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ABSTRACT

Decoding strategies play a pivotal role in text generation for modern language
models, yet a puzzling gap divides theory and practice. Surprisingly, strategies
that should intuitively be optimal, such as Maximum a Posteriori (MAP), often
perform poorly in practice. Meanwhile, popular heuristic approaches like Top-k
and Nucleus sampling, which employ truncation and normalization of the con-
ditional next-token probabilities, have achieved great empirical success but lack
theoretical justifications. In this paper, we propose Decoding Game, a compre-
hensive theoretical framework which reimagines text generation as a two-player
zero-sum game between Strategist, who seeks to produce text credible in the true
distribution, and Nature, who distorts the true distribution adversarially. After
discussing the decomposibility of multi-step generation, we derive the optimal
strategy in closed form for one-step Decoding Game. It is shown that the adver-
sarial Nature imposes an implicit regularization on likelihood maximization, and
truncation-normalization methods are first-order approximations to the optimal
strategy under this regularization. Additionally, by generalizing the objective and
parameters of Decoding Game, near-optimal strategies encompass diverse meth-
ods such as greedy search, temperature scaling, and hybrids thereof. Numerical
experiments are conducted to complement our theoretical analysis.

1 INTRODUCTION

Decoding strategies underpin the mechanism of generating a text sequence from a given language
model, and therefore become an essential component of modern Large Language Models (OpenAI,
2024). Specifically, given an autoregressive language model P̂ which encodes the conditional next-
token probability P̂(Xt|X<t), one aims to generate a high-quality sequence (X1, . . . , XT ) by some
strategy based on P̂. Perhaps one of the most straightforward strategies is Maximum a Posteriori
(MAP), looking for the most probable sequence, i.e., the one with the maximum predicted likelihood
P̂(X1, . . . , XT ). Considering the computation cost of an exact MAP, one would naturally turn to
some local heuristic variants such as greedy search, beam search (Graves, 2012; Sutskever et al.,
2014), and contrastive search (Su et al., 2022).

These deterministic searching methods based on likelihood maximization can achieve state-of-the-
art performance especially in closed-ended tasks, such as translation, coding, math problem solving,
and summarization (Shi et al., 2024). Counter-intuitively, in open-ended text generation tasks, these
strategies usually lead to low-quality, degenerate texts, even with heavily trained state-of-the-art
language models (Shi et al., 2024; Wiher et al., 2022; Hashimoto et al., 2019). Instead, stochastic
sampling methods that randomly select the next token are observed to yield better outputs. Popular
strategies include Top-k sampling (Fan et al., 2018), Nucleus (Top-p) sampling (Holtzman et al.,
2020), η sampling (Hewitt et al., 2022), and Mirostat sampling (Basu et al., 2021), among others.

They follow a truncation-normalization design, namely (1) sampling the next token from a truncated
distribution by removing the tail probabilities, and (2) rescaling the remaining probabilities by a
normalizing constant. Some other methods like Basis-Aware sampling (Finlayson et al., 2024) and

∗Department of Electrical and Computer Engineering
†Department of Operations Research and Financial Engineering

1



Published as a conference paper at ICLR 2025

Typical sampling (Meister et al., 2023) also rely on truncation but may discard high-probability
tokens besides the tail; see Section 2 for details. Formally, if (p̂1, . . . , p̂d) is the vector of the
predicted probability of all candidate next-tokens {1, . . . , d}, these methods decide an index set S
and sample a token i with probability

qi ∝ p̂i1(i∈S).

Here, different designs define the truncation set S using distinct criteria: Top-k sampling uses a fixed
size threshold, Nucleus sampling uses cumulative probability mass, and entropy-based methods use
information-theoretic thresholds (η).

Regarding decoding strategies, there is an interesting dichotomy between theory and practice. From
a statistical perspective, likelihood maximization approaches are desired to succeed by seeking or
approximating the posterior mode of P̂, but usually underperform in practice on open-ended gener-
ation tasks. On the contrary, despite their empirical superiority over likelihood maximization, the
design of randomized sampling strategies remains mostly heuristic and the theory behind is poorly
understood. To resolve this dichotomy, this paper aims to propose a comprehensive theoretical
framework of text generation, where heuristic sampling strategies, rather than likelihood maximiza-
tion, are proved to be (near-)optimal.

Now, we shall introduce the motivations behind our framework before presenting it formally.

1.1 MOTIVATION AND OUR FRAMEWORK

First thought. At first sight, a statistician may naturally relate these truncation methods with the
concept of sparsity and regularization, and further attempt to handcraft a constrained or penalized
optimization problem where they are optimal strategies. This is easier than it may sound: for ex-
ample, we can design a distance metric so that Top-k sampling is the best sparse approximation to
the original distribution according to this metric, such as ℓ0 distance that directly controls sparsity.
The major flaw of such approaches is that their objectives and constraints mostly come from non-
principled, reverse engineering and lack statistical motivations. Therefore, they may not be able to
provide theoretical insight into questions like why sparse solutions are favored, and why we should
adopt a specific regularization term and distance metric.

Second thought. Let us restart from the most significant observation that likelihood-maximization
approaches fail in practice. What does this imply? If P is the true distribution of natural language, it
is reasonable to expect that the trained language model P̂ is away from P. This makes P̂-likelihood
an unreliable criterion of a generated text, and hence leads to the failure of likelihood maximization.
On the other hand, the appropriate criterion a strategy would like to maximize is the P-likelihood of
a generated sequence.

However, note that for generality, we restrict ourselves from assuming too many structures on the
true distribution P, except for its bounded deviation from P̂. This “model-free” setup brings an
adversarial nature to text generation: in the worst case, P can try its best to degrade the quality of
our generated text within its distance budget.

Decoding Game. These ideas lead to our proposal, Decoding Game, a two-player zero-sum game
between Strategist (S) and Nature (N). In this game, player S chooses a (randomized) decoding
strategy to generate a text sequence that, in expectation, achieves good log-likelihood in the true
distribution. On the other hand, player N is always able to shift the true distribution adversarially to
reduce the text quality. Knowing the decoding strategy beforehand, player N chooses the worst-case
true distribution P. Formally, a T -step Decoding Game is represented by

max
Q

min
P∈N(P̂)

EQ logP(X1, . . . , XT | X0),

where, conditioned on a given prompt X0, Q is the probability measure on (X1, . . . , XT ) induced
by the decoding strategy of player S, and N(P̂) refers to a neighborhood of P̂. The objective of the
game is the true log-likelihood of a length-T sequence generated from strategy Q, in expectation.

For player S, an equivalent perspective is robust optimization (Ben-Tal et al., 2009). Since player S
has no knowledge of P, it aims to find a strategy that can work consistently well for all the possible
true distributions. To achieve such robustness against an adversarial distributional shift, player S
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should optimize the log-likelihood in the worst case of P to ensure that its strategy does not lead to
poor performance in any case, which corresponds to the minimax formulation.

If there is no adversary (P = P̂ always holds), then the game reduces to P̂-likelihood maximization,
and naive MAP is exactly the solution. However, when an adversary is present, MAP becomes
sub-optimal and the game invites more interesting consequences.

1.2 CONTRIBUTION

In the rest of this paper, we conduct in-depth investigations into Decoding Game. The main results
include:

• Criticality of one-step Decoding Game. In Section 3, we identify the role of one-step
Decoding Game in understanding the multi-step setting. We build up a recursive structure
for the multi-step game, and argue the computational intractability of obtaining a global
solution in modern LLMs. Instead, we construct a locally optimal mechanism that involves
solving a one-step Decoding Game locally at each timestep, and justify its worst-case per-
formance.

