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Molecule Description Generation
" Could you give me a brief introduction of 
this compound?"

"The molecule is the potassium salt of formic acid. It has a role
as a buffer. It is a potassium salt and a one-carbon compound.
It derives from a formic acid."

Molecule Property Prediction
" Show me the LUMO energy value of this molecule."

"0.076"

" Please help me evaluate whether the given molecule can impede 
the replication of the HIV virus."

"Yes, it can effectively prevent HIV virus replication"

Reagent Prediction
" Can you provide potential reagents for the 
following chemical reaction?"

Retrosynthesis Prediction

Suggestion:

" Using the provided reactants and reagents, 
can you propose a likely product?"

Forward Reaction Prediction
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" Please suggest potential reactants used in 
the synthesis of the provided product."
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Figure 1: Empowering LLMs with molecular modalities to unlock the drug discovery domain and serve as assistants in
molecular research.

Abstract001

The rapid evolution of artificial intelligence in002
drug discovery encounters challenges with gen-003
eralization and extensive training, yet Large004
Language Models (LLMs) offer promise in re-005
shaping interactions with complex molecular006
data. Our novel contribution, InstructMol, a007
multi-modal LLM, effectively aligns molec-008
ular structures with natural language via an009
instruction-tuning approach, utilizing a two-010
stage training strategy that adeptly combines011
limited domain-specific data with molecular012
and textual information. InstructMol show-013
cases substantial performance improvements014
in drug discovery-related molecular tasks, sur-015
passing leading LLMs and significantly reduc-016
ing the gap with specialists, thereby establish-017
ing a robust foundation for a versatile and de-018
pendable drug discovery assistant.019

1 Introduction020

The drug discovery process, from target identifi-021

cation to clinical trials, requires substantial invest-022

ments in time and expertise for optimized explo-023

ration of chemical spaces (Coley, 2020). Artificial024

intelligence-driven drug discovery (AIDD) facili-025

tates a data-driven modeling approach (Kim et al.,026

2021; Rifaioglu et al., 2018; Askr et al., 2022)027

and helps to understand the complex molecular028

space, reducing iterative testing and minimizing029

failure rates. Previous approaches involved employ-030

ing task-specific models trained on labeled data, 031

which had restricted adaptability and required la- 032

borious training for individual tasks. The advent 033

of Large Language Models (LLMs (Devlin et al., 034

2019; Raffel et al., 2019; Brown et al., 2020)) like 035

ChatGPT (OpenAI, 2023a), trained through self- 036

supervised learning on a large amount of unlabeled 037

text data, has shown strong generalization capabili- 038

ties across various tasks. Additionally, these mod- 039

els can attain professional-level proficiency in spe- 040

cific domains through proper fine-tuning. Hence, 041

developing a ChatGPT-like molecular assistant AI 042

can revolutionize human interactions with com- 043

plex molecule structures. Through a unified model, 044

it can address various needs, such as understand- 045

ing molecule structures, answering drug-related 046

queries, aiding synthesis planning, facilitating drug 047

repurposing, etc., as shown in Figure 1. 048

Numerous studies have explored multimodal 049

LLMs for visual understanding (Liu et al., 2023b; 050

Ye et al., 2023; Zhu et al., 2023). However, when it 051

comes to the domain of molecular research, there 052

are several challenges that need to be addressed, 053

including: 054

• Crafting a molecule representation integrates 055

with LLMs alongside textual modalities; 056

• Requiring extensive datasets encompasses 057

molecule structures, inherent properties, re- 058

actions, and annotations related to biological 059
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activities;060

• Developing an effective training paradigm that061

guides LLMs in utilizing molecular representa-062

tions and adapting to various tasks.063

Several prior studies (Liang et al., 2023; Luo et al.,064

2023c; Fang et al., 2023) have fine-tuned generalist065

LLMs to develop foundational models within the066

molecular domain. Despite their enhancement to067

the original generalist LLM, these preceding works068

have unveiled several issues:069

1. Insufficient alignment between different modal-070

ities.071

2. The consideration of an optimal molecular struc-072

ture encoder remains unexplored.073

3. A rudimentary design of the training pipeline074

neglects the update of LLMs’ knowledge.075

These extant issues lead to a significant dispar-076

ity in the performance of the current AI assistants077

across various practical tasks when compared to078

traditional specialist models.079

To address these problems, we introduce In-080

structMol (Figure 2), a multi-modality instruction-081

tuning-based LLM. This model aligns molecular082

graphs and chemical sequential modalities with083

the natural language of humans. Using a cali-084

brated collection of molecule-related instruction085

datasets and a two-stage training scheme, Instruct-086

Mol effectively leverages the pre-trained LLM and087

molecule graph encoder for molecule-text align-088

ment. In the first alignment pretraining stage,089

we employ molecule-description pairs to train a090

lightweight and adaptable interface, which is de-091

signed to project the molecular node-level repre-092

sentation into the textual space that the LLM can093

understand. Subsequently, we finetune with multi-094

ple task-specific instructions. During this process,095

we freeze the molecule graph encoder and train096

low-rank adapters (LoRA (Hu et al., 2021)) on the097

LLM to adapt our model to various scenarios. This098

efficient approach enables the seamless integration099

of molecular and textual information, promoting100

the development of versatile and robust cognitive101

abilities in the molecular domain.102

To illustrate the capabilities of our model, we103

perform experiments that span three facets of drug104

discovery-related tasks, including compound prop-105

erty prediction, molecule description generation,106

and analysis of chemical reactions involving com-107

pounds. These tasks serve as robust benchmarks108

to assess the model’s ability to deliver useful and109

accurate knowledge feedback in practical drug dis-110

covery scenarios. The results in all experiments111

consistently indicate that our model significantly 112

improves the performance of LLMs in tasks re- 113

lated to the understanding and design of molecular 114

compounds. Consequently, this advance effectively 115

reduces the disparity with specialized models. Our 116

main contributions can be summarized as follows: 117

• We introduce InstructMol, a molecular-related 118

multi-modality LLM, representing a pioneering 119

effort in bridging the gap between molecular and 120

textual information. 121

• In the context of a scarcity of high-quality an- 122

notated data in the drug discovery domain, our 123

approach strives to efficiently extract molecular 124

representations (targets on Issue2). Employing a 125

two-stage instruction tuning paradigm enhances 126

the LLM’s understanding of molecular structural 127

and sequential knowledge (targets on Issue1 and 128

Issue3). 129

• InstructMol enables swift fine-tuning, generat- 130

ing lightweight checkpoints (used as plugins) for 131

cross-modality tasks. It provides the flexibility 132

to load or combine functionalities through plu- 133

gins, retaining the open dialogue and reasoning 134

capabilities of a general LLM. 135

• We evaluate our model through multiple prac- 136

tical assessments, demonstrating its substantial 137

improvement compared to state-of-the-art LLMs. 138

Our work lays the foundation for creating a ver- 139

satile and reliable molecular research assistant in 140

the drug discovery domain. 141

2 Related Work 142

2.1 Multimodal Instruction Tuning 143

There have been notable advancements in 144

LLMs (OpenAI, 2023a; Touvron et al., 2023a,b; 145

Chiang et al., 2023; Zeng et al., 2022a; Anil 146

et al., 2023) achieved through scaling up model 147

and data size. Consequently, LLMs have shown 148

remarkable performances in zero/few-shot NLP 149

tasks (OpenAI, 2023a; Wei et al., 2021; Ouyang 150

et al., 2022). A key technique in LLMs is instruc- 151

tion tuning, where pre-trained LLMs are fine-tuned 152

on instruction-formatted datasets (Wei et al., 2021), 153

allowing them to generalize to new tasks. Re- 154

cently, with the emergence of large foundation mod- 155

els in various domains, several efforts have been 156

made to transition from unimodal LLMs to multi- 157

modal LLMs (MLLMs) (OpenAI, 2023b; Liu et al., 158

2023b; Zhu et al., 2023; Ye et al., 2023; Bai et al., 159

2023). The primary research on multimodal in- 160
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Figure 2: Overview of InstructMol model architecture design and two-stage training
paradigm. The example molecule in the figure is Terephthalaldehyde (Sonmez et al.,
2012) (CID 12173).
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Figure 3: Comparison of
biomolecule-domain molecule-
text dataset scale with existing general
domain vision-language datasets.

