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ABSTRACT

We propose a novel diffusion model called observation-guided diffusion proba-
bilistic model (OGDM), which effectively addresses the trade-off between quality
control and fast sampling. Our approach reestablishes the training objective by
integrating the guidance of the observation process with the Markov chain in a
principled way. This is achieved by introducing an additional loss term derived
from the observation based on the conditional discriminator on noise level, which
employs Bernoulli distribution indicating whether its input lies on the (noisy) real
manifold or not. This strategy allows us to optimize the more accurate negative
log-likelihood induced in the inference stage especially when the number of func-
tion evaluations is limited. The proposed training method is also advantageous
even when incorporated only into the fine-tuning process, and it is compatible with
various fast inference strategies since our method yields better denoising networks
using the exactly same inference procedure without incurring extra computational
cost. We demonstrate the effectiveness of the proposed training algorithm using
diverse inference methods on strong diffusion model baselines.

1 INTRODUCTION
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Figure 1: Comparisons of generated images from the same initial noise and deterministic samplers
but with different NFEs using the ADM backbone on the CelebA dataset. The entries on the leftmost
column of the figure denote the combinations of the training and inference methods. (Left) The
baseline model generates samples with inconsistent attributes, e.g., gender, hair, etc., by varying
NFEs while our approach preserves such properties. (Right) The samples generated by the baseline
method with a small number of NFEs tend to be blurry and unrealistic. Also, they have an unnaturally
bright and textureless area around the chin of the person.

Diffusion probabilistic models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have shown impressive
generation performance in various domains including image (Rombach et al., 2022; Dhariwal &
Nichol, 2021), speech (Kong et al., 2021; Jeong et al., 2021), point cloud (Luo & Hu, 2021), 3D
shapes (Zeng et al., 2022), graph (Niu et al., 2020; Hoogeboom et al., 2022), and so on. The key
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idea behind these approaches is to formulate data generation as a series of denoising steps of the
diffusion process, which sequentially corrupts training data towards a random sample drawn from a
prior distribution, e.g., Gaussian distribution.

As diffusion models are trained with an explicit objective, i.e., maximizing log-likelihood, they are
advantageous over Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) in terms of
learning stability and sample diversity. Moreover, the iterative backward processes and accompanying
sampling strategies further improve the quality of samples at the expense of computational efficiency.
The tedious inference process involving thousands of network forwarding steps is a critical drawback
of diffusion models.

  forward
  transition
  emission

● ● ●● ● ●

Figure 2: The directed graphical model of the pro-
posed denoising process with observations.

The step size of diffusion models has a signifi-
cant impact on the expressiveness of the models
as the Gaussian assumption imposed on the re-
verse (denoising) sampling holds only when the
step size is sufficiently small (Sohl-Dickstein
et al., 2015). On the other hand, the backward
distribution deviates from the Gaussian assump-
tion as the step size grows, resulting in an inaccu-
rate modeling. This exacerbates the discrepancy
between the training objective and the negative
log-likelihood at inference. Consequently, performance degradation is inevitable with coarse time
steps. To alleviate the deviation from the true objective caused by large step sizes, our approach
incorporates an observation of each state corresponding to perturbed data. To be specific, we consider
the data corruption and denoising processes to follow the transition probabilities that respectively
align with the forward and backward distributions of Ho et al. (2020) while an observation at each
time step following the emission probability aids in achieving a more accurate backward prediction.
Figure 2 depicts the directed graphical model of the proposed method.

Our approach offers a significant benefit in the sense that it precisely maximizes the log-likelihood
at inference even when employing fast sampling strategies with large step sizes. The observation
process plays an important role during training to adjust the denoising steps towards a more accurate
data manifold especially when the reverse process deviates from the Gaussian distribution. When it
comes to the inference stage, the observation process is no longer an accountable factor and hence
incurs no additional computational overhead for sampling.

