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ABSTRACT

Federated Learning (FL) has gained prominence in machine learning applications across
critical domains, offering collaborative model training without centralized data aggrega-
tion. However, FL frameworks that protect privacy often sacrifice fairness and reliability;
differential privacy reduces data leakage but hides sensitive attributes needed for bias cor-
rection, worsening performance gaps across demographic groups. This work explores
the trade-off between privacy and fairness in FL-based object detection and introduces
RESFL, an integrated solution optimizing both. RESFL incorporates adversarial pri-
vacy disentanglement and uncertainty-guided fairness-aware aggregation. The adver-
sarial component uses a gradient reversal layer to remove sensitive attributes, reducing
privacy risks while maintaining fairness. The uncertainty-aware aggregation employs
an evidential neural network to weight client updates adaptively, prioritizing contribu-
tions with lower fairness disparities and higher confidence. This ensures robust and eq-
uitable FL model updates. We demonstrate the effectiveness of RESFL in high-stakes
autonomous vehicle scenarios, where it achieves high mAP on FACET and CARLA, re-
duces membership-inference attack success by 37%, reduces equality-of-opportunity gap
by 17% relative to the FedAvg baseline, and maintains superior adversarial robustness.
However, RESFL is inherently domain-agnostic and thus applicable to a broad range of
application domains beyond autonomous driving.

1. INTRODUCTION

Federated Learning (FL) has emerged as a promising solution to privacy concerns by enabling decentralized
model training, ensuring data remains on local devices. In contrast, only model updates, such as gradients or
weight deltas, are shared for aggregation. This paradigm not only reduces the risk of raw data exposure but
also supports collaborative learning across heterogeneous and sensitive data silos in domains like healthcare,
finance, and smart cities. However, the inherent obfuscation of sensitive attributes such as demographic
labels or personal identifiers introduces a critical trade-off: fairness interventions often require direct access
to these attributes to detect and correct biases. By withholding sensitive information in pursuit of privacy
preservation, FL frameworks inadvertently hamper bias mitigation strategies, leading to disparate model
performance across groups defined by age, gender, or ethnicity (Kaplan, 2024; Zhang et al., 2024).

The problem is exacerbated by external uncertainties in real-world data collection and inference, which un-
dermine model confidence and reliability. In safety-critical applications, input data are affected by sensor
noise, environmental variability (e.g., lighting, weather, occlusions), and domain shift between training and
deployment. Unmodeled, these uncertainties can disproportionately degrade performance for subpopula-
tions, amplifying disparities. For example, under foggy or low-light conditions, object detection models
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show higher false-negative rates for pedestrians with darker skin tones, compounding risks for vulnerable
groups. Quantifying both epistemic and aleatoric uncertainty is therefore essential to ensure equitable relia-
bility across demographic cohorts (Pathiraja et al., 2024).

While a growing body of work has advanced privacy-preserving techniques, such as differential privacy,
secure multi-party computation, and homomorphic encryption, and fairness-aware methods, such as pre-
processing transformations, in-processing regularizers, and post-processing adjustments, these solutions
frequently optimize one objective at the expense of others. Differential privacy mechanisms can effectively
limit membership inference and attribute leakage, but often degrade model utility and exacerbate fairness
disparities by obscuring minority data patterns (Sun et al., 2021; Xin et al., 2020). Conversely, fairness-
oriented re-weighting or regularization approaches can narrow demographic gaps but may inadvertently
expose sensitive information if not carefully integrated. Centralized learning paradigms further magnify
these tensions by aggregating unprotected data, while many federated solutions prioritize privacy guaran-
tees without explicitly addressing equitable performance across groups (Chen et al., 2025; Ezzeldin et al.,
2023; Yu et al., 2020). Post hoc fairness corrections or hard constraints also struggle to capture the nuanced
interplay between privacy protection and bias mitigation in decentralized environments (Kim et al., 2024a).

To address these limitations, we propose RESFL, a domain-agnostic federated learning framework that
jointly optimizes privacy and group fairness by integrating two complementary components within a single
pipeline: (i) an adversarial representation module with gradient reversal that suppresses sensitive-attribute
signals in shared representations, and (ii) an uncertainty-guided aggregation mechanism that leverages ev-
idential uncertainty (via a scale-invariant uncertainty fairness metric (UFM)) to up-weight client updates
exhibiting lower inter-group disparity and higher confidence. This unified design yields privacy-preserving,
equitable, and reliable updates without sacrificing utility. We validate RESFL on autonomous vehicle (AV)
scenarios to demonstrate its effectiveness in safety-critical and diverse environments. Empirically, RESFL
delivers strong accuracy while reducing fairness gaps and privacy leakage, and remains robust under distri-
bution shifts (weather variations). Across both FACET and CARLA, it consistently outperforms standard
and state-of-the-art FL baselines on utility, fairness, and privacy.

2. RELATED WORK

Federated Learning. Federated Learning (FL) is a decentralized training paradigm where multiple clients
collaboratively train a shared model while keeping data on-device. This mitigates privacy risks of centralized
aggregation but introduces challenges, particularly data heterogeneity, as clients typically hold non-IID data
(Yang et al., 2023). Early research focused on improving communication efficiency and convergence under
heterogeneous (non-IID) client data (Li et al., 2019; Karimireddy et al., 2020; Martinez et al., 2020). How-
ever, FL introduces new challenges beyond optimization, including privacy leakage, performance disparities
across participants, and fairness across sensitive demographic groups (Wasif et al., 2025).
Privacy Preservation Techniques. Preserving user privacy is a core objective in FL. Differential Privacy
(DP) is widely used, adding calibrated noise to model updates to ensure formal privacy guarantees (Dwork,
2006), though it can degrade model utility (Bagdasaryan et al., 2019). Alternative approaches, such as
homomorphic encryption (HE) (Yi et al., 2014) and secure multi-party computation (SMC) (Tran et al.,
2023), provide strong guarantees but suffer high computational costs and limited scalability (Chen et al.,
2023; Xu et al., 2021). Consequently, research has shifted toward perturbation-based methods, including
shuffler models, that strive to balance privacy, utility, and communication efficiency (Chen et al., 2024;
Erlingsson et al., 2019; Kim et al., 2024b). However, most privacy solutions in FL neglect fairness, risking
inequitable outcomes despite strong privacy protections.
Fairness in Federated Learning. Fairness in machine learning has been extensively explored in central-
ized settings, with numerous methods to mitigate biases against underrepresented groups (Hardt et al., 2016;
Kairouz et al., 2021; Mehrabi et al., 2021). In FL, researchers distinguish between client fairness, which
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aims for uniform model performance across data-silo clients (Yu et al., 2020; Karimireddy et al., 2020), and
group fairness, which seeks equitable outcomes across sensitive demographic cohorts despite decentralized
data (Kairouz et al., 2021). Traditional fairness strategies such as constrained optimization or regularization
work well in centralized frameworks (Wu et al., 2018) but falter in FL, since the server lacks direct access
to sensitive attributes for bias measurement (McMahan et al., 2017), and client-level equalization does not
guarantee demographic parity, underscoring the need for FL-specific fairness mechanisms.
Privacy-preserving & Fair FL. Given the inherent tension between privacy and fairness, recent research
has explored joint approaches to address both in FL. Differentially private algorithms can worsen fairness
disparities by masking minority-group patterns (Zhang et al., 2021), while fairness-aware techniques may
increase privacy risks by exposing sensitive attributes. Prior work includes FairDP-SGD and FairPATE for
centralized settings (Yaghini et al., 2023), FPFL which enforces group fairness under DP guarantees but
at high communication cost (Rodrı́guez-Gálvez et al., 2021), and two-step schemes that align a privacy-
protected model with a fair proxy (Sun et al., 2023; Pujol et al., 2020). Pre- and post-processing defenses
like (Pentyala et al., 2022) and (Corbucci et al., 2024) also integrate privacy and fairness but often incur
computational overhead or limited scalability (Imteaj et al., 2021). Despite these advances, many approaches
struggle to scale or balance the trade-offs effectively, motivating our unified RESFL framework.

Building on these insights, our proposed RESFL framework overcomes these limitations by integrating
privacy preservation and group fairness optimization into a single, end-to-end FL algorithm.

3. METHODOLOGY

This section introduces our integrated privacy-preserving and fairness-aware Federated Learning framework,
responsible FL (RESFL). Our approach tackles two key challenges: (i) preventing sensitive attribute leak-
age during training to ensure privacy and (ii) mitigating bias in client updates to ensure group fairness. To
achieve this, we integrate adversarial privacy disentanglement with uncertainty-guided fairness-aware ag-
gregation using an evidential neural network (ENN), enabling the estimates of epistemic uncertainty (Amini
et al., 2020). The flow of the RESFL algorithm is depicted in Figure 1.

3.1. UNCERTAINTY FAIRNESS METRIC (UFM) FOR GROUP-FAIR AGGREGATION

Evidential Uncertainty Modeling. In RESFL, each client replaces its standard softmax detection head
with an evidential output layer that predicts a nonnegative concentration vector α = (α1, . . . , αC) for C
object classes. These concentration parameters parameterize a Dirichlet distribution over the categorical
probability simplex, allowing closed-form computation of epistemic uncertainty without resorting to costly
Monte Carlo sampling or deep ensembles. Formally, for each input x, the evidential head produces

p(p | α) =
Γ
(∑C

c=1 αc

)
∏C

c=1 Γ(αc)

C∏
c=1

pαc−1
c , (1)

where C is the number of considered classes, Γ(·) denotes the Gamma function, and p = (p1, . . . , pC)

represents the class probabilities. The total evidence α0 =
∑C

c=1 αc directly yields an analytic estimate of
the approximate epistemic variance (Sensoy et al., 2018),

σ2
epi,c = E[pc]

(
1− E[pc]

)
· 1

α0 + 1
=

αc

α0

(
1− αc

α0

)
· 1

α0 + 1
∼ 1

α0
, (2)

which faithfully reflects model confidence: higher α0 implies lower epistemic uncertainty. Raw logits zc
are passed through a softplus-plus-one bias, αc = 1 + softplus(zc), to ensure strict positivity and numer-
ical stability. Training uses a composite Dirichlet negative log-likelihood augmented with a regularization
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term that penalizes overconfident errors, thereby calibrating uncertainty estimates. At inference, each client
computes epistemic variances in a single forward pass, enabling efficient uncertainty assessment on edge de-
vices. This evidential formulation, integrated into the detection pipeline, provides a principled mechanism
for quantifying per-detection confidence under data heterogeneity and environmental variability.