struction tuning (M-IT) includes the following (Yin161

et al., 2023): Constructing effective M-IT datasets162

(adapting existing benchmarks datasets (Zhu et al.,163

2023; Liu et al., 2023b; Dai et al., 2023) or us-164

ing self-instruction (Liu et al., 2023b; Wang et al.,165

2023; Li et al., 2023a; Zhang et al., 2023)), Bridg-166

ing diverse modalities (project-based (Liu et al.,167

2023b; Li et al., 2023a; Pi et al., 2023) and query-168

based (Wang et al., 2023; Zhu et al., 2023; Ye et al.,169

2023)) and Employing reliable evaluation methods170

(GPT-scoring (Liu et al., 2023b; Li et al., 2023a;171

Chen et al., 2023; Luo et al., 2023a), manual scor-172

ing (Ye et al., 2023; Yang et al., 2023), or closed-set173

measurement (Liu et al., 2023b; Li et al., 2023a;174

Zhu et al., 2023; Luo et al., 2023a; Zhu et al., 2023;175

Dai et al., 2023; Chen et al., 2023)). Most current176

MLLM research focuses on integrating vision and177

language while combining other modalities(e.g.,178

graphs (Tang et al., 2023; Liu et al., 2023c)) with179

natural language remains nascent.180

2.2 Molecule Foundation Models181

The foundation models, trained on vast unlabeled182

data, serve as a paradigm for adaptable AI systems183

across diverse applications. In the single modal-184

ity domain, researchers are exploring the molecule185

representations from diverse sources, such as 1D se-186

quences (e.g., SMILES (Chithrananda et al., 2020;187

Irwin et al., 2021; Wang et al., 2019)), 2D molecu-188

lar graphs (Wang et al., 2021; Hu et al., 2019; You189

et al., 2020), 3D geometric conformations (Stärk190

et al., 2021; Liu et al., 2021; Stärk et al., 2021), or191

textual information from biomedical literature (Gu192

et al., 2020; Lee et al., 2019; Beltagy et al., 2019).193

In the realm of multimodal analysis, research ini-194

tiatives employ diverse approaches. These include195

encoder-decoder models to establish intermodal 196

bridges (Edwards et al., 2022; Christofidellis et al., 197

2023; Lu and Zhang, 2022a), joint generative mod- 198

eling of SMILES and textual data (Zeng et al., 199

2022b), and the adoption of contrastive learning 200

for integrating molecular knowledge across vary- 201

ing modalities (Su et al., 2022; Luo et al., 2023b; 202

Liu et al., 2022, 2023d). 203

2.3 Molecule-related LLMs 204

Given the rapid progress in LLMs, some re- 205

searchers are considering developing ChatGPT-like 206

AI systems for drug discovery. Their goal is to of- 207

fer guidance for optimizing lead compounds, accu- 208

rately predicting drug interactions, and improving 209

the comprehension of structure-activity relation- 210

ships (Liang et al., 2023). Several initiatives have 211

already commenced to create instruction datasets 212

within the biomolecular domain (Fang et al., 2023). 213

They aim to utilize instruction tuning techniques to 214

enable LLMs, initially trained on general domain 215

data, to acquire knowledge about biomolecular sci- 216

ence (Wu et al., 2023; Luo et al., 2023c). Addition- 217

ally, other researchers are investigating methods 218

to align structural data with textual information, 219

bridging the gap between biological data and natu- 220

ral language (Luo et al., 2023c; Liang et al., 2023). 221

Remark. Our work involves molecule foundation 222

models and multimodal language models (LLMs). 223

It uses an efficient molecule graph encoder to cap- 224

ture structural information and integrates it with 225

sequential data into a generalist LLM. InstructMol 226

enables the LLM to understand molecule represen- 227

tations and generalize to various molecular tasks. 228
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3 Method229

3.1 Multimodal Instruction Tuning230

Instruction tuning refers to finetuning pretrained231

LLMs on instruction datasets, enabling generaliza-232

tion to specific tasks by adhering to new instruc-233

tions. Multimodal instruction tuning integrates234

modalities like images and graphs into an LLM,235

expanding the model’s capability to accommodate236

multiple modalities.237

A multimodal instruction tuning sample com-238

prises an instruction I (e.g., "Describe the com-239

pound in detail") and an input-output pair. In the240

context of our study, the input is one or more modal-241

ities derived from a molecule (e.g., molecule graph242

and sequence), collectively denoted as M . The243

output R represents the textual response to the in-244

struction conditioned on the input. The model aims245

to predict an answer given the instruction and mul-246

timodal input: R̃ = f(I,M ; θ), where θ are the247

parameters of MLLM. The training objective is248

typically the same auto-regressive objective as the249

LLM pre-training stage, which can be expressed as:250

L(θ) = −
∑L

i=1 log p(Ri|I,M,R<i; θ), where251

L is the target R’s token length.252

3.2 Construction of Molecular Instruction253

Data Collection. In the field of biomolecular re-254

search, there is a noticeable scarcity of molecular255

datasets with comprehensive text annotations when256

compared to the vision-language domain, as de-257

picted in Figure 3. While it is possible to construct258

instruction datasets in general domains by adapting259

benchmarks or using self-instruction, the applica-260

tion of these methods in the biomolecular domain261

presents challenges. This difficulty arises from two262

main factors: 1) biomolecular domain annotation263

demands expert knowledge and entails substantial264

complexity; 2) the knowledge within this domain265

spans a broad range of subjects, including struc-266

tural biology, computational chemistry, and chemi-267

cal synthesis processes.268

In our efforts, we have gathered recent open-269

access text-molecule pairs datasets and also inde-270

pendently constructed a portion of instruction data271

suitable for property prediction. Table 5 illustrates272

the composition of the data utilized during the two-273

stage training process.274

Molecule Input. We utilize both the structure and275

sequence information of a molecule. We encode276

the structural information of a molecule as a graph,277

denoted by G = (V, E ,A,X ), where V is the set278

of atoms (nodes) and |V| = N is the total number 279

of atoms. The set of edges E includes all chemical 280

bonds, and A ∈ RN×N is the adjacency matrix. 281

Additionally, X ∈ RN×F encompasses attributes 282

associated with each node, where F is the feature 283

dimension. With a Graph Encoder fg, we extract a 284

graph representation ZG ∈ RN×d at the node level, 285

effectively describing the inherent structure of the 286

molecule. Simultaneously, we consider encoding 287

the sequential information of the molecule, denoted 288

as S, as a supplementary source of structural infor- 289

mation. To enhance the robustness of sequential 290

molecular descriptors and mitigate syntactic and 291

semantic invalidity present in SMILES (Weininger, 292

1988), we employ SELFIES (Krenn et al., 2019) as 293

S, which is designed for mapping each token to a 294

distinct structure or reference. 295

Input Formulation. We formulate a molecule-text 296

pair (XM & Xc) to the corresponding instruction- 297

following version like Human: XI<mol>XM 298

<STOP> Assistant: XA<STOP>. The XM repre- 299

sents the molecule, including the molecule graph 300

XG and optionally the SELFIES XS . XI de- 301

notes for the instruction and XA is the answer. For 302

a given answer sequence of length L, our optimiza- 303

tion objective is to maximize the probability of 304

generating the target answers XA by maximizing: 305

p(XA|XM ,XI) =
L∏
i=1

pθ(xi| XG ∥ XS ,XI ,XA,<i).

