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Abstract001

The misuse of large language models (LLMs),002
such as academic plagiarism, has driven the003
development of detectors to identify LLM-004
generated texts. To bypass these detectors,005
paraphrase attacks have emerged to purposely006
rewrite these texts to evade detection. Despite007
the success, existing methods require substan-008
tial data and computational budgets to train a009
specialized paraphraser, and their attack effi-010
cacy greatly reduces when faced with advanced011
detection algorithms. To address this, we pro-012
pose Contrastive Paraphrase Attack (CoPA), a013
training-free method that effectively deceives014
text detectors using off-the-shelf LLMs. The015
first step is to carefully craft instructions that016
encourage LLMs to produce more human-like017
texts. Nonetheless, we observe that the inher-018
ent statistical biases of LLMs can still result in019
some generated texts carrying certain machine-020
like attributes that can be captured by detectors.021
To overcome this, CoPA constructs an auxiliary022
machine-like word distribution as a contrast to023
the human-like distribution generated by the024
LLM. By subtracting the machine-like patterns025
from the human-like distribution during the de-026
coding process, CoPA is able to produce sen-027
tences that are less discernible by text detectors.028
Our theoretical analysis suggests the superior-029
ity of the proposed attack. Extensive exper-030
iments validate the effectiveness of CoPA in031
fooling text detectors across various scenarios.032

1 Introduction033

Large language models (LLMs), such as GPT-4034

and Claude-3.5, have demonstrated remarkable035

abilities in text comprehension and coherent text036

generation. These capabilities have driven their037

widespread applications, including code generation038

(Jiang et al., 2024) and academic research (Stokel-039

Walker, 2022). However, the misuse of LLMs for040

harmful purposes, such as academic plagiarism and041

misinformation generation, has raised significant042

societal concerns (Bao et al., 2024) regarding safety043
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40-year-old Maj Richard Scott is 
accused of speeding up to 95mph 
in bad weather before crashing 
and killing two kids on the A34 
near Newbury last Saturday…
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Maj Richard Scott, 40, faces charges 
of driving at speeds up to 95mph 
(153km/h) in adverse weather prior to 
a deadly accident that took the lives 
of two young children. The crash 
happened on the A34 motorway near 
Newbury, Berkshire, last Saturday…
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tragedy unfolded on the A34 motorway 
near Newbury, last Saturday…

Maj Richard Scott, 40, is accused 
of driving at speeds of up to 95mph 
(153km/h) in bad weather before the 
fatal crash that claimed the lives 
of two young children. The incident 
occurred on the A34 motorway near 
Newbury, last Saturday…
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Figure 1: Comparison of different paraphrasing strate-
gies. The human-like and machine-like prompts are
crafted to guide the LLM in generating human-style and
machine-style texts, respectively.

and ethics. In response, various detection methods 044

that leverage the unique characteristics of LLM- 045

generated texts from multiple perspectives have 046

been proposed to mitigate the associated risks. 047

Concurrently, red-teaming countermeasures (Kr- 048

ishna et al., 2023; Shi et al., 2024) have also been 049

introduced to evaluate the reliability of these de- 050

tection algorithms, which can be broadly catego- 051

rized into word-substitution and paraphrase at- 052

tacks. Specifically, word-substitution attacks (Shi 053

et al., 2024; Wang et al., 2024) replace specific 054

important words in the fake sentence using candi- 055

date words generated by a language model. How- 056

ever, they require an additional surrogate model to 057

identify the word importance, and the replacement 058

operation can significantly increase sentence per- 059

plexity (Wang et al., 2024), making the processed 060

texts easily identified by humans. In contrast, Dip- 061
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per (Krishna et al., 2023) proposes a paraphrase-062

based attack that rewrites the whole paragraph by063

modifying the syntax and phrasing to deceive text064

detectors. This approach does not rely on surro-065

gate models and can preserve sentence perplexity,066

presenting a more practical and versatile attack067

strategy. Nonetheless, Dipper requires training a068

large-scale generative language model as the para-069

phraser, incurring substantial data collection and070

computational burdens. Moreover, the attack per-071

formance is greatly diminished when confronted072

with more advanced defense strategies such as Fast-073

DetectGPT (Bao et al., 2024), as shown Sec. 4.2.074

In this paper, we build upon the research line075

of paraphrase attacks and propose a training-free076

paraphrase approach named Contrastive Paraphrase077

Attack (CoPA), which aims to elicit human-written078

word distributions from an off-the-shelf LLM to079

evade detection. Specifically, we revisit the funda-080

mental mechanisms underlying existing detection081

algorithms and hypothesize that the core principle082

of effective paraphrase attacks lies in erasing the083

machine-inherent characteristics within the para-084

graph while incorporating more human-style fea-085

tures, such as more flexible choices of words and086

phrases. Based on this insight, we intuitively seek087

to craft prompts that alleviate the established statis-088

tical constraints of pre-trained LLMs and produce089

more human-like word distributions, as shown in090

Fig. 1. While this strategy exhibits some effective-091

ness, LLMs pretrained on massive corpora hold a092

strong tendency to prioritize words with high statis-093

tical probability to ensure sentence coherence (Bao094

et al., 2024; Mao et al., 2024). This inherent bias095

consistently influences the word choices of gener-096

ated sentences, irrespective of the input prompts.097

Therefore, some paraphrased sentences still exhibit098

certain machine-related characteristics, rendering099

them highly discernible by detection classifiers.100

To address this limitation, we conduct a reverse-101

thinking analysis. While it is challenging to di-102

rectly produce highly human-written word distri-103

butions that can fully bypass detection, eliciting104

the opposite machine-like word distributions that105

contain rich machine-related attributes is consider-106

ably easier. These machine-like word probabilities107

can then serve as negative instances to further pu-108

rify the obtained human-style distribution for more109

human-like text generation. In light of this con-110

sideration, an auxiliary machine-like distribution111

is constructed as a contrastive reference, which is112

used to filter out the machine-related concepts from113

the aforementioned human-like distribution. By 114

sampling from the meticulously adjusted word dis- 115

tribution, CoPA generates more diverse and human- 116

like sentences, which exhibit remarkable effective- 117

ness in deceiving LLM-text detectors. 118

Contributions. We propose CoPA, a novel para- 119

phrase attack that contrastively modifies the word 120

distribution from an off-the-shelf LLM to rewrite 121

generated texts for enhanced attacks against text 122

detectors. CoPA eliminates the cumbersome bur- 123

dens of training a dedicated paraphraser, achieving 124

an efficient and effective attack paradigm. Fur- 125

thermore, we develop a theoretical framework that 126

substantiates the superiority of CoPA. 127

To validate the effectiveness, we conduct ex- 128

tensive experiments on 3 long-text datasets with 129

various styles against 8 powerful detection algo- 130

rithms. Compared to baselines, CoPA consistently 131

enhances the attack while maintaining semantic 132

similarity, e.g., an average improvement of 57.72% 133

in fooling rates (at FPR=5%) for texts generated by 134

GPT-3.5-turbo when against Fast-DetectGPT. 135

2 Related Work 136

2.1 LLM-generated Text Detection 137

Existing detection algorithms for AI-generated text 138

can generally be categorized into two types: (i) 139

Training-based detection: These methods typically 140

involve training a binary classification language 141

model. Specifically, OpenAI employs a RoBERTa 142

model (Liu, 2019) trained on a collection of mil- 143

lions of texts for detection. To enhance the detec- 144

tion robustness, RADAR (Hu et al., 2023) draws in- 145

spiration from GANs (Goodfellow et al., 2020) and 146

incorporates adversarial training between a para- 147

phraser and a detector. Additionally, DeTective 148

(Guo et al., 2024) proposes a contrastive learning 149

framework to train the encoder to distinguish var- 150

ious writing styles of texts, and combined with a 151

pre-encoding embedding database for classification. 152

R-detect (Song et al., 2025) employs a kernel rela- 153

tive test to judge a text by determining whether 154

its distribution is closer to that of human texts. 155

Despite the efforts in specific domains, training- 156

based methods are struggling with generalization 157

to unseen language domains, which reduces their 158

practicality and versatility. (ii) Zero-shot detection: 159

These methods are training-free and typically focus 160

on extracting inherent features of LLMs’ texts to 161

make decisions. GLTR (Gehrmann et al., 2019) 162

and LogRank(Solaiman et al., 2019) leverage the 163
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probability or rank of the next token for detection.164