• Optimality of heuristic strategies under implicit regularization. Under total variation
(TV) distance, we provide closed-form solutions to the one-step Decoding Game for both
players. In Section 4.1, we show that the optimal strategy of player N imposes an ℓ∞-type
regularization on the log-likelihood. As a result, tail truncation-normalization sampling
strategies emerge as first-order approximations to the optimal strategy of player S; see
Section 4.2.

• Generalizability of the framework. In Section 4.3, we further discuss the consequences
of using different objectives for Decoding Game, recovering other types of strategies such
as temperature-based methods. The exclusive advantage of log-likelihood, in contrast to
other objectives, is also highlighted under the general framework.

• Empirical evidence. Building on the general theory, in Section 5, we propose Game sam-
pling (Algorithm 1) and empirically evaluate its performance in open-ended text generation
with GPT-2 models. The experiments suggest that Game sampling is able to outperform
other strategies, which corroborates our optimality results.

Decoding Game provides a comprehensive theoretical framework that rigorously establishes opti-
mality results for heuristic sampling strategies. It largely differs from existing interpretations which,
to different extents, provide some theoretical viewpoints as partial justifications for their design. We
will briefly review them in Section 2.

At the same time, we believe that the statistically meaningful motivations and minimal assump-
tions behind Decoding Game open up its potential for future research on decoding strategies; see
discussions in Section 6.

2 RELATED WORKS

2.1 EXISTING THEORETICAL INTERPRETATIONS

Theoretical explanations for decoding methods have been very sparse and existing works are rela-
tively limited. Known perspectives presented in literature include (1) overestimation of token prob-
abilities, (2) surprisal and perplexity of generated text, and (3) implicit regularization on MAP.

Following the long-held intuition (Holtzman et al., 2020) that language models tend to assign exces-
sive probability to the unreliable tail, Finlayson et al. (2024) explained truncation as a remedy for
this problem, showing that it can correctly discard the tokens out of the support of the true distri-
bution when overestimation is upper-bounded. They further credited overestimation to the Softmax
Bottleneck (Yang et al., 2018) brought by the language model architecture, motivating a new trunca-
tion mechanism that may remove high-probability tokens besides the tail. However, this structural
assumption may not well account for the broadness of the source of overestimation. Additionally, it
is unclear why rescaling all the remaining probabilities by the same constant is considered the best
approach after truncation.
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A similar idea of identifying the correct support has also driven prior works such as Hewitt et al.
(2022) and Meister et al. (2023). Hewitt et al. (2022) modeled the predictions as a mixture of true dis-
tribution and uniform-like smoothing distribution, and viewed truncation as a way to desmooth the
output. Meister et al. (2023) proposed to compute the support that better aligns with the information-
theoretic metrics of human text measured by token surprisal and entropy, under assumptions on the
behavior of human speakers. In this method, high-probabilty tokens may be discarded as well.

Basu et al. (2021) theoretically derived the perplexity of various sampling methods under the statisti-
cal assumption that next-token probabilities follow a Zipf distribution, comparing how the hyperpa-
mameter of each method influences the order of perplexity. This particular Zipfian assumption may
not fully capture the complicated probability distributions encoded by modern language models.

An earlier work (Meister et al., 2020) attempted to explain heuristic methods such as beam search
as an implicit regularization imposed on MAP. However, the design of regularization term seems to
lack statistical motivations. They also suggest a qualitative relationship between the regularization
term and the uniformity of surprisal of generated sequences, but the detailed mechanism is not well
understood mathematically.

Overall, each of them motivates the design of heuristic decoding methods to a certain extent, but
to the best of our knowledge, we are not aware of any comprehensive theoretical framework that
establishes optimality results.

2.2 TEXT GENERATION AS DECISION MAKING

Another line of work, though not directly working on the theory of heuristic decoding schemes,
views the problem of text generation as optimizing the policy of a decision-making agent working in
an environment with or without adversary. This perspective resonates with our rationale behind the
Decoding Game. For example, Jacob et al. (2024) proposed a game between a generation strategy
and a text quality discriminator, and empirically demonstrated the advantage of the decoding strategy
at the Nash equilibrium of this game in multiple tasks. Other recent works such as Snell et al. (2023);
Kim et al. (2023); Mudgal et al. (2024) modeled next-token generation as (token-level) Markov
decision processes, and applied reinforcement learning techniques for controlled decoding.

2.3 ROBUST OPTIMIZATION AND REGULARIZATION

Our framework also draws a connection to robust optimization (Ben-Tal et al., 2009), which aims to
find solutions with stable performance under data uncertainty or perturbations. Given the adversarial
nature of uncertainty, robust optimization is typically formulated as a minimax problem that seek
the best response to the worst-case data realizations. Interestingly, while the sparsity brought by
truncation sampling can be seen as regularization, it is known that regularization and robustness
are strongly correlated in various machine learning problems (Derman et al., 2021; Shaham et al.,
2018; Bertsimas et al., 2011), as solving an optimization problem with regularization is equivalent
to solving its non-regularized robust counterpart. For instance, lasso and ridge optimization can be
reformulated as robust optimization problems, where the data matrix is subject to different types of
perturbations: ridge regression corresponds to Frobenius norm-bounded perturbations while lasso
corresponds to column-wise ℓ2-norm bounded perturbations (Shaham et al., 2018). The theory
developed in this paper also confirms such an equivalence between robustness and regularization.

3 FORMULATION

3.1 NOTATIONS

Throughout, we use boldface letters to represent vectors and vector-valued mappings, and use
blackboard bold letters to represent probability measures and expectations. For a sequence
(x0, x1, . . . , xT ), we define x<t = (x0, . . . , xt−1). For a vector a = (a1, . . . , ad), a1:i =
(a1, . . . , ai) is the vector extracting its first i components. The ℓp norm (p ≥ 1) of a is defined
as ∥a∥p = (

∑d
i=1 |ai|p)1/p, with ℓ∞ norm ∥a∥∞ = maxi≤d |ai|. The total variation (TV) dis-

tance between two probability vectors p, q is defined as dTV(p, q) = 1
2 ∥p− q∥1. For a function

f : R → R, f(a) represents the elementwise application of f to the vector a, and a/b represents
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the elementwise division of a by b. For a finite set V , ∆(V) denotes the probability simplex of
dimension |V|, and Vt denotes the Cartesian product V × ... × V (t times). We always assume that
optimization variables have to satisfy probability constraints (e.g., lying in the probability simplex,
or the space of probability measures), and will not specify them explicitly for conciseness.

3.2 DECODING GAME

We describe the T -step Decoding Game in full detail. Suppose V = {1, 2, ..., d} is the vocab-
ulary of all d tokens, and the natural language follows a true distribution P. Upon training, we
obtain a language model P̂ that approximates the true P. Beginning with a prescribed context
X0 = (prompt, ⟨BOS⟩), we generate a sequence (X1, . . . , XT ) with a possibly randomized de-
coding strategy, which is represented by another measure Q such that next tokens are selected with
probability Q(Xt | X<t). We can then evaluate the quality of the generated sequence by testing
whether the true distribution P is also likely to yield such a sequence. Specifically, for a typical
sequence generated from Q, we use its log-likelihood in P-measure as the criterion

LT (Q,P) = EQ logP(X1, . . . , XT | X0),

which is also the negative cross-entropy between Q and P when viewed as distributions on VT .

