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Abstract

The misuse of large language models (LLMs),
such as academic plagiarism, has driven the
development of detectors to identify LLM-
generated texts. To bypass these detectors,
paraphrase attacks have emerged to purposely
rewrite these texts to evade detection. Despite
the success, existing methods require substan-
tial data and computational budgets to train a
specialized paraphraser, and their attack effi-
cacy greatly reduces when faced with advanced
detection algorithms. To address this, we pro-
pose Contrastive Paraphrase Attack (CoPA), a
training-free method that effectively deceives
text detectors using off-the-shelf LLMs. The
first step is to carefully craft instructions that
encourage LLMs to produce more human-like
texts. Nonetheless, we observe that the inher-
ent statistical biases of LLMs can still result in
some generated texts carrying certain machine-
like attributes that can be captured by detectors.
To overcome this, CoPA constructs an auxiliary
machine-like word distribution as a contrast to
the human-like distribution generated by the
LLM. By subtracting the machine-like patterns
from the human-like distribution during the de-
coding process, CoPA is able to produce sen-
tences that are less discernible by text detectors.
Our theoretical analysis suggests the superior-
ity of the proposed attack. Extensive exper-
iments validate the effectiveness of CoPA in
fooling text detectors across various scenarios.

1 Introduction

Large language models (LLMs), such as GPT-4
and Claude-3.5, have demonstrated remarkable
abilities in text comprehension and coherent text
generation. These capabilities have driven their
widespread applications, including code generation
(Jiang et al., 2024) and academic research (Stokel-
Walker, 2022). However, the misuse of LLMs for
harmful purposes, such as academic plagiarism and
misinformation generation, has raised significant
societal concerns (Bao et al., 2024) regarding safety
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Figure 1: Comparison of different paraphrasing strate-
gies. The human-like and machine-like prompts are
crafted to guide the LLM in generating human-style and
machine-style texts, respectively.

and ethics. In response, various detection methods
that leverage the unique characteristics of LLM-
generated texts from multiple perspectives have
been proposed to mitigate the associated risks.
Concurrently, red-teaming countermeasures (Kr-
ishna et al., 2023; Shi et al., 2024) have also been
introduced to evaluate the reliability of these de-
tection algorithms, which can be broadly catego-
rized into word-substitution and paraphrase at-
tacks. Specifically, word-substitution attacks (Shi
et al., 2024; Wang et al., 2024) replace specific
important words in the fake sentence using candi-
date words generated by a language model. How-
ever, they require an additional surrogate model to
identify the word importance, and the replacement
operation can significantly increase sentence per-
plexity (Wang et al., 2024), making the processed
texts easily identified by humans. In contrast, Dip-



per (Krishna et al., 2023) proposes a paraphrase-
based attack that rewrites the whole paragraph by
modifying the syntax and phrasing to deceive text
detectors. This approach does not rely on surro-
gate models and can preserve sentence perplexity,
presenting a more practical and versatile attack
strategy. Nonetheless, Dipper requires training a
large-scale generative language model as the para-
phraser, incurring substantial data collection and
computational burdens. Moreover, the attack per-
formance is greatly diminished when confronted
with more advanced defense strategies such as Fast-
DetectGPT (Bao et al., 2024), as shown Sec. 4.2.
In this paper, we build upon the research line
of paraphrase attacks and propose a training-free
paraphrase approach named Contrastive Paraphrase
Attack (CoPA), which aims to elicit human-written
word distributions from an off-the-shelf LLM to
evade detection. Specifically, we revisit the funda-
mental mechanisms underlying existing detection
algorithms and hypothesize that the core principle
of effective paraphrase attacks lies in erasing the
machine-inherent characteristics within the para-
graph while incorporating more human-style fea-
tures, such as more flexible choices of words and
phrases. Based on this insight, we intuitively seek
to craft prompts that alleviate the established statis-
tical constraints of pre-trained LLMs and produce
more human-like word distributions, as shown in
Fig. 1. While this strategy exhibits some effective-
ness, LLMs pretrained on massive corpora hold a
strong tendency to prioritize words with high statis-
tical probability to ensure sentence coherence (Bao
et al., 2024; Mao et al., 2024). This inherent bias
consistently influences the word choices of gener-
ated sentences, irrespective of the input prompts.
Therefore, some paraphrased sentences still exhibit
certain machine-related characteristics, rendering
them highly discernible by detection classifiers.
To address this limitation, we conduct a reverse-
thinking analysis. While it is challenging to di-
rectly produce highly human-written word distri-
butions that can fully bypass detection, eliciting
the opposite machine-like word distributions that
contain rich machine-related attributes is consider-
ably easier. These machine-like word probabilities
can then serve as negative instances to further pu-
rify the obtained human-style distribution for more
human-like text generation. In light of this con-
sideration, an auxiliary machine-like distribution
is constructed as a contrastive reference, which is
used to filter out the machine-related concepts from

the aforementioned human-like distribution. By
sampling from the meticulously adjusted word dis-
tribution, CoPA generates more diverse and human-
like sentences, which exhibit remarkable effective-
ness in deceiving LLM-text detectors.

Contributions. We propose CoPA, a novel para-
phrase attack that contrastively modifies the word
distribution from an off-the-shelf LLM to rewrite
generated texts for enhanced attacks against text
detectors. CoPA eliminates the cumbersome bur-
dens of training a dedicated paraphraser, achieving
an efficient and effective attack paradigm. Fur-
thermore, we develop a theoretical framework that
substantiates the superiority of CoPA.

To validate the effectiveness, we conduct ex-
tensive experiments on 3 long-text datasets with
various styles against 8 powerful detection algo-
rithms. Compared to baselines, CoPA consistently
enhances the attack while maintaining semantic
similarity, e.g., an average improvement of 57.72%
in fooling rates (at FPR=5%) for texts generated by
GPT-3.5-turbo when against Fast-DetectGPT.

2 Related Work

2.1 LLM-generated Text Detection

Existing detection algorithms for Al-generated text
can generally be categorized into two types: (i)
Training-based detection: These methods typically
involve training a binary classification language
model. Specifically, OpenAl employs a ROBERTa
model (Liu, 2019) trained on a collection of mil-
lions of texts for detection. To enhance the detec-
tion robustness, RADAR (Hu et al., 2023) draws in-
spiration from GANs (Goodfellow et al., 2020) and
incorporates adversarial training between a para-
phraser and a detector. Additionally, DeTective
(Guo et al., 2024) proposes a contrastive learning
framework to train the encoder to distinguish var-
ious writing styles of texts, and combined with a
pre-encoding embedding database for classification.
R-detect (Song et al., 2025) employs a kernel rela-
tive test to judge a text by determining whether
its distribution is closer to that of human texts.
Despite the efforts in specific domains, training-
based methods are struggling with generalization
to unseen language domains, which reduces their
practicality and versatility. (ii) Zero-shot detection:
These methods are training-free and typically focus
on extracting inherent features of LLMs’ texts to
make decisions. GLTR (Gehrmann et al., 2019)
and LogRank(Solaiman et al., 2019) leverage the



probability or rank of the next token for detection.
Since Al-generated text typically exhibits a higher
probability than its perturbed version, DetectGPT
(Mitchell et al., 2023) proposes the probability cur-
vature to distinguish LLM and human-written text.
Building on this, Fast-DetectGPT (Bao et al., 2024)
greatly improves the efficiency by introducing con-
ditional probability curvature that substitutes the
perturbation step with a more efficient sampling
step. TOCSIN (Ma and Wang, 2024) presents a
plug-and-play module that incorporates random to-
ken deletion and semantic difference measurement
to bolster zero-shot detection capabilities. Other
methods explore different characteristics, such as
likelihood (Hashimoto et al., 2019), N-gram diver-
gence (Yang et al., 2024), and the editing distance
from the paraphrased version (Mao et al., 2024).