(1) 306

To diversify XI , we craft clear task descriptions 307

and use GPT-3.5-turbo to generate varied ques- 308

tions, enhancing instructions’ robustness. Note that 309

we simply concatenate XG and XS along the 310

length-dimension. More complex fusion methods 311

require additional loss designs for supervision (Liu 312

et al., 2023d; Luo et al., 2023b), but here we priori- 313

tize simplicity. 314

3.3 Architecture 315

Molecular Encoder. The molecular graph- 316

structure encoder, fg, needs to effectively extract 317

node representations while preserving the molecu- 318

lar graph’s connectivity information. It is crucial 319

that fg inherently establishes a pre-alignment in the 320

representation space with the text space to facilitate 321

ZG in the following alignment stage. Taking inspi- 322

ration from common practices in the Vision Large 323

Language Models (VLLM) domain (Bai et al., 324

2023; Liu et al., 2023b; Ye et al., 2023), where 325

models like ViT initialized from CLIP (Radford 326
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et al., 2021) serve as vision encoders, we optimze327

for MoleculeSTM’s graph encoder as fg (Liu et al.,328

2022), instead of GraphMVP used by prior method-329

ologies (Liang et al., 2023; Luo et al., 2023c). The330

MoleculeSTM graph encoder model is obtained331

through molecular-textual contrastive training, mit-332

igating the requirement for an extensive amount of333

paired data during training to align different modal-334

ities.335

Light-weight Alignment Projector. In order to336

map graph features into the word embedding space,337

we utilize a trainable projection matrix W to trans-338

form ZG into XG, ensuring that it has the same339

dimension as the word embedding space. Since340

the selected fg has undergone partial alignment341

with the text through contrastive training, we be-342

lieve a straightforward linear projection will meet343

the subsequent alignment needs. For approaches344

like gated cross-attention (Alayrac et al., 2022),345

Q-former (et.al., 2023), or position-aware vision-346

language adapters (Bai et al., 2023), they require347

a large number of pairs for pretraining alignment,348

which is typically unavailable in the biomolecular349

domain. We therefore do not explore these more350

complex alignment methods.351

Large Language Model. InstructMol incorporates352

a pre-trained LLM as its foundational component.353

We optimize for Vicuna-7B (Chiang et al., 2023)354

as the initialized weights, which is derived from355

LLaMA (Touvron et al., 2023a) through supervised356

instruction finetuning.357

3.4 Two-Stage of Instruction Tuning358

As illustrated in Figure 2, the training process of359

InstructMol consists of two stages: alignment pre-360

training and instruction fine-tuning training.361

Alignment Pretraining. In the first stage, we aim362

to align the modality of molecules with text, en-363

suring that the LLMs can perceive both the struc-364

tural and sequential information of molecules and365

integrate molecular knowledge into their internal366

capabilities.367

We primarily employ a dataset consisting of368

molecule-text pairs sourced from PubChem (Kim369

et al., 2022). Each molecule structure is associated370

with a textual description elucidating chemical and371

physical properties or high-level bioactivity infor-372

mation. The construction of the PubChemDataset373

predominantly follows the MoleculeSTM (Liu374

et al., 2022) pipeline. We meticulously remove375

molecules with invalid descriptions and syntactic376

errors in their molecular descriptors. To ensure 377

fairness, we also eliminate compounds that might 378

appear in the downstream molecule-caption test 379

set. This results in a dataset of 330K molecule-text 380

pairs. Subsequently, we adopt a self-instruction- 381

like approach to generate a diverse set of task de- 382

scriptions as instructions. 383

During the training phase, to prevent overfitting 384

and leverage pre-trained knowledge, we freeze both 385

the graph encoder and LLM, focusing solely on 386

fine-tuning the alignment projector. After a few 387

epochs of training, our aim is that the projector 388

has successfully learned to map graph representa- 389

tions to graph tokens, aligning effectively with text 390

tokens. 391

Task-specific Instruction Tuning. In the second 392

stage, we target three distinct downstream scenar- 393

ios. We advocate for task-specific instruction tun- 394

ing to address the particular constraints inherent 395

in various drug-discovery-related tasks. For com- 396

pound property prediction, we utilize the quan- 397

tum mechanics properties instruction dataset from 398

Fang et al. (2023) for regression prediction and the 399

MoleculeNet dataset (Wu et al., 2017) for property 400

classification. For chemical reaction analysis, we 401

incorporate forward reaction prediction, retrosyn- 402

thesis analysis, and reagent prediction tasks, all 403

derived from Fang et al. (2023). To assess the 404

model’s proficiency in translating between natural 405

language and molecular expression, we integrate 406

ChEBI-20 (Edwards et al., 2021) for the molecule 407

description generation task. For each task, corre- 408

sponding instruction templates are designed. 409

During the training process, we utilize the param- 410

eters of the alignment projector that were trained 411

in the first stage as initialization. We only keep 412

the molecular encoder fg frozen and continue to 413

update the pre-trained weights of the projector and 414

the LLM. To adapt the LLM effectively for di- 415

verse tasks, we employ low-rank adaptation (i.e., 416

LoRA (Hu et al., 2021)), opting against full-tuning 417

to mitigate potential forgetting issues. In practi- 418

cal applications, we have the flexibility to sub- 419

stitute different adaptors based on specific sce- 420

nario requirements or combine multiple adaptors 421

to integrate knowledge, thereby showcasing the 422

model’s modularization capabilities. Moreover, 423

LoRA adaptation allows the LLM to retain the 424

inherent capacity for common-sense reasoning in 425

dialogue. 426
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4 Experiments427

We use a graph neural network as the molecule428

graph encoder (fg) which is initialized with the429

MoleculeSTM graph encoder, pre-trained through430

molecular graph-text contrastive learning. We em-431

ploy Vicuna-v-1.3-7B (Chiang et al., 2023) as the432

base LLM. More specifically, InstructMol+GS de-433

notes we inject both molecular graph tokens and434

sequence tokens into the input, while Instruct-435

Mol+G means only incorporates graph tokens. Im-436

plementation details about model settings and train-437

ing hyper-parameters can be referred to Appendix438

B.439

4.1 Property Prediction Task440

Experiment Setup. Property prediction intends to441

forecast a molecule’s intrinsic physical and chemi-442

cal properties from its structural or sequential char-443

acteristics. In the context of the regression task, we444

undertake experiments on the Property Prediction445

dataset from Fang et al. (2023), where the objective446

is to predict the quantum mechanic’s properties of447

a given molecule, specifically including HUMO,448

LUMO, and the HUMO-LUMO gap (Ramakrish-449

nan et al., 2014b). For the classification task, we450

incorporate three binary classification datasets per-451

taining to molecular biological activity, namely452

BACE, BBBP, and HIV. In classification, all dataset453

samples are converted into an instruction format454

and we use the recommended splits from (Ram-455

sundar et al., 2019). Each item comprises an in-456

struction explaining the property for prediction and457

the representation of the molecule. Subsequently,458

models are tasked with generating a single pre-459

diction (“yes" or “no"). Scaffold splits are used460

for the classification task, and the experiments are461

conducted with three random seeds, yielding low462

variances in the reported mean values.463

METHOD HOMO ↓ LUMO ↓ ∆ϵ ↓ AVG ↓

LLM Based Generalist Models
Alpaca† (Taori et al., 2023) - - - 322.109
Baize† (Xu et al., 2023) - - - 261.343
Galactica† (Taylor et al., 2022) - - - 0.568
LLama-2-7B (5-shot ICL) 0.7367 0.8641 0.5152 0.7510
Vicuna-13B (5-shot ICL) 0.7135 3.6807 1.5407 1.9783
Mol-Instruction 0.0210 0.0210 0.0203 0.0210
InstructMol-G 0.0060 0.0070 0.0082 0.0070
InstructMol-GS 0.0048 0.0050 0.0061 0.0050

Table 1: Results (MAE in hartree) for QM9 property predic-
tion regression tasks. †: few-shot in-context learning (ICL)
results from Fang et al. (2023). ∆ϵ: HOMO-LUMO energy
gap.

Results. Our models are compared against base-464

lines on the test set for regression, measured by465

METHOD BACE ↑ BBBP ↑ HIV ↑
# MOLECULES 1513 2039 41127

Specialist Models
KV-PLM (Zeng et al., 2022b) 78.5 70.5 71.8
GraphCL (You et al., 2020) 75.3 69.7 78.5
GraphMVP-C (Liu et al., 2021) 81.2 72.4 77.0
MoMu (Su et al., 2022) 76.7 70.5 75.9
MolFM (Luo et al., 2023b) 83.9 72.9 78.8
Uni-Mol (Zhou et al., 2023) 85.7 72.9 80.8

LLM Based Generalist Models
Galactica-6.7B 58.4 53.5 72.2
Vicuna-v1.5-13b-16k (4-shot) 49.2 52.7 50.5
Vicuna-v1.3-7B∗ 68.3 60.1 58.1
LLama-2-7B-chat∗ 74.8 65.6 62.3
Instruct-G 84.3 (±0.6) 68.6 (±0.3) 74.0 (±0.1)
Instruct-GS 82.1 (±0.1) 72.4 (±0.3) 68.9 (±0.3)

Table 2: ROC-AUC results of molecular property prediction
tasks (classification) on MoleculeNet (Wu et al., 2017) bench-
marks. ∗: use LoRA tuning.