Since AI-generated text typically exhibits a higher165

probability than its perturbed version, DetectGPT166

(Mitchell et al., 2023) proposes the probability cur-167

vature to distinguish LLM and human-written text.168

Building on this, Fast-DetectGPT (Bao et al., 2024)169

greatly improves the efficiency by introducing con-170

ditional probability curvature that substitutes the171

perturbation step with a more efficient sampling172

step. TOCSIN (Ma and Wang, 2024) presents a173

plug-and-play module that incorporates random to-174

ken deletion and semantic difference measurement175

to bolster zero-shot detection capabilities. Other176

methods explore different characteristics, such as177

likelihood (Hashimoto et al., 2019), N-gram diver-178

gence (Yang et al., 2024), and the editing distance179

from the paraphrased version (Mao et al., 2024).180

2.2 Attacks against Text Detectors181

Red-teaming countermeasures have been proposed182

to stress-test the reliability of detection systems.183

Early attempts evade detection using in-context184

learning (Lu et al., 2023) or directly fine-tuning the185

LLM (Nicks et al., 2023) under a surrogate detector.186

Recent advances can be broadly categorized into:187

Substitution-based attacks. Shi et al. (2024)188

introduce the substitution-based approach, which189

minimizes the detection score provided by a sur-190

rogate detector by replacing certain words in AI191

sentences with several synonyms generated by an192

auxiliary LLM. Subsequently, RAFT (Wang et al.,193

2024) improves the attack performance by intro-194

ducing an LLM-based scoring model to greedily195

identify critical words in the machine sentences.196

However, this type of attack relies on an additional197

surrogate model, and the generated sentences suf-198

fer from reduced coherence and fluency, which are199

easily identifiable by human observations and limit200

their practical utility in real-world scenarios.201

Paraphrasing-based attacks. Conversely, Dip-202

per (Krishna et al., 2023) suggests a surrogate-free203

approach that can perfectly maintain text perplex-204

ity. With a rewritten dataset of paragraphs with al-205

tered word and sentence orders, Dipper fine-tunes206

a T5-XXL (Raffel et al., 2020) as a paraphraser207

to rewrite entire machine paragraphs, which effec-208

tively fools text detectors while preserving seman-209

tic consistency. Based on Dipper, Sadasivan et al.210

(2023) introduce a recursive strategy that performs211

multiple iterations of paraphrasing, with slightly212

degrading text quality while significantly enhanc-213

ing attack performance. Raidar (Mao et al., 2024)214

proposes a straightforward approach that directly 215

queries an LLM to paraphrase machine text into 216

paragraphs with more human-style characteristics. 217

Shi et al. (2024) suggest a strategy that automati- 218

cally searches prompts to induce more human-like 219

LLM generations. However, it relies on a strong 220

assumption that a surrogate detector is available. 221

This paper follows the more practical and ap- 222

plicable paradigm of surrogate-free paraphrasing 223

attacks and proposes a contrastive paraphrasing 224

strategy, which achieves remarkable efficacy in by- 225

passing LLM-text detection systems. 226

3 Method 227

In this section, we first present the paradigm of 228

paraphrase attacks. Then, we elaborate on the pro- 229

posed CoPA that rewrites generated texts using a 230

pre-trained LLM. Finally, we provide a theoretical 231

framework to guarantee the attack effectiveness. 232

3.1 Problem Formulation 233

We denote the AI-generated text detector weighted 234

by w as Dw : Y → [0, 1], where Y denotes the 235

text domain. The detector Dw maps text sequences 236

y ∈ Y to corresponding LLM likelihood scores, 237

where higher values indicate a greater probabil- 238

ity of being LLM-generated. For an LLM pre- 239

trained on extensive corpora, the resulting texts ex- 240

hibit significant writing styles, including word pref- 241

erences and coherent syntactic structures, which 242

have been leveraged in previous studies to de- 243

velop various text detectors. To evade detection, 244

a malicious paraphrase attacker aims to reduce 245

these machine-related concepts within the machine- 246

generated texts to obtain paraphrased variants that 247

can effectively mislead Dw into outputting lower 248

LLM likelihood scores. Before delving into the 249

proposed method, we first review the token genera- 250

tion paradigm of the LLM inference. We consider 251

utilizing an off-the-shelf LLM as the paraphraser. 252

Given an input instruction x, a machine text ym 253

and a pre-trained LLM fθ(·) parameterized by θ, 254

fθ generates the paraphrased paragraph y by pro- 255

ducing tokens in an autoregressive manner. At each 256

timestep t, fθ(·) samples the next token yt from the 257

conditional probability distribution: 258

yt ∼ pθ(·|x, ym, y<t) ∝ exp fθ(·|x, ym, y<t),
(1) 259

where y<t denotes the previously generated se- 260

quence. Particularly, the probability of a gener- 261

ated text y with length l can be expanded as the 262
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Paraphrase the input in
the tone of a real human.

Paraphrase the input in
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SampleAttack Pipeline

Figure 2: Overview of the proposed CoPA. The contrastive paraphrasing successfully penalizes the LLM-preferred
word ‘embarked’ (Liang et al., 2024) and encourages more flexible word choices for next-token sampling.

multiplication of conditional probabilities:263

qθ(y) =

l∏
t=1

pθ(yt|x, ym, y<t), (2)264

where qθ(·) denotes the text probability distribution.265

Based on the chain rule in Eq. (2), the sentence-266

level paraphrasing problem can be further refor-267

mulated as a token-level selection task, i.e., design268

algorithms to adequately penalize the probability of269

machine-favored tokens and inspire more human-270

like word choices for generating sentences able to271

confuse the text detector Dw(·). In addition to out-272

standing attack performance, the revised sentences273

should preserve the original semantics and exhibit274

a high degree of coherence to ensure text quality.275

3.2 Contrastive Paraphrase Atatcks276

Building upon the preceding analysis, an intuitive277

approach is to devise a prompt xh that can elicit278

more diverse token distributions p′h from LLM279

fθ(·) to simulate authentic human-written distribu-280

tion ph. While this strategy achieves some success,281

we find that the inherent statistical priors of lan-282

guage models persistently impose constraints on283

the output distributions. As a result, this leads to284

unstable outcomes, with some revised sentences285

still exhibiting sufficient machine-related patterns286

and remaining highly detectable (see Appendix D).287

To achieve more effective and stable attacks, we288

carefully examine this issue and identify the fol-289

lowing two critical considerations. (1) The current290

strategy essentially operates within the input space291

(i.e., modify input prompts) to indirectly influence292

the output token distribution, which remains in-293

evitably constrained by the prior knowledge en-294

coded in the LLM. Instead, directly manipulating295

the output distribution is a potentially more promis- 296

ing alternative. (2) Generating word distributions 297

that can fully deceive detection models is challeng- 298

ing; however, it is much easier to generate word 299

distributions that are highly detectable. From a 300

reverse-thinking perspective, those LLM-favored 301

tokens are also considerably valuable since they en- 302

capsulate rich machine-style features and can serve 303

as negative examples for contrastive references. 304

Based on these insights, we propose our Con- 305

trastive Paraphrase Attack, a novel approach that di- 306

rectly employs a dynamic adjustment to the output 307

word distributions during LLM decoding. Figure 308

2 illustrates the core pipeline of CoPA. Apart from 309

the prompt xh for human-style distributions p′h, 310

we also construct a comparative machine prompt 311

xm to elicit machine-preferred word choices pm. 312

By contrasting human-like and machine-like token 313

distributions, CoPA refines the probabilities in the 314

decoding process and encourages generations of 315

texts with enhanced human-written resemblance. 316

Formally, the contrastively purified token distribu- 317

tion at timestep t can be expressed as: 318

pc(·|xh, xm, ym, y<t) ∝ exp
(
(1 + λ)

