
Under review as a conference paper at ICLR 2023

TEACHING OTHERS IS TEACHING YOURSELF REGU-
LARIZATION FOR CONTROLLABLE LANGUAGE MOD-
ELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large-scale pre-trained language models have achieved great success on natural
language generation tasks. However, it is difficult to control the pre-trained lan-
guage models to generate sentences with the expected attribute such as topic and
sentiment. Recent efforts (Yang & Klein, 2021; Krause et al., 2021; Dathathri
et al., 2019) on controllable language generation employ an additional attribute
classifier, which guides the generation of large-scale pre-trained language models,
have been shown to be efficient in controllable language generation. These methods
are named classifier-guided language models (CGLMs). However, we find that
the probabilities predicted by the attribute classifiers usually approaches 0 or 1,
which makes it hard to distinguish sentences with different matching degrees to
the expected attribute. The problem is named the biased probability distribution
(BPD) problem. To address the problem, we investigate different methods for ad-
justing probability distribution and propose a Teaching Others is Teaching Yourself
(TOTY) regularization method to smooth the probability distribution. Experiments
on sentiment control and topic control tasks show that CGLMs can get better
performance with guiding classifiers trained with TOTY.

1 INTRODUCTION

Recently, with the advances in large-scale pre-trained language model (PLM) (Radford et al., 2017;
2018; 2019; Brown et al., 2020), great progress has been made on natural language generation tasks.
With billions or even trillions of parameters, and abundant unlabeled training data, PLMs can generate
diverse and realistic sentences. Formally, autoregressive PLM models the probability distribution of
text X = {x1, x2, ..., xT } with the chain rule:

p(X) =

T∏
i=1

p(xi|x1, x2, ..., xi−1). (1)

However, those models are usually trained on general purpose corpus and the sentences generated
by those PLMs are usually inconsistent with task requirements. Therefore, Controllable Language
Generation (CLG), which aims to generate sentences that meet the requirements, has become more
important in natural language generation. Controllable language generation attempts to model p(X|a)
where a is a desired attribute (e.g. topic, length and sentiment):

p(X|a) =
T∏

i=1

p(xi|X1:i−1, a). (2)

To simplify the expression, we use X1:i to denote the sequence {x1, x2, ..., xi}.

It has been found that using an attribute classifier to guide the generation of PLMs was an efficient
approach to control the PLMs to generate sentences with expected attributes (Dathathri et al., 2019;
Krause et al., 2021; Yang & Klein, 2021). These methods are called classifier-guided language
models (CGLMs). In CGLMs, the conditional probability at each generation step is calculated by the
Bayes Rule:

p(xi|X1:i−1, a) ∝ p(a|X1:i)p(xi|X1:i−1). (3)
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Figure 1: The probability distribution of positive sentiment predicted by different classifiers trained on the
IMDB dataset. (a) GRU classifiers trained without/with TOTY regularization. (b) GPT2 classifiers trained
without/with TOTY regularization.

In the formula above, p(xi|X1:i−1) is the unconditional probability of generating xi at step i, which is
usually instantiated by a large-scale language model such as GPT. p(a|X1:i) is the attribute probability
that the generation result contains the attribute a when starting with the X1:i. CGLMs usually use
the output an attribute classifier, known as guiding classifier, to model p(a|X1:i). However, in
experiments, we found that the probability distribution of p(a|X1:i) predicted by guiding classifiers
was usually very biased. To be specific, for most of sentences X1:i, the probability predicted
by guiding classifiers either approaches 0 or approaches 1. We call this phenomenon the biased
probability distribution (BPD) problem.