The main question in this approach is what is observable given a state at each time step. We define
an observation following the Bernoulli distribution on the probability of whether noisy data lies on
the manifold of real data with the corresponding noise level. From a practical point of view, we
implement this observation with a score of a time-dependent discriminator, which takes either true
denoised samples or fake ones given by the learned denoising network.

Our main contributions are summarized below:

• We propose an observation-guided diffusion probabilistic model, which accelerates infer-
ence speed while maintaining high sample quality. Our approach only alters the training
procedures, resulting in no extra computational or memory overhead during inference.

• We derive a principled surrogate loss for the log-likelihood maximization in the observation-
guided setting and show its effectiveness in minimizing the KL-divergence between tempo-
rally coarse forward and backward processes.

• Our training objective is applicable to various inference methods with proper adjustments,
which allows us to utilize various fast sampling strategies that further enhance sample
quality.

• The proposed technique can be employed for training from scratch or fine-tuning from
pretrained models; compatibility with fine-tuning significantly enhances the practicality of
our method.

The rest of this paper is organized as follows. Section 2 reviews related work and Section 3 describes
our main algorithm with the justification of the proposed objective. We present experimental results
and analyses in Section 4, discuss future work in Section 5, and conclude our paper in Section 6.
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2 RELATED WORK

There exists a series of studies on diffusion probabilistic models (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2021b) that have contributed to accelerated sampling. A simple and intuitive
method is to simply skip intermediate time steps and sample a subset of the predefined time steps used
for training as suggested by DDIM (Song et al., 2021a). By interpreting the diffusion model as solving
a specific SDE (Song et al., 2021b), advanced numerical SDE or ODE solvers (Jolicoeur-Martineau
et al., 2021; Dockhorn et al., 2022; Song et al., 2021b; Karras et al., 2022; Liu et al., 2022) are
introduced to speed up the backward process. For instance, EDM (Karras et al., 2022) employs a
second-order Heun’s method (Süli & Mayers, 2003) as its ODE solver, demonstrating that simply
adopting existing numerical methods as is can improve performance. On the other hand, some
work further refine numerical solvers tailored for diffusion models. For example, PNDM (Liu et al.,
2022) provides a pseudo-numerical solver by combining DDIM and high-order classical numerical
methods such as Runge-Kutta (Süli & Mayers, 2003) and linear multi-step (Timothy, 2017), and
GENIE (Dockhorn et al., 2022) applies a higher-order solver to the DDIM ODE.

On the other hand, Nichol & Dhariwal (2021); Bao et al. (2022a;b); Watson et al. (2022) aim to
find the better (optimal) parameters of the reverse process with or without training. For instance,
Analytic-DPM (Bao et al., 2022b) presents a training-free inference algorithm by estimating the
optimal reverse variances under shortened inference steps and computing the KL-divergence between
the corresponding forward and reverse processes in analytic forms. Knowledge distillation (Salimans
& Ho, 2022; Luhman & Luhman, 2021; Meng et al., 2023; Song et al., 2023) is another direction for
better optimization, where a single time step in a student model learns to simulate the representations
from multiple denoising steps in a teacher model. Note that our approach is orthogonal and comple-
mentary to the aforementioned studies since our goal is to train better denoising networks robust to
inference with large step sizes.

There are a couple of existing methods (Xiao et al., 2022; Wang et al., 2022; Kim et al., 2023) that
adopt time-dependent discriminators, yet their motivations and intentions differ significantly from
ours. The time-dependent discriminator in DDGAN (Xiao et al., 2022) is designed to guide the
generator in approximating non-Gaussian reverse processes while Diffusion-GAN (Wang et al., 2022)
employs it to mitigate discriminator overfitting. Kim et al. (2023), on the other hand, utilize the
discriminator during inference stages to adjust the score estimation additionally. In contrast, the
discriminator in our approach serves as a means to provide observations to diffusion models during
the training phase, without involving the inference phase.