The T -step Decoding Game is a two-player zero-sum game on this criterion between Strategist
(S) and Nature (N), where player S chooses Q (by choosing a decoding strategy) to maximize the
criterion of the generation, while player N chooses P within a neighborhood of P̂ to minimize it.
This gives rise to the following formulation:

max
Q

min
P∈N(P̂)

LT (Q,P) = max
Q

min
P∈N(P̂)

EQ logP(X1, . . . , XT | X0). (MDG)

In other words, without knowing P specifically, player S seeks a strategy to optimize the objective
LT in the worst case among N(P̂).

As a starting point of further understanding of the multi-step game, we build up a picture at T = 1. In
this case, the probability measure P is represented by a d-dimensional probability vector p ∈ ∆(V),
where pi = P(X1 = i | X0). Similarly, the one-step strategy Q is represented by q ∈ ∆(V). We
use TV distance to define the neighborhood N(p̂) = {p : dTV(p, p̂) ≤ ϵ}, leading to the one-step
Decoding Game

max
Q

min
P∈N(P̂)

L1(Q,P) = max
q

min
p∈N(p̂)

q⊤ log p. (ODG)

Our theoretical analysis in Section 4 will be mainly devoted to the one-step setting (ODG). Before
that, we shall still take a deeper look into the general (MDG) and justify why the one-step game is a
representative case that captures the essence of the general setting.

3.3 REDUCTION FROM MULTIPLE STEPS

In the multi-step setting, given a context x<t ∈ Vt−1, a probability measure P computes the condi-
tional next-token distribution P( · | x<t). Similar to one-step setting, such a next-token distribution
corresponds to a d-dimensional probability vector pt(x<t) ∈ ∆(V). We define the neighborhood in
(MDG) as

N(P̂) =
{
P : dTV(pt(x<t), p̂t(x<t)) ≤ ϵ, ∀x<t ∈ Vt−1 and t ≤ T

}
,

which, as an extension from the one-step case, controls the dissimilarity between any pairs of con-
ditional next-token distribution in TV distance.1

Then, we can recast (MDG) as

max
Q

min
P∈N(P̂)

EQ logP(X1, . . . , XT | X0) = max
Q

min
P∈N(P̂)

T∑
t=1

EQ logP(Xt | X<t)

1It can also be interpreted as the ϵ-ball of the TV-sup distance d(P, P̂) = max{dTV(pt(x<t), p̂t(x<t)) :
x<t ∈ V t−1, t ≤ T}, which is half of the (1,∞) mixed norm (Horn & Johnson, 1985) of the matrix concate-
nating all the conditional distributions difference pt(x<t)− p̂t(x<t) as its columns.
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= max
Q

min
P∈N(P̂)

T∑
t=1

EX<t∼Q[EXt∼Q(·|X<t)[logP(Xt | X<t)]]

= max
Q

min
P∈N(P̂)

T∑
t=1

EX<t∼Q[qt(X<t)
⊤ log pt(X<t)]

= max
Q

T∑
t=1

EX<t∼Q

[
min

pt(X<t)∈N(p̂t(X<t))
qt(X<t)

⊤ log pt(X<t)

]
. (1)

Here, (1) uses the fact that the minimization problem is inherently separable in each next-token
distributions pt(x<t).

Directly solving (MDG) or (1) is computationally intractable. Theoretically, one can exploit the
recursive structure in (1) and apply dynamic programming, but the scale of the problem grows as
Ω(dT ), and such an approach would take poly(dT ) time. Considering the computational cost of
working on a modern LLM, in this paper we turn to local solutions that do not probe into the global
structure of the problem. It is given by a locally optimal mechanism

q̃t(x<t) = argmax
qt(x<t)

min
pt(x<t)∈N(p̂t(x<t))

qt(x<t)
⊤ log pt(x<t) ∀x<t ∈ Vt−1, (2)

thus going back to (ODG). In addition to significantly alleviating the computational cost, it turns
out that such a local mechanism also provides the optimal worst-case performance over all decision
processes that do not exploit future information of P̂. We state this result formally next.

Definition 3.1. We say a strategy Q = Q(P̂) has no foresight if for any t ≤ T , we have qt(x<t; P̂) =
qt(x<t; P̂′) for any P̂ and P̂′ satisfying p̂s(x<s) = p̂′

s(x<s) ∀s ≤ t.

Assumption 3.2. ϵ < ∥p̂t(x<t)∥∞ for all t ≤ T and x<t ∈ Vt−1.

Proposition 3.3. Given arbitrary P̂ from the space of probability measures on VT , let Q = Q(P̂)
be any strategy with no foresight. Moreover, let P∗ = P∗(P̂,Q) be the optimal strategy of player N
against Q. If Assumption 3.2 holds and Q̃ = Q̃(P̂) is the strategy induced by (2), then

inf
P̂
LT (Q̃,P∗) ≥ inf

P̂
LT (Q,P∗).

Here, we make Assumption 3.2 so that the optimal value of the game is always well-defined, by
staying away from −∞. Proposition 3.3 provides worst-case justifications for optimizing the im-
minent one-step reward of the game at each timestep t. In what follows, we will be devoted to the
one-step game (ODG) for theoretical analysis.

4 THEORETICAL ANALYSIS

In this section, we study the optimal strategies for both p and q in (ODG). We will show that the
optimal q imposes an ℓ∞-type regularization on the log-likelihood, and the optimal p solving the
regularized maximization yields tail truncation-normalization sampling methods. Finally, we ex-
tend our analysis from log-likelihood to a general type of objectives, which recovers other heuristic
methods and also highlights an exclusive advantage of log-likelihood.

For (ODG), we make the following assumptions.

Assumption 4.1. The probabilities are strictly positive and, without loss of generality, sorted in
decreasing order, i.e., p̂1 ≥ p̂2 ≥ · · · ≥ p̂d > 0.

Assumption 4.2. The distance budget ϵ satisfies p̂d ≤ ϵ < p̂1.

4.1 p-STRATEGY: IMPLICIT REGULARIZATION

For a given q, we have the following characterization for the optimal strategy of p.
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Theorem 4.3. Under Assumption 4.1 and 4.2, let ı̂ = max{i : p̂i > ϵ}. Define ŵ ∈ Rı̂ elementwise
by ŵi =

ϵ
log p̂i/(p̂i−ϵ) . Then, for a given q, the optimal p̃ for (ODG) satisfies

q⊤ log p̃ = min
p:dTV(p,p̂)≤ϵ

q⊤ log p =

{
q⊤ log p̂− ϵ ∥q1:̂ı/ŵ∥∞ , if qi = 0, ∀i > ı̂;

−∞, otherwise.

We give several remarks on Theorem 4.3.

Tail truncation. Due to the fact that limx↓0 log(x) = −∞, any q possessing a non-zero tail in the
index set {i : p̂i ≤ ϵ} will lead to a −∞ objective value, because setting the corresponding pi to
zero is within the reach of the adversary. This implies a hard truncation constraint qi = 0 ∀i ≥ ι̂,
namely the optimal q must come without such a tail. However, more components can be additionally
truncated in the maximization part, due to the ℓ∞ regularization effect we derived.

Tackling non-convexity. The minimization problem in p is non-convex, because it has a concave
objective. Therefore, it is inherently hard to characterize the structures of the optimal p̃: it may not
even be unique. However, under TV distance, the geometry of the feasible region is a polytope.
This benefits our analysis because the minimum is known to be attained at the vertices (Horst,
1984), restricting the candidate solutions within a finite set. Switching to other dissimilarity metrics
than TV distance, such as KL divergence, would change the geometry and require very different
techniques, which is left for future work.