2.2 Attacks against Text Detectors

Red-teaming countermeasures have been proposed
to stress-test the reliability of detection systems.
Early attempts evade detection using in-context
learning (Lu et al., 2023) or directly fine-tuning the
LLM (Nicks et al., 2023) under a surrogate detector.
Recent advances can be broadly categorized into:
Substitution-based attacks. Shi et al. (2024)
introduce the substitution-based approach, which
minimizes the detection score provided by a sur-
rogate detector by replacing certain words in Al
sentences with several synonyms generated by an
auxiliary LLM. Subsequently, RAFT (Wang et al.,
2024) improves the attack performance by intro-
ducing an LLM-based scoring model to greedily
identify critical words in the machine sentences.
However, this type of attack relies on an additional
surrogate model, and the generated sentences suf-
fer from reduced coherence and fluency, which are
easily identifiable by human observations and limit
their practical utility in real-world scenarios.
Paraphrasing-based attacks. Conversely, Dip-
per (Krishna et al., 2023) suggests a surrogate-free
approach that can perfectly maintain text perplex-
ity. With a rewritten dataset of paragraphs with al-
tered word and sentence orders, Dipper fine-tunes
a T5-XXL (Raffel et al., 2020) as a paraphraser
to rewrite entire machine paragraphs, which effec-
tively fools text detectors while preserving seman-
tic consistency. Based on Dipper, Sadasivan et al.
(2023) introduce a recursive strategy that performs
multiple iterations of paraphrasing, with slightly
degrading text quality while significantly enhanc-
ing attack performance. Raidar (Mao et al., 2024)

proposes a straightforward approach that directly
queries an LLM to paraphrase machine text into
paragraphs with more human-style characteristics.
Shi et al. (2024) suggest a strategy that automati-
cally searches prompts to induce more human-like
LLM generations. However, it relies on a strong
assumption that a surrogate detector is available.

This paper follows the more practical and ap-
plicable paradigm of surrogate-free paraphrasing
attacks and proposes a contrastive paraphrasing
strategy, which achieves remarkable efficacy in by-
passing LLM-text detection systems.

3 Method

In this section, we first present the paradigm of
paraphrase attacks. Then, we elaborate on the pro-
posed CoPA that rewrites generated texts using a
pre-trained LLM. Finally, we provide a theoretical
framework to guarantee the attack effectiveness.

3.1 Problem Formulation

We denote the Al-generated text detector weighted
by w as Dy, : Y — [0, 1], where ) denotes the
text domain. The detector D,, maps text sequences
y € Y to corresponding LLM likelihood scores,
where higher values indicate a greater probabil-
ity of being LLM-generated. For an LLM pre-
trained on extensive corpora, the resulting texts ex-
hibit significant writing styles, including word pref-
erences and coherent syntactic structures, which
have been leveraged in previous studies to de-
velop various text detectors. To evade detection,
a malicious paraphrase attacker aims to reduce
these machine-related concepts within the machine-
generated texts to obtain paraphrased variants that
can effectively mislead D,, into outputting lower
LLM likelihood scores. Before delving into the
proposed method, we first review the token genera-
tion paradigm of the LLM inference. We consider
utilizing an off-the-shelf LL.M as the paraphraser.
Given an input instruction z, a machine text y,,
and a pre-trained LLM fy(-) parameterized by 6,
fo generates the paraphrased paragraph y by pro-
ducing tokens in an autoregressive manner. At each
timestep ¢, fy(-) samples the next token y; from the
conditional probability distribution:

Yg ~ p9('|$7 Yms y<t) X €Xp f@(“ma Ym y<t)7
(1)
where y.; denotes the previously generated se-

quence. Particularly, the probability of a gener-
ated text y with length [ can be expanded as the
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Figure 2: Overview of the proposed CoPA. The contrastive paraphrasing successfully penalizes the LLM-preferred
word ‘embarked’ (Liang et al., 2024) and encourages more flexible word choices for next-token sampling.

multiplication of conditional probabilities:

l
a0(y) = [ [ po(welz, ym, y<t), (2)
t=1

where ¢g(-) denotes the text probability distribution.
Based on the chain rule in Eq. (2), the sentence-
level paraphrasing problem can be further refor-
mulated as a token-level selection task, i.e., design
algorithms to adequately penalize the probability of
machine-favored tokens and inspire more human-
like word choices for generating sentences able to
confuse the text detector D,, (). In addition to out-
standing attack performance, the revised sentences
should preserve the original semantics and exhibit
a high degree of coherence to ensure text quality.

3.2 Contrastive Paraphrase Atatcks

Building upon the preceding analysis, an intuitive
approach is to devise a prompt x;, that can elicit
more diverse token distributions p; from LLM
fo(+) to simulate authentic human-written distribu-
tion py. While this strategy achieves some success,
we find that the inherent statistical priors of lan-
guage models persistently impose constraints on
the output distributions. As a result, this leads to
unstable outcomes, with some revised sentences
still exhibiting sufficient machine-related patterns
and remaining highly detectable (see Appendix D).

