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Abstract

Exploration in sparse-reward reinforcement learning (RL) is difficult due to the
need for long, coordinated sequences of actions in order to achieve any reward.
Skill learning, from demonstrations or interaction, is a promising approach to
address this, but skill extraction and inference are expensive for current methods.
We present a novel method to extract skills from demonstrations for use in sparse-
reward RL, inspired by the popular Byte-Pair Encoding (BPE) algorithm in natural
language processing. With these skills, we show strong performance in a variety
of tasks, 1000× acceleration for skill-extraction and 100× acceleration for policy
inference. Given the simplicity of our method, skills extracted from 1% of the
demonstrations in one task can be transferred to a new loosely related task. We
also note that such a method yields a finite set of interpretable behaviors. Our code
is available at https://github.com/dyunis/subwords_as_skills.

(a) AntMaze (b) Kitchen

Figure 1: A sample of some “skills” that our method identifies for the (a) AntMaze and (b) Kitchen
environments, where color is darker for poses earlier in the trajectory. Skills consist of linear motion
and turning in AntMaze, and reaching and pulling motions in Kitchen. Our method discovers a finite
inventory of skills, so it is possible to visualize and interpret them.

1 Introduction

The reinforcement learning (RL) paradigm, that allows an agent to interact with an a priori unknown
environment and collect its own data, is a promising approach to learning in many domains where
high-quality data collection is financially too expensive or otherwise intractable. Though it began with
dynamic programming in tabular settings, the recent use of neural networks as function approximators
has led to great success on many challenging learning tasks [47, 71, 26]. Typically, these successes
owe to particular properties of the tasks. In some cases, it is simple to define a reward function
that provides an informative learning signal at every step of interaction (the dense-reward setting),
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like directional velocity of a robot learning to walk [27]. In other cases, an environment model can
aid search, as in the case of Chess or Go [71]. In all cases access to a fast simulator is paramount.
However, for many natural tasks—like teaching a robot to make an omelet—it is much simpler to
tell when the task is completed than to supervise each individual step or model the environment
dynamics. Learning in these sparse-reward settings, where an informative reward is only obtained
extremely infrequently (e.g., at the end of successful episodes), is notoriously difficult. In order for a
learning agent to improve its policy, the agent needs to find reward, which requires long periods of
exploration, often in a coordinated fashion. One solution to the sparse-reward problem is to engineer
a proxy dense-reward, but that requires significant expertise and can lead to undesired reward-hacking
behavior [73].

Another class of solutions to the exploration problem aims to create temporally extended actions,
or “skills”, from interaction [69, 22, 51, 52] or demonstrations [38, 72, 57, 2, 6, 46]. Formally,
given a dataset of demonstrations D =
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of related behavior to the

desired task, we want to extract a new action space A′ ⊂ ∪∞t=1Π
t
u=1Au consisting of sequences

of the original action space, and then find a policy for the desired task using this action space,
π : S → A′. Current methods for skill-extraction rely on neural networks, which require large
numbers of demonstrations and expensive training.

Like the long-range coordination required for exploration in sparse-reward RL, language models
must model long-range dependencies between discrete tokens. Finer-grained character input leads to
extremely long sequences and requires low-level modeling; coarser-grained word-level input results
in the model poorly capturing rare and unseen words. The standard solution for language models is
to create “subword” tokens somewhere in between individual characters and words, that can express
any text [24, 67, 62, 39, 66, 31].

Lifting this idea from language modeling to RL, we propose a tokenization method for skill-learning
from demonstrations: Subwords as Skills (SaS). Following prior work [18, 68], we discretize the
action space where necessary and use a simple byte-pair encoding (BPE) scheme [24, 67] to obtain
temporally extended actions. Then, we use this subword vocabulary as the action-space for online RL.
As we demonstrate, such a method benefits from extremely fast skill-generation (seconds v.s. hours
for neural network-based methods), 100× faster rollouts due to the lack of an extra neural network
during inference, and strong results in several sparse-reward domains. Additionally, we demonstrate
transfer of skills collected in a different environment and we interpret the finite set of skills. Code is
available for our experiments at https://github.com/dyunis/subwords_as_skills.

2 Related Work

Exploration in RL: Exploration is a fundamental problem in RL, particularly when reward is sparse.
A common approach to encouraging exploratory behavior is to augment the (sparse) environment
reward with a dense bonus term that biases toward exploration. This includes the use of (possibly
approximate) state visitation counts [61, 45, 9, 13] and state entropy objectives [48, 30, 42, 60, 44, 79]
that incentivize the agent to reach “novel” states. Related, “curiosity”-based bonuses encourage the
agent to take actions in states where the effect is difficult to predict using a learned forward [65, 15,
74, 56, 1, 12] or inverse [29] dynamics model.