In classification tasks, the BPD problem has little influence since these tasks only need to pick out
the class with the highest probability. In other words, the concrete value of probability does not have
a direct impact on classification accuracy. However, in CGLMs, the attribute of many sentences
could be ambiguous. Especially for autoregressive models, the tokens are generated one after another,
so the classifiers need to predict the attribute probability of many incomplete sentences. Obviously
assigning a probability approaching to 0 or 1 to these sentences is unreasonable. For example, for the
following sentences, the probabilities of positive sentiment predicted by the GRU classifier trained
on the IMDB dataset (Maas et al., 2011) for a), b), and c) was 89.5%, 98.5%, 99.9%, respectively.
However, only c) has a clear positive sentiment, while a) and b) do not have a clear sentiment.

a) This tale takes place in
b) This tale takes place in the Namib Desert of Africa.
c) This impressive tale takes place in the Namib Desert of Africa.

A good guiding classifier for CGLMs should distinguish sentences with different matching degrees
to the expected attribute, meaning that we should smooth the probability distribution predicted by
the classifier. The existing methods (Wang et al., 2021; Gupta & Ramdas, 2021; Platt, 2000; Wei
et al., 2022; Zadrozny & Elkan, 2001; Szegedy et al., 2016; Müller et al., 2019) for adjusting the
probability distribution predicted by classifiers are usually used to address the mismatch between a
model’s confidence and its correctness. It will be shown that these methods does not significantly
smooth the probability distribution.

2



Under review as a conference paper at ICLR 2023

In this work, we propose a simple regularization method named Teaching Others is Teaching Yourself
(TOTY) to address the BPD problem. In TOTY, we have two classifiers for the same classification
task, one is named the “teacher” and the other is the “student”. The teacher classifier learns from
the ground truth and teaches the student classifier. Different from knowledge distillation in which
knowledge only flows from the teacher to the student, in TOTY, we align the teacher and the student
together, such that they can learn from each other. Figure 1 demonstrates the probability distribution
of positive sentiment predicted by classifiers trained on the IMDB dataset (Maas et al., 2011) without
TOTY regularization and with TOTY regularization.

Experiments show that TOTY works well on smoothing the probability distribution of classifiers, and
significantly improves the performance of CGLMs. Moreover, TOTY is an easily applicable method
since it does not require complicated designing of model structure or training scheme.

2 RELATED WORK

2.1 MODELS FOR CONTROLLABLE LANGUAGE GENERATION

Controllable language models can be classified into two categories: class-conditional language
models (CCLMs) and classifier-guided language models (CGLMs).

Given an expected attribute a, CCLM is the most straightforward approach in controllable language
generation which directly models the probability p(X|a) for generating sentence X . There are various
methods to implement CCLM, such as training conditional generative models by concatenating the
expected attribute to inputs (Ficler & Goldberg, 2017; Kikuchi et al., 2016), training generative
adversarial networks (Yu et al., 2017), and training variational auto-encoders (Hu et al., 2017).
In recent years, with the development of large-scale pre-trained language models (Radford et al.,
2017; 2018; 2019; Brown et al., 2020) and prompt methods (Jiang et al., 2020; Li & Liang, 2021;
Shin et al., 2020), great progress has been made in CCLMs. CTRL (Keskar et al., 2019) builds a
large controllable language model trained on a large-scale corpus with 55 different control codes.
Following CTRL, COCON (Chan et al., 2020) proposes three self-supervised learning loss to enhance
controllability. Moreover, ACB (Yu et al., 2021) tries to disentangle the irrelevant attributes in corpus
and introduces prefix-tuning in CCLM to avoid tuning a large number of parameters.

Since the training data for specific attributes is limited, CCLMs usually lead to corpus overfitting,
meaning that the generated sentences of CCLMs usually highly resemble sentences in the training
corpus. For example, sentences sampled from CCLMs with sentiment control trained on IMDB
(Maas et al., 2011), a dataset of movie reviews for sentiment classification, usually mention words in
movie reviews (e.g. movie, film, and character). However, the attribute we wish CCLMs to learn is
the sentiment in IMDB rather than the context relevance of movie reviews.