To achieve more effective and stable attacks, we
carefully examine this issue and identify the fol-
lowing two critical considerations. (1) The current
strategy essentially operates within the input space
(i.e., modify input prompts) to indirectly influence
the output token distribution, which remains in-
evitably constrained by the prior knowledge en-
coded in the LLM. Instead, directly manipulating

the output distribution is a potentially more promis-
ing alternative. (2) Generating word distributions
that can fully deceive detection models is challeng-
ing; however, it is much easier to generate word
distributions that are highly detectable. From a
reverse-thinking perspective, those LLM-favored
tokens are also considerably valuable since they en-
capsulate rich machine-style features and can serve
as negative examples for contrastive references.
Based on these insights, we propose our Con-
trastive Paraphrase Attack, a novel approach that di-
rectly employs a dynamic adjustment to the output
word distributions during LLM decoding. Figure
2 illustrates the core pipeline of CoPA. Apart from
the prompt z;, for human-style distributions pj,
we also construct a comparative machine prompt
Ty, to elicit machine-preferred word choices py,.
By contrasting human-like and machine-like token
distributions, CoPA refines the probabilities in the
decoding process and encourages generations of
texts with enhanced human-written resemblance.
Formally, the contrastively purified token distribu-
tion at timestep ¢ can be expressed as:

pC('|$h7 Lmy Yms y<t) X €Xp ((1 + )\) (3)
JoClzh, Ym, y<t) — )‘fe('|xmaymay<t)),

where p. represents the contrastive token distribu-
tions and A is the scaling parameter that controls the
degree of amplification on the discrepancy between
two distributions. The proposed framework oper-
ates as a self-corrective decoding mechanism that is
specifically designed to trick Al-text detectors. By
dynamically identifying and penalizing machine-
preferred token preferences, CoPA effectively re-
duces entrenched linguistic biases and enables the
generation of sentences with more expressiveness
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Figure 3: Fast-DetectGPT detected LLM likelihood of
texts from different machine distributions p,,, induced
by various machine prompts z,,,. We also present the
detection TPR of their corresponding contrastive distri-
butions p.. See Appendix E for details of used prompts.

and lexical diversity, achieving an enhanced capa-
bility to fool LLM-generated text detectors.

Reduce machine styles by amplifying them.
Previous studies have shown that rewriting ma-
chine texts using another LLM can reduce some
machine-specific features, although not sufficiently
for launching effective attacks (Sadasivan et al.,
2023). This is because the rewritten texts inherit
a mixture of stylistic and lexical preferences from
different LLMs, thus increasing the text diversity.
However, in our contrastive design, the machine-
style distribution p,, actually serves as a negative
reference to be subtracted from the human distri-
bution. Employing a regular paraphrasing prompt
to obtain p,,, may inadvertently dilute its machine-
specific characteristics and weaken the effective-
ness of the contrastive operation.

A reasonable solution involves constructing p,,
as a highly salient and concentrated machine-style
token distribution, wherein high-probability tokens
are strongly machine-related and more likely to
trigger detection. We achieve this by identifying
a prompt x,, that significantly amplifies the LLM
likelihood of the generated sentences. Figure 3
empirically validates our strategy, i.e., magnifying
machine-style features in p,,, can, in turn, promote
a refined distribution that more closely resembles
authentic human writing, further enhancing the at-
tack on the machine-text detector.

Adaptive Truncation for plausibility. Another
important issue is that CoPA utilizes the whole
token distribution to measure the difference. How-
ever, there may be occasions where certain high-
probability tokens overlap between p), and p,,. The
subtraction operation may penalize the probabili-
ties of reasonable and valid tokens while rewarding
casual and unrelated ones, thus compromising the
coherence and semantic consistency of generated

sentences. To address this, we incorporate a to-
ken constraint mechanism (Li et al., 2023), which
applies an adaptive pruning to the output tokens:

Yt ~ Pe(-1Th, TmsYm, Y<t), St Yt € Viop(y<t),

Viop(Y<t) = {yt €V puWelzh, Ym, y<t)

> amgxp’h(leh,ym,ya)}?

“

where V denotes the vocabulary set of fy and «
is the hyperparameter to adjust clipping. By in-
troducing this adaptive pruning mechanism, CoPA
leverages the confidence scores of the human-like
distribution to refine the contrastive distribution,
which restricts the decision-making to a more reli-
able token candidate pool and suppresses the selec-
tion of unsuitable tokens.

3.3 Theoretical Analysis

Apart from empirical analysis, we build a theoreti-
cal framework to confirm the superiority of CoPA
in simulating authentic human writing. As pre-
viously stated, p;, denotes the real human-chosen
word distribution, p}, and py, represent human-like
and machine-like token distributions elicited from
the LLM using prompts x;, and x,,, respectively.
The objective is to prove that the distribution p,, de-
rived by contrasting pj, and p,,,, aligns more closely
with the human preferences py,.

To mathematically measure the difference be-
tween distributions py, and p., we first introduce an
auxiliary function based on the KL divergence.
Definition 1 (Auxiliary Distance Function). Let
KIL denotes the KL divergence, the distributional
distance between py, and p. is a unary function of
A, which is characterized as

g(A) = KL(pn||(1 + N)pp, = Apm).  (5)

g(\) inherit several good properties from the KL
divergence, based on which we derive the critical
Theorem that guarantees the effectiveness of CoPA:

Proposition 1. g(\) is a convex function. If g(\)
is not constant, it has a unique minimum point \.

Theorem 1. If ¢’'(0) < 0, then \, > 0 and for any
A € (0, \i], we have

KL (pp||(1 + N)pj, — Apm) < KL(pa||p},). (6)

The detailed proofs of Proposition 1 and The-
orem 1 are provided in Appendix A. Theorem 1



—— Contours of f(p) = KL(py||p)
Region of {p}, : g'(0) < 0}

Figure 4: Illustration of the premise of Theorem 1. Let
|V| = 3 and thus PV is a triangle. We draw the contours
of f(p) := KL(pp||p). The closer to py,, the lower the
KL divergence with pj,. If p}, —p,,, points to the inside of
the contour at pj, then f(p) decreases at pj, along pj, —
D, I-€., g(A\) decreases at A = 0. In this case ¢’(0) < 0
is satisfied and Theorem 1 is applicable. In practice pj,
is usually between p,,, and py, so g'(0) < 0 is usually
satisfied and Theorem 1 is generally applicable.

reveals that by adequately selecting A, CoPA drives
the resultant distribution p. closer to the authentic
human distribution pj, than the human-like distri-
bution p},, which is directly elicited from the LLM
using xj,. This theoretically validates the necessity
and effectiveness of our contrastive strategy.

Note that the premise of Theorem 1 is ¢’(0) < 0.
We use |V| = 3 as an example to illustrate its ratio-
nality. As in Figure 4, we calculate the area wherein
probability distributions satisfy ¢(0) < 0. In
essence, p), is generated by the LLM and hence is
constrained by the inherent language priors, which
prevents it from deviating significantly from the
machine-featured distribution p,,. Meanwhile, we
use a carefully crafted human-like prompt to guide
p), to move from p,,, towards py,. As aresult, p}, typ-
ically falls within the region that satisfies ¢’(0) < 0.
Therefore, this premise generally holds and thus
Theorem 1 is applicable in practice, which is fur-
ther confirmed by experimental results in Sec. 4.2.
Based on LLM’s prediction paradigm, we contrast
the output logits in practice, achieving excellent
performance in misleading detection models.