fθ(·|xh, ym, y<t)− λfθ(·|xm, ym, y<t)
)
,

(3) 319

where pc represents the contrastive token distribu- 320

tions and λ is the scaling parameter that controls the 321

degree of amplification on the discrepancy between 322

two distributions. The proposed framework oper- 323

ates as a self-corrective decoding mechanism that is 324

specifically designed to trick AI-text detectors. By 325

dynamically identifying and penalizing machine- 326

preferred token preferences, CoPA effectively re- 327

duces entrenched linguistic biases and enables the 328

generation of sentences with more expressiveness 329
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Figure 3: Fast-DetectGPT detected LLM likelihood of
texts from different machine distributions pm induced
by various machine prompts xm. We also present the
detection TPR of their corresponding contrastive distri-
butions pc. See Appendix E for details of used prompts.

and lexical diversity, achieving an enhanced capa-330

bility to fool LLM-generated text detectors.331

Reduce machine styles by amplifying them.332

Previous studies have shown that rewriting ma-333

chine texts using another LLM can reduce some334

machine-specific features, although not sufficiently335

for launching effective attacks (Sadasivan et al.,336

2023). This is because the rewritten texts inherit337

a mixture of stylistic and lexical preferences from338

different LLMs, thus increasing the text diversity.339

However, in our contrastive design, the machine-340

style distribution pm actually serves as a negative341

reference to be subtracted from the human distri-342

bution. Employing a regular paraphrasing prompt343

to obtain pm may inadvertently dilute its machine-344

specific characteristics and weaken the effective-345

ness of the contrastive operation.346

A reasonable solution involves constructing pm347

as a highly salient and concentrated machine-style348

token distribution, wherein high-probability tokens349

are strongly machine-related and more likely to350

trigger detection. We achieve this by identifying351

a prompt xm that significantly amplifies the LLM352

likelihood of the generated sentences. Figure 3353

empirically validates our strategy, i.e., magnifying354

machine-style features in pm can, in turn, promote355

a refined distribution that more closely resembles356

authentic human writing, further enhancing the at-357

tack on the machine-text detector.358

Adaptive Truncation for plausibility. Another359

important issue is that CoPA utilizes the whole360

token distribution to measure the difference. How-361

ever, there may be occasions where certain high-362

probability tokens overlap between p′h and pm. The363

subtraction operation may penalize the probabili-364

ties of reasonable and valid tokens while rewarding365

casual and unrelated ones, thus compromising the366

coherence and semantic consistency of generated367

sentences. To address this, we incorporate a to- 368

ken constraint mechanism (Li et al., 2023), which 369

applies an adaptive pruning to the output tokens: 370

yt ∼ pc(·|xh, xm,ym, y<t), s.t. yt ∈ Vtop(y<t),

Vtop(y<t) =
{
yt ∈ V : p′h(yt|xh, ym, y<t)

≥ αmax
v

p′h(v|xh, ym, y<t)
}
,

(4)

371

where V denotes the vocabulary set of fθ and α 372

is the hyperparameter to adjust clipping. By in- 373

troducing this adaptive pruning mechanism, CoPA 374

leverages the confidence scores of the human-like 375

distribution to refine the contrastive distribution, 376

which restricts the decision-making to a more reli- 377

able token candidate pool and suppresses the selec- 378

tion of unsuitable tokens. 379

3.3 Theoretical Analysis 380

Apart from empirical analysis, we build a theoreti- 381

cal framework to confirm the superiority of CoPA 382

in simulating authentic human writing. As pre- 383

viously stated, ph denotes the real human-chosen 384

word distribution, p′h and pm represent human-like 385

and machine-like token distributions elicited from 386

the LLM using prompts xh and xm, respectively. 387

The objective is to prove that the distribution pc, de- 388

rived by contrasting p′h and pm, aligns more closely 389

with the human preferences ph. 390

To mathematically measure the difference be- 391

tween distributions ph and pc, we first introduce an 392

auxiliary function based on the KL divergence. 393

Definition 1 (Auxiliary Distance Function). Let 394

KL denotes the KL divergence, the distributional 395

distance between ph and pc is a unary function of 396

λ, which is characterized as 397

g(λ) := KL(ph||(1 + λ)p′h − λpm). (5) 398

g(λ) inherit several good properties from the KL 399

divergence, based on which we derive the critical 400

Theorem that guarantees the effectiveness of CoPA: 401

Proposition 1. g(λ) is a convex function. If g(λ) 402

is not constant, it has a unique minimum point λ∗. 403

Theorem 1. If g′(0) < 0, then λ∗ > 0 and for any 404

λ ∈ (0, λ∗], we have 405

KL(ph||(1 + λ)p′h − λpm) < KL(ph||p′h). (6) 406

The detailed proofs of Proposition 1 and The- 407

orem 1 are provided in Appendix A. Theorem 1 408
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Figure 4: Illustration of the premise of Theorem 1. Let
|V| = 3 and thus PV is a triangle. We draw the contours
of f(p) := KL(ph||p). The closer to ph, the lower the
KL divergence with ph. If p′h−pm points to the inside of
the contour at p′h, then f(p) decreases at p′h along p′h −
pm, i.e., g(λ) decreases at λ = 0. In this case g′(0) < 0
is satisfied and Theorem 1 is applicable. In practice p′h
is usually between pm and ph, so g′(0) < 0 is usually
satisfied and Theorem 1 is generally applicable.