Implicit regularization. With optimal p̃, the remaining part of the game is a regularized log-
likelihood maximization in terms of q:

max
q

q⊤ log p̂− ϵ ∥q1:̂ı/ŵ∥∞ , s.t. qi = 0, ∀i > ı̂

with an ℓ∞-type regularization term ∥q1:̂ı/ŵ∥∞. Note that we have ŵ ≈ p̂1:̂ı by applying first-
order approximation to the function log(1 + x). If no adversary is present (ϵ = 0), there is no
regularization effect and trivially, greedy sampling solves the one-step log-likelihood maximization.
This establishes an equivalence between regularization and robustness against an adversary, which
has been observed in the robust optimization literature; see Section 2.3.

4.2 q-STRATEGY: HEURISTIC SAMPLING METHODS

Now we present the optimal solution to the regularized maximization problem.
Theorem 4.4. Under Assumption 4.1 and 4.2, let ı̂ = max{i : p̂i > ϵ}, and ŵi =

ϵ
log(p̂i/(p̂i−ϵ)) for

all i ≤ ı̂. Define the threshold

Î = max

{
I :

I−1∑
i=1

ŵi log(p̂i/p̂I) ≤ ϵ, p̂I > ϵ

}
.

Then, the optimal q̃ for (ODG) is given elementwise by
q̃i ∝ ŵi1(1≤i≤Î).

Corollary 4.5. By first-order approximation, ŵi ≈ p̂i, and hence q̃i ∝ p̂i1(1≤i≤Î), where

Î = max

{
I :

I−1∑
i=1

p̂i log(p̂i/p̂I) ≤ ϵ, p̂I > ϵ

}
.

Thus, up to first-order approximation, a tail truncation-normalization sampling strategy is optimal.

Clearly, Theorem 4.4 describes a sampling strategy that truncates tail probabilities and keeps only
the subset {1, . . . , Î} as the support. Note that Î ≤ ı̂ always holds. The new distribution on the
support q̃1:Î is not a simple rescaling of the original weights p̂1:Î by a normalization constant, which
is different from past heuristic designs. However, according to Corollary 4.5, rescaling emerges as
a first-order approximation to the optimal strategy.

Under first-order approximation, the truncation threshold of q̃ has an information-theoretic inter-
pretation. Note that if I belongs to the support {1, . . . , Î}, then

∑I−1
i=1 p̂i log(p̂i/p̂I) ≤ ϵ, which is

equivalent to
log(1/p̂I) ≤ H(p̂1:I−1) + CI ,
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where H(p̂1:I−1) is the entropy of p̂1:I−1, and CI := log
(
1/
∑I−1

i=1 p̂i
)
+ϵ/(

∑I−1
i=1 p̂i) ≈ ϵ for large

I .2 Thus, when constructing the support, for large I , we grow the existing support {1, . . . , I − 1}
by adding I if its self-information (surprisal) log(1/p̂I) is small compared to the existing entropy
plus a small amount. In other words, this token selection mechanism modulates the total number of
surprisals.

Notably, this truncation threshold is different from previous truncation-based methods like Nucleus
sampling. However, one can still recover these strategies, say Nucleus sampling, by setting an
appropriate ϵ that depends on p, the hyperparameter of Nucleus sampling, and also the distribution
p̂i. This involves an adaptive ϵ that changes at every decoding step.

4.3 GENERALIZATION FROM LOG-LIKELIHOOD

Beyond the log-likelihood, our analysis can be extended to games with more general objectives,
taking the form

max
q

min
p:dTV(p,p̂)≤ϵ

q⊤f(p), (f -ODG)

where f : R→ R is applied elementwise on p. We assume the following for (f -ODG).
Assumption 4.6. f is non-decreasing and concave. Moreover, (ϵ, f) satisfies either of the following
conditions:

(i) p̂d ≤ ϵ < p̂1, and limx↓0 f(x) = −∞;

(ii) 0 < ϵ < p̂d, and
∑d−1

i=1
f(p̂i)−f(p̂d+ϵ)
f(p̂i)−f(p̂i−ϵ) ≥ 1.

Clearly, our previous log-likelihood game (ODG), which uses f(x) = log(x), satisfies part (i) of
this assumption. The following result establishes the solution to the general game (f -ODG), and
encompasses Theorem 4.4 as a special case.
Theorem 4.7. Under Assumption 4.1 and 4.6, let

SI =

I−1∑
i=1

f(p̂i)− f(p̂I)

f(p̂i)− f (p̂i − ϵ)
,

and define the threshold Î = max {I : SI ≤ 1, p̂I > ϵ}. Then, the optimal q̃ for (f -ODG) is given
elementwise by

q̃i ∝
ϵ

f(p̂i)− f (p̂i − ϵ)
1(1≤i≤Î). (3)

Corollary 4.8. Suppose f is also differentiable. By first-order approximation on f , we have q̃i ∝
1

f ′(p̂i)
1(1≤i≤Î), where

Î = max

{
I :

I−1∑
i=1

f(p̂i)− f(p̂I)

f ′(p̂i)
≤ ϵ, p̂I > ϵ

}
.

There are two interesting consequences of this general result.

Exclusive advantage of log. Log-likelihood is the only objective that makes it optimal to rescale
the remaining probabilities by a normalization constant. This is because enforcing 1

f ′(x) = x in
Corollary 4.8 leads to f(x) = log(x) (up to a constant). Therefore, there is an exclusive connection
between log-likelihood and rescaling.

Temperature scaling. Second, since rescaling is not necessarily optimal, it is worth understanding
how we treat the remaining probabilities under another f . One example is f(x) = x1−1/τ−1

1−1/τ , where

τ ̸= 1.3 Taking the derivative, we have 1
f ′(p̂i)

= exp
(
log p̂i

τ

)
= p̂

1/τ
i , hence recovering temperature

sampling (Hinton, 2015) where the temperature is controlled by τ . This shows the general game
(f -ODG) is able to express a variety of sampling strategies.

2Note that I−1
min{d, 1/ϵ} ≤

∑I−1
i=1 p̂i ≤ 1 by Assumption 4.1 and the fact that p̂i ≥ p̂I > ϵ for all i < I .

3Note that limτ→1
x1−1/τ−1

1−1/τ
= log x.
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5 EXPERIMENTS

Building on the truncation and normalization mechanism given in the general theory, we propose
Game sampling as outlined in Algorithm 1, and empirically evaluate its performance in text gen-
eration. Regarding the algorithm design, the objectives to our concern are f(x) = x1−1/τ−1

1−1/τ and
f(x) = log(x), as a special case of τ = 1. For better practical results, we relax the restrictions on
the value of ϵ in Assumption 4.6.

Algorithm 1 Game sampling

Input: 0 < ϵ ≤ 1, and τ > 0
if τ = 1 then ▷ log-likelihood objective

compute SI =
∑I−1

i=1 p̂i log(p̂i/p̂I)

find Î = max{I : SI ≤ ϵ}
set qi = p̂i1(1≤i≤Î)

else if τ ̸= 1 then ▷ temperature sampling objective
compute SI = (1− 1/τ)

−1∑I−1
i=1 p̂i

(
1− (p̂i/p̂I)

1−1/τ
)

find Î = max{I : SI ≤ ϵ}
set qi = p̂

1/τ
i 1(1≤i≤Î)

end if
normalize qi: qi ← qi/

∑d
j=1 qj

sample the next word based on the distribution q

We conduct an open-ended text generation task using web text from the GPT-2 output dataset. For
each of the 5,000 articles in the Webtext test set, we use the first 35 tokens as prompts, with a
maximum generation length of 256 tokens. For each type of GPT-2 model (Small, Medium, Large,
XL) (Radford et al., 2019), GPT-J-6B (Wang & Komatsuzaki, 2021), and Llama-2-7B (Touvron
et al., 2023), we evaluate the following metrics:

1. Perplexity: The perplexity of the generated text under the corresponding model.
2. Repetition frequency: The fraction of generations with repetitions. A generation is con-

sidered repetitive if it contains at least two contiguous copies of the same phrase, of any
length, at the token level.