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate on three widely adopted
datasets spanning various linguistic styles and
content, including (1) XSum for news articles
(Narayan et al., 2018), (2) SQuAD for Wikipedia
contexts (Rajpurkar, 2016), and (3) LongQA for
long-form question answering, where LLM an-

swers a how/why question within 250-350 words
(Fan et al., 2019). We follow (Bao et al., 2024) and
randomly select 150 samples for evaluation.
Baselines. We compare our method with the
state-of-the-art (SOTA) surrogate-free paraphrase
attack Dipper (Krishna et al., 2023). We adopt the
setup of 60 lexical diversity and 60 order diversity
for Dipper to achieve its best performance. Ad-
ditionally, we reproduce the attack introduced in
(Mao et al., 2024), which leverages an LLM with
the query “Help me rephrase it in human style.” to
rewrite machine texts (denoted as Raidar-A). For
fairness, we use the same LLM for both our para-
phraser and baselines. Note that we also reveal
the superiority of CoPA over (Shi et al., 2024) that
relies on an extra surrogate model in Appendix C.
For detection algorithms, we consider diverse
methods including training-free LogRank (So-
laiman et al., 2019), DetectGPT (Mitchell et al.,
2023), DNA-GPT (Yang et al., 2024), Fast-
DetectGPT (Bao et al., 2024), Raidar (Mao et al.,
2024), TOCSIN (Ma and Wang, 2024), and
training-based RoBERTa (Liu, 2019) provided by
OpenAl and the R-detect (Song et al., 2025).
Metrics. We analyze the performance using
two key metrics. (1) Detection accuracy. In real-
world applications, it is crucial to guarantee that
human-written text should almost never be misclas-
sified as machine-generated (Krishna et al., 2023),
i.e., satisfying a very low false positive rate (FPR).
Hence, we follow Dipper and report the true pos-
itive rate (TPR) at a fixed FPR. Specifically, we
set a relatively high FPR of 5% to significantly re-
veal the performance improvements. Please refer
to Appendix C for results with FPR=1%. (2) Se-
mantic similarity. The rewritten sentences should
preserve the original semantics. Similar to Dipper,
we employ the P-SP (Wieting et al., 2022) model, a
specialized embedding model trained on a filtered
paraphrase corpus (Wieting and Gimpel, 2018), to
measure the semantic discrepancy. We align with
Dipper and consider the semantics being preserved
if the P-SP score exceeds the average real-human
paraphrase score of 0.76. Moreover, we provide
more analysis including text perplexity, GPT-4 as-
sisted and human evaluation in Appendix G.
Implementation Details. For attack hyperpa-
rameters, we set the contrast intensity A = 0.5 and
the clipping factor o = 1e~°. Unless stated oth-
erwise, we employ a single paraphrasing iteration.
We employ Qwen2.5-72B-Instruct (Qwen, 2024)
as the paraphraser. Due to page limits, we pro-



Table 1: Comparison of different paraphrasing attacks against 8 text-detection algorithms (at 5% FPR) using
GPT-3.5-turbo generated texts from three different datasets. The best performances are bolded.

. Defense
Dataset  Attack Sim Avg.
LogRank DetectGPT DNA-GPT Fast-DetectGPT Raidar TOCSIN RoBERTa R-Detect
No Attack - 63.33 26.67 80.00 95.33 28.75  98.00 66.67 69.67  66.05
XSum Dipper  86.67 15.67 2.67 27.33 76.33 13.75  74.67 86.67 48.00 43.14
Raidar  100.00  49.00 12.00 22.64 84.67 16.25  90.67 55.33 68.67  49.90
Ours 94.00 4.67 4.00 21.33 17.00 0.00 26.67 22.67 4.67 12.63
No Attack - 67.00 12.67 41.33 93.50 22.00  92.67 41.33 79.67  56.27
SQUAD Dipper  75.33 23.67 2.67 10.00 77.67 5.00 75.33 67.33 53.33  39.38
Raidar ~ 95.33 58.00 12.33 19.33 81.67 26.00  84.00 32.67 73.50  48.44
Ours 88.67 8.33 2.67 8.67 27.50 5.00 25.33 7.33 3.67 11.06
No Attack - 73.83 33.33 10.67 86.00 36.25  88.67 38.67 89.33  57.09
LongQA Dipper  94.67  28.83 6.00 0.67 75.00 5.00 67.33 65.33 74.00  40.27
£ Raidar  100.00  59.33 22.67 1.33 72.67 3375 7733 28.00 79.50  46.82
Ours 95.33 14.50 5.00 0.00 11.33 0.00 16.00 6.67 6.00 7.44
LLM-Generated paragraph Dipper paraphrase CoPA
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the cargo of a plane headed to Switzerland on Monday
night. The heist went down at a small European airport,

totally throwing off the authorities and airline people.
\n\nThey made it look like a legit police operation...

LLM likelihood: 1.00

LLM likelihood: 0.8 -

LLM likelihood: Q

Figure 5: Paraphrased sentences by Dipper and our CoPA. We use Fast-DetectGPT to provide the LLM likelihood.

vide results paraphrased by four more LLMs (e.g.,
DeepSeek R1-Distill-32B (DeepSeek-Al, 2025))
in Appendix C. More details about the human and
machine-like prompts are in Appendix B.

4.2 Performance Evaluation

We test machine texts generated by GPT-3.5-turbo
and present results on three datasets in Table 1.
Attack Effectiveness. By conducting a self-
introspective correction on token distributions,
CoPA remarkably enhances the attack over baseline
attacks, e.g., an average improvement of 30.55% in
fooling text detectors across three datasets. Al-
though Dipper demonstrates satisfactory perfor-
mance against several detectors, it becomes signif-
icantly less effective when facing more advanced
algorithms such as FastDetectGPT. In contrast, our
method consistently exhibits impressive attack effi-
cacy across various text detectors. Notably, while
Raidar-A and our method employ the same LLM as
the paraphraser, CoPA greatly outperforms Raidar-
A, validating the effectiveness of our designed
prompt and contrastive paraphrasing mechanism.
As for the text quality of rewritten sentences, we
demonstrate that CoPA achieves an average seman-
tic similarity score exceeding 90% across various

datasets, confirming that our method effectively
preserves semantic fidelity during rewriting. While
Raidar-A exhibits greater text similarity, its attack
effectiveness remains considerably limited. As a
comparison, CoPA achieves both excellent attack
effectiveness and semantic consistency.
Visualization of Rewritten Texts. We provide
examples of rewritten texts before and after the
paraphrasing in Figure 5. As expected, the rewrit-
ten sentences maintain semantic consistency while
exhibiting richer and diverse human-like expres-
sions. This underpins our success in fooling text
detectors and presents a practical attack method.

4.3 Attacks on More Source LLMs.

In addition to GPT-3.5-turbo, we also consider
the machine texts generated by recently prevalent
LLMs, including GPT-4 (Achiam et al., 2023) and
Claude-3.5 (Anthropic, 2024). Besides, we pro-
vide results on GPT-40 (Achiam et al., 2023) and
Gemini-1.5 Pro (Team et al., 2024) in Appendix C.