Temporally Extended Actions and Hierarchical RL: Another long line of work proposes action
abstractions to enable more effective exploration [49] and simplify the credit assignment problem.
Hierarchical reinforcement learning (HRL) [20, 34, 75, 11, 53, 54, 76, 21, 8, 40, 5, 77] considers
the problem of learning policies with successively higher levels of abstraction, where the lowest
level considers primitive actions in the environment and the higher levels reason over temporally
extended transitions. A classic example of action abstractions is the options framework [76], which
provides a standardization of HRL in which an option is a terminating sub-policy that maps states
(or observations) to low-level actions. Options can be prescribed as predefined low-level controllers
or learned via intermediate rewards [21, 20, 76]. Some simple instantiations of options include
repeated actions [70] and self-avoiding random walks [3]. Konidaris and Barto [37] learn a two-level
hierarchy by incrementally chaining options (“skills”) backwards from the goal state to the start
state. Nachum et al. [49] propose a hierarchical algorithm that learns in a sample-efficient, off-policy
fashion. Such gains require addressing normal off-policy instability and non-stationarity that comes
with jointly learning low- and high-level policies. Levy et al. [43] use different forms of hindsight [4]
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Figure 2: Abstract representation of our method. Given demonstrations in the same action space
as our downstream task, we discretize the actions and apply a tokenization technique to recover
“subwords” that form a vocabulary of skills. We then train a policy on top of these skills for a new
task. We only require a common action space between demonstrations and the downstream task.

to address similar instability issues that arise when learning policies at multiple levels in parallel.
One particularly related work applies grammar-learning to online RL [41], but such a method learns
an ever-growing number of longer actions which is problematic in the sparse-reward setting.

Skill Learning from Demonstrations: In addition to the methods mentioned above in the context
of HRL, there is an existing body of work that seeks to discover extended actions (skills) prior
to, instead of during, online RL. Many methods have been developed for skill discovery from
interaction [19, 25, 22, 78, 51, 52]. Most related to our setting is a line of work that explores skill
discovery from demonstrations [38, 46, 2, 72, 57, 6]. As an example, Lynch et al. [46] learn a VAE
[36, 64] on chunks of action sequences in order to generate a temporally extended action by sampling
a single vector. Ajay et al. [2] follow a similar approach on top of entire trajectories and only rollout
a partial trajectory at inference time. Some of these methods [2, 72, 57] condition on the observations
when learning skills; however, such skills transfer poorly across domains unless they are trained on
randomized environments [57, 6]. Others [46, 6] simply condition on actions, which means that the
skills can be reused in any domain that shares the same action space. To extract more generalizable
skills, we follow the latter approach. While a concurrent work [80] uses a method similar to ours
in order to discover skills for supervised learning and transfer learning, we focus on the use of
tokenization for online RL.

3 Method

Similar to prior work [46, 2, 72, 57, 6], we extract skills from demonstration data of action sequences.
Formally, these sequences are a dataset of N trajectories with lengths {ni}Ni=1 that involve the same
action space as our downstream task:

D =
{
(aj)i|i ∈ {1, ..., N}, j ∈ {1, ..., ni}, aj ∈ A ⊆ Rdact

}
,

where aj denotes an individual action. After extracting skills from this dataset, we use these skills as
the new action space for reinforcement learning on a downstream task. Crucially, our skills do not
rely on observations in the demonstrations, which allows them to transfer to different environments
even with very little data. In following subsections we detail our precise method.

3.1 Byte-Pair Encoding

Byte-pair encoding (BPE) was first proposed as a simple method to compress files [24], but it has
recently been used to construct vocabularies for NLP tasks with a resolution in between characters
and whole-words [66, 67, 39, 62, 31].

Given a long sequence of tokens (e.g., characters) and an initial fixed vocabulary, BPE consists of two
core operations: (i) compute the most frequent pair of neighboring tokens and add it to the vocabulary,
and (ii) merge all instances of the pair in the sequence. These two steps of adding tokens and merging
alternate until a desired vocabulary size is reached.
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3.2 Discretizing the Action Space

BPE requires an initial vocabulary V and data formatted as a string of discrete tokens. Clustering
is a simple way to form discrete tokens from a continuous action space. Prior work has leveraged
these ideas in similar contexts [32, 68, 33] and we follow suit. For simplicity, we perform k-means
clustering with the Euclidean metric on the actions of demonstrations in D to form a vocabulary
of k discrete tokens V = {v0, . . . , vk}. Our default choice for k will be two times the number of
degrees-of-freedom (DoF) of the original action space, or 2× dact. We further study this choice in
Appendix 4.5. Such clustering is the same as the action space of Shafiullah et al. [68] without the
residual correction.