Mean Absolute Error (MAE) in Table 1. Com- 466

pared to previous single-modal instruction-tuned 467

LLM-based methods (Fang et al., 2023), Instruct- 468

Mol demonstrates a further improvement in the 469

regression task. ROC-AUC scores for classifica- 470

tion outcomes are presented in Table 2. In com- 471

parison to LLM-based generalist models, both the 472

Galactica (Taylor et al., 2022) series models trained 473

on an extensive scientific literature dataset and the 474

single-modality LLM fine-tuned with task-specific 475

instructions (Fang et al., 2023), InstructMol demon- 476

strates consistent improvements in accuracy across 477

the three task datasets. However, our predictive re- 478

sults still exhibit some disparity compared to expert 479

models (Zhou et al., 2023; Liu et al., 2021) specifi- 480

cally trained on a vast molecule structure dataset. 481

Further, InstructMol performs worse than GIN on 482

the imbalanced HIV dataset with a long-tail distri- 483

bution. Previous research (Kandpal et al., 2023) 484

highlights LLMs’ challenges in learning long-tail 485

knowledge. To tackle this, strategies like resam- 486

pling or class reweighting can be employed. 487

4.2 Molecule Description Generation Task 488

Experiment Setup. Molecule description gener- 489

ation encapsulates a comprehensive depiction of 490

a molecule, covering its structure, properties, bio- 491

logical activity, and applications based on molec- 492

ular descriptors. This task is more complex than 493

classification or regression, providing a robust mea- 494

sure of the model’s understanding of molecules. 495

We convert the training subset of the ChEBI-20 496

dataset (Edwards et al., 2021) into an instructional 497

format and subsequently perform fine-tuning based 498

on these instructions. Our assessment uses evalua- 499

tion metrics aligned with (Edwards et al., 2022). 500

Baselines. Three kinds of models are used as base- 501

lines, including: 1) MolT5-like expert models (Ed- 502
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MODEL BLEU-2↑ BLEU-4↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ METEOR↑

Specialist Models
MolT5-base (Edwards et al., 2022) 0.540 0.457 0.634 0.485 0.568 0.569
MoMu (MolT5-base) (Su et al., 2022) 0.549 0.462 - - - 0.576
MolFM (MolT5-base) (Luo et al., 2023b) 0.585 0.498 0.653 0.508 0.594 0.607
MolXPT (Liu et al., 2023e) 0.594 0.505 0.660 0.511 0.597 0.626
GIT-Mol-graph (Liu et al., 2023d) 0.290 0.210 0.540 0.445 0.512 0.491
GIT-Mol-SMILES (Liu et al., 2023d) 0.264 0.176 0.477 0.374 0.451 0.430
GIT-Mol-(graph+SMILES) (Liu et al., 2023d) 0.352 0.263 0.575 0.485 0.560 0.430
MolCA, Galac1.3B (Liu et al., 2023f) 0.620 0.531 0.681 0.537 0.618 0.651
Text+Chem T5-augm-base (Christofidellis et al., 2023) 0.625 0.542 0.682 0.543 0.622 0.648
Retrieval Based LLMs
GPT-3.5-turbo (10-shot MolReGPT) (Li et al., 2023b) 0.565 0.482 0.623 0.450 0.543 0.585
GPT-4-0314 (10-shot MolReGPT) (Li et al., 2023b) 0.607 0.525 0.634 0.476 0.562 0.610

LLM Based Generalist Models
GPT-3.5-turbo (zero-shot) (Li et al., 2023b) 0.103 0.050 0.261 0.088 0.204 0.161
BioMedGPT-10B (Luo et al., 2023c) 0.234 0.141 0.386 0.206 0.332 0.308
Mol-Instruction (Fang et al., 2023) 0.249 0.171 0.331 0.203 0.289 0.271
InstructMol-G 0.466 0.365 0.547 0.365 0.479 0.491
InstructMol-GS 0.475 0.371 0.566 0.394 0.502 0.509

Table 3: Results of molecular description generation task on the test split of ChEBI-20.

wards et al., 2022; Liu et al., 2023e) and the models503

employing MolT5 as a decoder (Su et al., 2022;504

Luo et al., 2023b; Liu et al., 2023d; Christofidellis505

et al., 2023), 2) models based on retrieval methods506

that utilize ChatGPT/GPT-4 as a foundational com-507

ponent (Li et al., 2023b), 3) other models derived508

through instruction-tuning with LLMs to achieve509

generalist unimodal (Fang et al., 2023) and multi-510

modalities (Luo et al., 2023c) capabilities.511

Results. Table 3 presents the overall results for512

molecule description generation. Our model out-513

performs other generalist LLM-based models in514

generating precise, contextually relevant molecule515

descriptions. We observe that incorporating both516

molecule structural information and sequential in-517

formation in the input yields higher-quality results518

(∼2% improvement) than providing structural in-519

formation alone. While expert models demon-520

strate better efficacy in comparison, it is note-521

worthy that they are constrained by their training522

schemes and lack the versatile capabilities inherent523

in our approach. Retrieval methods, supported by524

ChatGPT/GPT-4, demonstrate strong capabilities.525

Our future efforts will focus on integrating these526

methods to improve the accuracy and credibility of527

generated content.528

4.3 Chemical Reaction-related task529

Experiment Setup. Traditionally, identifying530

chemical reactions relied on intuition and expertise.531

Integrating deep learning for predicting reactions532

can accelerate research and improve drug discov-533

ery. The general format of a chemical reaction is534

"reactant → reagent → product". Here we535

mainly focus on three tasks: 1) Forward Reaction536

Prediction: predict the probable product(s) given537

specific reactants and reagents; 2) Reagent Predic-538

tion: ascertain the suitable catalysts, solvents, or539

ancillary substances required for a specific chem-540

ical reaction given reactant(s) and product(s); 3) 541

Retrosynthesis: anticipate deducing potential pre- 542

cursor molecule(s) from given product(s). 543

We utilize the dataset sourced from Fang et al. 544

(2023), training it on the pre-defined training split, 545

and subsequently evaluating its performance on 546

the test set. The performance is assessed by met- 547

rics like Fingerprint Tanimoto Similarity (FTS), 548

BLEU, Exact Match and Levenshtein distance to 549

measure the similarity between ground truth and 550

prediction. We also measure the validity of pre- 551

dicted molecules using RDKit. 552

Results. Table 4 reports the outcomes of tasks 553

related to chemical reactions. It is evident that 554

InstructMol outperforms the baselines by a sig- 555

nificant margin. The results obtained by gener- 556

alist LLMs are derived from Fang et al. (2023), 557

and they exhibit a pronounced inability to com- 558

prehend any chemical reaction prediction task, 559

struggling to generate valid molecule(s) as an- 560

swers. Mol-Instruction (Fang et al., 2023), em- 561

ploying Llama2 (Touvron et al., 2023b) as the 562

base LLM, is jointly trained on multiple molecule- 563

oriented instruction datasets. In addition, we sup- 564

plement this by adopting the same training set- 565

tings but exclusively training on chemical reaction- 566

related datasets. Through comparison, InstructMol, 567

as a multi-modality LLM, demonstrates a supe- 568

rior understanding of the task compared to single- 569

modality models, confirming its effectiveness as a 570

chemical reaction assistant. 571

4.4 Ablation Studies 572

In this subsection, we conduct an ablation study to 573

investigate the architecture and training scheme de- 574

sign of our proposed framework. We explore varia- 575

tions from several perspectives and validate them 576

on the task of molecule description generation. The 577

ablation results are presented in Appendix Table 10 578
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MODEL EXACT↑ BLEU↑ LEVENSHTEIN↓ RDK FTS↑ MACCS FTS↑ MORGAN FTS↑ VALIDITY↑