reveals that by adequately selecting λ, CoPA drives409

the resultant distribution pc closer to the authentic410

human distribution ph than the human-like distri-411

bution p′h, which is directly elicited from the LLM412

using xh. This theoretically validates the necessity413

and effectiveness of our contrastive strategy.414

Note that the premise of Theorem 1 is g′(0) < 0.415

We use |V| = 3 as an example to illustrate its ratio-416

nality. As in Figure 4, we calculate the area wherein417

probability distributions satisfy g(0)′ < 0. In418

essence, p′h is generated by the LLM and hence is419

constrained by the inherent language priors, which420

prevents it from deviating significantly from the421

machine-featured distribution pm. Meanwhile, we422

use a carefully crafted human-like prompt to guide423

p′h to move from pm towards ph. As a result, p′h typ-424

ically falls within the region that satisfies g′(0) < 0.425

Therefore, this premise generally holds and thus426

Theorem 1 is applicable in practice, which is fur-427

ther confirmed by experimental results in Sec. 4.2.428

Based on LLM’s prediction paradigm, we contrast429

the output logits in practice, achieving excellent430

performance in misleading detection models.431

4 Experiments432

4.1 Experimental Setup433

Datasets. We evaluate on three widely adopted434

datasets spanning various linguistic styles and435

content, including (1) XSum for news articles436

(Narayan et al., 2018), (2) SQuAD for Wikipedia437

contexts (Rajpurkar, 2016), and (3) LongQA for438

long-form question answering, where LLM an-439

swers a how/why question within 250-350 words 440

(Fan et al., 2019). We follow (Bao et al., 2024) and 441

randomly select 150 samples for evaluation. 442

Baselines. We compare our method with the 443

state-of-the-art (SOTA) surrogate-free paraphrase 444

attack Dipper (Krishna et al., 2023). We adopt the 445

setup of 60 lexical diversity and 60 order diversity 446

for Dipper to achieve its best performance. Ad- 447

ditionally, we reproduce the attack introduced in 448

(Mao et al., 2024), which leverages an LLM with 449

the query “Help me rephrase it in human style.” to 450

rewrite machine texts (denoted as Raidar-A). For 451

fairness, we use the same LLM for both our para- 452

phraser and baselines. Note that we also reveal 453

the superiority of CoPA over (Shi et al., 2024) that 454

relies on an extra surrogate model in Appendix C. 455

For detection algorithms, we consider diverse 456

methods including training-free LogRank (So- 457

laiman et al., 2019), DetectGPT (Mitchell et al., 458

2023), DNA-GPT (Yang et al., 2024), Fast- 459

DetectGPT (Bao et al., 2024), Raidar (Mao et al., 460

2024), TOCSIN (Ma and Wang, 2024), and 461

training-based RoBERTa (Liu, 2019) provided by 462

OpenAI and the R-detect (Song et al., 2025). 463

Metrics. We analyze the performance using 464

two key metrics. (1) Detection accuracy. In real- 465

world applications, it is crucial to guarantee that 466

human-written text should almost never be misclas- 467

sified as machine-generated (Krishna et al., 2023), 468

i.e., satisfying a very low false positive rate (FPR). 469

Hence, we follow Dipper and report the true pos- 470

itive rate (TPR) at a fixed FPR. Specifically, we 471

set a relatively high FPR of 5% to significantly re- 472

veal the performance improvements. Please refer 473

to Appendix C for results with FPR=1%. (2) Se- 474

mantic similarity. The rewritten sentences should 475

preserve the original semantics. Similar to Dipper, 476

we employ the P-SP (Wieting et al., 2022) model, a 477

specialized embedding model trained on a filtered 478

paraphrase corpus (Wieting and Gimpel, 2018), to 479

measure the semantic discrepancy. We align with 480

Dipper and consider the semantics being preserved 481

if the P-SP score exceeds the average real-human 482

paraphrase score of 0.76. Moreover, we provide 483

more analysis including text perplexity, GPT-4 as- 484

sisted and human evaluation in Appendix G. 485

Implementation Details. For attack hyperpa- 486

rameters, we set the contrast intensity λ = 0.5 and 487

the clipping factor α = 1e−5. Unless stated oth- 488

erwise, we employ a single paraphrasing iteration. 489

We employ Qwen2.5-72B-Instruct (Qwen, 2024) 490

as the paraphraser. Due to page limits, we pro- 491
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Table 1: Comparison of different paraphrasing attacks against 8 text-detection algorithms (at 5% FPR) using
GPT-3.5-turbo generated texts from three different datasets. The best performances are bolded.

Dataset Attack Sim
Defense

Avg.
LogRank DetectGPT DNA-GPT Fast-DetectGPT Raidar TOCSIN RoBERTa R-Detect

XSum

No Attack - 63.33 26.67 80.00 95.33 28.75 98.00 66.67 69.67 66.05
Dipper 86.67 15.67 2.67 27.33 76.33 13.75 74.67 86.67 48.00 43.14
Raidar 100.00 49.00 12.00 22.64 84.67 16.25 90.67 55.33 68.67 49.90
Ours 94.00 4.67 4.00 21.33 17.00 0.00 26.67 22.67 4.67 12.63

SQuAD

No Attack - 67.00 12.67 41.33 93.50 22.00 92.67 41.33 79.67 56.27
Dipper 75.33 23.67 2.67 10.00 77.67 5.00 75.33 67.33 53.33 39.38
Raidar 95.33 58.00 12.33 19.33 81.67 26.00 84.00 32.67 73.50 48.44
Ours 88.67 8.33 2.67 8.67 27.50 5.00 25.33 7.33 3.67 11.06

LongQA

No Attack - 73.83 33.33 10.67 86.00 36.25 88.67 38.67 89.33 57.09
Dipper 94.67 28.83 6.00 0.67 75.00 5.00 67.33 65.33 74.00 40.27
Raidar 100.00 59.33 22.67 1.33 72.67 33.75 77.33 28.00 79.50 46.82
Ours 95.33 14.50 5.00 0.00 11.33 0.00 16.00 6.67 6.00 7.44

Criminals dressed as cops busted through a fence and hit 
the cargo of a plane headed to Switzerland on Monday 
night. The heist went down at a small European airport, 
totally throwing off the authorities and airline people.
\n\nThey made it look like a legit police operation...

The Korea Space Launch Vehicle-1 (KSLV-1) blasted off 
from the Naro Space Center at 16:00, marking a major 

milestone for South Korea's space program. This launch 
was the country's first successful attempt at putting a 

satellite into orbit using its own rocket.\n\nThe KSLV-1...

LLM likelihood: 1.00

At about 1600 a.m. the Korea Space Launch Vehicle-1 
(KSLV-1) blasted off from the Naro Space Center, marking 

the first successful attempt by Korea to launch a satellite 
into space. The KSLV-1, also known as the “Naro,” was a 

rocket jointly developed by the Korea Aerospace...

LLM likelihood: 0.89

KSLV-1 just launched from Naro Space Center at 4 PM, 
big win for South Korea’s space program. First time they 
successfully put a satellite in orbit with their own rocket. 

Developed with KARI and Roscosmos, they failed tries in 
2009 and 2010. Now they’re part of the elite club that...

LLM likelihood: 0.04

Disguised as police, they broke through a fence on Monday 
evening and broke into the cargo of a Swiss-bound plane to 
take the valuable items. The audacious heist occurred at an 

airport in a small European country, leaving authorities 
baffled and airline officials in shock...

LLM likelihood: 1.00

An audacious robbery was perpetrated in a small European 
country on the eve of the International holiday of St. Jean. 
The robbers, disguised as police, made their operations so 
carefully planned as to make the whole operation look like 

an official investigation. In this way they ...