3. MAUVE score (Pillutla et al., 2021): for comparison with human-written text, we use the
corresponding human continuations from the test set, up to a maximum of 256 tokens.

A good performance is characterized by a high MAUVE score and close-to-human perplexity and
repetition.

We compare seven decoding strategies: the proposed Game sampling (Algorithm 1), Nucleus sam-
pling (Holtzman et al., 2020), Contrastive search (Su et al., 2022), Typical sampling (Meister et al.,
2023), Basis-Aware sampling (BA-η) (Finlayson et al., 2024), Greedy sampling (using argmaxi p̂i),
and Pure sampling (sampling i with probability p̂i). We use the best-performing hyperparameters
for each strategy as determined by the MAUVE score.

The results are presented in Table 1, with a more detailed breakdown in Appendix B. Game sampling
achieves the best performance in GPT-J-6B, GPT-2 XL, Medium, and Small models, and scores the
second highest in GPT-2 Large and Llama-2-7B models, next to Nucleus sampling and BA-η respec-
tively. We remark that BA-η involves matrix decomposition and operates at a higher computation
cost compared to our method.

We also experiment with different values of ϵ and τ , with details in Appendix B. In general, larger
values of ϵ tend to produce better results in terms of higher MAUVE score, lower repetition fre-
quency, and human-level perplexity. Smaller ϵ values reduce perplexity, but at the expense of more
repetitions and lower MAUVE scores. In terms of τ , the best performance for each ϵ choice was
achieved at τ ≈ 2, yielding the highest MAUVE score. Similar to ϵ, smaller τ values tend to re-
duce perplexity, but produce more repetitions with lower MAUVE scores. MAUVE score begins to
decline when τ exceeds 2.
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Method Perplexity Repetition MAUVE

Game (ϵ = 0.95, τ = 2) 23.590 0.002 0.926
Nucleus (p = 0.9) 25.116 0.004 0.923
Contrastive (α = 0.6) 2.267 0.835 0.035
Typical (p = 0.9) 10.785 0.019 0.888
BA-η (η = 0.0001) 29.610 0.002 0.917
Greedy 2.163 0.886 0.0155
Pure 62.001 0.0002 0.845
Human 21.559 0.002 −

GPT-2 Small

Method Perplexity Repetition MAUVE

Game (ϵ = 0.95, τ = 2) 17.499 0.002 0.945
Nucleus (p = 0.9) 19.221 0.002 0.945
Contrastive (α = 0.6) 2.431 0.677 0.049
Typical (p = 0.9) 9.018 0.010 0.923
BA-η (η = 0.0001) 24.119 0.0006 0.933
Greedy 2.247 0.808 0.029
Pure 48.553 0.0004 0.848
Human 15.923 0.002 −

GPT-2 Medium

Method Perplexity Repetition MAUVE

Game (ϵ = 0.99, τ = 2.5) 15.458 0.001 0.947
Nucleus (p = 0.95) 13.699 0.002 0.954
Contrastive (α = 0.6) 4.448 0.006 0.892
Typical (p = 0.9) 6.590 0.012 0.924
BA-η (η = 0.0001) 15.223 0.0008 0.954
Greedy 2.169 0.760 0.039
Pure 21.952 0.0008 0.931
Human 13.755 0.002 −

GPT-2 Large

Method Perplexity Repetition MAUVE

Game (ϵ = 0.99, τ = 2) 11.333 0.003 0.958
Nucleus (p = 0.95) 14.589 0.003 0.955
Contrastive (α = 0.6) 5.235 0.006 0.912
Typical (p = 0.9) 7.342 0.011 0.932
BA-η (η = 0.0001) 13.495 0.001 0.946
Greedy 2.411 0.672 0.065
Pure 23.505 0.0004 0.942
Human 12.319 0.002 −

GPT-2 XL

Method Perplexity Repetition MAUVE

Game (ϵ = 0.99, τ = 2.5) 19.729 0.002 0.833
Nucleus (p = 0.99) 23.149 0.002 0.806
Contrastive (α = 0.6) 6.573 0.007 0.715
Typical (p = 0.9) 8.747 0.016 0.769
BA-η (η = 0.0001) 12.307 0.002 0.826
Greedy 2.603 0.731 0.043
Pure 27.327 0.001 0.798
Human 9.950 0.002 −

GPT-J-6B

Method Perplexity Repetition MAUVE

Game (ϵ = 0.95, τ = 1.5) 14.000 0.128 0.858
Nucleus (p = 0.95) 31.125 0.154 0.853
Contrastive (α = 0.6) 5.375 0.236 0.702
Typical (p = 0.9) 5.156 0.209 0.719
BA-η (η = 0.0001) 8.375 0.002 0.890
Greedy 3.109 0.457 0.537
Pure 44.500 0.016 0.813
Human 6.469 0.002 −

Llama-2-7B

Table 1: Evaluations on open-ended text generation with different decoding strategies. Boldface values indicate
the highest MAUVE score and the closest-to-human perplexity and repetition. The best-performing hyperpa-
rameters are selected for each strategy.

6 CONCLUSION

In this paper, we proposed Decoding Game, a two-player zero-sum game where a Strategist aims
to maximize the log-likelihood of the generated text under the true probability measure, while an
adversarial Nature seeks to distort the true measure within an ϵ-error budget to degrade the text.
After discussing the decomposibility of multi-step generation, we studied the optimal strategies
for both players of the typical one-step Decoding Game. We proved that, as Nature enforces its
optimal strategy, it imposes an ℓ∞-type regularization on the log-likelihood maximization problem.
By solving this regularized maximization in closed form, we identified tail truncation-normalization
sampling as a first-order approximation to the optimal strategy.

We also generalized our theory from log-likelihood to a broader class of objectives. In deriving the
general solution, we observed that log-likelihood is the only objective that makes it optimal to rescale
the remaining probabilities by a normalizing constant. Selecting other types of objectives leads to
different ways of treating the remaining probabilities, including temperature sampling. Moreover,
we empirically evaluated the performance of Game sampling, a sampling strategy built upon the
general theory, in open-ended text generation.

We believe that Decoding Game provides comprehensive theoretical understanding for the heuristic
design of sampling strategies, by rigorously establishing regularization effect and optimality results.
The statistically meaningful motivation and minimal assumptions behind Decoding Game open up
its potential for future research, both theoretical and practical, on text generation strategies. For ex-
ample, it would be interesting to generalize the metric beyond TV distance. Also, our formulation of
the multi-step game shares similarities with token-level Markov decision processes, and efficiently
tackling multi-step strategy via reinforcement learning would be another direction.
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A PROOFS

A.1 PROOF OF PROPOSITION 3.3

For probability vectors q,p, p̂ ∈ ∆(V), define M(q, p̂) = minp∈N(p̂) q
⊤ log p, and M(p̂) =

maxq minp∈N(p̂) q
⊤ log p. Then, the t-step total rewards of no-foresight strategy Q(P̂) and locally

optimal strategy Q̃(P̂) are respectively given by

Lt(Q(P̂),P∗(P̂,Q)) =

t∑
s=1

EX<s∼Q(P̂)[M(qs(X<s), p̂s(X<s))] := Rt(Q(P̂), P̂),

Lt(Q̃(P̂),P∗(P̂, Q̃)) =

t∑
s=1

EX<s∼Q̃(P̂)[M(p̂s(X<s))] := R̃t(P̂).