3.3 Merging and Pruning the Subwords

After discretizing the action space (if continuous), we can relabel our demonstrations so that trajecto-
ries consist of “strings” of action tokens. Then, we can run BPE [24] with a large final vocabulary
size on these strings to extract skills.

As it runs, BPE keeps all intermediate subwords that make up the longest units. In the context of
language, this redundancy may not be particularly detrimental. However, in reinforcement learning
redundancy in the action space of a policy will result in a large number of similar actions that
compete for probability mass, making exploration and optimization difficult. Thus, we prune the
BPE vocabulary to a much smaller size.

To prune our vocabulary to a size Nmin, we choose a desired maximum length of skills, say L = 10
actions long. For our pruned vocabulary, we take the first Nmin subwords of length L that were found
by BPE. If there are only m < Nmin subwords of length L discovered, we then take the first Nmin−m
subwords of length L− 1, and so on until we reach the desired vocabulary size of Nmin. We choose
the first subwords of a certain length because by the design of BPE, those will be the most frequent
units of that length. If our demonstrations contain common and useful behavior, these will be the
most frequent chunks. We provide an algorithmic description of our entire skill-extraction method in
Algorithm 1.

Implicit in our method is an assumption that portions of the demonstrations can be recomposed
to solve a new task, i.e., that there exists a policy that solves the new task with the action space
that we choose. One can imagine a counter-example where the subwords we obtain lack some
critical action sequence without which the new task cannot be solved, either because it is lacking
in the demonstrations or because extraction is imperfect. Still, we will show that this assumption is
reasonable for several sparse-reward tasks.

4 Experiments

In the following sections, we demonstrate the empirical performance of our proposed method: first
extracting skills from demonstrations and then using those skills as an action space for online sparse-
reward RL. Unlike common methods for offline RL, we do not use any information about observations
or reward in the demonstrations. We see that our extracted skills provide significant speed benefits
and sensible exploration behavior. We also compare our observation-free unconditional skills to
observation-conditioned skills and discuss performance. We then examine the transfer setting, where
demonstrations come from a different domain. Finally, we present an ablation of hyperparameters.

4.1 Reinforcement Learning with Unconditional Skills

Tasks: We consider online RL on AntMaze and Kitchen from D4RL [23], two very challenging sparse-
reward state-based environments. AntMaze is a maze navigation environment with a quadrupedal
robot where the reward is 0 except for at the goal, and Kitchen is a manipulation environment in a
kitchen setting where reward is 0 except for on successful completion of a subtask. Demonstrations
in AntMaze consist of trajectories between random start and end states in the same maze, while
demonstrations in Kitchen consist of different sequences of subtasks than the eventual task. We also
consider CoinRun [17], a discrete-action platforming game. Unlike AntMaze and Kitchen, CoinRun
is a visual domain and the demonstrations are collected in levels distinct from those of the final
task. All of these domains require many coordinated actions in sequence to achieve any reward, with
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Algorithm 1 Skill-extraction with BPE

1: Given action-only demonstrations D = {(aj)i|i ∈ {1, ..., N}, j ∈ {1, ..., ni}, aj ∈ A ⊆ Rdact}

2: Given number of clusters k, max vocab size Nmax, skill length L, desired vocab size Nmin
3:
4: if the action space is not discrete, i.e. ∀j, aj /∈ N then
5: Run k-means on actions with k clusters to get discrete actions V = {vi}ki=1
6: Replace aj in D with closest discrete action index, aj ← argmin1≤l≤k∥aj − vl∥2
7: else
8: Use the discrete action space as seed vocabulary V ← A
9: end if

10:
11: Initialize subword vocabularyW = V
12: while |W| < Nmax do
13: Find most common pair of neighboring subwords wi, wj ∈ W in demonstrations D
14: Merge pair into a new subword, w′ = concat(wi, wj), and add to vocabulary,W ←W∪{w′}

15: Relabel demonstrations D, replacing sequences of (wi, wj) with w′

16: end while
17:
18: Initialize final vocabularyW ′ = ∅
19: while |W ′| < Nmin do
20: n← number of subwords w ∈ W with length L
21: W ′ ←W ′ ∪ {first min(n,Nmin − |W ′|) subwords of length L that were merged}
22: L← L− 1
23: end while
24:
25: return W ′
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Figure 3: Main comparison (unnormalized scores). SSP corresponds to results from official code
of Pertsch et al. [57], SSP-p corresponds to published results. AntMaze is scored 0–1, Kitchen is
scored 0–4 in increments of 1, CoinRun is scored 0–100 in increments of 10. CoinRun is a discrete-
action domain, so instead of SAC only SAC-discrete can be used. We see strong performance when
compared to baselines across tasks.

horizons between 280 and 1000 steps. See Appendix A for more information on the tasks and data.
Due to the suboptimality of demonstrations on AntMaze, we filter demonstrations to remove portions
that correspond to jittering in place.