Reagent Prediction
Alpaca† (Taori et al., 2023) 0.000 0.026 29.037 0.029 0.016 0.001 0.186
Baize† (Xu et al., 2023) 0.000 0.051 30.628 0.022 0.018 0.004 0.099
ChatGLM† (Zeng et al., 2022a) 0.000 0.019 29.169 0.017 0.006 0.002 0.074
LLama† (Touvron et al., 2023a) 0.000 0.003 28.040 0.037 0.001 0.001 0.001
Vicuna† (Chiang et al., 2023) 0.000 0.010 27.948 0.038 0.002 0.001 0.007
Mol-Instruction (Fang et al., 2023) 0.044 0.224 23.167 0.237 0.364 0.213 1.000
LLama-7b∗ (Touvron et al., 2023a)(LoRA) 0.000 0.283 53.510 0.136 0.294 0.106 1.000

InstructMol-G 0.070 0.890 24.732 0.469 0.691 0.426 1.000
InstructMol-GS 0.129 0.610 19.664 0.444 0.539 0.400 1.000

Forward Reaction Prediction
Alpaca† (Taori et al., 2023) 0.000 0.065 41.989 0.004 0.024 0.008 0.138
Baize† (Xu et al., 2023) 0.000 0.044 41.500 0.004 0.025 0.009 0.097
ChatGLM† (Zeng et al., 2022a) 0.000 0.183 40.008 0.050 0.100 0.044 0.108
LLama† (Touvron et al., 2023a) 0.000 0.020 42.002 0.001 0.002 0.001 0.039
Vicuna† (Chiang et al., 2023) 0.000 0.057 41.690 0.007 0.016 0.006 0.059
Mol-Instruction (Fang et al., 2023) 0.045 0.654 27.262 0.313 0.509 0.262 1.000
LLama-7b∗ (Touvron et al., 2023a)(LoRA) 0.012 0.804 29.947 0.499 0.649 0.407 1.000
Text+ChemT5 (Christofidellis et al., 2023) 0.454 0.602 26.545 0.729 0.773 0.700 0.851
MolelcularTransformer (Schwaller et al., 2018) 0.0 0.476 45.979 0.761 0.0.673 0.540 1.000

InstructMo-G 0.153 0.906 20.155 0.519 0.717 0.457 1.000
InstructMol-GS 0.536 0.967 10.851 0.776 0.878 0.741 1.000

Retrosynthesis
Alpaca† (Taori et al., 2023) 0.000 0.063 46.915 0.005 0.023 0.007 0.160
Baize† (Xu et al., 2023) 0.000 0.095 44.714 0.025 0.050 0.023 0.112
ChatGLM† (Zeng et al., 2022a) 0.000 0.117 48.365 0.056 0.075 0.043 0.046
LLama† (Touvron et al., 2023a) 0.000 0.036 46.844 0.018 0.029 0.017 0.010
Vicuna† (Chiang et al., 2023) 0.000 0.057 46.877 0.025 0.030 0.021 0.017
Mol-Instruction (Fang et al., 2023) 0.009 0.705 31.227 0.283 0.487 0.230 1.000
LLama-7b∗ (Touvron et al., 2023a)(LoRA) 0.000 0.283 53.510 0.136 0.294 0.106 1.000
Text+ChemT5 (Christofidellis et al., 2023) 0.033 0.314 88.672 0.457 0.469 0.350 0.632
Retroformer-untyped (Yao et al., 2022) 0.536 0.881 10.277 0.865 0.904 0.830 0.995

InstructMol-G 0.114 0.586 21.271 0.422 0.523 0.285 1.000
InstructMol-GS 0.407 0.941 13.967 0.753 0.852 0.714 1.000

Table 4: Results of chemical reaction tasks. These tasks encompass reagent prediction, forward reaction prediction, and
retrosynthesis. †: few-shot ICL results from (Fang et al., 2023). ∗: use task-specific instruction data to finetune.

as follows: 1) Employing an MLP connector in-579

stead of a linear projector. Drawing inspiration580

from the observations made in (Liu et al., 2023a),581

we attempt to change the alignment projector to a582

two-layer MLP, demonstrating an enhancement in583

the model’s multimodal capabilities. 2) Scaling up584

the LLM to 13B. The results indicate that scaling585

up the LLM only yields minor improvements. Thus,586

it substantiates the assertion that, for specific do-587

mains characterized by dataset scarcity, employing588

a 7B size model is sufficiently efficient for mod-589

eling. 3) Replacing the graph encoder fg with590

a single-modality module (i.e., GraphMVP (Liu591

et al., 2021) with the same parameter size and592

architecture as we used). The results affirm our593

perspective: utilizing an encoder pre-aligned with594

text enhances the effectiveness of modality align-595

ment. 4) Freezing the LLM in the second stage.596

Adopting a strategy akin to BioMedGPT10B (Luo597

et al., 2023c) and DrugChat (Liang et al., 2023), we598

choose not to update LLM weights in the second599

stage. The training outcomes reveal challenges in600

convergence and an inability to complete normal601

inference, thus demonstrating the necessity for the602

instruct-tuning stage to adapt LLM knowledge to603

the specific task.604

5 Discussion and Conclusion 605

Conclusion. We propose InstructMol, a novel 606

multi-modality foundational model that connects 607

molecular modalities with human natural language. 608

By integrating structural and sequential informa- 609

tion of molecules into LLMs through a dual- 610

stage alignment pre-training and instruction tuning 611

paradigm, we enhance the general LLM’s capacity 612

to comprehend and interpret molecular information, 613

specifically in drug discovery tasks. Extensive ex- 614

perimental evaluation confirms the effectiveness 615

of our model architecture and training approach, 616

demonstrating its potential for practical applica- 617

tions in the field of drug discovery. 618

Future Work. Integrating multiple modalities with 619

LLMs significantly enhances molecular research 620

within this domain and is a valuable direction to 621

explore. However, several challenges exist. The 622

scale and quality of relevant datasets are as good 623

as those in the vision and language community. 624

The lack of well-defined task objectives poses a 625

challenge. A more scientifically robust evaluation 626

is needed to address issues such as hallucinations 627

in generation outputs. 628
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Limitations629

In our investigation, several limitations have630

emerged. Firstly, the scale and quality of the631

dataset pose significant constraints; the scarcity632

of high-quality annotated domain data may hinder633

the model’s ability to generalize across the diverse634

and intricate molecular landscapes encountered in635

real-world applications. Secondly, the integration636

and evaluation of multiple modalities have also re-637

vealed areas needing improvement. Further refine-638

ment is necessary to ensure robust alignment and639

utilization of different molecule modalities within640

the model, enhancing its capacity to interpret and641

generate responses accurately across the molecular642

domain. Lastly, our base LLM originates from a643

general-domain model. However, the absence of644

specialized LLMs tailored specifically for chem-645

istry and molecular science, like models such as646

LLaMA, highlights the need for larger, more versa-647

tile domain-specific LLMs to enhance performance648

and expand applications. Addressing these chal-649

lenges is pivotal for enhancing the model’s relia-650

bility and extending its utility in advancing drug651

discovery methodologies.652

Potential Risks653

The application of AI in drug discovery entails654

several potential risks. A primary concern is the po-655

tential misuse of AI to develop hazardous or illicit656

substances, which presents significant safety and657

ethical challenges. Moreover, inaccuracies in AI-658

generated outputs could lead to hazardous chemical659

reactions if not thoroughly verified, posing risks660

of harm or damage to equipment. Dependence661

on AI-generated content heightens the risk of ac-662

cidents and unsafe practices. Therefore, stringent663

oversight and rigorous adherence to ethical guide-664

lines are essential to mitigate these risks and ensure665

the safe and responsible application of AI in drug666

discovery.667
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A Tasks Definition and Dataset Details1187