UFM is computed solely from the classification Dirichlet evidence. For an image x, let Pτ (x) be post-
NMS detections above a fixed score threshold τ . We define the per-image average total evidence (set to 0 if
|Pτ (x)| = 0) and then the group-wise mean:

ᾱ0,g = Ex∈Dg

 1

max(1, |Pτ (x)|)
∑

d∈Pτ (x)

α
(d)
0

 . (3)

Here, Dg is the set of images that contain at least one ground-truth person instance of group g; the sum runs
over post-NMS detections in x, and only detections matched to group-g instances contribute.

Group-Level Disparity Quantification. Using {ᾱ0,g}Gg=1 from Eq. 3, define the inter-group uncertainty
gap and the normalized Uncertainty Fairness Metric (UFM) as

∆u = max
g

(
1

ᾱ0,g

)
−min

g

(
1

ᾱ0,g

)
, UFM =

∆u

1
G

∑G
g=1

1
ᾱ0,g

+ ϵ
, (4)

with ϵ > 0 for numerical stability. Higher UFM indicates greater disparity; lower UFM indicates better
group fairness. See Appendix A.3 for detection-head details.

We formalize UFM as a scale-invariant measure of inter-group epistemic disparity and show (under bounded
loss and standard evidential assumptions) that controlling it tightens confidence-adjusted group generaliza-
tion terms (Appendix B, Theorem B.1, Corollary B.2). Because the evaluation distribution is a mixture of
client distributions, global per-group confidence dispersion is a convex combination of client-level disper-
sions; consequently, reducing the aggregation-weighted UFM across participating clients tightens an upper
bound on the global DI/EOP gaps. Under non-degenerate group coverage (each group appears on at least one
active client) and standard client sampling, the weighting rule based on exp(−βUFMi) directly targets this
bound: smaller β behaves like uniform averaging, while larger β emphasizes clients with tighter per-group
disparities. This links the theory to practice and motivates UFM-guided aggregation for global fairness.

Aggregation Weighting Mechanism. On the server side, we aggregate client updates using a fairness-aware
weighting scheme that dynamically adjusts to reported UFM values. Given each client i’s update ∆θi and
corresponding UFMi (see Figure 1), we assign weights via a temperature-scaled exponential:

ωi =
exp

(
−βUFMi

)∑N
j=1 exp

(
−βUFMj

) , (5)

where β > 0 controls the sharpness of fairness prioritization. As β → 0, weights approach uniform averag-
ing, while larger β concentrates updates on clients with minimal uncertainty disparity. The global model is
then updated by:

θ
(t+1)
G = θ

(t)
G + η

N∑
i=1

ωi ∆θi, (6)

ensuring that contributions from clients exhibiting both high confidence and equitable performance are am-
plified. This continuous reweighting adapts to temporal shifts and data heterogeneity, promoting robust
convergence with reduced fairness gaps and preserved accuracy.
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Figure 1: Overview of the RESFL framework. Right: Client i computes feature representation, applies a
gradient reversal layer for adversarial privacy loss Ladv, and an evidential head for uncertainty-fairness met-
ric UFMi, then forms the composite loss Llocal to produce update ∆θi. Left: Server receives {∆θi,UFMi},
computes aggregation weights ωi ∝ exp(−βUFMi), and updates the global model θG.

3.2. ADVERSARIAL PRIVACY DISENTANGLEMENT VIA GRADIENT REVERSAL

To mitigate sensitive attribute leakage during federated training, we augment the feature extractor f(x; θ) :
X → Rd, which maps input data to a latent representation h, with an adversarial classifier A(h;ϕ) : Rd →
[0, 1]K . The adversary is trained to predict the sensitive attribute label s ∈ {1, . . . ,K} from h, while the
feature extractor is jointly optimized to make this prediction as difficult as possible, thus encouraging the
learned representation to be invariant to s. During training, the classifier parameters ϕ seek to minimize the
cross-entropy over the joint distribution of inputs and labels, while the feature extractor parameters θ are
trained to maximize this same objective, thereby removing attribute-relevant signals. Concretely, we embed
a Gradient Reversal Layer (GRL) Rλadv between f and A, which acts as the identity in the forward pass but
multiplies incoming gradients by −λadv in the backward pass. The resulting adversarial minimax objective
is expressed as:

min
θ

max
ϕ

E(x,s)∼Di

[
−λadv

K∑
k=1

1{s = k} log Ak

(
Rλadv(f(x; θ)); ϕ

)]
, (7)

where Di denotes the local dataset of client i and 1{s = k} is the indicator for class k and Ak(·) denotes
the k-th output probability. While we do not claim (ε, δ)–DP guarantees, our objective has an information-
theoretic interpretation: letting H = f(X; θ) denote the learned representation and S the sensitive at-
tribute, maximizing Ladv reduces the mutual information I(H;S); by Fano’s inequality, as I(H;S)→ 0

any attribute-inference attack Ŝ = g(H) is driven to chance level, i.e., accuracy ≈ 1− 1
K (Appendix C).

Once the adversarial classifier is optimally trained for a fixed feature extractor, we obtain the induced privacy
loss for θ by substituting the worst-case classifier parameters ϕ∗(θ) = argmaxϕ Ladv(θ, ϕ). The privacy-
preserving gradient step for the feature extractor is then driven by:

Lpriv(θ) = λadv E(x,s)∼Di

[ K∑
k=1

1{s = k} log Ak

(
f(x; θ); ϕ∗(θ)

)]
, (8)

which, when differentiated through the GRL, enforces that feature representations h become invariant to s.
In practice, we interleave updates of ϕ (maximization) and θ (minimization) within each local SGD step,
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Table 1: Comparison of FL algorithms on the FACET dataset in detection performance (mAP), fairness
(|1−DI|, ∆EOP), privacy (MIA, AIA success rates), and robustness (BA AD, DPA EODD)

Algorithm Utility Fairness Privacy Attacks Robustness Attacks

Overall mAP |1− DI| ∆EOP MIA SR AIA SR BA AD DPA EODD

FedAvg 0.6378 0.2159 0.2362 0.3341 0.4431 0.3125 0.0792
FedAvg-DP (ϵ = 0.1) 0.2932 0.4521 0.3576 0.1765 0.2154 0.2833 0.1724
FedAvg-DP (ϵ = 0.5) 0.4741 0.3869 0.2793 0.2286 0.2539 0.3019 0.1328
FairFed 0.7013 0.2496 0.2562 0.4409 0.5256 0.4139 0.0566
PrivFairFl-Pre 0.6154 0.2504 0.2659 0.3875 0.4038 0.3238 0.0953
PrivFairFl-Post 0.6119 0.2718 0.2505 0.2872 0.3159 0.3212 0.0937
PUFFLE 0.4192 0.3721 0.2976 0.2725 0.2909 0.1439 0.1360
PFU-FL 0.3952 0.3356 0.3446 0.2409 0.2546 0.2612 0.1459
Ours (RESFL) 0.6654 0.2287 0.1959 0.2093 0.1832 0.1692 0.0674

ensuring that the learned representation provably suppresses sensitive attribute information while retaining
utility for the primary detection task.

3.3. JOINT OPTIMIZATION OF PRIVACY AND FAIRNESS

In each client’s training loop, RESFL minimizes a composite loss that balances detection accuracy, attribute
obfuscation, and uncertainty-based bias control. Formally, each client solves:

Llocal(θ, ϕ) = Ltask(θ) + λpriv Ladv(θ, ϕ) + λfair Luncertainty(θ), (9)

where λpriv scales the gradient reversal adversarial loss to limit information leakage, and λfair weights the
evidential uncertainty term to reduce group disparity. By selecting (λpriv, λfair) along the convex envelope of
evaluated tradeoff points, practitioners obtain models that meet target privacy and fairness thresholds without
unnecessary sacrifice of either objective.

After local updates, each client computes its UFMi and sends both the parameter update ∆θi and UFMi to
the server. The server then aggregates via:

θ
(t+1)
G = θ

(t)
G + η

N∑
i=1

exp
(
−βUFMi

)∑N
j=1 exp

(
−βUFMj

) ∆θi, (10)

where β controls the fairness weight. This alternating sequence of local composite-loss minimization and
fairness-aware aggregation (Algorithm 1 in Appendix D) drives the global model to converge with robust
detection, provable attribute privacy, and equitable treatment across sensitive groups.

4. EXPERIMENTAL RESULTS & ANALYSES

We evaluate RESFL in an autonomous vehicle (AV) context using the FACET dataset and CARLA simulator
to capture demographic variation and environmental perturbations. Given the safety-critical and privacy-
sensitive nature of AV perception, we pose the following key questions: (1) To what extent does RESFL
balance utility, privacy, and fairness under standard AV operating conditions? (2) How resilient is RESFL
to increased uncertainty caused by environmental variations such as changing weather and lighting?
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FedAvg FedAvg-DP FairFed PUFFLE RESFL

(a) mAP in cloud (b) mAP in rain (c) mAP in fog

(d) Fairness score in cloud (e) Fairness score in rain (f) Fairness score in fog

(g) Privacy attacks in cloud (h) Privacy attacks in rain (i) Privacy attacks in fog

Figure 2: Performance comparison of four state-of-the-art FL methods and RESFL across three weather
conditions (cloud, rain, fog) at 0%–100% intensity. Rows represent performance metrics (accuracy, fairness,
privacy attack), and columns correspond to weather conditions.

4.1. EXPERIMENTAL SETUP

Datasets. The FACET benchmark (Gustafson et al., 2023) comprises 32,000 real-world images with over
50,000 person instances annotated for perceived skin tone on the ten-level Monk Skin Tone (MST) scale
(MST = 1 lightest to MST = 10 darkest, see Figure 6 in Appendix E); we average multiple annotations
per instance, discretize back to the ten MST levels, partition into ten cohorts, and split into four IID client
shards to simulate cross-device heterogeneity and demographic variation without sharing raw data. Using the
CARLA simulator (Dosovitskiy et al., 2017), we collect 6,000 clear-weather frames (600 per MST level) for
fine-tuning and 7,800 evaluation frames across three urban layouts (Town01, Town03, and Town05) under
clear, foggy, and rainy conditions at five intensities (0%, 25%, 50%, 75%, 100%). Each walker blueprint
available in CARLA is manually assigned to a corresponding MST label through visual inspection based on
appearance and attributes. Pedestrian bounding boxes are extracted via connected-component analysis on
semantic segmentation masks, which serves as our ground truth (see Appendix E for details).

