17

data anomaly detection searches for the changes in several parameters of temporal data sequences,18

such as the time series data. For example, Gao et al. (2019; 2020) proposed methods to detect19

the anomaly position of the variance structure for the data sequence with smoothly changing mean20

function. Different from the traditional ones, this research focuses on analyzing the anomaly status21

of a multivariate time series data sequence by studying the influence of anomaly samples on the22

abnormal state of the whole data sequence in high dimensional space. The motivation of this paper23

is to the common credit default problem in the financial field. Effectively controlling the overdue24

risk of credit cards is a key issue. However, there is no effective algorithm which can effectively25

analyze the overdue risk by utilizing transaction samples in credit card transaction sequence so far.26

For these overdue credit card users, most of their transactions are normal, and only a few transactions27

are abnormal, such as impulse purchase, fraudulent purchase, etc. These abnormal transactions28

are the main reasons to cause the overdue problem. However, current credit card overdue risk29

control approaches (Lucas & Jurgovsky, 2020; Chen & Guestrin, 2016; Liu et al., 2019; Bolton30

et al., 2001) having little power to utilize transaction information, and relying too much on business31

experience when conducting risk control, and being relatively cumbersome to use the model in32

practice, etc. A big challenge of utilizing these abnormal transactions is that there are no obvious33

post event features for assigning the abnormality labels to these anomaly transactions. The only label34

information we could use is the users monthly overdue information. Zong et al. (2018) proposed the35

DAGMM algorithm combining traditional unsupervised methods and deep auto encoders together,36

and achieved some good results. However, in practice, sample features are constructed artificially,37

which makes the representation of samples is not comprehensive enough. Therefore, the difference38

between abnormal samples and normal samples is limited, and the model can not distinguish them39

very well. Further more, this unsupervised algorithm cannot use the overdue information effectively.40
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At present, this method only has few applications in the cold-start businesses because of the absence41

of abnormal labels.42

The characteristic of the credit card bill overdue risk detection is that the monthly bill has a label, but43

transactions on the bill do not have labels, which also happens in other application scenarios. The44

Multiple Instance Learning is a good solution to solve this kind of problem. There has been a lot45

of work done in this field, such as Carbonneau et al. (2018). Under the Multiple Instance Learning46

framework, samples are grouped into sets, which are defined as Bags. An abnormal status label is47

assigned to the entire bag. But no label is assigned to the samples in the bag. Then the relationship48

between the bag label and sample labels is determined based on the assumption of the Multiple49

Instance Learning. Ilse et al. (2018) proposed an Attention based the Multiple Instance Learning50

algorithm (ABMIL). ABMIL uses the Attention Neural Network to learn the attention weights of51

samples in a bag. Then the attention weights are used to aggregate samples in the bag, followed by52

the subsequent classification analysis. This aggregation method can assign weights to the samples53

in a bag, and then detect important samples based on sample weights. Inspired by their method,54

if we can utilize both individual transaction information and the overall bill overdue information55

simultaneously, we can improve the existing methods.56

In this article, we propose a new anomaly detection algorithm based on the Multiple Instance Learn-57

ing technique, named as Multiple Instance Learning for anomaly detection (MILAD). MILAD is a58

sequence sample information based anomaly detection method, which can make full use of sample59

information and sequence information. In the experiments studied in this paper, MILAD can control60

the overdue risk from the transaction perspective, which can provide more accurate and effective61

results. MILAD outperforms the most commonly used algorithms in terms of several major model62

evaluation criteria and provides a better performance in model interpretation.63

The rest of the paper is organized as follows. The model and its proposed algorithm MILAD are in-64

troduced in Section 2, with the computation details of each module and their parameter optimization65

techniques. Section 3 is the experiment data analysis. In this section we conduct several experiments66

on the application data set and compare the results agaist those based on the DAGMM algorithm,67

which is the most commonly used method in the financial field. Section 4 is the summary of the68

paper.69

2 METHODOLOGY70

2.1 MODEL AND NOTATION71

Suppose X = {x1, . . . , xj , . . . , xJ} is a time dependent multivariate sequence, where xj ∈ Rd is a72

sample of the sequence at time j = 1, . . . , J . yj ∈ {0, 1} is the hiden label indicating the status of73

the sample xj , and 1 means abnormal. yj is the hidden state of the sample has to be predicted from74

the following model,75

yj =
{

1 if f(xj) ≥ δ

0 else
, j = 1, . . . , J, (1)