Baselines: We consider SAC [28]; SAC-discrete [16] on top of our discretized k-means actions;
Skill-Space Policy (SSP), a VAE [36, 64] trained on sequences of 10 actions at a time [57]; and
State-Free Priors (SFP) [6], a sequence model of actions that is used to inform action-selection during
SAC inference. For SAC we use a standard implementation. For SAC-discrete we reimplement the
method. For SSP we use the official implementation [59] and tune hyperparameters for new domains.
For SFP we use official code [7], and are unable to tune hyperparameters due very large runtimes.
Figure 3 provides the complete set of results. We report mean and standard deviation across five
seeds. As defaults for our method, we use k = 2× dact and Nmin = 16. We choose Nmax = 106 so
that we always find sufficiently many skills with the desired length L = 10, which we choose to be
comparable with SSP’s length 10. We ablate these choices in Appendix 4.5. For more experimental
details and hyperparameter settings, see Appendix A. Including our method, all methods only use
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(a) SAC-discrete (b) SFP (c) SSP (d) SaS

Figure 4: A visualization of state visitation in online RL on AntMaze Medium in the first 1 million
timesteps for (a) SAC-discrete, (b) SFP, (c) SSP, and (d) our method averaged over 5 seeds. The grey
circle in the bottom-left denotes the start position, while the green circle in the top-right indicates the
goal. Notice that our method explores the maze much more extensively, with exploration behavior
that is similar for all five seeds. SAC’s visitation is tightly concentrated on the start state, which is
why there is so little red in (a) the visitation rendering for SAC-discrete (i.e., it is occluded by the
gray circle).

the action sequences of demonstrations. For AntMaze, we take the best setting of SSP whether the
demonstrations are filtered or not.

We see in Figure 3, that even in these challenging sparse-reward tasks, our method can perform well.
We show strong performance over baselines, which mostly achieve 0 return, except for in CoinRun
where we are competitive. The large standard deviations are due to the fact that we can only run a
small number of seeds and some seeds fail to achieve any reward, but we will show that exploration
behavior is still reasonable, which gives us more confidence in the conclusions.

Table 1: Timing (mean ± one standard deviation) on
AntMaze Medium in seconds. Methods measured on
the same Nvidia RTX 3090 GPU with 8 Intel Core
i7-9700 3 GHz CPUs @ 3.00 GHz. SSP takes ∼36
hours for skill generation and SFP takes ∼2 hours.

Method Skill Generation Online Rollout

SSP 130000±1800 0.9±0.05

SFP 8000±500 4.1±0.1

SaS 3±1 0.007±0.0006

Due to the simplicity of our method, it is sig-
nificantly faster than baselines. In Table 1, we
measure the wall-clock time required to gen-
erate skills, as well for a single rollout. We
see that our method achieves extremely signif-
icant speedups compared to prior work. Our
skill discovery method is fast as we simply
need to run k-means and tokenization. SSP
and SFP require training larger generative
models. In the case of rollouts, our method
predicts an entire sequence of actions using
a simple policy every L steps, while SSP and
SFP require larger models in order to predict the latent variable, and then generate the next action
from that latent. The speedup of our method also translates to faster RL (around 10 hours for our
method vs. 24 hours for SSP and 1 week for SFP).

4.2 Exploration Behavior on AntMaze Medium

The stringent evaluation procedure for sparse-reward RL equally penalizes poor learning and explo-
ration. In order to shed light on the poor performance of some methods in Figure 3, we examine
exploration on AntMaze Medium. We choose this domain because it is straightforward to visualize
good and bad exploration behavior by plotting maze coverage. In Figure 4 we plot state visitation
for the first 1 million of 10 million steps of RL. We show the approximate start position in grey in
the bottom left and the approximate goal location in green in the top right. Higher color saturation
corresponds to a higher probability of that state. Color is scaled nonlinearly according to a power law
between 0 and 1 for illustration purposes. Thin white areas between the density and the walls can be
attributed to the fact that we plot the center body position, and the legs have a nontrivial size limiting
the proximity to the wall.