Since ϵ < maxi p̂i, M(p̂) is always bounded from below. Moreover, as the set-valued mapping
p̂ 7→ N(p̂) satisfies upper and lower hemicontinuity and N(p̂) is compact, M is continuous in p̂
by Berge’s Maximum Theorem (Aliprantis & Border, 2006), which further implies the continuity of
R̃t. Since the space of P̂ is compact, we conclude that infimum of R̃t can be attained at some P̂∗,
namely inf R̃t(P̂) = R̃t(P̂∗).

Now, if qt(x<t; P̂∗) = q̃t(x<t; P̂∗) ∀t, we are done. Otherwise, let t0 be the first step such that
qt0(x<t0 ; P̂∗) ̸= q̃t0(x<t0 ; P̂∗). We have

t0−1∑
s=1

EX<s∼Q(P̂∗)[M(qs(X<s), p̂
∗
s(X<s))] =

t0−1∑
s=1

EX<s∼Q̃(P̂∗)[M(q̃s(X<s), p̂
∗
s(X<s))],

EX<t0
∼Q(P̂∗)[M(qt0(X<t0), p̂

∗
t0(X<t0))] ≤ EX<t0

∼Q̃(P̂∗)[M(q̃t0(X<t0), p̂
∗
t0(X<t0))],

which impliesRt0(Q(P̂∗), P̂∗) ≤ R̃t0(P̂∗). Consider P̂∗∗ defined as follows. For each x<s ∈ Vs−1,

p̂∗∗
s (x<s) =

{
p̂∗
s(x<s), s ≤ t0,

p̂∗
s(x

∗
<s) where x∗

<s = argminx∈Vs−1M(q̃s(x), p̂
∗
s(x)), s > t0.

In words, P̂∗∗ can be understood as shifting the future structure of P̂∗ after t0. Since the strategy
Q(P̂) is defined to have no foresight, we have qs(x<s; P̂∗∗) = qs(x<s; P̂∗) for s ≤ t0. Hence,

Rt0(Q(P̂∗∗), P̂∗∗) ≤ R̃t0(P̂∗) (4)

holds as well.

Due to our construction of P̂∗∗, the future rewards after t0 satisfy
T∑

s=t0+1

EX<s∼Q(P̂∗∗)[M(qs(X<s), p̂
∗∗
s (X<s))] ≤

T∑
s=t0+1

max
x<s∈Vs−1

M(qs(x<s), p̂
∗∗
s (x<s))

≤
T∑

s=t0+1

max
x<s∈Vs−1

M(q̃s(x<s), p̂
∗∗
s (x<s))

≤
T∑

s=t0+1

EX<s∼Q̃(P̂∗)[M(q̃s(X<s), p̂
∗
s(X<s))],

namely

RT (Q(P̂∗∗), P̂∗∗)−Rt0(Q(P̂∗∗), P̂∗∗) ≤ R̃T (P̂∗)− R̃t0(P̂∗). (5)

With (4) and (5), we conclude that

inf
P̂
RT (Q(P̂), P̂) ≤ RT (Q(P̂∗∗), P̂∗∗) ≤ R̃T (P̂∗) = inf

P̂
R̃T (P̂),

which proves the result.
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A.2 PROOF OF THEOREM 4.7

We shall only prove the general theorem, as Theorem 4.3 and 4.4 are direct consequences.

Consider the minimization problem

min
p∈N(p̂)

q⊤f(p), (6)

where N(p̂) = {p ∈ ∆(V) : dTV(p, q) ≤ ϵ}.
The feasible region N(p̂) is a convex polytope since it is the intersection of two convex polytopes—
the probability simplex ∆(V) and the ϵ-TV-distance ball {p : 1

2 ∥p− p̂∥1 ≤ ϵ}. Moreover, due to
concavity of f , it is easy to show that q⊤f(p) is concave in p. It is well-known that minimizers of
a concave function over a polytope are attained at one of the vertices (Horst, 1984). Now, we let U
be the set of the vertices of N(p̂).

We will consider the two cases of the theorem separately, due to their differences in the geometry of
the feasibility.

Case 1: ϵ < p̂d, and
∑d−1

i=1
f(p̂i)−f(p̂d+ϵ)
f(p̂i)−f(p̂i−ϵ) ≥ 1.

Since ϵ < p̂d, the set U can be written as U = {p̂− ϵei + ϵej : i ̸= j}. Hence, we have

min
p∈N(p̂)

q⊤f(p) = min
p∈U

q⊤f(p)

= q⊤f(p̂) + min
i,j:i ̸=j

{qi (f(p̂i − ϵ)− f(p̂i)) + qj (f(p̂j + ϵ)− f(p̂j))}

= q⊤f(p̂)− max
i,j:i ̸=j

{
qig

−(p̂i)− qjg
+(p̂i)

}
,

where g−(x) := f(x)− f(x− ϵ), and g+(x) := f(x+ ϵ)− f(x). Taking this result into our game,
the remaining q-maximization part is equivalent to

min
q∈∆(V)

[
−q⊤f(p̂) + max

i,j:i ̸=j

{
qig

−(p̂i)− qjg
+(p̂i)

}]
. (7)

Ordering of the optimal solution. We claim that any optimal q∗ has ordered elements, with q∗1 ≥
· · · ≥ q∗d . Observe that both g+ and g− are non-increasing, since f is a concave and non-decreasing
function. Therefore, if a q has unordered elements, we can rearrange its elements it in descending
order, and rearrangement inequality (Hardy et al., 1952) implies that that the term −q⊤f(p̂) will
decrease. Moreover, by reordering, the term maxi,j:i ̸=j {qig−(p̂i)− qjg

+(p̂i)} will also decrease.
This is because

max
i̸=j

{
qig

−(p̂i)− qjg
+(p̂j)

}
= max

i

{
qig

−(p̂i)− min
j:j ̸=i

qjg
+(p̂j)

}
= max

j

{
max
i:i ̸=j

qig
−(p̂i)− qjg

+(p̂j)

}
,

Thus, for any fixed i, if we reorder the rest of the elements, minj ̸=i qjg
+(p̂j) will increase, making

the entire term smaller. Further, by fixing j and reordering by placing qi in the correct position,
maxi̸=j qig

−(p̂i) will decrease. In total, rearranging q in descending order will decrease both terms,
resulting in a lower overall objective.

Analyzing KKT optimality. Introducing dual variables λ ∈ Rd
+, ν ∈ R, the Lagrangian of (7) is

given by

L(q,λ, ν) := −q⊤f(p̂) + max
i,j:i ̸=j

{
qig

−(p̂i)− qjg
+(p̂j)

}
− λ⊤q + ν

(
d∑

i=1

qi − 1

)
.