3 OBSERVATION-GUIDED DIFFUSION PROBABILISTIC MODELS

This section describes the mathematical details of our algorithm and analyzes how to interpret and
implement the derived objective function.

3.1 PROPERTIES

The proposed observation-guided diffusion probabilistic model, defined by the graphical model in
Figure 2, involves two stochastic processes: the state process {xt}Tt=0 and the observation process
{yt}Tt=0. The transition and emission probabilities of the forward process, denoted by q(xt|xt−1)
and q(yt|xt), respectively, are derived by taking advantage of the following properties given by the
graphical model:

xt+1|xt |= x0:t−1,y0:t and yt|xt |= x0:t−1,y0:t−1, (1)
where |= denotes statistical independence. In the reverse process, we obtain the transition probability,
p(xt−1|xt), and the emission probability, p(yt|xt), using the similar properties as

xt−1|xt |= xT :t+1,yT :t and yt|xt |= xT :t+1,yT :t+1. (2)

3.2 NEW SURROGATE OBJECTIVE

Using (1) and Bayes’ theorem, we derive the joint probability of the forward process as follows:

q(x1:T ,y0:T |x0) = q(xT |x0)

T∏
t=2

q(xt−1|xt,x0)

T∏
t=0

q(yt|xt). (3)
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From (2), the joint probability of the reverse process is given by

p(xT :0,yT :0) = p(xT )

1∏
t=T

p(xt−1|xt)
0∏

t=T

p(yt|xt). (4)

Therefore, we derive the upper bound of the expected negative log-likelihood as
Ex0∼q [− log p(x0)] (5)

= Ex0∼q

[
logEx1:T ,y0:T∼q

q(x1:T ,y0:T |x0)

p(x0:T ,y0:T )

]
(6)

≤ Ex0∼qEx1:T ,y0:T∼q

[
log

q(x1:T ,y0:T |x0)

p(x0:T ,y0:T )

]
(∵ Jensen’s inequality) (7)

= Ex0:T ,y0:T∼q

[
log

q(xT |x0)
∏T
t=2 q(xt−1|xt,x0)

p(xT )
∏1
t=T p(xt−1|xt)

]
+ Ex0:T ,y0:T∼q

[
log

∏T
t=0 q(yt|xt)∏0
t=T p(yt|xt)

]
(8)

= DKL(q(xT |x0)||p(xT )) + Eq [− log p(x0|x1)] +

T∑
t=2

DKL(q(xt−1|xt,x0)||p(xt−1|xt))

+

T∑
t=0

DKL(q(yt|xt)||p(yt|xt)). (9)

Transition probabilities From Ho et al. (2020), the forward transition probabilities are given by

q(x0) := Pdata(x0) and q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI), (10)

where {βt}Tt=1 are predefined constants. The backward transition probabilities are defined by

pθ(xT ) := N (xT ;0, I) and pθ(xt−1|xt) := N
(
xt−1;

1√
1− βt

(xt + βtsθ(xt, t)), βtI

)
, (11)

where sθ(·, ·) denotes a neural network parameterized by θ. Due to the following equation,

q(xt−1|xt,x0) = N
(
xt−1;

1√
1− βt

(xt + βt∇ log q(xt|x0)),
1− ᾱt−1

1− ᾱt
βtI

)
, (12)

where ᾱt =
∏t
s=1(1− βs), the first three terms of (9) are optimized by the following loss function:

T∑
t=1

λt||ε− εθ(
√
ᾱtx0 +

√
1− ᾱtε, t)||22 + C, (13)

where εθ(xt, t) =
sθ(xt, t)√

1− ᾱt
and C is a constant.