LLM likelihood: 0.98 LLM likelihood: 0.15

LLM-Generated paragraph Dipper paraphrase CoPA

Figure 5: Paraphrased sentences by Dipper and our CoPA. We use Fast-DetectGPT to provide the LLM likelihood.

vide results paraphrased by four more LLMs (e.g.,492

DeepSeek R1-Distill-32B (DeepSeek-AI, 2025))493

in Appendix C. More details about the human and494

machine-like prompts are in Appendix B.495

4.2 Performance Evaluation496

We test machine texts generated by GPT-3.5-turbo497

and present results on three datasets in Table 1.498

Attack Effectiveness. By conducting a self-499

introspective correction on token distributions,500

CoPA remarkably enhances the attack over baseline501

attacks, e.g., an average improvement of 30.55% in502

fooling text detectors across three datasets. Al-503

though Dipper demonstrates satisfactory perfor-504

mance against several detectors, it becomes signif-505

icantly less effective when facing more advanced506

algorithms such as FastDetectGPT. In contrast, our507

method consistently exhibits impressive attack effi-508

cacy across various text detectors. Notably, while509

Raidar-A and our method employ the same LLM as510

the paraphraser, CoPA greatly outperforms Raidar-511

A, validating the effectiveness of our designed512

prompt and contrastive paraphrasing mechanism.513

As for the text quality of rewritten sentences, we514

demonstrate that CoPA achieves an average seman-515

tic similarity score exceeding 90% across various516

datasets, confirming that our method effectively 517

preserves semantic fidelity during rewriting. While 518

Raidar-A exhibits greater text similarity, its attack 519

effectiveness remains considerably limited. As a 520

comparison, CoPA achieves both excellent attack 521

effectiveness and semantic consistency. 522

Visualization of Rewritten Texts. We provide 523

examples of rewritten texts before and after the 524

paraphrasing in Figure 5. As expected, the rewrit- 525

ten sentences maintain semantic consistency while 526

exhibiting richer and diverse human-like expres- 527

sions. This underpins our success in fooling text 528

detectors and presents a practical attack method. 529

4.3 Attacks on More Source LLMs. 530

In addition to GPT-3.5-turbo, we also consider 531

the machine texts generated by recently prevalent 532

LLMs, including GPT-4 (Achiam et al., 2023) and 533

Claude-3.5 (Anthropic, 2024). Besides, we pro- 534

vide results on GPT-4o (Achiam et al., 2023) and 535

Gemini-1.5 Pro (Team et al., 2024) in Appendix C. 536

Table 2 demonstrates that our method contin- 537

ues to achieve excellent attack efficacy and seman- 538

tic similarity across various LLM-generated texts, 539

greatly outperforming the SOTA method Dipper. 540

For detection of GPT-4 texts under Fast-DetectGPT, 541
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Table 2: Attack Performance (at 5% FPR) of texts generated by more source LLMs based on XSum dataset.

Model Attack Sim
Defense

Avg.
LogRank DetectGPT DNA-GPT Fast-DetectGPT Raidar TOCSIN RoBERTa R-Detect

GPT-4

No Attack - 30.00 6.00 35.33 51.67 24.17 73.33 32.67 46.00 37.40
Dipper 91.33 8.67 0.67 30.67 64.33 20.83 64.67 78.00 37.67 38.19
Raidar 100.00 35.00 9.50 34.67 68.33 20.83 82.00 47.33 60.50 44.77
Ours 94.67 2.00 0.67 18.67 15.33 10.83 20.00 20.67 6.83 11.88

Claude 3.5

No Attack - 42.67 21.67 24.67 50.00 36.67 70.00 19.33 30.67 36.96
Dipper 82.00 18.17 0.33 20.67 38.67 0.00 36.67 77.33 40.33 29.02
Raidar 100.00 46.83 18.77 15.33 41.33 41.64 66.00 20.67 38.00 36.07
Ours 98.00 1.33 0.67 6.67 4.00 0.00 8.00 7.33 1.33 3.67
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Figure 6: Comparison of detection accuracy on the
first 50 samples from XSum under different values of λ
against Fast-DetectGPT (Bao et al., 2024).

Dipper even increases the likelihood to be classified542

as machine-generated than the No Attack baseline.543

In contrast, CoPA stably achieves outstanding fool-544

ing rates across various source models, confirming545

the robustness of the proposed contrastive para-546

phrase. Another observation is that the detection547

performance on clean texts generated by more re-548

cent models is significantly reduced. The decline549

may stem from the ability of advanced LLMs to550

generate varying sentences that are more challeng-551

ing to detect, underscoring the urgent need for more552

reliable detection systems.553

4.4 Ablation Study554

We then investigate the effect of different factors.555

More ablation studies are in Appendix C.556

Impact of contrastive coefficient λ. During557

decoding, the hyperparameter λ serves as a criti-558

cal regulation factor for the contrast strength. As559

shown in Figure 6, positive values of λ consistently560

enhance the fooling rates relative to λ = 0, again561

confirming the effectiveness of our contrastive para-562

phrasing mechanism. Note that CoPA attains opti-563

mal performance at λ = 0.5, which is then chosen564

as the default setting for our experiments. Notably,565

the general trend of TPR over the λ roughly aligns566

with our preceding theoretical analysis, verifying567

the rationality of our established theory.568

Impact of Multiple Paraphrases. Each LLM-569

generated text is rewritten only once in our for-570
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Dipper (Fast-Detect)
Dipper (TOCSIN)

CoPA (Fast-Detect)
CoPA (TOCSIN)

Dipper-Sim
CoPA-Sim

Figure 7: Performance under different numbers of para-
phrases against Fast-DetectGPT (Bao et al., 2024) and
TOCSIN (Ma and Wang, 2024) on samples generated
by GPT-3.5-turbo from the XSum dataset. The dashed
lines describe semantic similarity.

mer experiments. We further analyze the influence 571

of multiple rewrites on the results. As shown in 572

Figure 7, increasing the number of rewrites gener- 573

ally strengthens attack effectiveness. However, the 574

performance gain is limited against two advanced 575

defenses, and the semantic similarity of Dipper- 576

rewritten texts sharply drops as the iterations in- 577

crease. These factors reduce the utility of using 578

multiple paraphrases to improve the attack (Sada- 579

sivan et al., 2023). Also, this again highlights the 580

superiority of our method, which achieves outstand- 581

ing fooling rates via only a single paraphrasing. 582

5 Conclusion 583

This paper proposes CoPA, a simple yet highly ef- 584

fective paraphrasing attack against AI-generated 585

text detectors. CoPA constructs a machine-style 586

token distribution as a negative contrast for reduc- 587

ing linguistic biases of LLMs and facilitating the 588

generation of richer and more diverse sentences. 589

Through both theoretical analysis and experimental 590

validation, we fully demonstrate the superiority of 591

the proposed method across various scenarios. We 592

envision CoPA as a powerful tool for auditing the 593

robustness of detection systems, inspiring future 594

development of more robust detection algorithms. 595
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Limitation596

While our method avoids the overhead of training597

a dedicated paraphraser by leveraging an off-the-598

shelf LLM, the contrastive paraphrasing mecha-599

nism requires two forward passes to construct the600

contrastive token distribution, bringing additional601

latency during next-token prediction. This may602

limit the practicality of the proposed attack in real-603

time applications. Besides, although human eval-604

uation results in Appendix G indicate that CoPA-605

paraphrased texts are preferred over those from606

Dipper, we did not systematically account for the607

detailed linguistic backgrounds of evaluators and608

may introduce bias. A more comprehensive human609

study is needed to validate the general quality of the610

output sentences. Finally, this work follows prior611

studies and focuses exclusively on English text.612

Extending the contrastive paraphrasing framework613

to other languages such as Chinese and Spanish614

would be valuable for its broader applicability.615

Ethical Statement616

This paper presents a novel method aimed to ad-617

vance the research field of LLM-generated text de-618

tection. Note that all experiments are conducted619

within controlled laboratory environments. We do620

not expect the proposed method to serve as a pow-621

erful tool for potential adversaries but to raise so-622

ciety’s broader awareness of the vulnerability of623

current AI-text detectors. Also, the exceptional624

attack performance highlights the practical limi-625

tations of current detectors. Researchers of the626

open-source community are encouraged to conduct627

stress tests on their detectors against the proposed628

attack, based on which future studies can develop629

more robust stronger detectors. Furthermore, we630

conduct a preliminary study to alleviate the pro-631

posed threat via an adaptive defense that adver-632

sarially trains a Roberta-based detector using633

texts paraphrased by CoPA in Appendix F.634

All the codes, models, and datasets used in this635

study are consistent with their intended use and636

comply with the MIT License. To promote further637

research, we will open-source our paraphrasing638

tool along with the related code, model, and data.639
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A Theorem and Proof806