Figure 4 visualizes the exploration behavior across methods, averaged over 5 seeds. We see that the
0 values for return in Figure 3 for SAC, SSP and SFP are likely due not to poor optimization, but
rather to poor exploration early in training, unlike our method. Indeed, we show in Appendix C that
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Figure 5: Comparison to methods with observation-conditioned skills. In general we see conditioning
helps when the data closely overlaps with the downstream task (Kitchen), but not in AntMaze where
the demonstrations are somewhat disjoint. OPAL is a closed-source method similar to SPiRL, so
results are taken from Ajay et al. [2, Section 5.3].

on AntMaze Large, for which not all seeds succeeds (unlike AntMaze Medium, for which all seeds
succeed), seeds that perform poorly still exhibit good exploration behavior. One reason for this could
be due to the fact that our subwords are a discrete set, so the policy always has diverse options to pick,
whereas continuous latent variables can model infinitely many skills with only minor differences. In
addition, SAC has fundamental issues in sparse-reward environments as the signal to the Q-function
is driven entirely by the entropy bonus, which will lead to uniform weighting on every action and
as a result, Brownian motion in the action space. Such behavior is likely why the default setting for
SAC [28] aggressively drives the policy to determinism, but in the sparse reward setting, this also
results in a uniform policy. Without diverse and long sequences of coordinated actions, such uniform
exploration is insufficient.

4.3 Comparison to Observation-Conditioned Skills

Our skill extraction method does not rely on observations and so may lead to more generalizable
skills. However, not conditioning on the observations comes with the drawback that a policy needs
to learn the context to deploy skills from scratch. Alternatively, observation-conditioned skills bias
policy exploration to match that of the demonstrations. This allows for more stable exploration
[57, 58, 2], but worse generalization [6].

Baselines: Here we compare to the observation-conditioned extension of SSP, SPiRL [57] which
biases a policy toward the use of skills in the same context as in the demonstrations. We also include
OPAL [2], a concurrent work with SPiRL. We take numbers from the paper as OPAL is closed-source.
Our tuning procedure for SPiRL is similar to SSP, where we consider the best setting over filtered
and unfiltered demonstrations.

In Figure 5, we see that SPiRL shows very strong performance on Kitchen, where the overlap between
the dataset and the downstream task is exact, but struggles with AntMaze, likely due to differences
between the random trajectories in the dataset and the final task. We also note that our result for
SPiRL in Kitchen is worse than the reported 2–3 [57]. Given that we use the official code, which
already implements Kitchen, the difficulty of sparse-reward RL is likely to blame.

4.4 Transferring Skills
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Figure 6: Results on transferring skills extracted from
AntMaze-M to downstream RL on AntMaze-U, with
varying quantity of demonstrations. Even with 1% of
the data, our method extracts useful skills

One benefit of unconditioned skills is that
they can be extracted from demonstrations
that differ from the final task domain. In
Figure 6, we highlight that such transfer is
possible, and that with varying percentages
of demonstrations (down to 10 trajectories)
performance is fairly stable. It may seem odd
that 1% performs better than 10% and 25%,
but this may be explained by the bias that ran-
dom subsampling imposes on the demonstra-
tions. By contrast, observation-conditioned
methods require large amounts of trajectories
in randomized environments to transfer effec-
tively [57, 6].
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4.5 Ablations

There are a few key hyperparameters of our method (k, Nmin and L). In the following, we perform
ablations over them in the AntMaze Medium and Kitchen environments. In general, behavior in the
Kitchen environment is much noisier, which may indicate that RL training is still unstable.

Number of Discrete Primitives All of our results in Figure 3 use the simple rule-of-thumb that
k = 2× degrees-of-freedom. In Figure 7 we see that this choice seems to be acceptable, though it
should be noted that significantly larger values of k lead to shorter skills as there are fewer and fewer
common subwords with the desired length L.
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Figure 7: Results for different numbers of clusters. For AntMaze, DoF = dact = 8, Kitchen DoF =
dact = 9, and the default setting is k = 2× dact. Note the legend is left unsorted so that the default
setting k = 2× dact is rendered in a consistent color and position across all plots.

Subword Length A crucial property of the vocabulary is the length of the subwords. Long
subwords lead to more temporal abstraction and easier credit-assignment for the policy, but long
subwords can also get stuck for many transitions, possibly leading to poor exploration. In Figure 8,
we vary the value of subword length L. Our default setting for each environment uses L = 10 to
match the baselines, but we see that different values are also acceptable, though L = 5 makes RL
more difficult in AntMaze.