where f : Rd → N is a classifier based on feature mapping. We need to estimate the hidden state76

yj of each sample. δ is the threshold parameter discriminating the abnormal status of samples. An77

appropriate δ should be chosen according to the practical situation. Then the abnormal state label Y78

of the sequence X is modeled as79

Y =
{

1 if F(y1, . . . , yj , . . . , yJ) ≥ ∆
0 else

, (2)

where F : RJ → R is a function used to estimate the overall anomaly state of a data sequence. ∆ is80

the threshold to discriminate the overall anomaly state of the data sequence.81

Figure 1 is the flowchart of our entire modeling framework. The framework is composed of three82

parts. The first part is the Multiple Instance Learning based on the sample information and the83
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Figure 1: The framework of the MILAD algorithm

sequence information using the Attention mechanism. The second part is the anomaly label estima-84

tion of all samples in the data sequence according to the result from the previous Multiple Instance85

Learning procedure. The third part is the sequence anomaly detection procedure based on the esti-86

mated abnormal labels of samples using binary supervised learning method. Models are trained by87

the common optimization algorithm Adam (Kingma & Ba, 2014).88

Algorithm 1 is the computational flow of our proposed sequence anomaly detection method MILAD.89

It is a Multiple Instance Learning based method, which can effectively associates the unknown90

sample label yj with the known sequence label Y through the Attention network mechanism and91

achieve efficient modeling processes eventually. The MILAD algorithm constructs a risk analysis92

model F based on sample anomaly detection in a data sequence. In practice, taking the credit card93

overdue risk prediction businesses as an example, we can use the model F to evaluate card holders’94

overdue risk based on their transaction vector x′ ∈ Rd. We can predict the overdue risk probability95

p′ through the model F, and finally determine whether to intercept the transaction x′ based on the96

actual needs of the business. In this way we can directly control the overdue risk in the transaction97

dimension. Comparing with traditional approach, controling overdue risk based on the MILAD98

algorithm is much more convenient in practice.99

Algorithm 1: MILAD
Input: The Multi time series sample bag X = {x1, . . . , xj . . . , xJ} which is a collection

of time series of length J , xj ∈ Rd

Step 1 Multiple Instance Learning: Use the Algorithm 2 to estimate the classification
probability P = Sigmoid(W ⊤

C Z + b) of the bag, the attention weight
w∗

j = wj/
∑J

m=1 wm of samples in the bag, and the abnormal probability pj = Pw∗
j of

samples in the bag.
Step 2 Sample Anomaly Detection: Based on the Multiple Instance Learning results from

Step 1, detect the abnormal state of each sample xj in the bag, and get the sample anomaly
state set S = {ŷ1, ŷ2, . . . , ŷJ}.

Step 3 Sequence Anomaly Detection: Based on the abnormal sample detection results
from the Step 2, use the classification (e.g., Xgboost) method to estimate The abnormal
state Y of the sample bag X .

Output: Y the abnormal state of the sample bag, and S the hidden abnormal state set.
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2.2 MULTIPLE INSTANCE LEARNING100

In model equation 1, the classification model f is built upon the feature information of sequence101

samples in the bag. However, the anomaly state label yj of the sequence samples is generally102

unknown. Therefore, we cannot perform any supervised learnings directly. To effectively solve103

this problem, we use the Multiple Instance Learning approach. The Multiple Instance Learning104

model is composed of the following four parts: the transformer network T , attention network W ,105

aggregation network A, and classification network C. The transformer network T is designed to106

conduct a feature extraction and transformation on the original features. As mentioned in Foulds107

& Frank (2010), there are two different assumptions: the Standard Assumption and the Collective108

Assumption. The Standard Assumption is that each sample in the bag has its own label, the label109

of the bag is negative if all samples in the bag are negative, and the label of the bag is positive110

if there is at least one positive sample in the bag. The Collective Assumption states that the label111

of a bag cannot be determined by any single sample, but by the interactions between samples and112

the cumulative effect of some samples in the bag. Therefore, we propose two types of designs113

for the network T : the Basic method and the Self-Attention based method. The Basic method114

is adaptive to the standard assumption, while the Self-Attention based method is designed for the115

collective assumption, which has more practical usages. The attention network W is used to learn116

attention weights of samples in the bag, and the attention weights are estimated through a module117

conducted by a two-layer gated neural network. The aggregation network A is used to aggregate118

all samples in the bag. After calculating the attention weight of each sample through the attention119

network W , we can estimate the feature vector Zi of the bag by calculating the weighted sum of the120

sample vectors in the bag. The classification network C is a network that classifies the bag vector.121