One can check that the objective in (7) is convex in q. Moreover, since there exists q̃ ∈ relint(∆(V))
with q̃ > 0, strong duality holds. Therefore, q∗ is optimal if and only if there exists λ∗, ν∗ such that
the following Karush-Kuhn-Tucker (KKT) conditions are satisfied (Boyd & Vandenberghe, 2004):

0 ∈ −f(p̂) + ∂

(
max
i,j:i̸=j

{
q∗i g

−(p̂i)− q∗j g
+(p̂j)

})
− λ∗ + ν∗1, (first-order stationarity)
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q∗ ∈ ∆(V), λ∗ ≥ 0, (primal-dual feasibility)
λ∗
i q

∗
i = 0 ∀i, (complementary slackness)

where the subdifferential ∂ (Rockafellar, 1970) of the nonsmooth function inside represents the
convex hull of the subgradients of the maximizing coordinates, given by

∂

(
max
i ̸=j

{
q∗i g

−(p̂i)− q∗j g
+(p̂j)

})
= conv (D) ,

D =

{
g−(p̂i)ei − g+(p̂j)ej : i ̸= j, q∗i g

−(p̂i)− q∗j g
+(p̂j) = max

i,j:i ̸=j

{
q∗i g

−(p̂i)− q∗j g
+(p̂j)

}}
.

Now we show that q∗ defined by q∗i = c
g−(p̂i)

1(1≤i≤I∗) satisfies KKT conditions for some dual
variables λ∗, ν∗, where c is a normalizing constant. Let

J := {i : q∗i g−(p̂i) = c} = {1 ≤ i ≤ I∗},

N := {i : q∗i g+(p̂i) = 0} = {I∗ < i ≤ d}.
Then, as SI is non-decreasing in I , we have

I∗−1∑
k=1

f(p̂k)− f(p̂i)

g−(p̂k)
≤ 1, ∀i ∈ J , (8)

and
I∗−1∑
k=1

f(p̂k)− f(p̂i)

g−(p̂k)
> 1, ∀i ∈ N . (9)

Moreover, since

Sd =

d−1∑
k=1

f(p̂k)− f(p̂d)

g−(p̂k)
>

d−1∑
k=1

f(p̂k)− f(p̂d + ϵ)

g−(p̂k)
≥ 1,

we know that I∗ < d must hold, and N is always non-empty.

To show that KKT conditions are satisfied, it is equivalent to prove that there exist ν∗, λ∗ ≥ 0 with
λ∗
i = 0 for i ∈ J , and coefficients γij ≥ 0 for (i, j) ∈ J ×N with

∑
i∈J

∑
j∈N γij = 1 such that

−f(p̂i) + g−(p̂i)

∑
j∈N

γij

1(i∈J ) − g+(p̂i)

∑
j∈J

γji

1(i∈N ) − λ∗
i1(i∈N ) + ν∗ = 0,

which is equivalent to

−f(p̂i) + g−(p̂i)

∑
j∈N

γij

+ ν∗ = 0, i ∈ J , (10)

−f(p̂i)− g+(p̂i)

∑
j∈J

γji

+ ν∗ = λ∗
i ≥ 0, i ∈ N . (11)

The above linear system is satisfied for

ν∗ =

(∑
k∈J

1

g−(p̂k)

)−1(∑
k∈J

f(p̂k)

g−(p̂k)
− 1

)
,

γij =
f(p̂i)− ν∗

g−(p̂i)
1(j=d),

λ∗
i =

(
−f(p̂i)− g+(p̂d)1(i=d) + ν∗

)
1(i∈N ).
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Moreover, (8) and (9) respectively imply that γij ≥ 0 and λ∗
i ≥ 0 for all I∗ < i < d. We also have

λ∗
d ≥ 0 because

d−1∑
k=1

f(p̂k)− f(p̂d)− g+(p̂d)

g−(p̂k)
=

d−1∑
k=1

f(p̂k)− f(p̂d + ϵ)

g−(p̂k)
≥ 1.

Therefore, the above choices of ν∗, γij , and λ∗ satisfy the linear system and all constraints. Thus,
(q∗,λ∗, ν∗) satisfy the KKT conditions, and hence q∗ is the optimal solution to problem (f -ODG).

Case 2: p̂d ≤ ϵ < p̂1, and limx↓0 f(x) = −∞.

Let A = {i : p̂i ≤ ϵ} and Q = {q ∈ ∆(V) : qi = 0 ∀i ∈ A}. Suppose we use some strategy
q /∈ Q, i.e., there is some j ∈ A such that qj ̸= 0. Since limx↓0 f(x) = −∞, the adversary can
always find p = p̂− p̂jej that makes the objective −∞. Thus, an optimal strategy must come from
Q. Similar to Case 1, the p-minimization part can be written in terms of the vertex set U as follows:

min
p∈N(p̂)

q⊤f(p) = min
p∈U

q⊤f(p)

= min
p∈UA

q⊤f(p)

= q⊤f(p̂) + min
(i,j)∈C

{qi (f(p̂i − ϵ)− f(p̂i)) + qj (f(p̂j + ϵ)− f(p̂j))}

= q⊤f(p̂)− max
(i,j)∈C

{
qig

−(p̂i)− qjg
+(p̂i)

}
= q⊤f(p̂)−max

i/∈A
qig

−(p̂i), (12)

where UA = {p̂− ϵei + ϵej : i ̸= j, i /∈ A}, and C = {(i, j) : i ̸= j, i /∈ A}. (12) follows because
qj = 0 for any j ∈ A. Thus, the problem of interest is equivalent to

min
q∈Q

[
−q⊤f(p̂) + max

i/∈A
qig

−(p̂i)

]
.

In other words, we only need to solve q∗ from a lower-dimensional problem

min
q∈∆(VA)

[
−q⊤f(p̂) + max

i
qig

−(p̂i)
]
,

where VA is a truncated vocabulary with |VA| = d− |A|.
Ordering of the optimal solution. Similar to Case 1, an optimal q∗ is ordered with q∗1 ≥ · · · ≥ q∗d .

Analyzing KKT optimality. The Lagrangian can be similarly defined as

L(q,λ, ν) := −q⊤f(p̂) + max
i

qig
−(p̂i)− λ⊤q + ν

d−|A|∑
i=1

qi − 1

 ,

and strong duality holds as well. The KKT conditions are

0 ∈ −f(p̂) + ∂
(
max

i
q∗i g

−(p̂i)
)
− λ∗ + ν∗1, (first-order stationarity)

q∗ ∈ ∆(VA), λ∗ ≥ 0, (primal-dual feasibility)
λ∗
i q

∗
i = 0 ∀i, (complementary slackness)

where ∂ (maxi q
∗
i g

−(p̂i)) := conv ({g−(p̂i)ei : q∗i g−(p̂i) = maxi q
∗
i g

−(p̂i)}). Let

J = {i : q∗i g−(p̂i) = c} = {1 ≤ i ≤ I∗}, N = {i : q∗i g−(p̂i) = 0} = {I∗ < i ≤ d− |A|},

where c := maxi q
∗
i g

−(p̂i). It is sufficient to show that there exist ν∗, λ∗ ≥ 0 with λ∗
i = 0 for

i ∈ J , and coefficients γi ≥ 0 for i ∈ J with
∑

i∈J γi = 1, such that

−f(p̂i) + γig
−(p̂i)1{i∈J} − λ∗

i1{i∈N} + ν∗ = 0.
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This is achieved by setting

ν∗ =

(∑
k∈J

1

g−(p̂k)

)−1(∑
k∈J

f(p̂k)

g−(p̂k)
− 1

)
,

γi =
f(p̂i)− ν∗

g−(p̂i)
≥ 0, for i ∈ J ,

λ∗
i = (ν∗ − f(p̂i))1(i∈N ) ≥ 0.

Moreover, γi ≥ 0 and λ∗
i ≥ 0 follow from the fact that SI ≤ 1 ∀I ∈ J and SI > 1 ∀I ∈ N ,

respectively.