CGLMs attempt to find the generation path that matches the expected attribute by using an external
attribute classifier. Instead of modeling p(X|a) directly, CGLMs sample X according to the Bayes
Rule: p(X|a) ∝ p(a|X)p(X). PPLM (Dathathri et al., 2019) proposes an iterative method that
updates the hidden states of a language model by backpropagating gradients of an attribute model to
maximize the likelihood of the expected attribute. Since PPLM requires iterations of forward and
backward processes in inference, it is computationally intensive. GeDi (Krause et al., 2021) uses
smaller language models to model p(a|X). FUDGE (Yang & Klein, 2021) trains a discriminator to
distinguish whether the desired attribute will be true in the future and use the discriminator to model
p(a|X). However, as discussed in Section 1, the performance of CGLMs is heavily influenced by the
probability distribution of the external classifiers.

2.2 METHODS FOR ADJUSTING PROBABILITY DISTRIBUTION PREDICTED BY CLASSIFIERS

Most of previous methods for adjusting probability distribution predicted by classifiers are proposed to
address the miscalibration problem - the mismatch between a mismatch between a model’s confidence
and its correctness. Miscalibration makes the predictions of deep neural networks hard to rely on
and leads to the overconfidence problem. Some classical works address the problem by post-hoc
methods, such as Platt Scaling (Platt, 2000) and Histogram Binning (Zadrozny & Elkan, 2001). Guo
et al. (2017) systematically analysed the previous post-hoc methods. Following these works, many
post-hoc methods were proposed (Kull et al., 2019; Rahimi et al., 2020; Gupta et al., 2020). Another
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Figure 2: (a) The sketch of standard classifier training process. (b) The sketch of classifiers trained with TOTY
regularization.

series of methods propose to adjusting the probability distribution by modifying the training process.
Such as label smoothing (Szegedy et al., 2016; Müller et al., 2019), focal loss (Lin et al., 2017;
Mukhoti et al., 2020), and LogitNorm (Wei et al., 2022).

3 APPROACH

3.1 TOTY REGULARIZATION

In this Section we introduce the TOTY regularization method. Since TOTY is not restricted to train
the classifiers of CGLMs, we introduce the TOTY regularization in a general classification task.
Different from classical training methods, TOTY contains two separate classifiers: the “teacher” and
the “student”. Figure 2 (a) and (b) demonstrates the training sketch of classical training method and
TOTY respectively. The two classifiers has same input and output in training.

Let u be the input of the classification task, and y be the label of u. The TOTY regularization is
defined as the euclidean distance between the logits output of the teacher and the student:

LTOTY(u, θt, θs) = ||ft(u, θt)− fs(u, θs)||2, (4)

where ft(u, θt) and fs(u, θs) denote the logit output of the teacher and the student respectively, and
θt and θs are the parameters of the teacher and the student respectively. The student classifier only
learns from LTOTY:

Lstudent = LTOTY(u, θt, θs). (5)

For the teacher classifier, besides the LTOTY, it also learns from the normal loss Lnormal(u, y, θt) for
classification in classical training methods. The forms of the loss for classification in different models
are various. We do not modify their own losses. Overall, for the teacher,

Lteacher = Lnormal(u, y, θt) + LTOTY(u, θt, θs), (6)

3.2 THEORETICAL ANALYSIS OF TOTY REGULARIZATION

In this section, we analyse how TOTY regularization smooths the probability distribution. To simplify
the problem, we treat the classification task as a binary classification task. In this case, the logit
output ft(u, θt) and fs(u, θs) would be scalars, and pt(y|u) is the sigmoid output of ft(u, θt). And
we use the cross entropy loss as the normal loss:

Lnormal = − ln pt(y|u)

= − ln
1

1 + exp (−(ft(u, θt))
.

(7)
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For a classifier trained with only the normal loss, ideally the training converges when

∂Lnormal

∂θt
= −(1− pt(y|u)))

∂ft(u, θt)

∂θt
= 0. (8)

Since the partial derivative of ft(u, θt) with respect to θt is usually not zero, obviously pt(y|u)
approaches 1 when it converges.

For the teacher classifier, the gradient of the TOTY loss can be formulated as the follows:

∂Lteacher

∂θt
=
∂Lnormal

∂θt
+

∂LTOTY

∂θt

=(2ft(u, θt)− 2fs(u, θs)− (1− pt(y|u)))
∂ft(u, θt)

∂θt
.