Property Prediction. Molecular Property Predic-1188

tion involves the forecasting or estimation of the1189

biophysical and chemical properties of a molecule.1190

In this work, our emphasis lies on three binary1191

classification tasks sourced from the MoleculeNet1192

benchmark (BBBP, BACE, and HIV) (Wu et al.,1193

2017), and three regression tasks concentrating1194

on the quantum properties of molecules from the1195

QM9 (Ramakrishnan et al., 2014a) dataset.1196

Molecule Description Generation. Generating1197

molecular descriptions involves compiling a de-1198

tailed overview of a molecule’s structure, proper-1199

ties, activities, and functions. This process aids1200

chemists and biologists by swiftly providing cru-1201

cial molecular insights for their research. Our1202

data collection involves the extraction of molec-1203

ular text annotations from PubChem (Kim et al.,1204

2022). Leveraging PubChem’s Power User Gate-1205

way (Kim et al., 2019), we retrieve abstracts of1206

compound records in XML format. Subsequently,1207

we extracted valid molecular description texts iden-1208

tified by unique PubChem Chemical Identifiers1209

(CIDs), filtering out SMILES strings with syntac-1210

tic errors or deviations from established chemical1211

principles. Furthermore, we utilize the ChEBI-1212

20 dataset (Edwards et al., 2021) for downstream1213

tasks in molecule description generation, compris-1214

ing 33,010 molecule description pairs divided into1215

80% for training, 10% for validation and 10% for1216

testing. To prevent data leakage, compounds in the1217

PubChem text annotations that coincide with the1218

ChEBI-20 test split are excluded.1219

Forward Reaction Prediction. Predicting the1220

forward reaction involves anticipating the probable1221

product(s) of a chemical reaction based on given1222

reactants and reagents. For this task, we utilize1223

the forward-reaction-prediction dataset from (Fang1224

et al., 2023), comprising 138,768 samples sourced1225

from the USPTO dataset (Wei et al., 2010). Each1226

entry includes reactants and reagents separated by1227

’.’ within the instruction, with the output product.1228

Reagent Prediction. Reagent prediction identi-1229

fies the substances necessary for a chemical reac-1230

tion, helping to discover new types of reaction and1231

optimal conditions. We use the reagent Prediction1232

data from (Fang et al., 2023), sourced from the1233

USPTO_500MT dataset (Lu and Zhang, 2022b).1234

Each entry features a chemical reaction indicated as1235

“reactants >> product," with the output indicating 1236

the reagents involved in the reaction. 1237

Retrosynthesis Prediction. Retrosynthetic anal- 1238

ysis in organic chemistry reverses engineering by 1239

tracing potential synthesis routes from the target 1240

compound backward. This strategy is vital for effi- 1241

cient synthesis of complex molecules and to foster 1242

innovation in pharmaceuticals and materials. For 1243

this task, we also used the dataset from (Fang et al., 1244

2023), which is sourced from USPTO_500MT. The 1245

data organize inputs as products and outputs as re- 1246

actants separated by ’.’ for each compound. 1247

Discussion on License. As depicted in Table 6, 1248

we elaborate on the origins and legal permissions 1249

associated with each data component utilized in the 1250

development of the InstructMol. This encompasses 1251

both biomolecular data and textual descriptions. 1252

Thorough scrutiny was conducted on all data ori- 1253

gins to confirm compatibility with our research 1254

objectives and subsequent utilization. Proper and 1255

accurate citation of these data sources is consis- 1256

tently maintained throughout the paper. 1257

B Implementation Details 1258

Model Settings. A graph neural network with five 1259

graph isomorphism network (GIN) (Xu et al., 2018) 1260

layers is used as the molecule graph encoder fg. 1261

The hidden dimension is set to be 300. The GIN 1262

model is initialized using the MoleculeSTM (Liu 1263

et al., 2022) graph encoder, which is pre-trained 1264

through molecular graph-text contrastive learning. 1265

We employ Vicuna-v-1.3-7B (Chiang et al., 2023) 1266

as the base LLM, which has been trained through 1267

instruction-tuning. The total number of parameters 1268

of InstructMol is around 6.9B. 1269

Training Details. In the first stage, we employ the 1270

training split comprising around 264K molecule- 1271

caption pairs from PubMed. Using a batch size of 1272

128, we conduct training for 5 epochs. We use the 1273

AdamW optimizer, with β=(0.9, 0.999) and a learn- 1274

ing rate of 2e-3, without weight decay. Warm-up 1275

is executed over 3% of the total training steps, fol- 1276

lowed by a cosine schedule for learning rate decay. 1277

For the second stage, we conduct training for three 1278

specific scenarios. For fair comparisons with tradi- 1279

tional methods, training spans 20 to 50 epochs for 1280

the molecule description generation task using the 1281

ChEBI-20 training split. Property prediction and 1282

reaction tasks undergo 10 epochs using correspond- 1283

ing instruction datasets. In InstructMol training, we 1284

15



TASKS # SAMPLES DATA SOURCE

Alignment Pretrain 264K PubMed (Kim et al., 2022)
Property Prediction(Regression) 362K QM9 (Fang et al., 2023; Wu et al., 2017)
Property Prediction(Classification) 35,742 BACE, BBBP, HIV (Wu et al., 2017)
Molecule Description Generation 26,507 ChEBI-20 (Edwards et al., 2021)
Forward Prediction 125K USPTO (Fang et al., 2023; Wei et al., 2010)
Retrosynthesis 130K USPTO_500MT (Fang et al., 2023; Lu and Zhang, 2022b)
Reagent Prediction 125K USPTO_500K (Fang et al., 2023; Lu and Zhang, 2022b)

Table 5: Details of InstrutMol two-stage training data.

DATA SOURCES LICENSE URL LICENSE NOTE

PubChem https://www.nlm.nih.gov/web_policies.
html

Works produced by the U.S. government are not subject to copyright
protection in the United States. Any such works found on National
Library of Medicine (NLM) Web sites may be freely used or reproduced
without permission in the U.S.

ChEBI https://creativecommons.org/
licenses/by/4.0/

You are free to: Share — copy and redistribute the material in any
medium or format. Adapt — remix, transform, and build upon the
material for any purpose, even commercially.

USPTO https://www.uspto.gov/
learning-and-resources/
open-data-and-mobility

It can be freely used, reused, and redistributed by anyone.

MoleculeNet https://opensource.org/license/mit/ Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the “Software”),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so.

Table 6: Data resources and licenses utilized in data collection..

maintain a consistent batch size of 128 and set the1285

learning rate to 8e-5. Linear layers within the LLM1286

utilize a LoRA rank of 64 and a scaling value α of1287

16. All experiments are run with 4×RTX A60001288

(48GB) GPUs.1289

Configuration Value

Graph encoder fg init. GINMoleculeSTM
# params fg 1.8M
LLM init. Vicuna-v-1.3-7B
# params LLM 6.9B
Stage1 batch-size 128
Stage2 batch-size 128
Optimizer AdamW
Warm-up ratios 0.03
Stage1 peak lr 2e-3
Stage2 peak lr 8e-5
Learning rate schedule cosine decay
Weight decay 0.
Stage1 train epochs 5
Stage2 train epochs 20-50
Numerical precision bfloat16
Activation checkpointing True

Table 7: Training hyperparameters of InstructMol.

C Evaluate Metrics1290

Molecule Description Generation Metric. Fol-1291

lowing (Edwards et al., 2022), NLP metrics such as1292

BLEU (Papineni et al., 2001), ROUGE (Lin, 2004)1293

and METEOR (Banerjee and Lavie, 2005) are used1294

to assess the proximity of generated descriptions1295

to the truth of the ground. Specifically, these met- 1296

rics are tested on the ChEBI-20 test dataset. In our 1297

experiments, we observed that after 50 epochs of 1298

finetuning on the training split, the metrics tend to 1299

converge, differing from previous approaches that 1300

often involved fine-tuning for over 100 epochs (Ed- 1301

wards et al., 2022; Su et al., 2022; Luo et al., 1302

2023b). 1303

Molecule Generation Metric. In chemical re- 1304

action tasks, we view it as akin to a text-based 1305

molecule generation task. Initially, we employ RD- 1306

Kit to validate the chemical validity of the gen- 1307

erated results, ensuring their “validity". Subse- 1308

quently, we gauge the sequential proximity be- 1309

tween the generated sequence and the ground truth 1310

using NLP metrics such as BLEU, Exact Match 1311

scores, and Levenshtein distance. Additionally, we 1312

present performance based on molecule-specific 1313

metrics that assess molecular similarity, encom- 1314

passing RDKit, MACCS (Durant et al., 2002), and 1315

Morgan (Schneider et al., 2015) fingerprints simi- 1316

larity. 1317
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TASK INSTRUCTION

Alignment Pretrain
Instruction: Provide a brief overview of this molecule.
∥ [Optional: The compound SELFIES sequence is: SELFIES]
Output: The molecule is a non-proteinogenic alpha-amino acid that is ...