0 2 4 6 8
Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

10
5
15
20

(a) AntMaze

0.0 0.5 1.0 1.5
Steps 1e6

0.00

0.25

0.50

0.75

1.00

1.25

Re
tu

rn

10
5
15
20

(b) Kitchen

Figure 8: Results for different choices of subword length L, where the default setting is L = 10.
Note the legend is left unsorted so that the default setting L = 10 is in a consistent color and position.

Vocabulary Size Ultimately, the dimensionality of the action space will make exploration easier or
harder. A large vocabulary results in too many paths for the policy to explore well, but a vocabulary
that is too small may not include all the skills necessary to represent a good policy for the task. We
see in Figure 9 that larger vocabulary sizes do in fact make RL more difficult in AntMaze.
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Figure 9: Results for different choices of vocabulary size Nmin, where the default setting is Nmin = 16.
Note the legend is left unsorted so the default setting Nmin = 16 is a consistent color and position.
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Figure 10: Results for different choices of tokenizer algorithm, where BPE is the default.

Tokenizer Algorithm All of the results thus far have only considered the BPE tokenizer [24], but
other tokenizers have seen benefits in language modeling, like WordPiece [67] or Unigram [39]. We
see in Figure 10 that BPE and WordPiece are somewhat interchangeable, but that performance suffers
with Unigram. This is likely because, unlike BPE and WordPiece, Unigram does not discover a
hierarchically structured vocabulary where shorter subwords are contained in longer subwords. Thus,
naively picking the first Nmin subwords of length L = 10 may not extract the most common behavior.
If we were to allow a length-independent vocabulary, Unigram might be a more natural choice, but
we did not explore that here due to the necessity of comparing fairly with baselines.

5 Conclusion

Architectures from NLP have made their way into offline RL [14, 32, 68], but as we have demonstrated,
there is a trove of further techniques to explore. Motivated by prior evidence that the full range
of the action space is not required, we discretize and form skills through a simple tokenization
method. Our method is much faster in skill generation and policy inference and leads to strong
performance in several challenging sparse-reward tasks with a relatively small sample budget. In
addition, the finite vocabulary size lends itself to interpretable skills: one can simply look at the
execution to figure out what has been extracted (Appendix B). As proposed, however, there are
a few key limitations. Discretization removes resolution from the action space, which may be
detrimental in settings like fast locomotion (Appendix D), but this may be fixed by using more
clusters k or a residual correction [68]. In addition, like prior work execution of our subwords is
open-loop, so exploration may be inefficient [3] and unsafe [50]. Still, given the speed, performance
and interpretability advantages, we believe that our tokenization method is the first step on a new
road to efficient reinforcement learning.
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(a) AntMaze Umaze (b) AntMaze Medium (c) AntMaze Large (d) Kitchen (e) CoinRun

Figure 11: Offline environments, figures courtesy of Fu et al. [23] and Cobbe et al. [17]. For AntMaze
Umaze the starting location is in the bottom left, and the goal is in the top left. For AntMaze Medium
and Large the starting locations are in the bottom left, and goals are in the top right.

A Online RL Experimental Details

A.1 Data

As a set of diverse and challenging sparse-reward tasks, we select AntMaze and Kitchen from
D4RL [23] and CoinRun [17]. We choose AntMaze as a much more challenging version of the
PointMaze task considered in prior work [57, 6], and Kitchen as the most complicated manipulation
environment considered by Pertsch et al. [57]. CoinRun is chosen as a challenging discrete-action
environment.

AntMaze An environment in which a MuJoCo Ant robot is tasked with navigating a maze (Fig-
ures 11(a), 11(b) and 11(c)). The observation space consists of positions and joint angles of the
body geometries, while actions correspond to joint torques. Crucially, no information about the
maze layout is given, so the agent must learn this through exploration. Reward is 0 unless within
a small distance ϵ of the goal, in which case it is 1. Demonstrations from the dataset consist of a
non-RL agent navigating between random start and end points within the maze [23]. In particular, the
demonstrations are highly suboptimal, often crashing into walls, flipping over, and getting stuck. In
order to extract nontrivial behavior with our method, we filter this data so that 10-step chunks that fail
to move past a certain threshold normalized distance in observation space are dropped. We consider
the best setting of filtered or unfiltered data for baselines.