(9)

Ideally, with TOTY regularization, when the training of the teacher classifier converges, the gradient
of Lteacher would approach zero, such that

(2ft(u, θt)− 2fs(u, θs)− (1− pt(y|u)))
∂ft(u, θt)

∂θt
= 0. (10)

When the training converges, we get

pt(y|u) =1− 2(ft(u, θt)− fs(u, θs)). (11)

Since the alignment of the teacher classifier and the student classifier would have a fitting deviation
ϵ = ft(u, θt) − fs(u, θs), pt(y|u) would converge to a value less than 1 when ϵ > 0. So, after
convergence, with the TOTY regularization the value range of pt(y|u) becomes wider, which smooths
the probability distribution.

3.3 APPLYING TOTY TO CGLMS

In training classifiers for guiding CGLMs, the input u is a complete sentence X1:T , and the label y is
the attribute a of X1:T . Since in inference the classifiers need to classify the incomplete sentence
X1:i, we apply the TOTY regularization for every incomplete sentence X1:i where i ranges from 1 to
T . So the TOTY regularization for classifiers of CGLMs is

LTOTY =
1

T

T∑
i=1

||ft(X1:i, θt)− fs(X1:i, θs)||2. (12)

As for the normal classification loss, we adopt the FUDGE (Yang & Klein, 2021) loss:

Lnormal = − 1

T

T∑
i=1

ln pt(a|X1:i). (13)

4 EXPERIMENTS

To evaluate our approach, we trained TOTY with various pairs of classifiers as the teacher and the
student, then tested the performance of CGLMs with these classifiers as the guiding classifier. We
experimented on two controllable generation tasks: sentiment control and topic control.

4.1 DATASETS

IMDB: We used the IMDB dataset (Maas et al., 2011) for sentiment control. It contains 50k
samples of movie reviews labeled with sentiment tag (25k for positive sentiment and 25k for negative
sentiment). We randomly chose 1k positive samples and 1k negative samples as the test set of
sentiment classification. We trained our model on both positive attribute and negative attribute. In
evaluation, we used the same 15 prefixes (See Section A) of sentiment control from the prior work
(Dathathri et al., 2019) and generated samples started with these prefixes.

AG News: We used the AG News dataset (Zhang et al., 2015) for topic control. The AG News dataset
contains 120k samples of news articles. We randomly chose 500 samples from each class as the test
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set of sentiment classification.The samples are classified into one of the 4 classes: worlds, sports,
business, and science. We experimented on all of the 4 classes. In evaluation, we used the same 20
prefixes (See Section A) of topic control from the prior work (Dathathri et al., 2019) and generated
samples from these prefixes.

4.2 GUIDING CLASSIFIERS

We adopted three different guiding classifiers in our experiments. GRU classifier is a randomly
initialized GRU (Cho et al., 2014) model trained on the appropriate task. GPT2 classifier is a GPT2
model with a one-layer classification head on top. The GPT2 was initialized with the GPT2-large
implemented in Huggingface Transformers1. Since applying the GPT2 classifier as the guiding
classifier of CGLMs would have a huge computational cost in inference, this classifier is only used
as the student in our experiments. We will have more discussion on the computational cost of
CGLMs guided by the GPT2 classifier in Section C. GPT2-token classifier is the model introduced
in Section C.

4.3 IMPLEMENTATION DETAILS

For CGLMs, a pre-trained language model is needed for computing the unconditional generation
probability p(xi|X1:i−1). We used the GPT2-large (Wolf et al., 2020) implemented in Huggingface
Transformers2 as the pre-trained language model in all experiments.

In training, the AdamW optimizer (Loshchilov & Hutter, 2017) was adopted in all experiments. The
learning rate of AdamW was set to 5× 10−5. We used a batch size 64 and trained the models for 100
epochs. On average, on a Nvidia A100 Tensor Core GPU machine, each epoch took 7 minutes and 8
minutes for sentiment control and topic control respectively.