Property Prediction
(Regression)

Instruction: Could you give me the LUMO energy value of this molecule?
∥ [Optional: The compound SELFIES sequence is: SELFIES]
Output: 0.0576

Property Prediction
(Classification)

Instruction: Evaluate whether the given molecule is able to enter the blood-brain barrier.
∥ [Optional: The compound SELFIES sequence is: SELFIES]
Output: Yes

Molecule Description Generation
Instruction: Could you give me a brief overview of this molecule?
∥ [Optional: The compound SELFIES sequence is: SELFIES]
Output:The molecule is a fatty acid ester obtained by ...

Forward Prediction
Instruction: Based on the given reactants and reagents, suggest a possible product.
∥ <REACTANT A>.<REACTANT B>...<REAGENT A>.<REAGENT B>...
Output: SELFIES of product

Retrosynthesis
Instruction: Please suggest potential reactants used in the synthesis of the provided product.
∥ SELFIES of product
Output: <REACTANT A>.<REACTANT B>...<REAGENT A>.<REAGENT B>...

Reagent Prediction
Instruction: Can you provide potential reagents for the following chemical reaction?
∥ <REACTANT A>.<REACTANT B>...<REAGENT A>.<REAGENT B>... » <PRODUCTs>
Output: SELFIES of reagent

Table 8: Examples of instruction samples for each task. ∥ means concatenate along the token dimension.

messages = [ {"role":"system", "content": f"""You’re acting as a molecule property prediction assistant. You’ll
be given SMILES of molecules and you need to make binary classification with a return result only in “True" or
“False".

The background of the dataset and task is shown below:
The Blood-brain barrier penetration (BBBP) dataset comes from a recent study on the modeling and prediction of
barrier permeability. As a membrane separating circulating blood and brain extracellular fluid, the blood-brain barrier
blocks most drugs, hormones, and neurotransmitters. Thus penetration of the barrier forms a long-standing issue in the
development of drugs targeting the central nervous system.

We provide several examples for this binary classification task:
###
Instruction: Predict whether the given compound has barrier permeability. Return True or False.
SMILES: CCC(=O)C(CC(C)N(C)C)(c1ccccc1)c2ccccc2
Output: True
###

###
Instruction: Predict whether the provided compound exhibits barrier permeability. Return True or False.
SMILES: c1cc2c(cc(CC3=CNC(=NC3=O)NCCSCc3oc(cc3)CN(C)C)cc2)cc1
Output: False
###
...

Given the following instructions and SMILES, return your prediction result:
Instruction: Predict whether the provided compound exhibits barrier permeability. Return True or False.
SMILES: TARGET SMILES
"""}
]

Table 9: An illustration of the few-shot in-context-learning prompt construction process for Llama (Touvron et al.,
2023a,b) / Vicuna (Chiang et al., 2023) models in property prediction tasks.
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D More Results1318

D.1 Ablation study results1319

METHODS BLEU-2↑ BLEU-4↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ METEOR↑

InstructMol+G 0.4620 0.3560 0.5439 0.3644 0.4765 0.4832
+MLP XL connector 0.4665(+0.97%) 0.3613(+1.49%) 0.5497(+1.07%) 0.3699(+1.51%) 0.4805(+0.84%) 0.4917(+1.76%)
+Scale up LLM 0.4615(-0.11%) 0.3566(+0.17%) 0.5449(+0.18%) 0.3660(+0.44%) 0.4776(+0.23%) 0.4868(+0.75%)
Replace fg with GraphMVP 0.4452(-3.64%) 0.3377(-5.14%) 0.5318(-0.11%) 0.3484(-2.22%) 0.4638(-2.67%) 0.4691(-2.92%)
Freeze LLM in the second stage ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0

Table 10: Ablation of the model architecture and training scheme design. We chose to conduct experiments on the Molecule
Description Generation task. fg represents the molecule graph encoder.

D.2 More Results of Molecule Description Generation1320

The molecule is the potassium salt of acetic 
acid. It has a role as a buffer. It is a 
potassium salt and an acetate salt. It 
contains an acetate.

The molecule is a potassium salt that is the 
monokis salt of carbonic acid. It has a role as 
a buffer. It is a carbonate salt and a 
potassium salt. It contains a carbonate.

The molecule is the potassium salt of formic 
acid. It has a role as a buffer. It is a 
potassium salt and a one-carbon compound. 
It derives from a formic acid.

InstructMolMol-Instruction Ground Truth

CID: 2735122

O-O

K+

N
H

NH2

HCl

CID: 60962

The molecule is a hydrochloride salt 
resulting from the reaction of equimolar 
amounts of 1-nitrobenzene and hydrogen 
chloride. It has a role as a mutagen. It 
contains a 1-nitrobenzene(2+).

The molecule is a hydrochloride resulting 
from the reaction of equimolar amounts of 
phenylhydrazine and hydrogen chloride. It 
contains a phenylhydrazine.

The molecule is an organic molecular 
entity.

The molecule is an organic thiophosphate.

The molecule is a tirucallane triterpenoid that is 
(13alpha,14beta,17alpha,20S,23E)-lanosta-7,23-
diene substituted by a beta-hydroxy group at 
position 3 and a methoxy group at position 25. It 
has been isolated from the stem and stem barks 
of Cornus walteri. It has a role as a plant 
metabolite. It is a tirucallane triterpenoid, an 
ether and a secondary alcohol.

The molecule is a triterpenoid. The molecule is a tirucallane triterpenoid that is 
(13alpha,14beta,17alpha,20S,23E)-lanosta-7,23-
diene substituted by an oxo group at position 3 
and a methoxy group at position 25. It has been 
isolated from the stem and stem barks of Cornus
walteri. It has a role as a plant metabolite. It is 
an ether, a tirucallane triterpenoid and a 
secondary alcohol.

The molecule is an organic thiophosphate that is 
O,O-dimethyl hydrogen phosphorothioate in 
which the hydrogen of the hydroxy group has 
been replaced by a 3,5,6-trichloropyridin-2-yl 
group. It has a role as an agrochemical, an EC 
3.1.1.7 (acetylcholinesterase) inhibitor and an 
environmental contaminant. It is an organic 
thiophosphate, a chloropyridine and an 
organochlorine pesticide.

The molecule is an organic thiophosphate that is O,O-
diethyl hydrogen phosphorothioate in which the 
hydrogen of the hydroxy group has been replaced by 
a 3,5,6-trichloropyridin-2-yl group. It has a role as an 
EC 3.1.1.7 (acetylcholinesterase) inhibitor, an 
agrochemical, an EC 3.1.1.8 (cholinesterase) inhibitor, 
an environmental contaminant, a xenobiotic, an 
acaricide and an insecticide. It is an organic 
thiophosphate and a chloropyridine.

The molecule is a natural product found in 
Homo sapiens with data available.

The molecule is a 17beta-hydroxy steroid 
that is testosterone in which the 17beta 
hydrogen is replaced by a methyl group. It 
has a role as an androgen. It is a 3-oxo-
Delta(4) steroid and a 17beta-hydroxy 
steroid. It derives from a testosterone.

The molecule is a 17beta-hydroxy steroid 
that is testosterone that contains an 
additional double bond between positions 
6 and 7. It is a 3-oxo-Delta(4) steroid, a 
17beta-hydroxy steroid and an enone. It 
derives from a testosterone.

The molecule is a metabolite found in or 
produced by Escherichia coli (strain K12, 
MG1655).

The molecule is a myo-inositol 
monophosphate. It has a role as an algal 
metabolite and a mouse metabolite. It 
derives from a myo-inositol. It is a 
conjugate acid of a 1D-myo-inositol 4-
phosphate(2-).

The molecule is an inositol having myo-
configuration substituted at position 1 by a 
phosphate group. It has a role as a human 
metabolite, an Escherichia coli metabolite 
and a mouse metabolite. It derives from a 
myo-inositol. It is a conjugate acid of a 1D-
myo-inositol 1-phosphate(2-).
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The molecule is a monocarboxylic acid 
anion resulting from the removal of a 
proton from the carboxy group of (S)-
methyl 2-(4-chloro-2-
methylphenoxy)acetate. It is a conjugate 
base of a (S)-methyl 2-(4-chloro-2-
methylphenoxy)acetate. It is an 
enantiomer of a (R)-methyl 2-(4-chloro-2-
methylphenoxy)acetate(1-).