Definition 1. g(λ) := KL(ph||(1 + λ)p′h − λpm).807

Proposition 2. g(λ) is a convex function.808

Proof. KL is convex and g(λ) is the restriction of809

KL on a line, so g(λ) is also convex.810

Proposition 3. If g(λ) is not constant, then g(λ)811

has a unique minimum point.812

Proof. The non-constancy of g(λ) implies that813

p′h ̸= pm. The domain of g(λ) is814

I :=
⋂
v∈V

{λ ∈ R : 0 ≤ (1 + λ)p
′(v)
h − λp(v)m ≤ 1}.815

[−1, 0] ⊆ I so I is non-empty. I is the intersec-816

tion of some closed intervals, so I is also a closed817

interval. Note that g(λ) is continuous, so g(λ) has818

a minimum value.819

Assume that g(λ) has minimum points λ1 and λ2820

with λ1 < λ2. By the convexity, g(λ) is constant821

on [λ1, λ2]. Note that g(λ) is an analytic function.822

By Corollary 1.2.6 in (Krantz and Parks, 2002), the823

constancy of g(λ) on [λ1, λ2] implies the constancy824

on I . This contradicts that g(λ) is not constant, so825

the minimum point of g(λ) is unique.826

Remark. Corollary 1.2.6 in (Krantz and Parks,827

2002) applies to open intervals, and g(λ) is con-828

tinuous at the endpoints, so it also applies to our829

closed intervals, [λ1, λ2] and I .830

Definition 2. The minimum point of g(λ) is λ∗.831

Theorem 1. If g′(0) < 0, then λ∗ > 0 and for any832

λ ∈ (0, λ∗], we have833

KL(ph||(1 + λ)p′h − λpm) < KL(ph||p′h). (7)834

Proof. g′(0) < 0 implies that g(λ) is not constant,835

so λ∗ is well-defined by Proposition 3.836

g′(0) ̸= 0 implies λ∗ ̸= 0. Assume λ∗ < 0. By837

the first-order condition of convex functions,838

g(λ∗) ≥ g(0) + g′(0)λ∗ > g(0).839

This contradicts that g(λ∗) is minimum, so λ∗ > 0.840

By the definition of convex functions, we have841

g(λ) ≤ λ

λ∗
g(λ∗) +

(
1− λ

λ∗

)
g(0),842

= g(0)− λ

λ∗
(g(0)− g(λ∗)) ,843

< g(0)844

for any λ ∈ (0, λ∗]. g(λ) < g(0) is just (7).845

B Experimental Details 846

We follow the implementation of (Wang et al., 847

2024; Bao et al., 2024) to generate machine texts 848

for XSum and SQuAD while adopting the approach 849

of Dipper (Krishna et al., 2023) for LongQA. To re- 850

produce DetectGPT and Fast-DetectGPT, we align 851

with (Wang et al., 2024) and employ GPT2-XL 852

(Radford et al., 2019) as the surrogate model to 853

generate samples. As for DNA-GPT (Yang et al., 854

2024), we adopt the basic setup surrogated on GPT- 855

3.5-turbo. For the LLM decoding, our experiments 856

adopt the default setup of sampling parameters, i.e., 857

no probability clipping and T = 1. We run all 858

experiments in NVIDIA RTX A6000 GPUs. 859

Below, we provide our carefully designed 860

prompts to elicit human-like and machine-like to- 861

ken distributions from the off-the-shelf LLM. 862

(1) For human-style distributions: 863

System Prompt

You are a helpful paraphraser. You are given
an input passage ’INPUT’. You should para-
phrase ’INPUT’ to print ’OUTPUT’. ’OUT-
PUT’ should preserve the meaning and con-
tent of ’INPUT’. ’OUTPUT’ should not be
very shorter than ’INPUT’.

864

This system prompt is similar to that in (Sadasi- 865

van et al., 2023) and instructs the LLM to act as a 866

paraphraser while maintaining the text quality of 867

the sentences before the paraphrasing. 868

User Prompt

Rewrite the following INPUT in the tone
of a text message to a friend without any
greetings or emojis:

869

Rather than making a direct request for human- 870

toned texts, we experimentally find that present- 871

ing a realistic conversation scene with humans can 872

better guide the LLM to produce more vivid and 873

diverse sentences, further boosting stronger attacks. 874

(2) For machine-style distributions: 875

System Prompt

You are a helpful assistant.
876
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Table 3: Detection accuracy (at 5% FPR) of texts generated by GPT-4o and Gemini-1.5-Pro based on XSum dataset.

Model Attack Sim
Defense

Avg.
LogRank DetectGPT DNA-GPT Fast-DetectGPT Raidar TOCSIN RoBERTa R-Detect

GPT-4o

No Attack - 33.33 1.83 37.33 12.00 100.00 24.00 3.33 26.67 29.81
Dipper 77.33 16.00 1.33 39.33 42.33 11.33 42.67 68.00 43.67 33.08
Raidar 99.33 24.00 11.67 42.67 46.33 5.00 64.67 15.33 56.67 33.29
Ours 96.67 3.00 0.67 22.00 6.33 5.00 10.00 16.67 4.67 8.54

Gemini-1.5-Pro

No Attack - 21.67 13.00 36.00 32.00 28.00 33.33 12.67 24.67 25.17
Dipper 80.67 11.00 0.67 23.33 51.17 5.00 48.00 72.67 35.67 30.94
Raidar 100.00 31.00 8.67 26.00 39.83 30.00 48.67 22.67 42.67 31.19
Ours 93.33 2.00 2.67 6.67 10.00 2.00 10.00 9.33 2.00 5.58

Table 4: Comparison of different paraphrasing attacks against 8 text-detection algorithms (at 1% FPR) using
GPT-3.5-turbo generated texts from three different datasets. The best performances are bolded.

Dataset Attack Sim
Defense

Avg.
LogRank DetectGPT DNA-GPT Fast-DetectGPT Raidar TOCSIN RoBERTa R-Detect

XSum

No Attack - 32.44 6.00 41.33 83.00 5.75 94.67 44.67 49.33 44.65
Dipper 86.67 7.33 0.00 8.00 44.67 2.75 46.00 74.00 28.33 26.39
Raidar 100.00 21.00 1.00 5.33 57.33 3.25 85.33 39.33 58.67 33.91
Ours 94.00 2.00 0.01 5.33 4.67 0.00 18.00 9.33 0.00 4.92

SQuAD

No Attack - 20.50 2.67 0.00 82.33 4.44 83.33 15.33 58.00 33.33
Dipper 75.33 3.00 1.33 1.33 57.67 1.00 50.00 39.33 43.33 24.62
Raidar 95.33 21.33 5.33 0.00 59.33 5.20 68.00 8.67 48.67 27.07
Ours 88.67 1.17 1.33 0.00 9.67 1.00 12.67 1.33 0.00 3.40

LongQA

No Attack - 28.50 7.50 0.00 74.00 7.25 82.67 28.67 74.33 37.87
Dipper 94.67 6.50 0.00 0.00 55.67 1.00 31.33 49.33 63.33 25.90
Raidar 100.00 15.83 2.17 0.00 48.67 6.75 64.00 15.33 70.33 27.89
Ours 95.33 2.67 1.33 0.00 5.33 0.00 8.67 2.00 3.00 2.88