After the aggregation of samples in the bag, the classification problem is turned into a traditional122

binary supervised learning problem. To deal with features extracted from the neural network, a fully123

connection (FC) layer network together with the sigmoid activation function is used to calculate the124

anomaly classification probability Pi of the ith bag. The details of the proposed multiple instance125

learning networks are listed in Appendix A.126

Algorithm 2: The Multiple Instance Learning Algorithm
Input: The multi time series sample bag X = {x1, x2 . . . , xJ}
Step 1 Randomly initialize the weights of the parameters in the T, W, A, C network;
Step 2 Transform the original sample through the network T and obtain the transformed

vector hj = T (xj) through the Basic method or the Self-Attention method (Algorithm 3
in Appendix A).

Step 3 Calculate the attention weight w∗
j for samples in the bag through the network W .

Step 4 Aggregate the samples through the network A: Z =
J∑

j=1
w∗

j hj .

Step 5 Obtain the abnormal probability of the bag through the network C:
P = Sigmoid(W ⊤

C Z + b).

Output: The classification probability P of the sample bag

Algorithm 2 is our designed Multiple Instance Learning Algorithm. We use the Attention mecha-127

nism to adaptively aggregate the samples in the bag Yi. Since the feature extractor and classifier128

are conducted with neural networks, it allows to establish an end-to-end model to make the whole129

model to be more auto adaptive. Meanwhile, each step of the model is built upon neural networks,130

which makes the back propagation algorithm available for parameters optimization. All parameters131

are optimized by minimizing the Logarithmic loss132

L(Θ) = 1
N

N∑
i=1

(Yi ln Pi + (1 − Yi) ln(1 − Pi)),

where N is the sample size of the training data, Pi is the anomaly probability of the ith bag.133
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2.3 SAMPLE ANOMALY DETECTION134

After the Attention based Multiple Instance Learning, we obtain the probability Pi of the label of135

the bag to be 1, and the attention weight w∗
ij of each sample in the bag. Unlike the traditional136

Multiple Instance Learning, the estimated attention weights of the samples are more important here,137

which can be used to detect the key samples in the bag. That is, which sample in the bag has a138

significant impact on the abnormal status of the bag. The samples with larger attention weights have139

a greater impact on bags, and these samples are likely to be the key samples which lead to the bag140

abnormality. Therefore, we can combine the prediction results of the bag and the estimated attention141

weights together to predict the anomaly status of each samples in the bag. Let142

pj = Piw
∗
ij

be the probability of sample xj being abnormal. The probability is used to rank samples in the143

bag, rather than discriminating samples with respect to the sample abnormality. By choosing a144

appropriate threshold δ, the abnormal state of the sample is yij = 1 if pij ≥ δ.145

2.4 SEQUENCE ANOMALY DETECTION146

After using the Multiple Instance Learning for abnormal sample detection, we get the anomaly set147

S = {ŷ1, . . . , ŷJ}, which contains the pseudo labels of all samples in the bag, and then we can do the148

binary supervised learning to estimate the sequence abnormal state Y in model equation 2 using the149

classification approaches. In this paper, we adopt the Xgboost algorithm. However in practice, there150

are only a few sequences or sample bags which are abnormal. Therefore, the binary classification151

problem we are dealing with is a highly imbalanced data analysis problem. We should adopt the152

imbalance data analysis techniques. To evaluate the model performance for the imbalanced data,153

AUC will be a good choice.154

3 EMPIRICAL ANALYSIS155

3.1 DATA PREPROCESSING156

Since payment data often contains sensitive private information about individuals or institutions,157

and only banks and other related institutions have access to it. Therefore the acquisition of such158

public data set is quite limited. The lack of available effective public datasets is also an challenge for159

researches in this field. In this work, we evaluate the performance of the proposed MILAD algorithm160

on a commonly used real data set, which is the Credit Card Fraud Detection (CCFD) (Dal Pozzolo161

et al., 2015) data. The CCFD data composed of transactions of credit card users in Europe on162

September 2013. This dataset includes 284,807 transactions, where 492 are abnormal transactions.163