Kitchen An environment in which a Franka Panda arm is tasked with performing a sequence of 4
subtasks in a mock kitchen environment (Figure 11(d)). Example subtasks include moving a kettle
between burners, turning on the stove, and opening the microwave. Observations consist of position
and joint angles of the arm, as well as positions of key objects to be manipulated, and actions are
joint torques. Once again, no information about the layout is given to the agent, and instead, it must
be learned through exploration. Rewards are 0 unless the correct subtask is completed in the correct
order, which yields a reward of 1. There are 4 subtasks to be completed, so there is a maximum
reward of 4 available. Demonstrations are collected by humans using a VR interface [23], and consist
of near-perfect executions of different sequences of 4 subtasks from the final sequence.

CoinRun A procedurally-generated platforming game that involves traversing obstacles and avoid-
ing enemies in order to reach a final goal (Figure 11(e)). Each level has a different layout and visual
style, designed by humans, in order to require more general recognition from the policy. Observations
consist of a 64× 64 visual observation of the scene, centered on the agent, with velocity information
painted into the upper-left corner. Actions are discrete and consist of moving, jumping, and staying
still. Reward is 0 until the final goal for a level is reached, in which case it is 10. For RL, we select a
fixed subset of 10 “hard” levels in sequence for an agent to complete, to mimic classic games, so the
maximum possible reward is 100. We collect demonstration data through playing around 100 “easy”
levels with different layouts and visual style than the eventual levels we perform RL on.

A.2 Model

For the model, we choose a 4-layer MLP with 256 hidden units in each layer. We use the default
initialization in Stable Baselines 3 [63].
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Figure 12: All skills discovered for AntMaze-M where color is darker for poses earlier in the trajectory.
We see a range of linear motion and turning behaviors.

A.3 Optimization

For our RL agent, we use SAC-discrete [16]. Both critics as well as the policy are optimized with
Adam [35] with a standard learning rate of 3e− 4. Replay buffer size is set to the standard 1 million
transitions. We update both critics and the policy every step of environment interaction and sample
uniformly from the replay buffer to do so. Unlike Christodoulou [16], we follow a similar convention
to Haarnoja et al. [28] and automatically optimize α. We choose a target entropy dependent on the
domain: 0.1 for AntMazes, 0 for Kitchen, and 0.5 for CoinRun, though we find this hyperparameter to
be relatively unimportant. More importantly, we found a large batch size crucial to good performance
in AntMaze, where we use a batch size of 4096. For other tasks, we use a batch size of 64. Other
hyperparameters are kept to their default values following SPiRL. Baselines are kept with original
hyperparmeters for the domains they studied, and given it was the critical hyperparameter for our
method, we tune batch sizes for SSP and SPiRL, but find default hyperparameters perform best.
Because SFP is so expensive to run, we do not have the computational budget to tune hyperparameters.

For AntMaze we train for 10 million steps, for Kitchen we train for 2 million, and for CoinRun we
train for 1.5 million steps. All numbers come from 5 random seeds.

A.4 Skill-extraction hyperparameters

For AntMazes and Kitchen, we choose defaults of k = 2× dact, L = 10, Nmax = 106 and Nmin = 16.
For CoinRun there is no need for discretization, so we only choose Nmax = 106, L = 10, and
Nmin = 16. These defaults are chosen to match the length 10 skills of SSP.

A.5 Implementation

Code was implemented in Python using PyTorch [55] for deep learning, Stable Baselines 3 [63]
for RL, and Weights & Biases [10] for logging. It is available at https://github.com/dyunis/
subwords_as_skills.

A.6 Computational Requirements

All experiments were performed on an internal cluster with access to around 100 Nvidia 2080 Ti (or
more capable) GPUs. Each single run fits in around 2GB of GPU memory on a single machine. On
AntMaze, training for our method typically takes around 10 hours for a single run, while SSP [57]
takes 24 hours and SFP [6] takes over a week. In particular, this highlights exactly how poor the
scaling can be for methods that call a large model at every transition.

B Qualitative Description of Skills

One nice property of our method is that, given that we extract a finite vocabulary, we can inspect the
discovered skills. Below, we discuss the AntMaze and Kitchen domains as an example. In order to
visualize skills, we execute the subwords for 100 steps in the environment, and visualize the resulting
trajectory. The actual duration of a skill is much shorter, but this is done to make the motions very
clear.
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Figure 13: All skills discovered for Kitchen where color is darker for poses earlier in the trajectory.
We see a range of different behaviors across the skills, including reaching (top row, first column),
pulling (bottom row, first column), and pushing (bottom row, fifth column) motions.

(a) Seed 0 (b) SFP (c) Seed 2 (d) Seed 3 (e) Seed 4

Figure 14: A visualization of state visitation in online RL on AntMaze Large for all 10 million
timesteps across different seeds. The grey circle in the bottom-left denotes the start position, while
the green circle in the top-right indicates the goal. Notice that our method explores the maze much
more extensively, with exploration behavior that is similar for all five seeds, even if the performance
of some of those seeds is 0 in the eventual evaluation. In particular, Seeds 0 and 2 do not result in
good evaluation performance regardless of the sensible exploration behavior.