Table 2 demonstrates that our method contin-
ues to achieve excellent attack efficacy and seman-
tic similarity across various LLM-generated texts,
greatly outperforming the SOTA method Dipper.
For detection of GPT-4 texts under Fast-DetectGPT,



Table 2: Attack Performance (at 5% FPR) of texts generated by more source LLMs based on XSum dataset.

Defense

Model Attack Sim Avg.
LogRank DetectGPT DNA-GPT Fast-DetectGPT Raidar TOCSIN RoBERTa R-Detect
No Attack - 30.00 6.00 35.33 51.67 24.17  73.33 32.67 46.00 37.40
GPT-4 Dipper  91.33 8.67 0.67 30.67 64.33 20.83  64.67 78.00 37.67 38.19
Raidar  100.00  35.00 9.50 34.67 68.33 20.83  82.00 47.33 60.50 44.77
Ours 94.67 2.00 0.67 18.67 15.33 10.83  20.00 20.67 6.83 11.88
No Attack - 42.67 21.67 24.67 50.00 36.67  70.00 19.33 30.67  36.96
Claude 3.5 Dipper  82.00 18.17 0.33 20.67 38.67 0.00 36.67 77.33 4033 29.02
’ Raidar  100.00 46.83 18.77 15.33 41.33 41.64  66.00 20.67 38.00 36.07
Ours 98.00 1.33 0.67 6.67 4.00 0.00 8.00 7.33 1.33 3.67
@22 —— Dipper (Fast-Detect) —&— CoPA (Fast-Detect) Dipper-Sim
4 —— Dipper (TOCSIN) —&— CoPA (TOCSIN) CoPA-Sim
R19
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Figure 6: Comparison of detection accuracy on the
first 50 samples from XSum under different values of A
against Fast-DetectGPT (Bao et al., 2024).

Dipper even increases the likelihood to be classified
as machine-generated than the No Attack baseline.
In contrast, CoPA stably achieves outstanding fool-
ing rates across various source models, confirming
the robustness of the proposed contrastive para-
phrase. Another observation is that the detection
performance on clean texts generated by more re-
cent models is significantly reduced. The decline
may stem from the ability of advanced LLMs to
generate varying sentences that are more challeng-
ing to detect, underscoring the urgent need for more
reliable detection systems.

4.4 Ablation Study

We then investigate the effect of different factors.
More ablation studies are in Appendix C.

Impact of contrastive coefficient \. During
decoding, the hyperparameter A serves as a criti-
cal regulation factor for the contrast strength. As
shown in Figure 6, positive values of A consistently
enhance the fooling rates relative to A = 0, again
confirming the effectiveness of our contrastive para-
phrasing mechanism. Note that CoPA attains opti-
mal performance at A = 0.5, which is then chosen
as the default setting for our experiments. Notably,
the general trend of TPR over the A roughly aligns
with our preceding theoretical analysis, verifying
the rationality of our established theory.

Impact of Multiple Paraphrases. Each LLM-
generated text is rewritten only once in our for-

~
=)

100

90

80
70
60
50

40
30

20
10
0

1 2 4 5

5% (%)
(=2}
(=]

o
=)

TPR@FPR:
IREN
S oS

N
o
Semantic similarity (%)

—
=)

3
Number of paraphrases

Figure 7: Performance under different numbers of para-
phrases against Fast-DetectGPT (Bao et al., 2024) and
TOCSIN (Ma and Wang, 2024) on samples generated
by GPT-3.5-turbo from the XSum dataset. The dashed
lines describe semantic similarity.

mer experiments. We further analyze the influence
of multiple rewrites on the results. As shown in
Figure 7, increasing the number of rewrites gener-
ally strengthens attack effectiveness. However, the
performance gain is limited against two advanced
defenses, and the semantic similarity of Dipper-
rewritten texts sharply drops as the iterations in-
crease. These factors reduce the utility of using
multiple paraphrases to improve the attack (Sada-
sivan et al., 2023). Also, this again highlights the
superiority of our method, which achieves outstand-
ing fooling rates via only a single paraphrasing.

5 Conclusion

This paper proposes CoPA, a simple yet highly ef-
fective paraphrasing attack against Al-generated
text detectors. CoPA constructs a machine-style
token distribution as a negative contrast for reduc-
ing linguistic biases of LLMs and facilitating the
generation of richer and more diverse sentences.
Through both theoretical analysis and experimental
validation, we fully demonstrate the superiority of
the proposed method across various scenarios. We
envision CoPA as a powerful tool for auditing the
robustness of detection systems, inspiring future
development of more robust detection algorithms.



Limitation

While our method avoids the overhead of training
a dedicated paraphraser by leveraging an off-the-
shelf LLM, the contrastive paraphrasing mecha-
nism requires two forward passes to construct the
contrastive token distribution, bringing additional
latency during next-token prediction. This may
limit the practicality of the proposed attack in real-
time applications. Besides, although human eval-
uation results in Appendix G indicate that CoPA-
paraphrased texts are preferred over those from
Dipper, we did not systematically account for the
detailed linguistic backgrounds of evaluators and
may introduce bias. A more comprehensive human
study is needed to validate the general quality of the
output sentences. Finally, this work follows prior
studies and focuses exclusively on English text.
Extending the contrastive paraphrasing framework
to other languages such as Chinese and Spanish
would be valuable for its broader applicability.

Ethical Statement

This paper presents a novel method aimed to ad-
vance the research field of LLM-generated text de-
tection. Note that all experiments are conducted
within controlled laboratory environments. We do
not expect the proposed method to serve as a pow-
erful tool for potential adversaries but to raise so-
ciety’s broader awareness of the vulnerability of
current Al-text detectors. Also, the exceptional
attack performance highlights the practical limi-
tations of current detectors. Researchers of the
open-source community are encouraged to conduct
stress tests on their detectors against the proposed
attack, based on which future studies can develop
more robust stronger detectors. Furthermore, we
conduct a preliminary study to alleviate the pro-
posed threat via an adaptive defense that adver-
sarially trains a Roberta-based detector using
texts paraphrased by CoPA in Appendix F.

All the codes, models, and datasets used in this
study are consistent with their intended use and
comply with the MIT License. To promote further
research, we will open-source our paraphrasing
tool along with the related code, model, and data.
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A Theorem and Proof
Definition 1. g(\) := KL(py||(1 + A)pj, — Apm).

Proposition 2. g(\) is a convex function.

Proof. KL is convex and g(\) is the restriction of
KL on a line, so g()\) is also convex. O

Proposition 3. If g()\) is not constant, then g(\)
has a unique minimum point.

Proof. The non-constancy of g(A) implies that
P, # Pm. The domain of g(\) is

[=({AeR:0< (1+ " — 2 <1},
veY

[—1,0] C I so I is non-empty. I is the intersec-
tion of some closed intervals, so I is also a closed
interval. Note that g(\) is continuous, so g(\) has
a minimum value.