Comparing Schemes. We benchmark RESFL against standard and state-of-the-art federated learning meth-
ods. FedAvg serves as the canonical baseline, performing weighted averaging of client updates. We evaluate

7
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FedAvg-DP (Objective), which injects calibrated noise into the local objective under two privacy budgets
(ϵ = 0.1 and ϵ = 0.5). FairFed (Ezzeldin et al., 2023) dynamically adjusts aggregation weights to pe-
nalize cross-client performance gaps. PrivFairFL (Pentyala et al., 2022) incorporates fairness constraints
either before aggregation (PrivFairFL-Pre) or after local updates (PrivFairFL-Post). PUFFLE (Corbucci
et al., 2024) unifies noise injection with fairness regularization in a joint optimization framework. Finally,
PFU-FL (Sun et al., 2023) employs adaptive weighting to balance privacy, fairness, and utility objectives.

Metrics. We measure detection accuracy using mean Average Precision (mAP), which averages per-class AP
to capture both object localization and classification quality. For fairness, we report the absolute disparate
impact deviation |1 − DI|, quantifying the ratio of favorable outcome rates between the most- and least-
advantaged groups, and the equality of opportunity gap ∆EOP, the absolute difference in true positive rates
across cohorts. Privacy is assessed by Membership Inference Attack Success Rate (MIA SR) and Attribute
Inference Attack Success Rate (AIA SR), where lower values indicate stronger confidentiality. Robustness is
measured by Byzantine Accuracy Degradation (BA AD), the relative per-condition mAP drop between clean
and attacked runs, and Data Poisoning Attack Equalized Odds Difference Deviation (DPA EODD), the rise
in fairness disparity, under a fixed protocol with a constant Byzantine-client fraction each round (sign-flip,
ℓ2-bounded) and a constant poisoning fraction over a specified block of local epochs.

Experimental Configuration. We implement RESFL using a modified YOLOv8 backbone with an eviden-
tial concentration-vector head. Each client trains for 100 epochs (batch size 64) using SGD (momentum 0.9,
weight decay 1e−4) with an initial learning rate of 0.001, decayed by 0.1 at epochs 50 and 75. The FACET
dataset (32k images) is split into four equal i.i.d. subsets. CARLA fine-tuning uses 6k neutral-weather
frames and evaluates on 7.8k frames across 13 weather conditions. We set λpriv = 0.1, λfair = 0.01, and ag-
gregation temperature β = 2.0, and run 100 federated rounds with three random seeds. All hyperparameters
were selected via an extensive grid search (more details in Appendix F).

4.2. TRADE-OFF ANALYSIS ON THE FACET DATASET

(a) FedAvg (b) RESFL

Figure 3: Accuracy (mAP) across Monk Skin Tones on FACET:
RESFL stays consistent; FedAvg drops on darker tones.

In this experiment, we evaluate the per-
formance of various FL algorithms on
the FACET dataset. Our objective is to
compare the overall trade-offs of each
method in a controlled setting. Ta-
ble 1 reports results for baselines in
Section 4.1, and our proposed RESFL,
while Figure 3 illustrates per-skin-tone
mAP distributions. RESFL attains
0.6654 mAP, close to FairFed (0.7013),
and exceeds PUFFLE and PFU-FL. It
maintains consistent accuracy across all
ten MST cohorts via uncertainty-guided
weighting. It yields |1 − DI| = 0.2287
and ∆EOP = 0.1959, improves privacy (MIA 0.2093, AIA 0.1832) over FedAvg and its DP variants, and
remains robust under attacks (BA AD 0.1692; DPA EODD 0.0674). See Appendix H for IID vs. non-IID
results with 4 and 8 clients, where RESFL maintains strong accuracy with the best fairness–privacy profile.
We also note its domain-agnostic performance in Appendix I.

4.3. RESILIENCE ANALYSIS UNDER ADVERSE CONDITIONS IN CARLA

We fine-tune and compare FACET baselines—FedAvg-DP (ϵ=0.1), FairFed, PUFFLE, and RESFL—on
2,600 CARLA frames under clear, cloud, rain, and fog at five intensities (0–100%). Figure 2 reports utility
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(mAP), fairness (mean of |1−DI| and ∆EOP; lower is better), and privacy risk (mean MIA/AIA success
rate; lower is better). Under clear weather (0%), RESFL achieves 0.46 mAP, 0.24 fairness, and 0.17 privacy.
At 100% cloud, mAP drops to 0.39 (vs. 0.19 FedAvg-DP, 0.34 FedAvg), fairness rises to 0.28 (vs. 0.39
FedAvg-DP), and privacy to 0.24 (vs. 0.38 FedAvg). In heavy rain (100%), it retains 0.42 mAP, 0.25
fairness, and 0.20 privacy; under dense fog (100%), it maintains 0.17 mAP, 0.50 fairness, and 0.44 privacy,
while others collapse below 0.10 mAP with fairness/privacy > 0.50. These results show that adversarial
privacy disentanglement with uncertainty-guided aggregation enables RESFL to degrade gracefully in utility
while preserving fairness and confidentiality under severe perturbations (see Appendix H).

4.4. ABLATION STUDY WITH RESFL

We conduct an ablation study to examine the impact of two key hyperparame-
ters in RESFL: the uncertainty-based fairness coefficient (λfair) and the adversar-
ial privacy coefficient (λpriv), while keeping the task loss coefficient fixed at one.

Table 2: RESFL’s performance with varying uncertainty-based
fairness and adversarial privacy coefficients (i.e., λfair and λpriv).

Algorithm Utility Fairness Privacy

λfair λpriv mAP |1− DI| ∆EOP MIA SR AIA SR

1 0 0.6278 0.2258 0.2062 0.3341 0.1431
0 1 0.5856 0.2571 0.2846 0.1025 0.1463

0.01 1 0.6056 0.2653 0.3459 0.1256 0.1668
0.1 1 0.6254 0.2538 0.2626 0.1477 0.1608
1 1 0.5953 0.2432 0.2513 0.2197 0.1782

0.1 0.01 0.6654 0.2287 0.1959 0.2093 0.1832
0.1 0.1 0.6430 0.2625 0.3143 0.1363 0.1474
0.1 1 0.5839 0.3862 0.4146 0.1176 0.1656

In the first set of FACET experiments,
we disable adversarial privacy (λpriv =
0) and sweep λfair; as λfair increases, fair-
ness disparities (|1 − DI|, ∆EOP) de-
crease, but mAP also declines, reflect-
ing the classical fairness–utility trade-
off without privacy regularization. In
the second set, we fix λfair = 0.1 and
vary λpriv to balance utility, fairness, and
privacy. The optimal occurs at λfair =
0.1, λpriv = 0.01, yielding mAP 0.6654,
|1−DI| 0.2287, ∆EOP 0.1959, and low
MIA (0.2093) and AIA (0.1832) success.
Increasing λpriv beyond 0.01 degrades
both detection accuracy and group eq-
uity, showing that overly strong adver-
sarial signals disrupt the balance.

5. CONCLUSIONS & FUTURE WORK

This work introduced RESFL, a domain-agnostic federated learning framework that jointly improves utility,
group fairness, and parameter privacy while remaining robust to adversarial perturbations and environmental
variability. RESFL combines adversarial privacy disentanglement (via gradient reversal) with an evidential
head that yields calibrated epistemic uncertainty and a scale-invariant Uncertainty Fairness Metric (UFM) for
aggregation. This design suppresses sensitive-attribute signals in shared representations and adaptively up-
weights clients exhibiting lower inter-group uncertainty disparity, producing updates that are both confident
and equitable. On FACET, RESFL matches or surpasses baselines in mAP while significantly reducing
disparate impact and equal-opportunity gaps across Monk Skin Tones; on CARLA, it maintains accuracy
under weather shifts and reduces membership/attribute inference success, indicating improved privacy.

Future work will focus on directions that reduce reliance on annotated sensitive labels by refining UFM
with vacuity–dissonance decomposition and attribute-free proxies, as well as explore automated schedules
for privacy/fairness temperatures to eliminate manual tuning. Finally, we also plan to extend to streaming
and multimodal FL and evaluate deployments with secure aggregation or calibrated DP noise to strengthen
end-to-end guarantees.
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REPRODUCIBILITY STATEMENT

We release anonymized code and configuration files for data preprocessing, client partitioning (IID/Non-
IID), training/evaluation for all baselines, and attack implementations. We fix random seeds, report hard-
ware, and include full hyperparameter grids. Dataset construction, splits, and preprocessing pipelines are
detailed in Appendix E; implementation specifics (models, losses, schedules, and runtime environment) are
in Appendix F. Detection fairness metrics are defined for object detection in §A.5 (IoU threshold, matching,
aggregation), and UFM is computed from Dirichlet classification evidence as specified in §3.1 and Ap-
pendix A.3. Exact evaluation settings (NMS, score thresholds, IoU thresholds) are fixed and documented.

ETHICS STATEMENT

We study privacy-, fairness-, and utility-aware federated detection using public datasets and simulation; no
new human-subjects data are collected. Because we analyze perceived skin tone, we acknowledge risks of
stereotyping or surveillance and restrict sensitive attributes to local clients, reporting only group-level statis-
tics; we discourage any use that targets individuals or communities. Given the safety-critical AV context,
prospective deployments should include stakeholder consultation, external auditing on the target popula-
tion, and monitoring for distribution shift and unintended harms. We document datasets and implementation
details to support independent verification (Appendix E, Appendix F).
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Appendix to “RESFL: An Uncertainty-Aware Framework for Responsible
Federated Learning by Balancing Privacy, Fairness and Utility”

A. PRELIMINARIES

This section presents the mathematical foundations and system specifications of our work. We detail the
YOLOv8-based object detection model, describe the FL setup in the AV scenario, formalize threat models
(privacy, robustness, and fairness attacks), and define evaluation metrics. We also provide a unified overview
of the datasets used for training and testing.