It is a highly imbalanced dataset, which only has 0.17% of abnormal transactions. To deal with this164

highly imbalance problem of the data, we use the common undersampling method to sample 10%165

of normal transactions. Then the abnormal rate increases to 1.70%. Due to the privacy issues in this166

field, this dataset cannot provide the original transaction features and the user information. The data167

contains 28 principal component features, {V1 . . . V28}, which are transformed from the original168

features, the transaction amount, and the anomaly label of each transaction.169

In order to make the dataset suitable for solving our problem, we have to generate new dataset170

through the following data generating mechanism based on the original CCFD data. We randomly171

select a certain number of transactions from the original data set to form a sample bag, then take172

each sample bag as the user’s transaction set Xi, and then label the bag according to the sample label173

in the bag. The labeling process of the sample bag is based on these two assumptions of the Multiple174

Instance Learning, which are the standard assumption and collective assumption. In the subsequent175

data analysis we assume that there are no available labels for the samples in the bag. Generating176

the dataset in this way can effectively mimic our desired scenario in which we have the label for177

user’s transaction set, but lack of the labels for each transactions in the bag. The labeling rules178

for the sample bags are as follows. Under the Standard Assumption, as long as there is a sample179

xij ∈ Rd whose label yij is abnormal in the sequence set Xi = {xi1, . . . , xij , . . . , xiJ}, the label180

of the overall sequence Yi = min
{

1,
∑J

j=1 yij

}
. Under the Collective Assumption, only when the181
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sum of the amount of abnormal samples reaches a certain threshold, the label of the overall sequence182

Yi = 1, if
∑J

j=1
yijνij∑J

j=1
νij

≥ ∆, where νij is the transaction amount of the sample xij ∈ Rd, that is183

νj ∈ {xj1, . . . , xjd}. The parameter ∆ ∈ (0, 1) is determined according to the specific application184

scenario.185

For the convenience of the experiment, we assume the sample size in each bag is the same when186

generating the data set. Under the standard assumption, since we use the probability, which reflects187

the anomaly status of the sample, to rank the samples in the bag, rather than discriminating the188

samples. In the subsequent discrimination analysis, the threshold δ in model equation 1 is chosen to189

be the one which makes the highest F1 score in the training set. Under the collective assumption,190

we need to consider the proportion of the abnormal transaction amount among all transactions in the191

bag. When the proportion of abnormal transaction amount reaches the threshold ∆ = 0.1, we will192

consider the user’s transaction bag to be overdue. Under each assumption, we have N1 = 200 bags193

for training, N2 = 50 bags for test. The size of the bag is J = 10. The anomaly rate of bags is194

16.6% for the standard assumption and 5.8% for the collective assumption.195

We show the performance of the proposed method on both the standard assumption and collective196

assumption. We first evaluate the sample anomaly detection performance, and then analyze the197

performance of the sequence anomaly detection. In the sample anomaly detection part, we compare198

MILAD with the most commonly used unsupervised anomaly detection algorithm DAGMM in the199

financial field in terms of common model evaluation criteria (Precision, Recall, F1 score, AUC),200

as well as the interpretability of these two methods. In the Sequence Anomaly Detection part, we201

first built an idealized model, which is a model constructed based on the ideal assumption that the202

hidden labels are all available, hereafter denoted by the Ideal model. We use the Ideal model as the203

benchmark since it always has the best performance among all possible methods. We use AUC to204

evaluate model performances.205

The computational resources of our experiments are Windows 10, Intel(R) Core(TM) i5-9300H,206

GeForce GTX 1650 GPU, 16GB Ram. We use Python 3.8 under Tensorflow 2.5.0 enviroment.207

3.1.1 SAMPLE ANOMALY DETECTION UNDER THE STANDARD AND COLLECTIVE208

ASSUMPTIONS209

Table 1 is the network structures of the experiments. For DAGMM, we use the same network210

structure under both assumptions, and we also use the same hyperparameter settings in Zong et al.211

(2018) (λ1 = 0.1, λ2 = 0.005). For MILAD, the Basic method is adopted under the standard212

assumption, and the Self-Attention method is adopted under the collective assumption. FC(a, b, c)213

is a full connection network, where a and b are the number of input and output neurons, c is the214

activation function.215

Table 1: Network structures under the standard and collective assumptions

Method Layer Structure

DAGMM
Encoder FC(28, 16, tanh) → FC(16, 4, tanh) → FC(4, 1, none)
Decoder FC(1, 4, tanh) → FC(4, 16, tanh) → FC(16, 28, none)