In inference, we adopted an attribute-driven nucleus sampling as the decoding strategy in all experi-
ments. The attribute-driven nucleus sampling will be introduced in Section B.

4.4 EVALUATION METRICS

In controllable language generation, we need to evaluate both the attribute relevance and the linguistic
quality of the generated sentences. In evaluation, for each model, we generated 50 samples per prefix
and report the average score over the samples.

Attribute relevance (AR): For both tasks, we used classifiers based on BERT (Devlin et al., 2019)
to measure the consistency between the generated sentences and the desired attribute. The BERT
was initialized with the BERT-large implemented in Huggingface Transformers3 and fine-tuned on
the task-specific corpus. Perplexity (PPL): Since we used GPT2-large as the language model of
CGLMs, for the sake of fairness, we measured the linguistic quality of generated sentences by the
average perplexity of a GPT2-XL4.

4.5 PROBABILITY DISTRIBUTION ANALYSIS

To further analyse the effect of TOTY, we plot the probability distribution predicted by GRU classifiers
with different regularization methods trained on the IMDB dataset and the AG News dataset in
Figures 3 and 4 respectively.

To simplify the expression, in the following we use TOTY(x) to denote the TOTY regularization
with model x as the student. For the probability of sentences in IMDB dataset, as can be seen from
Figure 3 (a), the vanilla GRU classifier has very high peaks at interval [0.0,0.1) and [0.9,1]. According
to Figure 3 (b), with label smoothing, the peaks of distribution shifted, but it did not smooth the
distribution. The distance that the peaks shifted is similar to the hyper-parameter α in label smoothing.
Figure 3 (c) shows that the focal loss did not significantly alter the probability distribution, since

1https://huggingface.co/gpt2-large
2https://huggingface.co/gpt2-large
3https://huggingface.co/bert-large-uncased
4https://huggingface.co/gpt2-xl
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Figure 3: The probability distributions predicted by GRU classifiers with different regularization methods
trained on the IMDB dataset. (a) Vanilla. (b) Label smoothing. (c) Focal loss. (d) TOTY (student: GRU
classifier). (e) TOTY (student: GPT2 classifier). (f) TOTY (student: GPT2-token classifier).

(a) vanilla (b) label smoothing (c) focal loss 

(d) TOTY (GRU) (e) TOTY (GPT2） (f) TOTY (GPT2-token）
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Figure 4: The probability distributions predicted by GRU classifiers with different regularization methods
trained on the AG News dataset. The y-axis is truncated at 0.3 to detailed display the distribution around the
secondary peak. (a) Vanilla. (b) Label smoothing. (c) Focal loss. (d) TOTY (student: GRU classifier). (e) TOTY
(student: GPT2 classifier). (f) TOTY (student: GPT2-token classifier).

the probability distribution predicted by models with focal loss still had very high peaks at [0.0,0.1)
and [0.9,1]. Figure 3 (d), (e), and (f) show the probability distributions of classifiers trained with
TOTY by using different models as the student. It is shown that with TOTY(GRU), the probability
distribution predicted by the teacher GRU classifier was not well smoothed, while with TOTY(GPT2)
and TOTY(GPT2-token), the probability distribution got much smoother. We think this phenomenon
can be explained with the theoretical analysis in Section 3.2. As we discussed in Section 3.2, the
probability distribution will get smoother when the fitting deviation ϵ gets larger. Compared with
aligning models with different structures, the absolute value of ϵ is small when the teacher and the
student had the same structure, such that the value range of probability didn’t get wider and the
probability could not be well smoothed.
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Table 1: Results on sentiment control and topic control task. LS and Focal denotes the label smoothing and
focal loss method respectively. TOTY(x) means that the student model is x.