A.1. SYSTEM MODEL: OBJECT DETECTION

Let I ∈ RH×W×C denote an input image. Our object detection model, derived from YOLOv8, produces a
set of detections:

P = {(bi, ci, si)}Ni=1,

where each bi ∈ R4 specifies the bounding box coordinates, ci ∈ {1, . . . , C} is the predicted class label,
and si ∈ [0, 1] is the corresponding confidence score. The overall detection loss is given by:

Ldet = λcls Lcls + λloc Lloc + λconf Lconf, (11)

where Lcls, Lloc, and Lconf represent the classification, localization, and confidence losses, respectively, and
λcls, λloc, λconf ∈ R+ are hyperparameters.

A.2. FEDERATED LEARNING SETUP AND NETWORK MODEL

Consider a set of N clients {Ci}Ni=1, each possessing a local dataset Di ⊂ RH×W×C and a local model
with parameters θi. A central server maintains the global model θG. The FL process begins with the
server initializing and distributing θ

(0)
G to all clients. Each client then updates its model by performing local

stochastic gradient descent (SGD):

θ
(t+1)
i = θ

(t)
i − η∇Li

(
θ
(t)
i

)
,

where η > 0 is the learning rate, t is the local iteration index, and Li is the local loss (e.g., Ldet). The server
aggregates the locally updated parameters via FedAvg:

θ
(t+1)
G =

N∑
i=1

|Di|∑N
j=1 |Dj |

θ
(t+1)
i .

This FL framework maintains privacy because raw data remain on devices; the server receives only model
updates.

A.3. UNCERTAINTY QUANTIFICATION VIA EVIDENTIAL REGRESSION

Evidential head for detection (Dirichlet & NIG). Our detector uses a decoupled evidential head on top
of YOLOv8. For every anchor/location, the classification branch outputs a nonnegative concentration vector
α = (α1, . . . , αC) via αc = 1 + softplus(zc), which parameterizes a Dirichlet over class probabilities.
The localization branch outputs Normal–Inverse–Gamma (NIG) parameters for each box coordinate q ∈
{x, y, w, h}, (γq, νq, αnig

q , βq), following (Amini et al., 2020). Concretely:

p(p | α) = Dir(α), (µq, σ
2
q ) ∼ NIG

(
γq, νq, α

nig
q , βq

)
.
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For the Dirichlet, total evidence α0 =
∑C

c=1 αc controls epistemic uncertainty; larger α0 implies lower
epistemic variance (Sensoy et al., 2018). For the NIG, the epistemic variance of the mean is Var[µq] =
βq/(νq(α

nig
q − 1)).

Per-detection scalar uncertainties. We extract two scalar measures:

ucls =
1

α0 + 1
(classification epistemic; lower is more confident),

ubox =
1

4

∑
q∈{x,y,w,h}

Var[µq]

s2q
(localization epistemic; normalized, lower is more confident).

Here sx = W, sy = H, sw = W, sh = H are image-scale normalizers (width W and height H) so that
ubox is dimensionless and comparable across resolutions. In practice we compute Var[µq] = βq/(νq(α

nig
q −

1 + ϵ)) with a small ϵ for stability.

What feeds UFM. Unless otherwise specified, UFM is computed only from the classification Dirichlet
evidence. For an image x with detections P(x), we collect ucls for detections that pass NMS and a score
threshold τ (we use τ = 0.25; results are insensitive in [0.2, 0.4]). For a sensitive group g, we average the
induced α0 over that group:

ᾱ0,g = Ex∈Dg

[ 1

|Pτ (x)|
∑

d∈Pτ (x)

α
(d)
0

]
,

and plug {ᾱ0,g}Gg=1 into Eq. (2) in the main paper to obtain UFM = UFMcls. This choice aligns UFM with
fairness over recognition (who is detected/classified confidently), while the NIG head is used for robustness
analyses and ablations.

Training losses. The classification branch is trained with the Dirichlet NLL plus an evidential regularizer
that penalizes overconfident errors (Sensoy et al., 2018); the localization branch uses the NIG NLL with the
regularizer from (Amini et al., 2020). This yields calibrated epistemic estimates for both branches while
keeping the UFM definition unambiguous.

A.4. THREAT MODEL

We study a cross-silo FL setting with an honest-but-curious server that observes client updates and may
collude with a subset of clients. Training data remain on-device and are never shared; thus raw data privacy
is enforced by the FL protocol. Our privacy goal is parameter privacy: reduce sensitive-attribute leakage
from intermediate representations or model updates. We also evaluate robustness to malicious updates and
fairness against bias amplification. The attacks below instantiate these goals.

A.4.1. Privacy Attacks

The selected privacy attacks assess whether an adversary can extract sensitive information from federated
model updates.

Membership Inference Attack (MIA): MIA tests whether a sample x ∈ Rd was used in training. An
adversarial client Ca trains a shadow model to mimic the global model Mt, queries Mt on member/non-
member samples, and uses the resulting outputs to train a binary classifier AMIA that predicts membership:

AMIA(x) =

{
1, x ∈ Dtrain

0, x /∈ Dtrain .
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We report the MIA Success Rate (binary accuracy):

SMIA =
TP + TN

TP + TN + FP + FN
, (12)

where TP, TN,FP, FN are counts over a balanced member/non-member evaluation set. Higher SMIA
indicates greater privacy leakage.

Attribute Inference Attack (AIA): AIA tests whether a sensitive attribute s ∈ S can be inferred from update-
derived features. The adversary extracts features I from observed gradients/updates and trains AAIA to
predict s:

ŝ = AAIA(I) . (13)
We report the AIA Success Rate as top-1 accuracy over M instances:

SAIA =
1

M

M∑
i=1

1{ŝi = si} . (14)

(For binary attributes, SAIA reduces to standard binary accuracy.)

A.4.2. Robustness Attack

We assess the FL system’s resilience to malicious modifications of model updates using a robustness attack.

Byzantine Attack: In a Byzantine attack, a subset of clients manipulates their model updates before sending
them to the central aggregator. Let θk be the legitimate update from client k, and let the adversary introduce
a perturbation δk, yielding a modified update:

θ̃k = θk + δk, with ∥δk∥ ≫ 0. (15)

A sufficiently large δk disrupts training, leading to model divergence or severe performance degradation. The
attack’s impact is quantified by comparing global model accuracy without malicious interference (Aclean) to
accuracy under Byzantine updates (AByzantine), measured as:

DByz = Aclean −AByzantine. (16)
A larger DByz indicates a stronger attack and greater vulnerability of the federated learning system to such
perturbations.

Data Poisoning Attack: This attack injects manipulated samples ∆D into a client’s local dataset, altering
its distribution. The poisoned dataset is defined as:

D′
k = Dk ∪∆D. (17)

The adversary selects injected samples to skew feature distributions, favoring one demographic group over
another and shifting the global model’s decision boundaries. The impact on fairness is measured using the
Equalized Odds Difference (EOD), which quantifies disparities in true positive rates (TPR) and false positive
rates (FPR) between protected and unprotected groups:

EOD = |TPRprotected − TPRunprotected| + |FPRprotected − FPRunprotected| . (18)

To assess the attack’s effect, we compute the Equalized Odds Difference Deviation (EODD) as the change
in EOD between the poisoned and clean datasets:

EODD = EODpoisoned − EODclean. (19)
A larger EODD indicates greater fairness violation, confirming the attack’s success in introducing bias.
This highlights the dual threat of data poisoning, which compromises both model accuracy and equity across
user groups.
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A.5. DETECTION-BASED FAIRNESS & PRIVACY METRICS

Setup and matching protocol. For each image x, let G(x) = {(b∗k, yk, gk)}
Nx

k=1 be ground-truth person
instances with box b∗k, class yk = person, and sensitive group gk ∈ {1, . . . , G} (e.g., MST). Let P(x) =
{(b̂i, ĉi, ŝi)}Mx

i=1 be predicted boxes, classes, and confidences after standard NMS (we use IoU NMS=0.5
and score threshold τscore = 0.25; same across all methods). We evaluate fairness at a fixed IoU threshold
τfair = 0.5 (distinct from mAP’s COCO sweep).

We perform a one-to-one greedy match between G(x) and P(x) by descending ŝi: a prediction (b̂i, ĉi, ŝi)

matches a ground-truth (b∗k, yk, gk) iff ĉi = yk and IoU(b̂i, b
∗
k) ≥ τfair and neither has been matched

yet. Matched pairs count as true positives (TP); unmatched predictions are false positives (FP); unmatched
ground truths are false negatives (FN). Multiple predictions for the same ground-truth are penalized as FP
except the highest-scoring matched one.

Per-group rates (micro-averaged). Let TPg =
∑

x

∑
k:gk=g 1{GT k is matched} and FNg =∑

x

∑
k:gk=g 1{GT k is unmatched}. Define the per-group detection true positive rate (recall)

TPRg(τfair) =
TPg

TPg + FNg
.

In our fairness metrics, the favorable outcome is a correct detection of a person instance (i.e., contributing
to TPg at IoU ≥ τfair with correct class). Counts are aggregated over all instances in the cohort (micro
average across images).

Disparate Impact (DI) for detection. With multiple cohorts, we compute the best and worst group detec-
tion rates and form a ratio:

DI(τfair) =
ming TPRg(τfair)

maxg TPRg(τfair)
∈ [0, 1], |1−DI| is reported (lower is better).

This “rate ratio” view is standard for multi-group DI and equals 1 under perfect parity.

Equality of Opportunity gap (∆EOP) for detection. We report the max range of per-group TPRs:

∆EOP(τfair) = max
g

TPRg(τfair) − min
g

TPRg(τfair) ∈ [0, 1],

which is 0 under perfect parity (lower is better). Note that both DI and ∆EOP use the same matching
protocol and τfair.

Relation to mAP. mAP is computed with the COCO protocol (IoU ∈ {0.50 : 0.05 : 0.95}, class-aware).
Fairness metrics use the single threshold τfair = 0.5 defined above so that TP/FP/FN (and thus TPR) are
unambiguous and reproducible.