Estimate Network FC(3, 10, tanh) - Dropout(0.2) → FC(10, 2, Softmax)

MILAD Network T FC(28, 16, ReLU) → FC(16, 8, ReLU)

(Standard) Network W FC(8, 8, tanh) ⊙ FC(8, 8, Sigmoid) → FC(8, 1)
Network C FC(8, 1, Sigmoid)

MILAD Network T Refer to the structure in Algorithm 3, where d = 8
(Collective) Network W FC(8, 8, tanh) ⊙ FC(8, 8, Sigmoid) → FC(8, 1)

Network C FC(8, 1, Sigmoid)

Figure 2 shows the loss function curves of these two algorithms with respect to 1,000 epochs in the216

training processes. We can see that the DAGMM algorithm converges after 1,000 epochs. Therefore217

we choose the model after the 1,000 epochs of training as the final DAGMM model. For the MILAD218

algorithm, since we treat each bag as a sample group, the sample size is relatively small. It can be219

seen that the model is overfitted after 30 epochs of training under the standard assumption, and 10220

epochs of training under the collective assumption. Therefore, under the standard assumption, we221
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(a) DAGMM (standard) (b) MILAD (standard)

(c) DAGMM (collective) (d) MILAD (collective)

Figure 2: Loss curves under two assumptions

choose the model after 30 epochs of training as the final MILAD model, while under the collective222

assumption, we choose the model after 10 epochs of training as the final MILAD model.223

The final output of the DAGMM model is the probability density of the sample. In order to compare224

it with the anomaly probability computed from the MILAD method, we use the function f(x) =225

1 − 2
π arctan(x) to convert it into the probability ranged in (0,1). Figure 3 is the ROC curve of226

the model trained by the DAGMM algorithm and the MILAD algorithm. It can be seen that the227

performance of the MILAD algorithm is significantly better than that of the DAGMM algorithm228

under both assumptions.229

Table 2 is the comparison matrix in several common model evaluation criteria. It can be seen that230

MILAD is significantly better than DAGMM in terms of these common model evaluation criteria,231

such as Precision, Recall, F1 score and AUC. This is because DAGMM is an unsupervised learning232

method, while MILAD is a supervised learning algorithm, which can effectively utilize the label233

information of the bag for complex data through the attention based Multiple Instance Learning ap-234

proach, and outperforms the unsupervised learning method. Therefore it is reasonable that MILAD235

achieves better performance, and is more useful in practice.236

Table 2: Model comparison under two assumptions

Assumption Type Method Pecision Recall F1-score AUC

Standard
Training DAGMM 0.0899 0.3722 0.1449 0.8397

MILAD 1.0000 0.8639 0.9270 0.9717

Test DAGMM 0.0971 0.4545 0.1600 0.8769
MILAD 0.9302 0.9091 0.9195 0.9627

Collective
Training DAGMM 0.0580 0.2232 0.0921 0.7725

MILAD 0.6273 0.4000 0.4885 0.8854

Test DAGMM 0.0561 0.2526 0.0918 0.7856
MILAD 0.5781 0.3895 0.4654 0.8878
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(a) DAGMM (standard) (b) MILAD (standard)

(c) DAGMM (collective) (d) MILAD (collective)

Figure 3: ROC curves under two assumptions

To show the interpretability of the MILAD algorithm, we also check these abnormal sample bags to237

see whether the method can identify the abnormal samples in the bag that cause the bag abnormality.238

Table 3 is the samples’ anomaly state (yij) and their attention weights (w∗
ij) of four (i = 1, . . . , 4)239

randomly selected anomaly sample bags under the standard and collective assumptions. The atten-240

tion weights {0.75; 0.78; (0.30, 0.27); (0.20, 0.21)} of the abnormal samples that cause the abnor-241

mality of the entire bag are significantly larger than other samples in the same bag. This result is242

consistent with our experiment setups, which fully demonstrates the outstanding interpretability of243