Classifier Regularization Negative Sentiment Positive Sentiment Topic
AR(%)↑ PPL↓ AR(%)↑ PPL↓ AR(%)↑ PPL↓

GRU

vanilla 90.3 33.6 98.8 72.1 97.7 33.0
LS (α = 0.1) 89.7 32.0 98.7 37.0 96.9 33.0
LS (α = 0.2) 84.4 28.1 96.8 34.2 96.2 31.9
Focal (γ = 1.0) 86.7 34.6 98.3 57.0 96.6 31.5
Focal (γ = 5.0) 86.1 35.1 96.5 67.6 91.4 32.3
TOTY (GRU) 88.0 32.0 98.3 47.0 97.8 31.0
TOTY (GPT2) 93.7 35.4 99.2 26.6 97.8 27.2
TOTY (GPT2-token) 93.9 26.5 99.3 36.7 98.5 29.1

GPT2-token

vanilla 92.5 28.7 98.4 25.9 98.3 22.9
LS (α = 0.1) 58.4 61.6 91.7 39.9 98.5 22.7
LS (α = 0.2) 60.0 54.4 88.1 40.7 97.4 22.2
Focal (γ = 1.0) 60.1 36.2 90.4 27.2 25.5 26.8
Focal (γ = 5.0) 65.6 34.7 91.6 30.7 90.9 43.0
TOTY (GRU) 94.4 24.3 99.4 26.7 99.0 22.2
TOTY (GPT2) 94.9 24.0 98.8 18.4 98.5 16.9
TOTY (GPT2-token) 92.0 25.1 99.5 21.1 99.3 19.9

For the probability of sentences in the AG News dataset, since the dataset is a 4-classes classification
task and we only compute the probability distribution of one of the classes, it’s a normal phenomenon
that there is a high peak of distribution at interval [0.0,0.1). So, in Figure 4, we only care about
the secondary peak in the distribution. From Figure 4, we can draw similar conclusion with the
conclusion of Figure 3, such as the label smoothing only shifted the secondary peak and the focal
loss did not significantly alter the probability distribution. From Table 1, we find that on the topic
control, the AR of CGLM with GRU classifier trained by TOTY(GPT2-token) is better than trained
by TOTY(GRU) and TOTY(GPT2). This result can be explained from the probability distribution
of these models since compared to the Figure 4 (d) and (e) the distribution in Figure 4(f) has lower
secondary peak.

4.6 EXPERIMENTAL RESULTS

In our experiments, we used the vanilla classifier trained with the classification loss in equation 13
without any regularization method as the baseline model. To verify the effect of TOTY on CGLMs,
we compared classifiers trained with TOTY with two previous regularization methods for adjusting
probability distribution: label smoothing (Szegedy et al., 2016; Müller et al., 2019) and focal
loss (Lin et al., 2017). In experiments of label smoothing, we tested the hyper-parameter α = 0.1
and α = 0.2 separately. And in experiments of focal loss, we tested the hyper-parameter γ = 1.0 and
γ = 5.0 separately.

Table 1 shows the results on sentiment control and topic control. In most of experiments, compared to
the vanilla model, label smoothing and focal loss could not improve the performance on AR or PPL,
and in some cases (such as the GRU classifier with label smoothing α = 0.2 on negative sentiment
control, and the GPT2-token classifier with focal loss γ = 1.0 on topic control) these regularization
methods even seriously harmed the performance.

And compared with the baseline models, in most of experiments, TOTY significantly improved
the attribute relevance with negative sentiment, positive sentiment and expected topic, meanwhile
reduced the perplexity metric.

However, we also found the GRU classifier for sentiment control when the student was a GRU
classifier had no improvement. Comparing the results with the probability distribution in Figure 3,
we conclude that whether TOTY works well on smoothing the probability distribution determines the
performance of CGLMs with the classifiers as the guiding classifier.
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Table 2: The stepwise probabilities assessed by different classifiers. The data in each step stands for the
probability of the desired attribute for the sentence from the beginning to the current step.