Assume that g(\) has minimum points A; and Ao
with A\; < Ag. By the convexity, g() is constant
on [A1, A2]. Note that g(\) is an analytic function.
By Corollary 1.2.6 in (Krantz and Parks, 2002), the
constancy of g(A) on [A1, A2] implies the constancy
on I. This contradicts that g(\) is not constant, so
the minimum point of g(\) is unique. O

Remark. Corollary 1.2.6 in (Krantz and Parks,
2002) applies to open intervals, and g(\) is con-
tinuous at the endpoints, so it also applies to our
closed intervals, [A1, Ao] and .

Definition 2. The minimum point of g(\) is \..

Theorem 1. If ¢’(0) < 0, then A, > 0 and for any
A € (0, \y], we have

KL (pp||(1 + N)pj, — Apm) < KL(pallp). (7)

Proof. ¢'(0) < 0 implies that g()\) is not constant,
so A, is well-defined by Proposition 3.

g'(0) # 0 implies A, # 0. Assume A, < 0. By
the first-order condition of convex functions,

9(A) > 9(0) + g'(0) A > g(0).

This contradicts that g(\,) is minimum, so A, > 0.
By the definition of convex functions, we have

9 < 2gh) + (1 - j) 4(0).
= 9(0) = 5 (50) = g\)),
< 9(0)
forany A € (0, \]. g(A) < g(0)isjust (7). O
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B Experimental Details

We follow the implementation of (Wang et al.,
2024; Bao et al., 2024) to generate machine texts
for XSum and SQuAD while adopting the approach
of Dipper (Krishna et al., 2023) for LongQA. To re-
produce DetectGPT and Fast-DetectGPT, we align
with (Wang et al., 2024) and employ GPT2-XL
(Radford et al., 2019) as the surrogate model to
generate samples. As for DNA-GPT (Yang et al.,
2024), we adopt the basic setup surrogated on GPT-
3.5-turbo. For the LLM decoding, our experiments
adopt the default setup of sampling parameters, i.e.,
no probability clipping and 7" = 1. We run all
experiments in NVIDIA RTX A6000 GPUs.

Below, we provide our carefully designed
prompts to elicit human-like and machine-like to-
ken distributions from the off-the-shelf LLM.

(1) For human-style distributions:

System Prompt

You are a helpful paraphraser. You are given
an input passage 'INPUT’. You should para-
phrase "INPUT” to print "OUTPUT’. *OUT-
PUT’ should preserve the meaning and con-
tent of ’INPUT’. ’'OUTPUT’ should not be
very shorter than "INPUT’.

This system prompt is similar to that in (Sadasi-
van et al., 2023) and instructs the LLM to act as a
paraphraser while maintaining the text quality of
the sentences before the paraphrasing.

User Prompt

Rewrite the following INPUT in the tone
of a text message to a friend without any
greetings or emojis:

Rather than making a direct request for human-
toned texts, we experimentally find that present-
ing a realistic conversation scene with humans can
better guide the LLM to produce more vivid and
diverse sentences, further boosting stronger attacks.

(2) For machine-style distributions:

System Prompt

You are a helpful assistant.




Table 3: Detection accuracy (at 5% FPR) of texts generated by GPT-40 and Gemini-1.5-Pro based on XSum dataset.

Defense

Model Attack Sim Avg.
LogRank DetectGPT DNA-GPT Fast-DetectGPT Raidar TOCSIN RoBERTa R-Detect

No Attack - 33.33 1.83 37.33 12.00 100.00  24.00 3.33 26.67 29.81

GPT-4o Dipper  77.33 16.00 1.33 39.33 42.33 1133 42.67 68.00 43.67 33.08

Raidar 9933  24.00 11.67 42.67 46.33 5.00 64.67 15.33 56.67 33.29

Ours 96.67 3.00 0.67 22.00 6.33 5.00 10.00 16.67 4.67 8.54

No Attack - 21.67 13.00 36.00 32.00 28.00 33.33 12.67 24.67 2517

Gemini-1.5-Pro Dipper  80.67  11.00 0.67 23.33 51.17 5.00 48.00 72.67 35.67  30.94

’ Raidar ~ 100.00  31.00 8.67 26.00 39.83 30.00 48.67 22.67 42.67 31.19

Ours 93.33 2.00 2.67 6.67 10.00 2.00 10.00 9.33 2.00 5.58

Table 4: Comparison of different paraphrasing attacks against 8 text-detection algorithms (at 1% FPR) using
GPT-3.5-turbo generated texts from three different datasets. The best performances are bolded.

Dataset  Attack Sim Defense Avg.
LogRank DetectGPT DNA-GPT Fast-DetectGPT Raidar TOCSIN RoBERTa R-Detect

No Attack - 32.44 6.00 41.33 83.00 5.75 94.67 44.67 49.33  44.65

XSum Dipper  86.67 7.33 0.00 8.00 44.67 2.75 46.00 74.00 28.33  26.39
Raidar  100.00  21.00 1.00 5.33 57.33 3.25 85.33 39.33 58.67 33.91

Ours 94.00 2.00 0.01 5.33 4.67 0.00 18.00 9.33 0.00 4.92

No Attack - 20.50 2.67 0.00 82.33 4.44 83.33 15.33 58.00 33.33

SQUAD Dipper  75.33 3.00 1.33 1.33 57.67 1.00 50.00 39.33 43.33  24.62
Raidar 9533  21.33 533 0.00 59.33 5.20 68.00 8.67 48.67  27.07

Ours 88.67 1.17 1.33 0.00 9.67 1.00 12.67 1.33 0.00 3.40

No Attack - 28.50 7.50 0.00 74.00 7.25 82.67 28.67 7433 37.87

Dipper  94.67 6.50 0.00 0.00 55.67 1.00 31.33 49.33 63.33  25.90

LongQA Raidar  100.00  15.83 2.17 0.00 48.67 6.75 64.00 15.33 7033 27.89
Ours 95.33 2.67 1.33 0.00 5.33 0.00 8.67 2.00 3.00 2.88

User Prompt:

Repeat the following paragraph:

Considering that the original LLM-generated
sentence carries the richest machine-related char-
acteristics that are most easily detected, we adopt a
direct and effective strategy by making LLM repeat
the input sentence to obtain the most machine-like
token probabilities.

C Additional Results

More Source LLMs. We provide the perfor-
mance of paraphrasing on machine texts generated
by GPT-40 (Achiam et al., 2023) and Gemini-1.5
Pro (Team et al., 2024) in Table 3. It can be ob-
served that the proposed CoPA continues to achieve
better attack effectiveness than existing paraphras-
ing methods. Also, the detection algorithms obtain
relatively worse clean performance on texts gener-
ated by two advanced LLMs.