our MILAD method.244

Table 3: Attention weights of two randomly selected cases under two assumptions

Assumption x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Standard

y1j 0 0 0 0 0 1 0 0 0 0
w∗

1j 0.03 0.04 0.02 0.00 0.02 0.75 0.05 0.02 0.04 0.03
y2j 0 0 0 1 0 0 0 0 0 0
w∗

2j 0.03 0.01 0.03 0.78 0.00 0.00 0.00 0.01 0.10 0.03

Collective

y3j 1 1 0 0 0 0 0 0 0 0
w∗

3j 0.30 0.27 0.03 0.05 0.03 0.07 0.06 0.05 0.04 0.10
y4j 0 0 0 0 1 0 0 0 0 1
w∗

4j 0.07 0.04 0.12 0.06 0.20 0.06 0.11 0.11 0.02 0.21

3.1.2 SEQUENCE ANOMALY DETECTION245

For sequence anomaly detection we adopt the Xgboost algorithm, which is a commonly used binary246

supervised learning method in this field. All models are trained to achieve their best performances.247

The AUC results are shown in Table 4. It can be seen that in the absence of transaction labels, our248

MILAD algorithm still can achieve the similar performance as the Ideal model with respect to the249

AUC criterion, which is significantly better than DAGMM. We can conclude that MILAD is more250

feasible than DAGMM under both standard and collective assumption.251
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Table 4: AUC under the standard and collective assumptions

Assumption Type Ideal DAGMM MILAD

Standard Training 1 1 1
Test 0.98 0.87 0.98

Collective Training 1 1 1
Test 0.98 0.80 0.94

4 CONCLUSION252

In this paper, we focus on the anomaly state evaluation of the data sequence caused by the abnormal253

samples contained in it. We propose a anomaly detection algorithm MILAD based on the Multiple254

Instance Learning techniques. We apply the proposed method to the delinquency risk detection in the255

credit card industry. The empirical results demonstrate that MILAD overcomes many short-comings256

that existing methods have through its use of the sample information and the sequence anomaly257

information simultaneously to effectively identify abnormal samples. The proposed method can258

help financial institutions to control the overdue risk based on transactions directly and effectively.259
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APPENDIX300

A MULTIPLE INSTANCE LEARNING NETWORK301

In model equation 1, the classification model f(·) is built upon the feature information of sequence302

samples in the bag. However, the anomaly state label yj of the sequence samples is generally303

unknown. Therefore, we can not perform any supervised learnings directly. To effectively solve this304

problem, we use the Multiple Instance Learning approach.305

The Multiple Instance Learning model is composed of the following four parts: the Transformer306

Network T, Attention Network W, Aggregation Network A, and Classification Network C. Accord-307

ing to the structure of the Transformer Network, we have two types of designs: the Basic method308

and the Self-Attention based method. The Basic method is adaptive to the Standard Assumption,309

while the Self-Attention method is designed for the Collective Assumption, which has more prac-310

tical usages. Figure 4 and Figure 5 are the network structures of the Multiple Instance Learning311

model corresponding to the Basic method and the Self-Attention method.312

Figure 4: Multiple Instance Learning Network Structure (Basic Version)

The Algorithm 3 is the detailed transformation algorithm based on the Self-Attention method.313

A.0.1 TRANSFORMER NETWORK T314

The function of the Transformer Network T is to conduct a feature extraction and transformation on315

the original features. There are two approaches based on different assumptions: the Basic method316

and the Self-Attention method. Figure 4 and Figure 5 are the network structures of the Multiple317

Instance Learning model corresponding to the Basic method and the Self-Attention method.318
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Figure 5: Multiple Instance Learning Network Structure (Self-Attention Version)

Algorithm 3: The Feature Transformation Algorithm Based on the Self-Attention Method
Input: The multi time series sample bag X = {x1, . . . , xJ}
Step1 Rewrite the input sample vectors in matrix form X = [x1, . . . , xJ ]⊤;
Step2 Calculate Q, K, V matrix:

Q = XWQ

K = XWK

V = XWV

Step3 Calculate attention weight:

WA = Softmax(QKT

√
d1

)

Step4 Calculate transformed matrix:

T = [t1, . . . , tJ ]⊤ = WAV

Step5 Output the transformed feature vectors through Soft-Transoformer hj :

hj = xj + αtj , ∀j = 1 . . . J

Output: The transformed vectors H = {h1, . . . , hJ}

The Basic Method As mentioned in Ilse et al. (2018), we use a double-layer neural network to319

calculate the attention weight. Let xj be the sample feature vector, then X = {x1, . . . , xJ} will be320

the corresponding sequence bag. The attention weight is321
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w∗
j = exp{W ⊤

2 tanh(W ⊤
1 xj)}∑J

i=1 exp{W ⊤
2 tanh(W ⊤

1 xi)}
.