Reproducibility keys for fairness on detection (we fix these in all experiments):
– IoU NMS = 0.5; score threshold τscore = 0.25; max dets per image = 300.
– Fairness IoU threshold τfair = 0.5 for TP/FP/FN and TPR.
– Greedy one-to-one matching by descending score; ties broken by higher IoU.
– Per-group TPR is micro-averaged over all instances with that group’s ground-truth.

Membership Inference Attack (MIA) for detection. We use a black-box shadow-model attack tailored
to detectors. LetM be a set of member images used in training and M̄ a disjoint non-member set of the
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same size from the same distribution. For any image x, we compute an image-level feature vector from the
model’s post-NMS outputs:

φ(x) =
[
#dets, ŝ, max ŝ, α0, ucls

]
,

where #dets is the number of predicted person boxes with ŝ ≥ τscore, ŝ is their mean confidence, and α0 and
ucls are the mean Dirichlet total evidence and its derived epistemic scalar (Sec. A.3) over those detections
(empty sets use zeros). We train a logistic-regression (or two-layer MLP) shadow attacker on a disjoint
shadow split to predict membership from φ(x) and report the attack success rate

MIA SR =
TP+ TN

TP+ TN+ FP + FN
,

evaluated onM∪M̄ with a 50/50 prior.

Attribute Inference Attack (AIA) for detection. We probe sensitive attributes from per-instance features.
For each matched detection (as above), we apply ROIAlign to the model’s neck feature map at the matched
box to get a fixed-size tensor, global-average–pool it to a vector h, and train a two-layer MLP (on a disjoint
shadow split) to predict the instance’s group g ∈ {1, . . . , G}. We report the top-1 accuracy over all matched
instances:

AIA SR =
#correct group predictions

#matched instances
.

Note: Images without matched persons contribute nothing to AIA; they still contribute to MIA.

B. THEORETICAL ANALYSIS OF THE UNCERTAINTY FAIRNESS METRIC

In federated learning, each client holds a distinct local distribution, resulting in unequal representation of
sensitive groups (e.g. demographic cohorts or environmental conditions). Epistemic uncertainty (quanti-
fying a model’s ignorance about its predictions) naturally reflects these imbalances: groups with fewer or
more variable examples yield higher uncertainty, while well-represented, homogeneous groups yield lower
uncertainty. We formalize this insight and show that controlling the dispersion of group-wise uncertainties
effectively enforces fairness.

Let each client compute, for each sensitive group g ∈ {1, . . . , G}, an epistemic variance σ2
g . In evidential

models, σ2
g = 1/αg , where αg accumulates “evidence” proportional to effective sample size and signal-to-

noise ratio. Concretely,

αg ∝ ng SNRg =⇒ σ2
g ≈

1

ng SNRg
.

Thus σ2
g is large when group g is under-sampled or noisy, and small otherwise.

To measure fairness, we track the relative spread of {σ2
g}. We define the Uncertainty Fairness Metric (UFM)

as

UFM =
maxg σ

2
g − ming σ

2
g

1
G

∑G
g=1 σ

2
g + ϵ

,

with ϵ > 0 for stability. By normalizing by the mean uncertainty, UFM is scale-invariant, takes value zero
when all groups share equal confidence, and grows smoothly as disparities arise.

Statistical Rationale. Classical generalization bounds for group g involve its sample size ng and model
complexity. A simplified high-probability bound is

L(g) ≤ L̂(g) +O
(√

log(1/δ)
ng

)
,
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where L̂(g) is the empirical loss. Since σ2
g ≈ 1/(ng SNRg), the uncertainty gap maxg σ

2
g −ming σ

2
g upper-

bounds the disparity in confidence-adjusted generalization terms. Minimizing UFM therefore tightens and
balances each group’s bound, improving equity in expected loss.

Fair Aggregation. In federated aggregation, each client i reports its UFMi. The server assigns weights

wi =
exp(−βUFMi)∑
j exp(−βUFMj)

,

so that clients with lower internal disparity (smaller UFM) contribute more. This bias toward uniformly
confident updates automatically re-balances the global model as data distributions evolve, without exposing
sensitive attributes centrally.

Notation alignment. Throughout, evidential classification uses Dirichlet evidence with total evidence
α0(x) =

∑C
c=1 αc(x). For group g, let ᾱ0,g = Ex∈Dg

[α0(x)] and define the group epistemic variance
proxy σ2

g := Ex∈Dg
[1/α0(x)] ≈ 1/ᾱ0,g . We set ϵ = 10−6 in UFM for numerical stability.

Assumptions. (A1) Bounded loss: the per-sample loss ℓ ∈ [0, 1]. (A2) Evidential calibration: there exist
constants 0 < smin ≤ smax such that 1

ngsmax
≤ σ2

g ≤ 1
ngsmin

for each group g (i.e., evidence scales with
effective sample size and signal-to-noise). (A3) Group-wise mixing: samples within a group are i.i.d. under
a fixed distribution.

Theorem B.1 (Confidence-adjusted generalization disparity). Under (A1)–(A3), for any δ ∈ (0, 1) there
exists a constant C > 0 (depending only on smin, smax) such that, with probability at least 1− δ, for every
group g,

L(g) ≤ L̂(g) + C
√

σ2
g log(1/δ).

Consequently,

max
g

(
L(g) − L̂(g)

)
−min

g

(
L(g) − L̂(g)

)
≤ C

√
log(1/δ)

(√
max

g
σ2
g −

√
min
g

σ2
g

)
.

Proof sketch. Hoeffding’s inequality yields L(g) ≤ L̂(g) + O
(√ log(1/δ)

ng

)
under (A1),(A3). By (A2), 1/ng

is sandwiched by constants times σ2
g , giving the per-group term O

(√
σ2
g log(1/δ)

)
. The disparity bound

follows by subtracting the best/worst groups.

Corollary B.2 (UFM controls disparity). Let σ̄2 = 1
G

∑G
g=1 σ

2
g . Then there exist constants C1, C2 > 0

such that

max
g

(
L(g) − L̂(g)

)
−min

g

(
L(g) − L̂(g)

)
≤ C1

√
log(1/δ) σ̄ UFM ≤ C2

√
log(1/δ)UFM,

i.e., minimizing UFM tightens a normalized upper bound on the group disparity in confidence-adjusted
generalization.

Aggregation limits and practice. We compute UFMi per client on a held-out local validation split and
report wi ∝ exp(−βUFMi). As β → 0 we recover uniform averaging; as β →∞ the aggregator con-
centrates on clients with smallest UFM. To reduce noise, we use an exponential moving average of UFMi

across rounds.
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Integrity of reported UFM We assume an honest-but-curious server. Because the aggregation weights ωi

in Eq. 5–Eq. 6 require per-client inputs, each client transmits its scalar ui = UFMi in clear after applying
a publicly announced clipping rule,

ui ← min
(
max(ui, a), b

)
, (a, b) fixed.

Model updates ∆θi continue to use secure aggregation; only the clipped scalar ui is visible to the server. The
server then computes ωi ∝ exp(−β ui) and updates θG as in Eq. 5–Eq. 6. Further implementation details
appear in Appendix F.

C. INFORMATION-THEORETIC GUARANTEES OF ADVERSARIAL PRIVACY
DISENTANGLEMENT

We analyze how adversarial training with a gradient reversal layer and an attribute classifier limits the leak-
age of a sensitive attribute S from representations H = fθ(X). Throughout, we allow H to be a (possibly
stochastic) mapping of X (e.g., due to dropout); all logarithms are natural (nats).

Adversarial objective and conditional entropy. Consider the minimax problem
min
θ

max
ϕ
Ladv(θ, ϕ), Ladv(θ, ϕ) = −E(X,S)

[
logAϕ(S | H)

]
,

where Aϕ(· | H) is the attribute classifier fed by the representation H = fθ(X). If the adversary family is
universally expressive and the supremum is attained, then

sup
ϕ
Ladv(θ, ϕ) = H(S | H).

In general (with approximation/optimization error), we have the one–sided relation
sup
ϕ
Ladv(θ, ϕ) ≤ H(S | H).

Consequently,
I(H;S) = H(S)−H(S | H) ≤ H(S)− sup

ϕ
Ladv(θ, ϕ),

so maximizing Ladv (for fixed θ) minimizes an upper bound on I(H;S). By the data–processing inequality,
reducing I(H;S) weakens any inference from H about S.

Attack error via Fano. Let an attacker output Ŝ = g(H) over K attribute classes. Fano’s inequality
yields

Pe ≥ 1− I(H;S) + log 2

logK
.

Hence as supϕ Ladv(θ, ϕ) → H(S | H) (i.e., I(H;S) → 0), the minimum achievable error satisfies
Pe → 1− 1/K, driving attribute inference toward chance level.

Privacy–utility frontier and tuning. Incorporating the adversarial term with coefficient λpriv into the local
objective,

Llocal(θ, ϕ) = Ltask(θ) + λpriv Ladv(θ, ϕ),

traces a (piecewise) convex frontier in the
(
I(H;S), Ltask

)
plane under standard regularity conditions. By

the envelope theorem,

−d I(H;S)

dLtask
=

∂λpriv Ltask

∂λpriv I(H;S)
,

so λpriv directly tunes the privacy–utility balance: larger λpriv increases the pressure to maximize Ladv,
thereby decreasing I(H;S) (stronger privacy) at the potential cost of task loss.
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Figure 4: Sample visualization of weather conditions (cloud, rain, and fog) at increasing intensity levels (0%,
25%, 50%, 75%, 100%) using the CARLA simulation, illustrating how environmental severity gradually
impacts visibility and scene clarity.