The molecule is a monocarboxylic acid 
anion that is the conjugate base of (S)-2-(4-
chloro-2-methylphenoxy)propanoic acid, 
obtained by deprotonation of the carboxy 
group. It is a conjugate base of a (S)-
mecoprop. It is an enantiomer of a (R)-2-
(4-chloro-2-methylphenoxy)propanoate.

The molecule is a monocarboxylic acid 
anion resulting from the removal of a 
proton from the carboxy group of (R)-
imazamox. It is a conjugate base of a (R)-
imazamox. It is an enantiomer of a (S)-
imazamox(1-)

CID: 107737
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Figure 4: More examples of molecule description generation task on ChEBI-20 (Edwards et al., 2021) test set.
We include Mol-Instruction (Fang et al., 2023) as the baseline. CID (CID): PubChem Compound Identification, a
non-zero integer PubChem accession identifier for a unique chemical structure.
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D.3 More Results of Forward Reaction Prediction 1321

InstructMol Mol-Instruction Multitask Text and 
Chemistry T5

?
NH2

H
N

Cl

O

Cl

Cl

N

HCl
Cl Cl

O

O

HN

H
N

Cl
Cl

O

HN

+
H2
N

Cl

Cl

O N

N

H
N

O

O
C

N

N O

?

O N N
N

O

N
HO

N N

N

O

N
H

O

O

N N

N

O

N
H

O

O

N
H

N

N

OH

H H Pd

?

O

NH

N
NOH

N
H

N

N

NH2

Br

BrH2N

Br

H2N

OO
N

Br

N O ?

O

O

N

N
H

N

N

O

N
H

F

O

N
H

H2N

O

O

O

F NH2 ?

O

O

HO

F

O

O

HO

F

O

O

O

F

O

OHH2O

H2O
Li+ OH-

?

F N
H

F

O

OHS

Cl

HN
S

O

O

ClF

O

O
OHCl

O

Cl Cl

?

O

O

HO

F

O

OHS

O

Cl

NH
S

O

O

Cl F

O

OHS

OCl

O

OHS

Cl

HN
S

O

O

ClF

Figure 5: More examples of forward reaction prediction task. We include Mol-Instruction (Fang et al., 2023) and
Multitask-Text-and-Chemistry-T5 (Christofidellis et al., 2023) as baselines.
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D.4 More Results of Reagent Prediction1322
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N

Cl Cl

NO

Cl

OHF

? O

O F

?

?

?

?

?

?

ClH

N
C

N N

N O

OH

N

N

N

NH2

F F

O

OHBr

O

Br N
H

FF

OH Pd
OH

Pd

O

N+
O-

N

N
N

N

N

N
H

O

NH2
N

N

N

N

N
H
N

O

O

O

N

Cl

Cl Cl Cl

O

OH
F

F

F
Cl Cl

O

OH
F

F

F

Cl

NH

Cl

N Cl Cl O
N

O

OH
S

O

O
Cl

O

O
S

O

O

OH
BH3-

N
Na+ OH

O-

Na+
O

O
O

O

Cl

NH
2

OH

Cl

O

O
O

N
H

OH

Cl

Cl

OHBH3-OHBH4-Na+
H2N

O
O

O

NH2

O

N

O
N
H

O

NH2

O

N

Figure 6: More examples of the reagent prediction task. We include Mol-Instruction (Fang et al., 2023) as the
baseline.
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D.5 More Results of Retrosynthesis Prediction 1323

InstructMol Mol-Instruction Multitask Text and 
Chemistry T5

N
H

O

N

N

O

NH2

O

O

N

H
N

NH2

N

O

OH

O

N
N
H

O

N

N

O

Cl Cl
N

O

O

N
H

Br

N

O

O

Cl

H2N Br

N

O

O

OH

H2N

Br
N

O

O

N
N

O

O

O

O

N
H

Br

N

O

Br N
H

OH

H2N OH

O

OH
BrH2N OH

O

ClBr

O

ClBr

H2N OH

O

N
O

O
O

OH

O

O

OO

O

O

O
O

O
N

O

O
O

OH

O

OOH

O

HO

OH

O
Br

Si
ON+

O

-O

NH2

Si Cl

O

N+
-O

N+

O

O-

HO

Si Cl

NH2

N+

O

-O
OH

O

O

N

N

H2N

N

O

O

O

N

N

N+

O

-O

N

O
O

O

N

N

N+

O

-O

N

O

O

O
O

O

O

N
O

O
O

OH

O

O-O-
K+

+K

O
O

OH

O

N O

Si

ON+

O

-O

N
H

O

O

O

O-O-
K+

+K

N O

O

O

N

N

H2N

N

O

O

O-O-
K+

+K

Figure 7: More examples of the retrosynthesis prediction task. We include Mol-Instruction (Fang et al., 2023) and
Multitask-Text-and-Chemistry-T5 (Christofidellis et al., 2023) as baselines.
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D.6 Difficult Cases1324

We showcase cases with misalignment to the ground truth, along with RDKit fingerprint similarity results1325

in Fig. 8. The complexity of chemical reaction compounds makes the task more challenging. In addressing1326

this limitation, our future approach involves concatenating graph tokens from multiple molecules involved1327

in the same reaction with text tokens to simplify the complexity of the input sequence. Moreover, we are1328

considering employing separate tokenization and embedding for distinct modalities to ensure the semantic1329

accuracy of the tokenized results.1330
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Figure 8: We present several cases with a certain degree of misalignment compared to the ground truth, accompanied
by RDKit fingerprint similarity results relative to the ground truth. Due to the heightened complexity of compounds
involved in chemical reactions, the difficulty of the task increases, leading to the poor performance of Mol-
Instructions (Fang et al., 2023).

E Comparison with Current Agents Framework1331

LLMs face a major limitation in performing basic mathematical and chemical operations, which makes1332

handling hallucinations challenging. However, their self-supervised pre-training on diverse knowledge1333

equips them with a strong understanding and reasoning abilities that can be directly applied to new1334

domains. Presenting LLMs as automated assistants offers a programming-free interface for non-experts to1335

leverage their existing capabilities. Agent/assistant paradigms enable the optimal utilization of LLMs’1336

knowledge without the need for specialized model development. For instance, ChemCrow (Bran et al.,1337

2023) is an agent system based on GPT-4 that integrates various chemical tools for solving diverse tasks.1338

We conducted a comparison of three downstream tasks between InstructMol and ChemCrow, and the1339

results are presented in Table 11.1340

During testing, we observed that ChemCrow’s performance is heavily reliant on prompt construction,1341

resulting in unstable output results. For instance, in retrosynthesis planning experiments, we found that1342
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agents often misidentify the user’s query product as controlled chemistry and refuse to provide an answer. 1343

Similarly, in the property prediction task, GPT-4 itself lacks specific knowledge about compounds and 1344

thus heavily relies on internet searches. The quality of the prompt constructed by the user significantly 1345

influences the quality of the response. 1346

Task Ground Truth ChemCrow InstructMol
Property Prediction
Determine whether (CID:219214)
can suppress HIV.

"Active"
WebSearch→
No information

✓

Forward Reaction Prediction
CCC(=O)Cl + OC1=CC=CC(F)=C1

+ ClCCl +C2=CC=NC=C2 →? CCC(=O)OC1=CC=CC(F)=C1 ✓ ✓
Retrosynthesis Prediction

? → C(CCNC(=O)CCCCBr)CCO NCCCCCO.O=C(O)CCCCCBr
"Similar to controlled
chemistry, reject to answer"

✓

Table 11: The performance of InstructMol and ChemCrow was evaluated through a comparison of three downstream tasks:
Property Prediction, Forward Reaction Prediction, and Retrosynthesis. The ✓ denotes that the predictions match with the ground
truths.

Therefore, we believe that domain-specific LLMs should be augmented with dedicated external tools. 1347

This augmentation would enable LLMs to function as planners, comprehend and decompose tasks, invoke 1348

downstream interfaces, and effectively process feedback. In our future work, we intend to create a new 1349

dataset for instruction-following tool usage and enhance InstructMol with a variety of external tools. By 1350

leveraging state-of-the-art models and maximizing LLM’s reasoning and planning capabilities, we aim to 1351

further enhance its performance. 1352
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