Positive Sentiment The food is awful but the service is nice

GRU-vanilla 0.50 0.43 0.41 0.02 0.05 0.08 0.09 0.10 0.02
GRU-TOTY(GRU) 0.54 0.47 0.49 0.01 0.01 0.01 0.01 0.01 0.01
GRU-TOTY(GPT2) 0.51 0.48 0.49 0.22 0.33 0.34 0.33 0.36 0.46
GRU-TOTY(GPT2-token) 0.51 0.50 0.52 0.19 0.29 0.35 0.34 0.37 0.44

Sports Topic The Italian athlete attended the World War in 1940

GRU-vanilla 0.22 0.22 0.94 0.97 0.99 1.00 1.00 1.00 1.00
GRU-TOTY(GRU) 0.24 0.30 0.80 0.88 0.89 0.89 0.86 0.87 0.86
GRU-TOTY(GPT2) 0.24 0.24 0.63 0.64 0.67 0.68 0.58 0.61 0.54
GRU-TOTY(GPT2-token) 0.23 0.29 0.78 0.72 0.73 0.77 0.62 0.55 0.49

4.7 STEPWISE ANALYSIS OF CLASSIFIERS WITH TOTY

Table 2 demonstrates the stepwise probabilities of positive attributes and sports topics. From the
stepwise probabilities, we found that the stepwise probabilities assessed by GRU classifiers with
TOTY(GPT2) and TOTY(GPT2-token) flowed along with the conversion of the sentiment and topic
in the sentences. For “The food is awful but the service is nice”, the sentiment in the sentence
converts from negative to positive, and the stepwise probabilities of positive attribute decreased
firstly and then increased gradually. For “The Italian athlete attended the World War in 1940”, the
stepwise probabilities decreased after the word “War”, which is reasonable. However, the vanilla
classifier and the GRU classifier with TOTY(GRU) performed poorly on both the sentences. They
classified “The food is awful but the service is nice” as a very negative sentence, and classified “The
Italian athlete attended the World War in 1940” as a sentence strongly related to the sports topic.
To conclude, the stepwise probability of models with biased probability distribution usually could
not adapt the attribute conversion of the sentences, while the models with smoothed probability
distribution performs well on attribute conversion.

5 CONCLUSION

In this work, we identify the BPD problem which harms the performance of CGLMs. To address
the BPD problem, we introduce TOTY, an easily applicable and efficient regularization method
for smoothing the probability distribution of classifiers. By aligning the teacher classifier and the
student classifier together, TOTY smooths the probability distribution of classifiers. Experiments
on sentiment control task and topic control task show that TOTY can significantly improve the
performance of CGLMs. We also think that TOTY might be a useful regularization method for other
tasks.
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A PREFIXES USED IN EXPERIMENTS FOR SENTENCE GENERATION

We used the same 15 prefixes for sentiment control and 20 prefixes for topic control from PPLM.

Prefixes for sentiment control: “Once upon a time”, “The book”, “The chicken”, “The city”, “The
country”, “The horse”, “The lake”, “The last time”,“The movie”, “The painting”, “The pizza”, “The
potato”, “The president of the country”, “The road”, “The year is 1910.”.

Prefixes for topic control: “In summary,”, “This essay discusses”, “Views on”, “The connection”,
“Foundational to this is”, “To review,”, “In brief,”, “An illustration of”, “Furthermore,”, “The central
theme”, “To conclude,”, “The key aspect”, “Prior to this”, “Emphasised are”, “To summarise,”, “The
relationship”, “More importantly,”, “It has been shown”, “The issue focused on”, “In this essay”.

B ATTRIBUTE-DRIVEN NUCLEUS SAMPLING

As we discussed in Section 1, CGLMs use the Bayes Rule in equation 3 to calculate the conditional
probability. However, in inference, xi is to be generated at step i in inference. To get the probability
distribution of xi, we need to calculate p(w|X1:i−1) for all token w in the vocabulary, such that we
need to calculate p(a|X1:i−1, w) for all token w in the vocabulary.

Following previous CGLM works (Dathathri et al., 2019; Krause et al., 2021), we applies weighted
decoding in our model by introducing a non-negative hyper-parameter λ. The conditioned probability
with weighted decoding is

p(w|X1:i−1, a) ∝ p(a|X1:i−1, w)
λp(w|X1:i−1). (14)

λ is a hyper-parameter to balance controllability and fluency of generation. When λ is 0, the
conditioned probability degrades into the unconditioned probability. In all of our experiments, λ was
set to 5.