Algorithm 1 RESFL Training with Adversarial Privacy and Uncertainty-Guided Aggregation

1: Input: global model θG, adversary A(x;ϕ), client data {δi}, weights λpriv, λfair, temperature β, learning
rates η, ηϕ, rounds T

2: for t = 0→ T − 1 do
3: Server broadcasts θ(t)G to all clients
4: for each client i in parallel do
5: Initialize: θi ← θ

(t)
G , ϕi ← ϕ

6: for each local step do
7: Compute Ltask, Ladv, Lunc
8: ϕi ← ϕi − ηϕ∇ϕi

Ladv
9: θi ← θi − η∇θi [Ltask + λprivLadv + λfairLunc] ▷ Composite local loss (Eq. 9)

10: end for
11: Compute UFMi (Eq. 4 and ∆θi = θi − θ

(t)
G )

12: Client sends {∆θi,UFMi} to server
13: end for
14: Server computes ωi ∝ exp(−β ·UFMi) (Eq. 5)
15: Update: θ(t+1)

G = θ
(t)
G +

∑N
i=1 ωi∆θi ▷ Aggregation (Eq. 6)

16: end for
17: Output: final global model θ(T )

G

Scope of the guarantee. These are information-theoretic guarantees on representation leakage I(H;S);
they are not (ε, δ)–DP guarantees on the training algorithm. In practice, one monitors Ladv (or a calibrated
surrogate) and adjusts λpriv to meet a target inference–error bound while limiting degradation in Ltask.
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D. JOINT TRADE-OFF ANALYSIS OF PRIVACY AND FAIRNESS

Our RESFL framework simultaneously addresses three competing objectives—detection utility, attribute
privacy, and demographic fairness—by integrating adversarial privacy disentanglement with uncertainty-
guided aggregation (summarized in Algorithm 1. The adversarial module employs a gradient reversal layer
and attribute classifier to suppress sensitive information in each client’s features, effectively minimizing
the mutual information between latent representations and protected attributes. This enforces a control-
lable privacy constraint without degrading task performance unduly. In parallel, each client’s evidential
uncertainty head estimates per-group epistemic variances, from which we compute an Uncertainty Fairness
Metric (UFM) that quantifies disparities in model confidence across sensitive cohorts. During aggrega-
tion, clients report both their parameter updates and UFM scores; the server then weights each update by
a softmax of the negative UFM, amplifying contributions from clients with more uniform confidence and
down-weighting those with high disparity. By tuning the adversarial strength λpriv and the uncertainty co-
efficient λfair, RESFL effectively scalarizes a convex multi-objective problem, tracing out the full Pareto
frontier in the space of utility, privacy leakage, and fairness gap. Unlike single-objective baselines—which
either sacrifice accuracy for privacy protection or apply fixed fairness regularizers—RESFL dynamically
balances both axes: stronger adversarial signals tighten privacy guarantees, while uncertainty-based weights
correct emerging fairness imbalances. Empirically and theoretically, this joint mechanism dominates pure
DP or fairness-only schemes by exploring descent directions unavailable to one-dimensional fixes, yield-
ing models that maintain high mean average precision, provably low attribute-inference risk, and minimal
performance disparity across sensitive groups.

E. DATASETS

Our experiments leverage two complementary data sources: FACET for federated training and CARLA
for controlled evaluation, to measure object detection utility, demographic fairness, privacy resilience, and
robustness under diverse conditions. In this section, we detail dataset composition, annotation processing,
domain-specific partitioning, and preprocessing pipelines.

Figure 5: Example images from the FACET dataset. Each red bounding box denotes a detected person
instance, annotated with its corresponding Monk Skin Tone (MST) label (e.g. MST #2, #3, #4, #6). These
samples illustrate the range of skin-tone levels (1 = lightest to 10 = darkest) used for fairness evaluation in
our object detection experiments.

E.1. FACET DATASET

The FACET dataset (Gustafson et al., 2023) provides 32 000 real-world images with over 50 000 annotated
person instances, each labeled with a bounding box and multiple attributes (perceived skin tone, hair type,
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person class). We concentrate on perceived skin tone, a sensitive attribute strongly correlated with perfor-
mance gaps in detection model (Pathiraja et al., 2024). FACET adopts the Monk Skin Tone (MST) scale with
ten discrete levels g ∈ {1, . . . , 10}, where g = 1 is the lightest and g = 10 the darkest tone, as shown in Fig-
ure 6. To mitigate annotation noise due to lighting or labeler variance, each instance receives n independent
MST labels s1, . . . , sn. We aggregate these as

s∗ =
1

n

n∑
i=1

si,

then discretize s∗ by rounding to the nearest integer in {1, . . . , 10}. This yields a robust single-toned label
per instance, denoted MST(b).

We group the dataset into G = 10 MST cohorts. LetD = {(xk, bk, s
∗
k)}Nk=1 be the full set of image–instance

pairs (N ≈ 50 000). Define

Dg =
{
(x, b, s∗) : MST(b) = g

}
, g = 1, . . . , 10,

so that
∑10

g=1 |Dg| = N . In practice, each |Dg| ranges from approximately 4 000 to 6 000 instances, ensuring
sufficient representation across the skin-tone spectrum.

To simulate federated clients, we partition the 32 000 FACET images into K = 4 i.i.d. subsets {Ii}4i=1, each
containing 8 000 images and all associated instances. Formally, Ii ∩ Ij = ∅ for i ̸= j,

⋃4
i=1 Ii covers all

images, and each split preserves the MST distribution:

∀ g,
∣∣{(x, b) ∈ Dg : x ∈ Ii}

∣∣ ≈ 1
4 |Dg|.

Clients share only model updates (gradients ∆θi and a scalar UFM per round), never raw images or labels.
A few samples are visible in Figure 5.

Preprocessing and Augmentation. Each image is resized to 640 × 640 pixels using bicubic interpolation.
We apply standard YOLOv8 augmentations: random horizontal flip (probability 0.5), brightness and contrast
jitter (±20%), and random hue shift (±10%). Pixel values are normalized to [0, 1] and then standardized
using ImageNet channel means µ = [0.485, 0.456, 0.406] and standard deviations σ = [0.229, 0.224, 0.225].
During training, we further apply mosaic augmentation by stitching four images into a 1×1 grid with random
scaling in [0.5, 1.5].

E.2. CARLA SIMULATION DATASET

The CARLA simulator (Dosovitskiy et al., 2017) v0.9.13 generates synthetic driving scenarios to evaluate
model robustness under controlled environmental and urban variations. We select three canonical maps:
Town01 (suburban streets), Town03 (dense downtown), and Town05 (mid-density mixed-use) to capture a
broad spectrum of road geometry, building density, and occlusion patterns.

An autopilot-enabled ego vehicle equipped with an RGB camera (1920× 1080, 100◦ FOV) and a semantic
segmentation sensor (same specs) records frames every 3s. We retain only frames containing at least one
pedestrian. Pedestrian bounding boxes

b = (xmin, ymin, xmax, ymax ∈ R4

are extracted via connected-component analysis on semantic masks, discarding detections with fewer than
50 pixels.

Skin-tone assignment. Each synthetic pedestrian blueprint is manually mapped to a Monk Skin Tone (MST)
label by visual inspection, ensuring consistency with the FACET scale. Let

C = {Town01, Town03, Town05}, S = {1, . . . , 10}.
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Figure 6: The Monk Skin Tone (MST) scale (Pathiraja et al., 2024) ranges from MST=1, representing the
lightest skin tone, to MST=10, representing the darkest skin tone.

Each pedestrian instance receives a pair (c, s) ∈ C × S.

Domain adaptation fine-tuning. To reduce domain shift, we fine-tune the federated global model on clear-
weather CARLA frames. For each c ∈ C and s ∈ S we sample 200 frames, yielding

Ntune = |C| × |S| × 200 = 3× 10× 200 = 6000

tuning samples. Fine-tuning uses the same SGD hyperparameters as federated local updates.

Adverse-weather evaluation. We evaluate under 13 conditions: a clear baseline plus fog and rain at inten-
sities α ∈ {0, 25, 50, 75, 100}%. For each c, s, and weather condition w we capture 20 frames,

Neval = |C| × |S| × 13× 20 = 3× 10× 13× 20 = 7800.

This design isolates the effects of environmental severity and urban topology on detection, fairness, and
privacy metrics.

Preprocessing. RGB frames are downsampled to 640 × 640 and normalized as in training; no random
augmentations are applied at test time. Semantic masks are used only for bounding-box extraction.

E.2.1. DATASET STATISTICS

Table 3: Composition and partitioning of FACET and CARLA datasets

FACET CARLA (Tune) CARLA (Eval)

Images 32 000 6 000 7 800
Person instances 50 000 6 515 8 163
Skin-tone levels 10 10 10
Urban layouts N/A 3 3
Weather conditions N/A clear 13
Frames per (c,s,w) N/A 200 20

Table 3 summarizes our real and simulated datasets. FACET provides 32000 images and 50000 person in-
stances across ten MST levels, partitioned into four IID client shards of 8000 images each. The CARLA fine-
tune set contains 6000 clear-weather frames (200 per town–skin-tone pair), and the evaluation set comprises
7800 frames collected over three towns under thirteen weather conditions, with twenty frames per (town,
skin-tone, weather) tuple. This balanced design ensures comprehensive coverage for assessing RESFL’s
performance under varied real-world and synthetic scenarios.

F. IMPLEMENTATION DETAILS

All components of RESFL were implemented in Python (v3.9) using the PyTorch (v2.0) framework, and
all experiments were executed on a single NVIDIA RTX 3070 GPU with 8 GB of VRAM. We adopted the

24



1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2026

YOLOv8 object-detection architecture as our backbone, modifying its final detection head to emit nonnega-
tive concentration vectors for evidential uncertainty estimation. Specifically, we replaced the standard soft-
max head with a softplus-plus-one layer to produce Dirichlet concentration parameters αc = 1+ln(1+ezc).
All code, including dataset wrappers, training scripts, and analysis notebooks, will be released upon publi-
cation to ensure full reproducibility.

Training proceeded in a standard federated loop over T = 100 communication rounds. In each round, the
server distributed the current global model θ(t)G to N = 4 clients. Each client locally trained for one epoch
(one full pass over its data) using stochastic gradient descent with momentum 0.9 and weight decay 1×10−4.
The initial learning rate was set to 1×10−3 and decayed by a factor of 0.1 at epochs 50 and 75. We fixed the
batch size to 64 samples per step, and used a per-client training time of approximately 8 hours on the RTX
3070. All results are averaged over three independent random seeds to account for variability in data splits
and optimizer initialization.

For the FACET dataset (Gustafson et al., 2023), we loaded 32,000 annotated images and partitioned them
into four i.i.d. subsets of 8,000 images each, preserving the overall Monk Skin Tone distribution in each split.
No raw image data were exchanged during training, clients only uploaded model gradients ∆θi and a single
Uncertainty Fairness Metric (UFM) scalar per round. For the CARLA simulator experiments (Dosovitskiy
et al., 2017), we first fine-tuned the global model on 2,000 “neutral-weather” frames (200 per MST level),
then evaluated on 2,600 held-out frames spanning 13 weather conditions (clear, fog, rain at five intensities
each).