Emission probabilities We interpret the last term in (9) as an observation about whether the state,
xt, is on the real data manifold or not. Then, the emission probability of the forward and backward
processes are defined by Bernoulli distributions as follows:

q(yt|xt) := Ber(1) and p(yt|xt) := Ber(D(f(xt))), (14)
where f(·) is an arbitrary function that projects an input onto a known manifold andD(·) indicates the
probability that an input belongs to the manifold of real data. Hence, the KL-divergence of emission,
i.e., the last term of (9), is redefined via two different Bernoulli distributions in (14). Eventually, the
KL-divergence between two emission distributions is replaced by a log-likelihood of the manifold
embedding as follows:

T∑
t=0

DKL(q(yt|xt)||p(yt|xt)) =

T∑
t=0

− log(D(f(xt))). (15)

3.3 MANIFOLD EMBEDDING AND LIKELIHOOD FUNCTION

We now discuss a technically feasible way to implement (15). The only undecided components in
(15) are the projection function to a known manifold, f(·), and the likelihood function, D(·).
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Figure 3: The role of the discriminator in
our objective. θours and θbase denote the
denoising parameters learned by the pro-
posed method and the baseline, respec-
tively. The proposed training method
nudges the prediction of x̂θt−s closer to
the exact state space than the original.

We define f(·) as a function projecting xt onto a manifold
of xt−s ∼ qt−s (t ≥ s). With the diffusion model, this can
be done by running one discretization step of a numerical
ODE solver from the noise level of t to t− s, denoted by
Φ(xt, t, s; θ). We implement the projection function using
the solver as follows:

fθ(xt) := x̂θt−s = Φ(xt, t, s; θ). (16)

Note that s is a sample drawn from a uniform distribution,
U(1,min(t, bkT c)), where k ∈ [0, 1] is the hyperparame-
ter that determines the lookahead range in the backward
direction. We utilize a step of the Euler method 1 or Heun’s
method 2 to realize the projection function.

On the other hand, D(·) is designed by a discriminator
Dφ(·) to distinguish between projected data from 1) the
prediction of the denoising network and 2) real data. Such
a design is motivated by the right-hand side of (15), which
resembles the objective of the generator in non-saturating GAN (Goodfellow et al., 2014); we employ
a time-dependent discriminator taking the projected data, t and s, as its inputs.

3.4 TRAINING OBJECTIVES

By reformulating the transition and emission probabilities as discussed in Sections 3.2 and 3.3,
the first three terms of (9) become (13) while the last term of (9) becomes − log(Dφ(x̂θt−s, t, s)).
Therefore, the final training objective of the diffusion model with a network design parametrized by θ
is given by

min
θ

Ex0,ε,t,s

[
λt||ε− εθ(

√
ᾱtx0 +

√
1− ᾱtε, t)||22︸ ︷︷ ︸

Ltransition

−γ log(Dφ(x̂θt−s, t, s))︸ ︷︷ ︸
−Lemission

]
, (17)

where Dφ(·) denotes a discriminator and γ is a hyperparameter.

Besides optimizing θ, we need to train Dφ(·) to distinguish real data from the prediction of the
diffusion model. Following GANs (Goodfellow et al., 2014), the training objective is given by

max
φ

Ex0,ε,t,s

[
log(Dφ(xt−s, t, s)) + log(1−Dφ(x̂θt−s, t, s))

]
. (18)

We perform an alternating optimization, where the two objective functions in (17) and (18) take turns
for optimization until convergence.

For inference, only diffusion model εθ is taken into account and the discriminator Dφ is not required.
Therefore, no extra computational overhead is imposed when generating samples.

3.5 ANALYSIS ON THE OBSERVATION-INDUCED LOSS

We further analyze the surrogate of the negative log-likelihood of a generated sample and explain
how the proposed observation-induced loss affects the surrogate.