User Prompt:

Repeat the following paragraph:
877

Considering that the original LLM-generated878

sentence carries the richest machine-related char-879

acteristics that are most easily detected, we adopt a880

direct and effective strategy by making LLM repeat881

the input sentence to obtain the most machine-like882

token probabilities.883

C Additional Results884

More Source LLMs. We provide the perfor-885

mance of paraphrasing on machine texts generated886

by GPT-4o (Achiam et al., 2023) and Gemini-1.5887

Pro (Team et al., 2024) in Table 3. It can be ob-888

served that the proposed CoPA continues to achieve889

better attack effectiveness than existing paraphras-890

ing methods. Also, the detection algorithms obtain891

relatively worse clean performance on texts gener-892

ated by two advanced LLMs.893

Results of FPR=1%. We then evaluate the at-894

tack under a more strict setup where FPR=1%. As895

shown in Table 4, CoPA consistently exhibits supe-896
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Figure 8: ROC (0-5% FPR) for GPT-3.5-turbo on Fast-
DetectGPT and TOCSIN before and after paraphrasing.
The proposed CoPA achieves the best detection rate
across various FPRs.

rior attack performance over current paraphrasing 897

attacks. We also observe that some detection al- 898

gorithms fail to produce any defense effects even 899

without any attack at TPR=1%, raising concerns 900

about their feasibility in practical scenarios. 901

ROC Curve Analysis. Figure 8 shows the TPR 902

trends corresponding to different FPR values vary- 903

ing from 0% to 5%. As observed, TPR generally 904

increases as FPR grows, and CoPA significantly 905

reduces the TPR values of detection algorithms 906
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Figure 9: Detection accuracy (at FPR=5%) of CoPA under different sampling parameters against Fast-DetectGPT
(Bao et al., 2024) and TOCSIN (Ma and Wang, 2024). We calculate results using samples from the XSum dataset.

Table 5: Attack results paraphrased by different off-the-shelf LLMs (at 5% FPR) using GPT-3.5-turbo generated
texts from three different datasets.

Dataset Detector
Paraphraser

No Attack R1-Distill-32B QwQ-32B Qwen2.5-7B GLM-4-9b-hf Qwen2.5-72B

XSum
Fast-DetectGPT 95.33 24.33 11.33 17.33 31.33 17.00

TOCSIN 98.00 42.67 10.00 26.00 87.00 26.67
R-Detect 49.33 6.33 00.00 1.33 38.33 0.00

SQuAD
Fast-DetectGPT 93.50 26.83 9.50 33.33 31.33 27.50

TOCSIN 92.67 42.00 17.33 26.00 81.33 25.33
R-Detect 58.00 13.00 0.00 1.67 39.67 0.00

LongQA
Fast-DetectGPT 86.00 14.67 11.33 14.00 27.33 11.33

TOCSIN 88.67 26.00 2.00 18.00 78.00 16.00
R-Detect 74.33 22.67 0.00 3.00 47.33 3.00

across all FPR thresholds, which strongly validates907

the effectiveness of the proposed CoPA. Note that908

under the stricter and more realistic setting of FPR909

= 1%, CoPA reaches a detection accuracy below910

20% against these defenses, further underscoring911

its superior performance.912

Impact of LLM Sampling Parameters. Dur-913

ing decoding, LLMs employ various sampling pa-914

rameters such as Top-p, Top-k, and the tempera-915

ture coefficient T to adjust the sampling results.916

To investigate their influence, we conduct ablation917

studies regarding these parameters during the de-918

coding process of our paraphrasing in Figure 9. For919

Top-p and Top-k, the reduction of p or k results in920

a drop in sampling diversity since fewer tokens are921

retained, thereby generating more machine patterns922

and impairing the performance. For the tempera-923

ture (T ), numeric results indicate that the increase924

of T facilitates the creativity and diversity of sam-925

pling choices by reducing the difference in token926

probabilities, hence better misleading the detectors.927

An adversary can adjust these parameters based on928

their needs to achieve a superior attack while con-929

trolling the writing styles of generated sentences.930

Results of More LLMs as paraphrasers. To931

validate the universality of the proposed attack, we932

next consider more LLMs as the paraphraser, in- 933

cluding various model scales and recently prevalent 934

reasoning-based models. Specifically, we consider 935

Deepseek R1-Distill-32B (DeepSeek-AI, 2025), 936

QwQ-32B (Team, 2025), Qwen2.5-7B (Qwen, 937

2024), and GLM-4-9B-hf (GLM, 2024). The quan- 938

titative results in Table 5 show the effectiveness 939

of the proposed CoPA across various LLMs. Note 940

that the QwQ-32B generally achieves the best per- 941

formance. However, the reasoning-based models 942

require significantly more inference time than reg- 943

ular models. Hence, we choose the Qwen2.5-72B 944

to balance effectiveness and efficiency.

Table 6: Comparison of CoPA with a surrogate-based
paraphrasing attack against two SOTA detectors.

Attack Sim
Defense

Fast-DetectGPT TOCSIN

Redteaming 78.00 30.00 38.67
Ours 94.00 17.00 26.67

945
Comparison with a surrogate-based baseline. 946

This paper follows Dipper (Krishna et al., 2023) 947

and focuses on the more practical and universal 948

attacks without relying on any surrogate detection 949

model. A direct comparison of these methods with 950
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Mrs Foster said on Wednesday that she wanted to 
better understand those who love the language. 

She said she wanted to \"listen to and engage with 
all those who have a deep passion for language.\" 

Mrs. Foster, a renowned linguist and language 
enthusiast, expressed her desire to ...

LLM-Generated paragraph
LLM likelihood: 1.00

Mrs Foster said she wants to understand and 
connect with people who love language. She’s all 

about listening and engaging with anyone who 
has a deep passion for it. She thinks it’s important 
to build a community where we can share ideas, 

talk about trends, and enjoy the richness ...
Human-like prompt only

LLM likelihood: 0.99

On Wednesday, Mrs. Foster said she wants to 
understand and connect with people who love 

language. She’s all about listening and engaging 
with everyone who has a passion for it. As a 

linguist and language lover, she’s keen on building 
a community where we can share ideas ...

CoPA
LLM likelihood: 0.05

The furry feline has been a familiar face on the 
steps outside Number 10's black door since he 

moved in, in 2011. And the Prime Minister's cat, 
Larry, shows no signs of leaving his post any time 

soon. Larry, the official Chief Mouser to the 
Cabinet Office, has become a beloved symbol ...

LLM-Generated paragraph
LLM likelihood: 0.98

The furry feline has been hanging around the 
steps of Number 10 since 2011, and the PM’s cat, 
Larry, isn’t planning on leaving anytime soon. As 
the official Chief Mouser to the Cabinet Office, 

Larry has become a beloved symbol of Downing 
Street over the years.\n\nSince he arrived ...

Human-like prompt only
LLM likelihood: 0.72

Larry, the PM's cat, has been hanging out on the 
steps of Number 10 since 2011 and doesn't seem 

to be going anywhere anytime soon. As the 
official Chief Mouser to the Cabinet Office, he’s 

become a real symbol of Downing Street. His 
ginger and white fur has made him a favorite ...

CoPA
LLM likelihood: 0.11

Stephen Parnaby, Conservative leader of East 
Riding of Yorkshire Council, said the 

announcement was \"great news for the town and 
the wider East Riding area\". Parnaby's comments 

came as the council revealed plans for a major 
redevelopment project in the region ...