Moreover, inspired by the decoding strategy in the original paper of GeDi (Krause et al., 2021),
we design an attribute-driven nucleus sampling in inference to improve the controllability and the
linguistic quality. The attribute-driven nucleus sampling contains two filters. The first filter is a
standard nucleus sampling filter (Holtzman et al., 2019) acting on the unconditional probability
distribution p(w|X1:i−1) to maintain the linguistic quality of generation. We define Vk as the set of k
tokens w with the highest p(w|X1:i−1). With a filter probability ρ1, k̂(ρ1) is defined as

k̂(ρ1) = argmin
k

(
∑
w∈Vk

p(w|X1:i−1) ≥ ρ1). (15)

With the first filter, we get the k̂(ρ1) tokens with the highest p(w|X1:i−1) which form a set Vk̂(ρ1)
.

Inspired by the decoding strategy of GeDi (Krause et al., 2021), the second filter, named “attribute-
driven filter”, acts on the conditional probability distribution p(w|X1:i−1, a), aiming at making the
generated sentences well conditioned on the attribute a. We define Um as the set of m tokens w in
Vk̂(ρ1)

with the highest p(a|X1:i−1, w). With a filter probability ρ2, m̂(ρ2) is defined as

m̂(ρ2) = argmin
m

(
∑

w∈Um

p(w|X1:i−1, a) ≥ ρ2). (16)

Finally we sample from the set Um̂(ρ2). Experimentally, we set ρ1 = 0.9, ρ2 = 0.3 in all experiments.
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C GPT2-TOKEN CLASSIFIER

As we discussed in Section B, we need to calculate p(a|X1:i−1, w) for all token w in the vocabulary.
For the GPT2 classifier, we need to extract the features of the sentence {X1:i−1, w} for all token w
in the vocabulary. Usually the vocabulary size of GPT2 is more than 50k, and on a single NVIDIA
A100 Tensor Core GPU machine, extracting the feature of a sentence by GPT2-large takes about
0.03s. So it is a huge cost for extracting the features of sentence {X1:i−1, w} for all token w in the
vocabulary. To reduce the computational cost, we introduce the GPT2-token classifier.

Let h1, ..., hT denote the last hidden state of a GPT2 model with X1:T as the input. For each i, the
dimension of hi is dh.

Let ew denote the embedding of token w. The dimension of ew is de. The GPT2-token classifier M
receives hi−1 and ew as the input. Different from the GPT2 classifier, GPT2-token classifier do not
need to extract the feature of {X1:i−1, w} by GPT2 for all token w in vocabulary, which significantly
reduces the computational cost. The structure of the GPT2-token classifier is a gated neural network:

gi−1 = Wghi−1 + bg,

ri = σ(W1rew +W2rgi−1 + br),

zi = σ(W1zew +W2zgi−1 + bz),

ni = Tanh(W1new + b1n + ri(W2ngi−1 + b2n)),

oi = ReLU((1− zi)ni + zigi−1),

M(hi−1, ew) = W0oi,

(17)

where Wg is dh × dh matrix, a W1r,W1z ,W1n are dh × de matrices, W2r,W2z ,W2n are dh × dh
matrices, bg , br, bz , b1n and b2n are dh dimensional vectors, W0 is a dh dimensional row vector and
Tanh is the hyperbolic tangent function.

13


	Introduction
	Related Work
	Models for Controllable Language Generation
	Methods for Adjusting Probability Distribution Predicted by Classifiers

	Approach
	TOTY Regularization
	Theoretical Analysis of TOTY Regularization
	Applying TOTY To CGLMs

	Experiments
	Datasets
	Guiding Classifiers
	Implementation Details
	Evaluation Metrics
	Probability Distribution Analysis
	Experimental Results
	Stepwise Analysis of classifiers with TOTY

	Conclusion
	Prefixes used in experiments for sentence generation
	Attribute-Driven Nucleus Sampling
	GPT2-token Classifier