Then, the feature vector Z ∈ Rd for the bag will be estimated as the weighted average of the sample322

vectors. That is323

Z =
J∑

j=1
w∗

j xj .

The advantages of this approach are all weight parameters are able to be optimized in the training324

process and the each sample in the bag has its own weight. Therefore, the feature vector conducted325

in this way has more interpretability. Meanwhile, we could also present a exception sample detection326

based on the their weights. The sample with a larger weight will have a larger chance to be a critical327

sample in the bag.328

For the Basic approach, since it has been assumed that there is no interaction effect and no structural329

information between samples in the bag, sample xj can be transformed into a feature vector hj330

directly using a two-layer fully connected network,331

hj = W ⊤
2 σ(W ⊤

1 xj + b1) + b2,

where σ(·) is the activation function.332

The Self-attention Method The Basic method assumes that the samples are independent when333

calculating the Attention mechanism. However, in practice, there exists various interaction effects334

between samples. In order to learn the interaction effectively, Vaswani et al. (2017) introduced a335

Transformer framework based on the Attention mechanism to obtain the interaction information be-336

tween sequences composed of words. Based on this method, Rymarczyk et al. (2021) proposed a337

Soft-Transformer framework. The Soft-Transformer transforms samples into feature vectors first338

before the Attention based Multiple Instance Learning, which can explore the interactive informa-339

tion between samples more effectively. Let xj be the sample vector, and X = [x1, . . . , xJ ]⊤ be the340

sample matrix composed of vectors. Firstly, we use weight matrix W d×d1
Q , W d×d1

K , W d×d2
V to calcu-341

late the corresponding matrices QJ×d1(Query), KJ×d1(Key), V J×d2(V alue), where Q = XWQ,342

K = XWK , V = XWV . We usually make d1 = d2. Then we have343

WA = Softmax(QKT

√
d1

).

Finally we get the transformed sample matrix:344

T = WAV = Softmax(QK⊤
√

d1
)XWV ,

where T = [t1, . . . , tJ ]⊤ is a transformed sample matrix, and tj is the transformed sample vector.345

Then we can perform the Multiple Instance Learning in the same way. Using this method we can346

get the transformed sample vector and the interaction information between samples. However, after347

transformation, the actual meaning of the vector is different from those for the original samples. The348

subsequent sample weights do not represent the importance of the samples anymore, and cannot be349

used to discriminate critical samples. Therefore, we use the Soft-Transformer to transform the350

output vector tj into xj + αtj . The Soft-Transformer we use makes the weight of the transformed351

vector still has the ability to reflect the importance of the samples after considering the interaction352

information in the analysis. In the subsequent analysis, we perform a critical sample discrimination353

based on attention weights. Figure 6 is the schematic diagram of the transformation process.354
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Figure 6: The structure of the Soft-Transformer

A.0.2 ATTENTION NETWORK W355

The Attention Network is used to learn attention weights of samples in the bag, and the attention356

weights are estimated through a module conducted by a two-layer gated neural network:357

vj = tanh(V ⊤hj),

uj = Sigmoid(U⊤hj),

wj = W ⊤
a (vj ⊙ uj),

w∗
j = exp{wj}

J∑
i=1

exp{wi}
,

where vj is the hidden state, uj is the updated gate state, ⊙ represents the element-wise multi-358

plication of the vector, wj is the attention weight, and w∗
j is the normalized attention weight by359

Softmax.360

A.0.3 AGGREGATION NETWORK A361

The Aggregation Network is used to aggregate all samples in the bag. After calculating the attention362

weight of each sample through the Attention Network W , we can estimate the feature vector Zi of363

the bag by calculating the weighted sum of the sample vectors in the bag,364

Zi =
J∑

j=1
w∗

j hj .

where w∗
j is the attention weight of each sample in the bag, hj is the feature vector obtained from365

the Transformer Network T .366
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A.0.4 CLASSIFICATION NETWORK C367

The Classification Network is a network that classifies the bag vector. After the aggregation of368

samples in the bag, the classification problem is turned into a traditional binary supervised learning369

problem. To deal with features extracted from the Neural Network, a fully connected (FC) layer370

network together with the Sigmoid activation function is used to calculate the anomaly classification371

probability Pi of the ith bag, where372

Pi = Sigmoid(W ⊤
C Zi + b).
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