We set the adversarial gradient-reversal coefficient λpriv to 0.1 and the uncertainty regularization weight
λfair to 0.01. The server aggregation temperature β was chosen as 2.0 based on a preliminary grid search
balancing fairness sensitivity against raw accuracy. All four clients performed synchronized local updates in
each round, and the server aggregated via

θ
(t+1)
G = θ

(t)
G + η

N∑
i=1

exp(−βUFMi)∑N
j=1 exp(−βUFMj)

∆θi.

Hyperparameter values, dataset splits, and training protocols are summarized in Table 4.

Table 4: Implementation environment and hyperparameter settings

Category Setting
Framework PyTorch v2.0, Python 3.9
Hardware NVIDIA RTX 3070 (8 GB VRAM)
Backbone YOLOv8 with evidential head
Optimizer SGD, momentum 0.9, weight decay 1× 10−4

Initial learning rate 1× 10−3, decayed by 0.1 at epochs 50, 75
Batch size 64
Communication rounds 100
Clients 4 (i.i.d. splits of FACET)
FACET split 32 k images → 4×8 k images
CARLA fine-tune / eval 6 k / 7.8 k frames (13 scenarios)
λpriv (GRL) 0.1
λfair (uncertainty) 0.01
Aggregation temperature β 2.0
Random seeds 3
Per-client training time 8 h per 100 epochs
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Table 5: FACET results under IID vs. Non-IID with 4 clients. Accuracy is mAP (higher is better). Fair-
ness/Privacy Scores are averages of (|1−DI|, ∆EOP) and (MIA SR, AIA SR), respectively (lower is better).

IID Non-IID

Algorithm Accuracy Fairness Score Privacy Score Accuracy Fairness Score Privacy Score

FedAvg 0.6378 0.2261 0.3886 0.4841 0.3892 0.4317
FedAvg-DP 0.2932 0.4048 0.1960 0.1757 0.4853 0.2253
FairFed 0.7013 0.2529 0.4832 0.5080 0.2989 0.5122
PUFFLE 0.4192 0.3348 0.2817 0.2726 0.3650 0.3140
Ours (RESFL 0.6654 0.2123 0.1963 0.5384 0.2387 0.2131

Table 6: FACET results under IID vs. Non-IID with 8 clients. Accuracy is mAP (higher is better). Fair-
ness/Privacy Scores are averages of (|1−DI|, ∆EOP) and (MIA SR, AIA SR), respectively (lower is better).

IID Non-IID

Algorithm Accuracy Fairness Score Privacy Score Accuracy Fairness Score Privacy Score

FedAvg 0.6217 0.2395 0.3973 0.3615 0.4279 0.4893
FedAvg-DP 0.2791 0.4179 0.2067 0.1327 0.5381 0.2765
FairFed 0.6895 0.2647 0.4216 0.4284 0.3571 0.5695
PUFFLE 0.3927 0.3529 0.2953 0.1983 0.4237 0.3719
Ours (RESFL 0.6539 0.2197 0.2059 0.4627 0.2975 0.2635

All experiments spanning privacy and fairness attacks, adversarial robustness tests, and ablation studies use
the same training pipeline above. Our release will include detailed setup instructions, random seed logs, and
pre-trained model checkpoints to facilitate both replication and future extension.

Compute resources. All experiments were run on a single workstation equipped with an NVIDIA RTX
3070 GPU (8 GB VRAM), an Intel Core i7-10700K CPU (8 cores, 16 threads) and 32 GB DDR4 RAM,
with datasets and logs stored on a 1 TB NVMe SSD. Each 100-round federated training session required
≈8 hours of GPU time and ≈1 hour of CPU overhead per seed. CARLA fine-tuning and evaluation took
≈1.5 hours of GPU time per seed. Averaged over three random seeds, the total compute amounted to ≈27
GPU-hours and ≈12 CPU-hours, and consumed ≈50 GB of disk storage.

Table 7: Results on Adult and TweetEval with 4 clients (IID split, sensitive attribute = gender). Accuracy
is overall classification accuracy (↑). Fairness/Privacy Scores are lower-is-better (↓).

Adult TweetEval

Algorithm Accuracy ↑ Fairness Score ↓ Privacy Score ↓ Accuracy ↑ Fairness ↓ Privacy ↓
FedAvg 0.8527 0.3185 0.3721 0.5258 0.0439 0.3426
FedAvg-DP 0.7063 0.3018 0.2217 0.3724 0.0415 0.1950
FairFed 0.8449 0.2564 0.3965 0.5310 0.0360 0.4079
PUFFLE 0.8294 0.2951 0.2853 0.4959 0.0441 0.2851
Ours (RESFL) 0.8481 0.2317 0.2389 0.5067 0.0334 0.2353
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G. FACET EVALUATION RESULTS

We evaluate on FACET using two federation sizes (4 and 8 clients) under IID and Non-IID partitions. For
IID, we perform stratified sampling that preserves the joint distribution of task labels and sensitive groups
within each client; each client thus receives an equal-sized subset with approximately identical class and
group proportions. For Non-IID, we induce heterogeneity via Dirichlet allocation over class–group pairs
with concentration α = 0.5. The total number of samples and the per-client sizes are matched across
IID/Non-IID, and all methods use the same local training budget and optimizer settings; full hyperparameters
are listed in Appendix F.

IID vs. Non-IID with 4 clients (Table 5. Under IID, RESFL attains the best combined fairness–privacy
profile while preserving competitive mAP. Compared to FedAvg, RESFL reduces the fairness score (lower
is better) from 0.2261 to 0.2123 and the privacy score from 0.3886 to 0.1963, with a modest accuracy gain
over most baselines. FedAvg-DP (ϵ = 0.1) achieves the strongest privacy (0.1960) but at a steep accuracy
cost (0.2932), illustrating the classic privacy–utility tension. FairFed delivers the highest mAP (0.7013) but
with weaker privacy (0.4832). Under Non-IID, all methods degrade—as expected—yet RESFL retains the
lowest fairness (0.2387) and near-best privacy (0.2131) with the top mAP (0.5384), indicating robustness to
client heterogeneity.

Scaling to 8 clients (Table 6. The trends persist when increasing the client count: under IID, RESFL again
achieves strong accuracy (0.6539) with the best fairness (0.2197) and near-best privacy (0.2059). In Non-IID,
the gap between data-size–agnostic and DP-based methods widens; FedAvg-DP preserves privacy (0.2765)
but collapses in mAP (0.1327). FairFed remains accuracy-leaning (0.4284) yet with weaker privacy (0.5695).
RESFL continues to balance all three criteria (mAP 0.4627; fairness 0.2975; privacy 0.2635), suggesting
that uncertainty-guided aggregation can mitigate distributional skew without over-penalizing utility. All
scores are averaged over multiple runs; full seed-wise statistics and confidence intervals are provided in the
supplementary analysis.

H. CARLA EVALUATION RESULTS

Table 8 shows accuracy (mAP), fairness (|1−DI|, ∆EOP), privacy-attack success rates (MIA SR, AIA SR),
and robustness metrics (BA AD, DPA EODD) for all FL algorithms under varying cloud intensities.Table 9
reports the same set of metrics across rain intensity levels. Table 10 presents these metrics under fog condi-
tions at increasing severity.

I. ADDITIONAL EVALUATION

To assess the domain-agnostic capability of RESFL, we conducted experiments on two distinct modalities:
tabular data (Adult (Basile et al., 2019) income prediction) and textual data (TweetEval (Barbieri et al.,
2020) sentiment classification). For Adult, we used a lightweight TabularNet architecture with three fully-
connected layers and ReLU activations, trained to predict whether income exceeds $50K based on census
features and set ’race’ as sensitive attribute). For TweetEval, we fine-tuned DistilBERT with a classification
head on the sentiment analysis task. In both cases, we created a federation of four clients with an IID
split, ensuring that the class distribution and the sensitive attribute (gender) proportions were approximately
balanced across clients. We used the same training protocol as in the main experiments, with local SGD
updates, a fixed number of local epochs, and the same optimizer hyperparameters. Fairness was measured
using the average of demographic parity gap (|1 − DI|) and equality-of-opportunity gap (∆EOP), while
privacy leakage was quantified by the success rates of Membership Inference (MIA) and Attribute Inference
(AIA) attacks, following the methodology in Section A.4.
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Table 7 reports the results. On Adult income prediction, RESFL achieves competitive accuracy (0.8481)
while attaining the lowest fairness disparity (0.2317) and strong privacy protection (0.2389), outperform-
ing FedAvg and FairFed in terms of fairness without sacrificing utility. FedAvg-DP improves privacy but
incurs a large accuracy drop (0.7063), highlighting the advantage of our adversarial privacy disentangle-
ment which preserves utility. On TweetEval, RESFL also achieves a favorable fairness score (0.0334) with
improved privacy compared to FedAvg, indicating that the uncertainty-guided aggregation generalizes to
textual tasks. These results collectively demonstrate that RESFL is not restricted to vision-based detection
but applies broadly to heterogeneous data modalities, reinforcing its claim as a domain-agnostic framework
for responsible federated learning.

J. BROADER IMPACTS

RESFL aims to make federated learning safer and more equitable across domains such as autonomous driv-
ing, healthcare, and edge sensing by improving group fairness and reducing sensitive-attribute leakage with-
out sharing raw data. Its uncertainty-guided aggregation can help models remain reliable under distribution
shift and adverse conditions, potentially improving real-world safety and user trust. At the same time, risks
remain: stakeholders could tout fairness or privacy benefits without adequate validation, obscure data qual-
ity issues behind adversarial masking, or impose extra compute/communication costs that burden smaller
clients. These concerns call for transparent reporting of hyperparameters and metrics, independent audits of
fairness–privacy–utility trade-offs, and safeguards against gaming self-reported signals. Overall, RESFL of-
fers a practical step toward responsible FL while highlighting the need for oversight, reproducibility artifacts,
and domain-specific governance in deployments.