LLM-Generated paragraph
LLM likelihood: 1.00

Stephen Parnaby, the Conservative leader of East 
Riding of Yorkshire Council, called it \"great 
news for the town and the wider East Riding 

area.\" The council just unveiled plans for a big 
redevelopment project that's set to revitalize the 

local economy and create new jobs ...

Human-like prompt only
LLM likelihood: 0.98

Parnaby, the Conservative leader of East Riding of 
Yorkshire Council, called the announcement 

\"great news\" for the town and wider area. The 
council's big redevelopment plan aims to 

strengthen the local economy and create jobs. This 
includes major investments in infrastructure ...

CoPA
LLM likelihood: 0.25

Figure 10: Visualization of paraphrased sentences from human-like distribution ph and our contrastive distribution
pc (i.e., our CoPA). The LLM likelihood is calculated based on Fast-DetectGPT.

the surrogate-based paraphrasing attack introduced951

in RedTeaming (Shi et al., 2024) may raise con-952

cerns of unfairness. However, results in Table 6953

reveal that the proposed CoPA can still achieve954

better performance than RedTeaming.955

Notably, we include these results only for exper-956

imental completeness. The surrogate-based meth-957

ods are not the focus of this work.958

D Analysis of human-like prompt only959

As shown in Figure 10, we observe that solely960

relying on the human-like prompt xh results in961

unstable attack performance, i.e., some sentences962

derived from the human-like distribution ph still963

retain prominent machine-related features, which964

render them easily identifiable by text detectors. To965

alleviate this issue, our CoPA framework utilizes an966

auxiliary machine-like distribution to fully remove967

these machine characteristics from ph, significantly968

deceiving text detectors and leading to incorrect969

predictions. As corroborated by more detailed em-970

pirical studies, the proposed contrastive strategy971

greatly boosts the effectiveness and stability of the972

paraphrasing attack.973

E Details about Machine Prompt974

The prompts used in Figure 3 are as follows:975

Machine Prompt 1

Repeat the following paragraph:
976

Machine Prompt 2

Rewrite the following paragraph in the tone
of an AI assistant:

977

Machine Prompt 3

Paraphrase the following paragraph:
978

Machine Prompt 4

Rewrite the following paragraph:
979

Table 7: Detection accuracy (at 5% FPR) of texts gener-
ated by GPT-3.5-turbo based on the XSum dataset.

Attack w/o training Adversarial training

No Attack 66.67 99.78
CoPA 22.67 78.00

F An Adaptive Defense Strategy 980

To alleviate the proposed threat, we implement an 981

adaptive defense that adversarially trains OpenAI’s 982

LLM-text classifier RoBERTa-large. We fine-tune 983

the model for 10 epochs using 5k human texts and 984

5k machine texts (including both the original ma- 985

chine texts and those paraphrased by CoPA). We 986

present the optimal performance at a proportion 987

of 50% CoPA-paraphrased samples within the 5k 988

machine texts in Table 7. 989
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Table 8: Comparison of our method with Dipper on text quality. The perplexity is calculated on GPT-neo.

Dataset Text Sim↑ Perplexity↓ GPT-4 Eval Human Eval

Natural fluency↑ Consistency↑ Natural fluency↑ Consistency↑

XSum

Human - 16.11 3.88 - 4.40 -
Machine - 8.857 4.33 - 4.94 -
Dipper 86.67 14.76 3.74 3.76 4.25 4.26
Ours 94 15.58 4.64 4.95 4.74 4.87

SQuAD

Human - 19.52 3.60 - 3.98 -
Machine - 10.28 4.71 - 4.81 -
Dipper 75.33 14.70 3.53 3.57 4.02 4.05
Ours 88.67 17.77 4.56 4.91 4.56 4.79

LongQA

Human - 27.54 3.48 - 3.75 -
Machine - 7.79 4.91 - 4.99 -
Dipper 94.67 11.61 3.57 4.11 4.04 4.23
Ours 95.33 13.08 4.57 4.99 4.53 4.81

The results indicate that the adaptive defense990

based on texts provided by our CoPA can alleviate991

the proposed threat to some extent.992

G Evaluation on Text Quality993

Apart from the attack effect, it is necessary to an-994

alyze the text quality of paraphrased sentences.995

Specifically, we provide a comprehensive evalu-996

ation of natural fluency and semanticconsistency997

with additional key metrics, including text perplex-998

ity, GPT4-assisted evaluation, and human study. To999

conduct the human evaluation, we choose GPT-3.5-1000

turbo as the source model and randomly select 1001001

pairs of texts from each dataset for human annota-1002

tors. The evaluation criteria generally align with1003

those in Dipper (Krishna et al., 2023), where we1004

recruit 10 native English speakers from Amazon1005

Mechanical Turk (MTurk) to perform the evalua-1006

tion. We report the average scores to reduce sub-1007

jective biases in Table 8. The results indicate that1008

the proposed method produces paraphrased texts1009

with lower perplexity than authentic human-written1010

texts, while achieving substantially better fluency1011

and semantic consistency compared to those gener-1012

ated by Dipper, in both terms of GPT-4 assited and1013

human evaluation.1014

The instructions given to human annotators for1015

semantic consistency align with those in Dipper,1016

while we provide the scoring standard for natural1017

fluency and the detailed prompt for GPT-4 auto1018

evaluation as follows:1019

Instruction for Human evaluation:

Natural Fluency Scoring (1–5)

5. Excellent: Text flows perfectly naturally
with varied, idiomatic phrasing. Grammar,
word choice, and sentence structure appear
completely native with zero awkwardness.
s 4. Good: Text reads smoothly with only
minor and infrequent awkwardness. May
contain 1-2 subtle non-native phrasings, but
remains highly readable.

3. Fair: Generally understandable but
contains noticeable unnatural phrasing.
Some grammatical errors or awkward
constructions occasionally disrupt flow.

2. Poor: Frequent unnatural phrasing and
grammatical errors make reading diffi-
cult. Requires effort to understand in places.

1. Very Poor: Severely broken or unnatural
English with major grammar issues. Often
difficult or impossible to understand.

1020
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Prompt for GPT-4 evaluation:

(1) Task: Evaluate the natural fluency of a given sentence. Use a 5-point scale (5 = highest).
Natural Fluency (1-5):

1. Does the rewritten sentence flow naturally, avoiding awkward phrasing or redundancy?
2. Assess grammar, word choice, and readability (e.g., smooth transitions between clauses).
3. Penalize unnatural idioms or register mismatches (e.g., mixing formal and colloquial terms)

Output Format
Please provide the score for the metric.
Include a concise rationale (1-2 sentences per metric) highlighting specific strengths/weaknesses.
Example:

INPUT: "The deadline got pushed back because of unexpected tech issues."
OUTPUT: 4/5 (Colloquial tone matches intent; "pushed back" is natural but "tech issues"

slightly informal).

(2) Task: Evaluate the semantic consistency of a rewritten sentence compared to its original version.
Use a 5-point scale (5 = highest).
Semantic Consistency (1–5):

1. Does the rewritten sentence preserve the original meaning?
2. Check for critical information retention, logical coherence, and absence of distortion.
3. Deduct points for omissions, additions, or ambiguous interpretations

Output Format
Provide the score for the metric.
Include a concise rationale (1–2 sentences per metric) highlighting specific strengths/weaknesses.
Example:

INPUT:
Original: "The project deadline was extended due to unforeseen technical challenges."
Rewritten: "The deadline got pushed back because of unexpected tech issues."

OUTPUT:
5/5 (Key details retained; no loss of meaning).
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