Results of FPR=1%. We then evaluate the at-
tack under a more strict setup where FPR=1%. As
shown in Table 4, CoPA consistently exhibits supe-
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Figure 8: ROC (0-5% FPR) for GPT-3.5-turbo on Fast-
DetectGPT and TOCSIN before and after paraphrasing.
The proposed CoPA achieves the best detection rate
across various FPRs.

rior attack performance over current paraphrasing
attacks. We also observe that some detection al-
gorithms fail to produce any defense effects even
without any attack at TPR=1%, raising concerns
about their feasibility in practical scenarios.

ROC Curve Analysis. Figure 8 shows the TPR
trends corresponding to different FPR values vary-
ing from 0% to 5%. As observed, TPR generally
increases as FPR grows, and CoPA significantly
reduces the TPR values of detection algorithms
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Figure 9: Detection accuracy (at FPR=5%) of CoPA under different sampling parameters against Fast-DetectGPT
(Bao et al., 2024) and TOCSIN (Ma and Wang, 2024). We calculate results using samples from the XSum dataset.

Table 5: Attack results paraphrased by different off-the-shelf LLMs (at 5% FPR) using GPT-3.5-turbo generated
texts from three different datasets.

Paraphraser
Dataset Detector
No Attack R1-Distill-32B  QwQ-32B  Qwen2.5-7B  GLM-4-9b-hf Qwen2.5-72B

Fast-DetectGPT 95.33 24.33 11.33 17.33 31.33 17.00
XSum TOCSIN 98.00 42.67 10.00 26.00 87.00 26.67
R-Detect 49.33 6.33 00.00 1.33 38.33 0.00
Fast-DetectGPT 93.50 26.83 9.50 33.33 31.33 27.50
SQuAD TOCSIN 92.67 42.00 17.33 26.00 81.33 25.33
R-Detect 58.00 13.00 0.00 1.67 39.67 0.00
Fast-DetectGPT 86.00 14.67 11.33 14.00 27.33 11.33
LongQA TOCSIN 88.67 26.00 2.00 18.00 78.00 16.00
R-Detect 74.33 22.67 0.00 3.00 47.33 3.00

across all FPR thresholds, which strongly validates  next consider more LLMs as the paraphraser, in-
the effectiveness of the proposed CoPA. Note that  cluding various model scales and recently prevalent
under the stricter and more realistic setting of FPR  reasoning-based models. Specifically, we consider
= 1%, CoPA reaches a detection accuracy below  Deepseek R1-Distill-32B (DeepSeek-Al, 2025),
20% against these defenses, further underscoring ~ QwQ-32B (Team, 2025), Qwen2.5-7B (Qwen,
its superior performance. 2024), and GLM-4-9B-hf (GLM, 2024). The quan-
titative results in Table 5 show the effectiveness
of the proposed CoPA across various LLMs. Note
that the QwQ-32B generally achieves the best per-
formance. However, the reasoning-based models
require significantly more inference time than reg-
ular models. Hence, we choose the Qwen2.5-72B
to balance effectiveness and efficiency.

Impact of LLM Sampling Parameters. Dur-
ing decoding, LLMs employ various sampling pa-
rameters such as Top-p, Top-k, and the tempera-
ture coefficient 7" to adjust the sampling results.
To investigate their influence, we conduct ablation
studies regarding these parameters during the de-
coding process of our paraphrasing in Figure 9. For

Top-p E.md Top _.k‘i > th? redl.lcuc?n of p or & results in Table 6: Comparison of CoPA with a surrogate-based
a drop in sampling diversity since fewer tokens are  paraphrasing attack against two SOTA detectors.
retained, thereby generating more machine patterns

and impairing the performance. For the tempera- Attack Sim Defense

ture (7'), numeric results indicate that the increase Fast-DetectGPT TOCSIN

of T facilitates the creativity and diversity of sam- Redtcaming 78.00 30.00 18.67
pling choices by reducing the difference in token Ours 94.00 17.00 26.67
probabilities, hence better misleading the detectors.

An adversary can adjust these parameters based on Comparison with a surrogate-based baseline.
their needs to achieve a superior attack while con-  Thjg paper follows Dipper (Krishna et al., 2023)
trolling the writing styles of generated sentences. and focuses on the more practical and universal

Results of More LLMs as paraphrasers. To  attacks without relying on any surrogate detection
validate the universality of the proposed attack, we ~ model. A direct comparison of these methods with
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Mrs Foster said on Wednesday that she wanted to
better understand those who love the language.
She said she wanted to \"listen to and engage with
all those who have a deep passion for language.\"
Mrs. Foster, a renowned linguist and language
LLM-Generated paragraph

enthusiast, expressed her desire to ...
N\ /
LLM likelihood: 1.00 A

Mrs Foster said she wants to understand and
connect with people who love language. She’s all
about listening and engaging with anyone who
has a deep passion for it. She thinks it’s important
to build a community where we can share ideas,

talk about trends, and enjoy the richness ...

Human-like prompt only
LLM likelihood: 0.99

On Wednesday, Mrs. Foster said she wants to
understand and connect with people who love
language. She’s all about listening and engaging
with everyone who has a passion for it. As a
linguist and language lover, she’s keen on building
a community where we can share ideas ...

CoPA o

LLM likelihood: 0.05

7

\ﬂ/

The furry feline has been a familiar face on the
steps outside Number 10's black door since he
moved in, in 2011. And the Prime Minister's cat,
Larry, shows no signs of leaving his post any time
soon. Larry, the official Chief Mouser to the

The furry feline has been hanging around the
steps of Number 10 since 2011, and the PM’s cat,
Larry, isn’t planning on leaving anytime soon. As

the official Chief Mouser to the Cabinet Office,
Larry has become a beloved symbol of Downing
Street over the years.\n\nSince he arrived ... 4

Larry, the PM's cat, has been hanging out on the
steps of Number 10 since 2011 and doesn't seem
to be going anywhere anytime soon. As the
official Chief Mouser to the Cabinet Office, he’s
become a real symbol of Downing Street. His
ginger and white fur has made him a favorite ... 7

Cabinet Office, has become a beloved symbol 4
LLM-Generated paragraph

N\ 7/
LLM likelihood: 0.98 _n_

Human-like prompt only
LLM likelihood: 0.72

O n’_ CoPA o

LLM likelihood: 0.11

Stephen Parnaby, Conservative leader of East
Riding of Yorkshire Council, said the
announcement was \"great news for the town and
the wider East Riding area\". Parnaby's comments
came as the council revealed plans for a major
redevelopment project in the region ...

4

\n/
—

LLM-Generated paragraph
LLM likelihood: 1.00

Stephen Parnaby, the Conservative leader of East
Riding of Yorkshire Council, called it \"great
news for the town and the wider East Riding

area.\" The council just unveiled plans for a big
redevelopment project that's set to revitalize the
local economy and create new jobs ...