LLM USAGE

We used an LLM (GPT-5 Thinking) only to aid writing polish and literature discovery. For writing, it
suggested alternative phrasings, grammar/clarity edits, and minor LATEX fixes; all technical content, claims,
math, algorithmic choices, figures, tables, and results were authored and verified by the authors. For re-
trieval, it helped brainstorm search queries and surface candidate related-work papers; we independently
checked every citation and read primary sources before inclusion. The LLM did not generate datasets, code,
experiments, proofs, or results, nor did it design evaluations. We reviewed and edited any suggested text to
ensure originality and accuracy, and we did not include verbatim model output beyond trivial boilerplate. No
sensitive or proprietary data were shared in prompts. This usage is also disclosed in the submission form.
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Table 8: Performance comparison of federated learning algorithms under Cloud in CARLA simulation: The
table reports accuracy (mAP), fairness (|1 − DI|, ∆EOP), privacy risks (MIA, AIA), and robustness (BA
AD, DPA EODD) across cloud intensity levels.

Algorithm Cloud Intensity (%)
Utility Fairness Privacy Attacks Robustness Attack

Overall mAP |1− DI| ∆EOP MIA SR AIA SR BA AD DPA EODD

FedAvg

0 0.3952 0.2356 0.2446 0.3915 0.4235 0.1531 0.0738
25 0.4005 0.2462 0.2460 0.3980 0.4085 0.1053 0.0821
50 0.3850 0.2394 0.2501 0.4052 0.3520 0.0975 0.0769
75 0.3662 0.2535 0.2552 0.4105 0.3401 0.0908 0.0952
100 0.3387 0.2587 0.2604 0.4203 0.3328 0.0803 0.0893

FedAvg-DP

0 0.2741 0.3557 0.3789 0.2327 0.2494 0.1834 0.1842
25 0.2538 0.3681 0.3802 0.2382 0.2023 0.1254 0.1950
50 0.2520 0.3705 0.3828 0.2453 0.2501 0.1107 0.1885
75 0.2205 0.3852 0.3871 0.2551 0.2387 0.0958 0.1782
100 0.1890 0.3905 0.3922 0.2658 0.2204 0.0852 0.1707

FairFed

0 0.5013 0.2759 0.2593 0.3930 0.4384 0.2132 0.0638
25 0.4782 0.2781 0.2622 0.3984 0.4420 0.1759 0.0704
50 0.4845 0.2803 0.2650 0.4057 0.4483 0.1602 0.0807
75 0.4281 0.3045 0.2689 0.4120 0.4557 0.1453 0.0945
100 0.3820 0.3190 0.2725 0.4201 0.4635 0.1307 0.0856

PUFFLE

0 0.3526 0.3016 0.3882 0.2636 0.2863 0.1352 0.1673
25 0.3502 0.3050 0.3905 0.2707 0.2921 0.1508 0.1785
50 0.3450 0.3285 0.3942 0.2751 0.2985 0.1357 0.1614
75 0.3389 0.3422 0.3987 0.2825 0.3054 0.1203 0.1831
100 0.3128 0.3565 0.4034 0.2901 0.3132 0.1052 0.1909

Ours (RESFL

0 0.4621 0.2332 0.2434 0.1939 0.1420 0.2726 0.0807
25 0.4600 0.2555 0.2452 0.1985 0.1482 0.1658 0.0912
50 0.4557 0.2789 0.2489 0.2057 0.1573 0.1504 0.0783
75 0.4008 0.2925 0.2523 0.2121 0.1658 0.1357 0.1025
100 0.3851 0.3070 0.2575 0.2205 0.1727 0.1202 0.1093
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Table 9: Performance comparison of federated learning algorithms under Rain in CARLA simulation: The
result presents accuracy (mAP), fairness (|1 − DI|, ∆EOP), privacy risks (MIA, AIA), and robustness (BA
AD, DPA EODD) across rain intensity levels.

Algorithm Rain Intensity (%)
Utility Fairness Privacy Attacks Robustness Attack

Overall mAP |1− DI| ∆EOP MIA SR AIA SR BA AD DPA EODD

FedAvg

0 0.3852 0.2356 0.2446 0.3915 0.4235 0.1531 0.0738
25 0.3801 0.2389 0.2485 0.3998 0.4302 0.1307 0.0814
50 0.3705 0.2441 0.2540 0.4072 0.4375 0.1185 0.0912
75 0.3583 0.2515 0.2628 0.4150 0.4451 0.1023 0.1028
100 0.3120 0.2580 0.2702 0.4228 0.4527 0.0790 0.1305

FedAvg-DP

0 0.2741 0.3557 0.3789 0.2327 0.2494 0.1834 0.1842
25 0.2705 0.3583 0.3821 0.2425 0.2459 0.1264 0.1953
50 0.2672 0.3608 0.3854 0.2501 0.2653 0.1109 0.2012
75 0.2621 0.3655 0.3902 0.2585 0.2321 0.0987 0.2250
100 0.2289 0.3708 0.3950 0.2683 0.2203 0.0552 0.2904

FairFed

0 0.5013 0.2759 0.2593 0.3930 0.4384 0.2132 0.0638
25 0.4950 0.2782 0.2625 0.4008 0.4453 0.1752 0.0725
50 0.4820 0.2850 0.2703 0.4125 0.4550 0.1598 0.0914
75 0.4652 0.2980 0.2810 0.4250 0.4705 0.1257 0.1042
100 0.4380 0.3125 0.2947 0.4401 0.4852 0.1004 0.1501

PUFFLE

0 0.3526 0.3016 0.3882 0.2636 0.2863 0.1352 0.1673
25 0.3500 0.3060 0.3905 0.2703 0.2908 0.1527 0.1785
50 0.3452 0.3105 0.3940 0.2785 0.2983 0.1358 0.1895
75 0.3385 0.3157 0.3987 0.2850 0.3050 0.1003 0.2259
100 0.3023 0.3202 0.4043 0.2951 0.3128 0.0859 0.2881

Ours (RESFL

0 0.4621 0.2332 0.2434 0.1939 0.1420 0.2726 0.0807
25 0.4605 0.2357 0.2467 0.1984 0.1471 0.1589 0.0925
50 0.4560 0.2389 0.2503 0.2052 0.1552 0.1403 0.1082
75 0.4508 0.2425 0.2545 0.2121 0.1658 0.1204 0.1301
100 0.4151 0.2470 0.2598 0.2205 0.1727 0.0753 0.1803
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Table 10: Performance comparison of federated learning algorithms under Fog in CARLA simulation: The
result presents accuracy (mAP), fairness (|1 − DI|, ∆EOP), privacy risks (MIA, AIA), and robustness (BA
AD, DPA EODD) across fog intensity levels.

Algorithm Fog Intensity (%)
Utility Fairness Privacy Attacks Robustness Attack

Overall mAP |1− DI| ∆EOP MIA SR AIA SR BA AD DPA EODD

FedAvg

0 0.3952 0.2356 0.2446 0.3915 0.4235 0.1531 0.0738
25 0.3650 0.2402 0.2605 0.4251 0.4357 0.1483 0.0851
50 0.3157 0.2650 0.2872 0.4175 0.4901 0.0891 0.1002
75 0.1304 0.3853 0.4157 0.4805 0.5502 0.0908 0.1657
100 0.0001 0.5202 0.5358 0.6153 0.6950 0.0000 0.3203

FedAvg-DP

0 0.2741 0.3557 0.3789 0.2327 0.2494 0.1834 0.1842
25 0.2500 0.3723 0.4001 0.2801 0.2703 0.1602 0.2015
50 0.2058 0.3905 0.4502 0.3156 0.3457 0.0558 0.2301
75 0.0953 0.5058 0.5204 0.4123 0.4605 0.0053 0.3879
100 0.0000 0.6852 0.7285 0.5207 0.5784 0.0000 0.4907

FairFed

0 0.5013 0.2759 0.2593 0.3930 0.4384 0.2132 0.0638
25 0.4950 0.2805 0.2681 0.4052 0.4552 0.2085 0.0709
50 0.4608 0.3107 0.2978 0.4451 0.4703 0.1505 0.0953
75 0.1952 0.4503 0.3859 0.5085 0.5598 0.1104 0.2156
100 0.0753 0.5801 0.4902 0.5802 0.6350 0.0753 0.2851

PUFFLE

0 0.3526 0.3016 0.3882 0.2636 0.2863 0.1352 0.1673
25 0.3458 0.3152 0.4027 0.3104 0.3057 0.1205 0.1854
50 0.2801 0.3682 0.4558 0.3405 0.3708 0.1104 0.2128
75 0.0957 0.4827 0.5782 0.4256 0.5083 0.0552 0.3304
100 0.0125 0.6250 0.7208 0.5507 0.6005 0.0125 0.4708

Ours (RESFL

0 0.4621 0.2332 0.2434 0.1939 0.1420 0.2726 0.0807
25 0.4503 0.2452 0.2583 0.2054 0.1658 0.1859 0.0910
50 0.4051 0.2780 0.2872 0.2601 0.2153 0.1201 0.1208
75 0.3107 0.3505 0.4058 0.3702 0.3557 0.1108 0.2005
100 0.1652 0.4850 0.5152 0.4450 0.4308 0.0552 0.2993

31


	Introduction
	Related Work
	Methodology
	Uncertainty Fairness Metric (UFM) for Group-Fair Aggregation
	Adversarial Privacy Disentanglement via Gradient Reversal
	Joint Optimization of Privacy and Fairness

	Experimental Results & Analyses
	Experimental Setup
	Trade-off Analysis on the FACET Dataset
	Resilience analysis under adverse conditions in CARLA
	Ablation Study with RESFL

	Conclusions & Future Work
	Preliminaries
	System Model: Object Detection
	Federated Learning Setup and Network Model
	Uncertainty Quantification via Evidential Regression
	Threat Model
	Privacy Attacks
	Robustness Attack

	Detection-based Fairness & Privacy Metrics

	Theoretical Analysis of the Uncertainty Fairness Metric
	Information-Theoretic Guarantees of Adversarial Privacy Disentanglement
	Joint Trade‐off Analysis of Privacy and Fairness
	Datasets
	FACET Dataset
	CARLA Simulation Dataset
	Dataset Statistics


	Implementation Details
	FACET Evaluation Results
	CARLA Evaluation Results
	Additional Evaluation
	Broader Impacts