In Figure 12, we see the skills extracted in AntMaze. In particular, we see turning in both directions,
with differing turn radii, as well as various linear motions. It is straightforward to imagine why one
would need both in designing an action space, and it seems that there are few explicit repetitions
(though many variations on the theme).

In Figure 13, we visualize the different skills discovered in the Kitchen domain. These are difficult
to present in a static form, as it is not simple to visualize interaction with the environment, but they
consist of a variety of reaching and rotational motions that are useful for interacting with different
objects. In the bordered images, we highlight three particular skills. In the top left is a reaching skill
that might be used for reaching the light switch/oven knobs. In the bottom left is a pulling skill that
could be useful opening a door. Lastly there is a pushing skill, that might be useful for sliding a door.

C Exploration Behavior when RL fails

Figure 4 visualizes the exploration behavior of our method on AntMaze Medium, for which all five
seeds of our method succeed. We believe that it is informative to consider the exploration behavior on
domains for which some seeds fail. To that end, we analyze the differences in exploration behavior of
SaS on Antmaze Large, for which not all seeds achieve perfect performance. We see in Figure 14
that even those seeds that do not perform well have quite sensible exploration behavior and good
coverage of the maze, so it seems like the major issue has to do with optimization in the RL setting,
not exploration.

D Effect of Discretization In Locomotion
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Figure 15: Experiments on the Hop-
per domain for varying number of
clusters k.

As mentioned in Section 5, discretization may remove resolu-
tion from the action space that could be useful, in particular for
fine-grained manipulation or fast-locomotion tasks. To study
this limitation, we investigate the effect of varying the dis-
cretization level on the Hopper locomotion environment from
D4RL [23]. We use hyperparameters k = 12, Nmin = 16,
L = 5 and train 5 seeds for 3 million steps each.
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In Figure 15, we see that the conclusions are curious. Finer
discretization helps up to a certain point, after which it hurts
performance. We are not totally certain as to why this happens.
One hypothesis is that finer levels of discretization naturally
results in shorter skills, as there are fewer repeated subwords,
but this might make RL in a dense reward environment easier,
not harder. In any case, all runs are worse than training on
continuous actions.

E Effect of Data Quality
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Figure 16: Experiments with
demonstration data of varying qual-
ity in the Hopper domain.

To see how our method performs with different kinds of data
quality, we again use the Hopper environment from D4RL [23].
This is because, unlike sparse-reward tasks considered in the
rest of the paper, Hopper provides a clear delineation of demon-
stration quality: “Random” for transitions from a random policy,
“Medium” for transitions from a policy partway through train-
ing, and “Expert” for transitions from a policy at the end of
training. We set k = 12, Nmin = 16, L = 5 and train 5 seeds
for 3 million steps.

From Figure 16, “Expert” demonstrations provide the best
skills, “Medium” demonstrations are very similar to “Expert”,
but surprisingly “Random” demonstrations are quite compet-
itive. What is likely happening here is that random demonstra-
tions do not have enough common subwords, so the discovered
subwords are quite short in length. Thus, with a dense reward
it is still possible to recover good behavior.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We believe that the main claims provided in the abstract and introduction, are
an accurate reflection of the paper’s contributions and scope, with empirical results that
support these claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: We discuss the limitations of our work in Section 5 as well as in the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The authors have made an effort to provide information sufficient to reproduce
the main experimental results, including details regarding the domains considered, the
baselines, and the hyperparameter settings in the main paper and appendix. Additionally,
we will make the code publicly available if/when the paper is accepted.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The data on which our method and the baselines are trained is publicly available
as part of the D4RL and CoinRun benchmarks. The code is available and mentioned in the
text.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: These details are provided in the main text and the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports standard deviations across 5 seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: These details are provided in Appendix A.6 and Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the Code of Ethics and believe that the paper is in compli-
ance.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: The paper proposes an algorithm for reinforcement learning in sparse reward
settings. We do not anticipate any societal impacts for this work, positive or negative.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: We believe that the paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We train and evaluate our model on benchmark tasks from D4RL (https://
github.com/Farama-Foundation/D4RL), which is governed by the Apache-2.0 License,
and CoinRun (https://github.com/openai/coinrun), which is governed by the MIT
License. We cite both in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release any new assets with this submission. However, we will
make the code as well as trained models publicly available if/when the paper is accepted.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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