B ADDITIONAL EXPERIMENTS

In Tables 2 and 3, we present additional experimental results obtained using various choices of ϵ and
τ in Game sampling algorithm. These experiments provide further insights into the performance
and sensitivity of the model under different parameter settings. We also explored different values of
ϵ ∈ {0.1, 0.3, 0.5, 0.8, 0.9} alongside different τ values. However, since the best performance was
consistently achieved with ϵ = 0.95 or ϵ = 0.99, we report only those values here to highlight the
effect of changing τ .

As part of this evaluation, we also analyzed the point at which probabilities are truncated and renor-
malized in Game sampling and Nucleus sampling for a randomly selected article from the WebText
test set, using the GPT-2 XL model. The GPT-2 model has a total vocabulary size of 50,000 tokens,
so truncating the probability distribution can significantly reduce the set of candidate words for the
next token. Figures 1a and 1b illustrate how these sampling strategies truncate the probability distri-
bution. Figure 1a shows the distribution for the next word when using only 1 token as context, along
with the index where probabilities are truncated and set to zero. In contrast, Figure 1b presents the
distribution for the next word when using the first 35 tokens as context, providing more information
for the model to generate the next word. With more context, the model is expected to be more certain
about the next word, and the figure highlights the corresponding truncation points. Notably, Game
sampling truncates a substantial portion of the 50,000-token distribution and dynamically adjusts
the cutoff point based on the shape of the distribution (see Algorithm 1).

(a) context: 1 token (b) context: 35 tokens

Figure 1: Next-token probability distribution in GPT-2 XL model and truncation threshold of Game sampling
and Nucleus sampling.

18



Published as a conference paper at ICLR 2025

ϵ τ Perplexity Repetition MAUVE

0.95 1.0 6.874 0.087 0.739
0.95 1.1 7.960 0.058 0.809
0.95 1.5 13.336 0.015 0.898
0.95 2.0 23.592 0.003 0.926
0.95 2.5 40.129 0.002 0.908
0.95 3.0 66.481 0.001 0.815
0.95 3.5 107.544 0.001 0.699
0.95 4.0 172.822 0.001 0.474

0.99 1.0 7.067 0.081 0.746
0.99 1.1 8.275 0.055 0.820
0.99 1.5 14.231 0.012 0.897
0.99 2.0 26.783 0.002 0.917
0.99 2.5 48.508 0.002 0.864
0.99 3.0 89.308 0.001 0.745
0.99 3.5 161.402 0.001 0.529
0.99 4.0 296.453 0.001 0.273

GPT-2 Small

ϵ τ Perplexity Repetition MAUVE

0.95 1.0 6.067 0.048 0.858
0.95 1.1 6.804 0.037 0.883
0.95 1.5 10.423 0.010 0.926
0.95 2.0 17.499 0.003 0.945
0.95 2.5 28.738 0.001 0.919
0.95 3.0 46.973 0.001 0.858
0.95 3.5 78.152 0.001 0.721
0.95 4.0 132.77 0.001 0.475

0.99 1.0 6.176 0.047 0.845
0.99 1.1 6.947 0.033 0.879
0.99 1.5 11.019 0.008 0.941
0.99 2.0 19.482 0.002 0.938
0.99 2.5 34.662 0.002 0.911
0.99 3.0 63.555 0.001 0.792
0.99 3.5 120.889 0 0.497
0.99 4.0 243.844 0 0.257

GPT-2 Medium

ϵ τ Perplexity Repetition MAUVE

0.95 1.0 4.596 0.066 0.823
0.95 1.1 4.972 0.050 0.856
0.95 1.5 6.851 0.013 0.909
0.95 2.0 9.883 0.005 0.942
0.95 2.5 14.084 0.002 0.942
0.95 3.0 19.634 0.002 0.930
0.95 3.5 27.779 0.001 0.913
0.95 4.0 39.256 0.001 0.837

0.99 1.0 4.683 0.066 0.826
0.99 1.1 5.083 0.046 0.861
0.99 1.5 7.130 0.010 0.917
0.99 2.0 10.629 0.006 0.947
0.99 2.5 15.958 0.001 0.947
0.99 3.0 24.128 0.001 0.919
0.99 3.5 37.613 0.001 0.845
0.99 4.0 60.031 0.001 0.685

GPT-2 Large

ϵ τ Perplexity Repetition MAUVE

0.95 1.0 5.146 0.050 0.861
0.95 1.1 5.559 0.033 0.891
0.95 1.5 7.475 0.014 0.935
0.95 2.0 10.541 0.004 0.950
0.95 2.5 14.636 0.002 0.948
0.95 3.0 20.458 0.002 0.929
0.95 3.5 28.410 0.001 0.919
0.95 4.0 39.374 0.001 0.873

0.99 1.0 5.219 0.044 0.852
0.99 1.1 5.660 0.032 0.886
0.99 1.5 7.784 0.010 0.943
0.99 2.0 11.333 0.003 0.958
0.99 2.5 16.690 0.003 0.952
0.99 3.0 24.796 0.002 0.924
0.99 3.5 38.056 0.001 0.885
0.99 4.0 60.236 0.001 0.739

GPT-2 XL

Table 2: Evaluations on the text generated by different types of GPT-2 models using Game sampling under
different hyperparameters.
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ϵ τ Perplexity Repetition MAUVE

0.95 1.0 5.757 0.069 0.640
0.95 1.1 6.285 0.049 0.670
0.95 1.5 8.528 0.015 0.759
0.95 2.0 12.313 0.005 0.794
0.95 2.5 17.210 0.003 0.811
0.95 3.0 24.362 0.001 0.801
0.95 3.5 33.905 0.002 0.778
0.95 4.0 48.921 0.001 0.664

0.99 1.0 5.897 0.066 0.664
0.99 1.1 6.436 0.046 0.687
0.99 1.5 8.957 0.013 0.762
0.99 2.0 13.263 0.004 0.809
0.99 2.5 19.729 0.002 0.833
0.99 3.0 29.696 0.002 0.791
0.99 3.5 46.506 0 0.720
0.99 4.0 77.289 0.001 0.522

GPT-J-6B

ϵ τ Perplexity Repetition MAUVE

0.95 1.0 8.500 0.131 0.842
0.95 1.1 9.938 0.134 0.831
0.95 1.5 14.000 0.128 0.858
0.95 2.0 23.875 0.149 0.843
0.95 2.5 36.250 0.162 0.834
0.95 3.0 52.000 0.173 0.813
0.95 3.5 63.750 0.174 0.797
0.95 4.0 87.000 0.182 0.753

0.99 1.0 8.938 0.130 0.831
0.99 1.1 10.250 0.134 0.845
0.99 1.5 15.625 0.136 0.854
0.99 2.0 26.625 0.153 0.840
0.99 2.5 41.750 0.165 0.822
0.99 3.0 60.000 0.181 0.806
0.99 3.5 84.500 0.178 0.759
0.99 4.0 119.500 0.177 0.686

Llama-2-7B

Table 3: Evaluations on the text generated by GPT-J-6B and Llama-2-7B models using Game sampling under
different hyperparameters.

20


	Introduction
	Motivation and our framework
	Contribution

	Related works
	Existing theoretical interpretations
	Text generation as decision making
	Robust optimization and regularization

	Formulation
	Notations
	Decoding Game
	Reduction from multiple steps

	Theoretical analysis
	p-strategy: implicit regularization
	q-strategy: heuristic sampling methods
	Generalization from log-likelihood

	Experiments
	Conclusion
	Proofs
	Proof of Proposition 3.3
	Proof of Theorem 4.7

	Additional experiments