Human-like prompt only
LLM likelihood: 0.98

Parnaby, the Conservative leader of East Riding of
Yorkshire Council, called the announcement
\"great news\" for the town and wider area. The
council's big redevelopment plan aims to
strengthen the local economy and create jobs. This

includes major investments in infrastructure ... ;7

CoPA o

LLM likelihood: 0.25

\ﬂ/
—

Figure 10: Visualization of paraphrased sentences from human-like distribution pj, and our contrastive distribution
pe (i.e., our CoPA). The LLM likelihood is calculated based on Fast-DetectGPT.

the surrogate-based paraphrasing attack introduced
in RedTeaming (Shi et al., 2024) may raise con-
cerns of unfairness. However, results in Table 6
reveal that the proposed CoPA can still achieve
better performance than RedTeaming.

Notably, we include these results only for exper-
imental completeness. The surrogate-based meth-
ods are not the focus of this work.

D Analysis of human-like prompt only

As shown in Figure 10, we observe that solely
relying on the human-like prompt x; results in
unstable attack performance, i.e., some sentences
derived from the human-like distribution pj, still
retain prominent machine-related features, which
render them easily identifiable by text detectors. To
alleviate this issue, our CoPA framework utilizes an
auxiliary machine-like distribution to fully remove
these machine characteristics from py, significantly
deceiving text detectors and leading to incorrect
predictions. As corroborated by more detailed em-
pirical studies, the proposed contrastive strategy
greatly boosts the effectiveness and stability of the
paraphrasing attack.

E Details about Machine Prompt

The prompts used in Figure 3 are as follows:

Machine Prompt 1

Repeat the following paragraph:
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Machine Prompt 2

Rewrite the following paragraph in the tone
of an Al assistant:

Machine Prompt 3

Paraphrase the following paragraph:

Machine Prompt 4

Rewrite the following paragraph:

Table 7: Detection accuracy (at 5% FPR) of texts gener-
ated by GPT-3.5-turbo based on the XSum dataset.

Attack w/o training  Adversarial training
No Attack 66.67 99.78
CoPA 22.67 78.00

F An Adaptive Defense Strategy

To alleviate the proposed threat, we implement an
adaptive defense that adversarially trains OpenAlI’s
LLM-text classifier RoOBERTa-large. We fine-tune
the model for 10 epochs using Sk human texts and
5k machine texts (including both the original ma-
chine texts and those paraphrased by CoPA). We
present the optimal performance at a proportion
of 50% CoPA-paraphrased samples within the S5k
machine texts in Table 7.



Table 8: Comparison of our method with Dipper on text quality. The perplexity is calculated on GPT-neo.

Dataset Text Sim?T  Perplexity] GPT-4 Eval Human Eval
Natural fluencyf Consistency! Natural fluency! Consistency?

Human - 16.11 3.88 - 4.40 -

XSum Machine - 8.857 4.33 - 4.94 -
Dipper  86.67 14.76 3.74 3.76 4.25 4.26
Ours 94 15.58 4.64 4.95 4.74 4.87

Human - 19.52 3.60 - 3.98 -

Machine - 10.28 4.71 - 4.81 -
SQuAD Dipper  75.33 14.70 353 3.57 4.02 4.05
Ours 88.67 17.77 4.56 491 4.56 4.79

Human - 27.54 3.48 - 3.75 -

Machine - 7.79 491 - 4.99 -
LongQA - pyioper 9467 11.61 3.57 411 4.04 423
Ours 95.33 13.08 4.57 4.99 4.53 4.81

The results indicate that the adaptive defense
based on texts provided by our CoPA can alleviate
the proposed threat to some extent.

G Evaluation on Text Quality

Apart from the attack effect, it is necessary to an-
alyze the text quality of paraphrased sentences.
Specifically, we provide a comprehensive evalu-
ation of natural fluency and semanticconsistency
with additional key metrics, including text perplex-
ity, GPT4-assisted evaluation, and human study. To
conduct the human evaluation, we choose GPT-3.5-
turbo as the source model and randomly select 100
pairs of texts from each dataset for human annota-
tors. The evaluation criteria generally align with
those in Dipper (Krishna et al., 2023), where we
recruit 10 native English speakers from Amazon
Mechanical Turk (MTurk) to perform the evalua-
tion. We report the average scores to reduce sub-
jective biases in Table 8. The results indicate that
the proposed method produces paraphrased texts
with lower perplexity than authentic human-written
texts, while achieving substantially better fluency
and semantic consistency compared to those gener-
ated by Dipper, in both terms of GPT-4 assited and
human evaluation.

The instructions given to human annotators for
semantic consistency align with those in Dipper,
while we provide the scoring standard for natural
fluency and the detailed prompt for GPT-4 auto
evaluation as follows:
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Instruction for Human evaluation:

Natural Fluency Scoring (1-5)

5. Excellent: Text flows perfectly naturally
with varied, idiomatic phrasing. Grammar,
word choice, and sentence structure appear
completely native with zero awkwardness.

s 4. Good: Text reads smoothly with only
minor and infrequent awkwardness. May
contain 1-2 subtle non-native phrasings, but
remains highly readable.

3. Fair: Generally understandable but
contains noticeable unnatural phrasing.
Some grammatical errors or awkward
constructions occasionally disrupt flow.

2. Poor: Frequent unnatural phrasing and
grammatical errors make reading diffi-
cult. Requires effort to understand in places.

1. Very Poor: Severely broken or unnatural
English with major grammar issues. Often
difficult or impossible to understand.




Prompt for GPT-4 evaluation:

(1) Task: Evaluate the natural fluency of a given sentence. Use a 5-point scale (5 = highest).
Natural Fluency (1-5):
1. Does the rewritten sentence flow naturally, avoiding awkward phrasing or redundancy?
2. Assess grammar, word choice, and readability (e.g., smooth transitions between clauses).
3. Penalize unnatural idioms or register mismatches (e.g., mixing formal and colloquial terms)

Output Format
Please provide the score for the metric.
Include a concise rationale (1-2 sentences per metric) highlighting specific strengths/weaknesses.
Example:

INPUT: "The deadline got pushed back because of unexpected tech issues."

OUTPUT: 4/5 (Colloquial tone matches intent; "pushed back" is natural but "tech issues"
slightly informal).

(2) Task: Evaluate the semantic consistency of a rewritten sentence compared to its original version.
Use a 5-point scale (5 = highest).
Semantic Consistency (1-5):

1. Does the rewritten sentence preserve the original meaning?

2. Check for critical information retention, logical coherence, and absence of distortion.

3. Deduct points for omissions, additions, or ambiguous interpretations

Output Format
Provide the score for the metric.
Include a concise rationale (1-2 sentences per metric) highlighting specific strengths/weaknesses.
Example:
INPUT:
Original: "The project deadline was extended due to unforeseen technical challenges."
Rewritten: "The deadline got pushed back because of unexpected tech issues."
OUTPUT:
5/5 (Key details retained; no loss of meaning).
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