3.5.1 NEGATIVE LOG-LIKELIHOOD AT INFERENCE

The negative log-likelihood of a generated sample x0 ∼ pθ is given by

Ex0∼pθ [− log q(x0)] ≤
N∑
2

DKL
(
pθ(xτi−1 |xτi)||q(xτi−1 |xτi)

)
+ Epθ [q(xτ0 |xτ1)], (19)

where τ0 = 0 < τ1 < · · · < τN = T is a subsequence of time steps that are selected for fast sampling
and x0 is sampled from pθ unlike in (5). Here, pθ(xτi−1 |xτi) is defined similarly to (11) by replacing
βt with β̃τi = 1− ᾱτi

ᾱτi−1
.
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3.5.2 APPROXIMATION ON TRUE REVERSE DISTRIBUTION

While pθ(xτi−1
|xτi) takes the tractable form of a Gaussian distribution, the true reverse distribution,

q(xτi−1
|xτi), is still infeasible for estimating the KL-divergence in the right-hand side of (19).

To simulate the true reverse density function with β̃τi , we use a weighted geometric mean of its
asymptotic distributions corresponding to β̃τi ≈ 0 or 1.

For notational simplicity, let xτi−1
= u, xτt = v, and β̃τi = β. Then, we denote the true reverse

density function as p(β)
u|v(u|v), for u ∼ pu and v|u ∼ N (

√
1− βu, βI).

Lemma 1 For u ∼ pu and v|u ∼ N (
√

1− βu, βI), we obtain the following two asymptotic
distributions of p(β)

u|v(u|v):

p
(β)
u|v(u|v) ≈ N

(
u;

1√
1− β

(v + β∇ log pu(v)), βI

)
for β � 1, (20)

lim
β→1−

p
(β)
u|v(u|v) = pu(u). (21)

proof. Refer to Appendix A.3.

The weighted geometric mean of the two asymptotic distributions in (20) and (21) is given by

q
(ξ)
u|v(u|v) := Cξ N

(
u;

1√
1− β

(v + β∇ log pu(v)), βI

)1−ξ

pu(u)ξ, (22)

where Cξ is the normalization constant and ξ determines the weight of each component. We further
define a mapping function ξ(β) that minimizes the difference between p(β)

u|v(u|v) and q(ξ)
u|v(u|v) as

ξ(β) := arg min
ξ∈[0,1]

∫ ∞
−∞

(
q

(ξ)
u|v(u|v)− p(β)

u|v(u|v)
)2

du. (23)

The exisitence of ξ(β) is clear under continuity of q(ξ)
u|v(u|v) with respect to ξ. For the rest of the

analysis, we approximate p(β)
u|v(u|v) by q(ξ(β))

u|v (u|v); the validity of the approximation is discussed
in Appendix A.4 with more detailed empirical study results. Finally, by substituting the variables
back as u = xτi−1

, v = xτi , and β = β̃τi , the true reverse density function is approximated by

q(xτi−1 |xτi) ≈ Cξ(β̃τi )N (xτi−1 ;µτi , β̃τiI)
1−ξ(β̃τi )q(xτi−1)ξ(β̃τi ), (24)

where µτi = 1√
1−β̃τi

(xτi + β̃τi∇ log q(xτi)).

3.5.3 INTERPRETATION OF (19)

By using (24), we factorize the KL-divergence term in (19) into a sum of two KL-divergences with a
constant as follows:
DKL(pθ(xτi−1

|xτi)||q(xτi−1
|xτi)) + logCξ(β̃τi )

≈ (1− ξ(β̃τi))DKL(pθ(xτi−1 |xτi)||N (xτi−1 ;µτi , β̃τiI)) + ξ(β̃τi)DKL(pθ(xτi−1 |xτi)||q(xτi−1))

= (1− ξ(β̃τi))||sθ(xτi , τi)−∇ log q(xτi)||22 + ξ(β̃τi)DKL(pθ(xτi−1
|xτi)||q(xτi−1

)) + C, (25)
where C is a constant.

While Ltransition in (17) minimizes the first term of the last equation in (25), Lemission in (17) minimizes
the JS-divergence between two distributions (Goodfellow et al., 2014). Although the JS-divergence
has different properties from the KL-divergence, both quantities are minimized when two distributions
are equal; the minimization of the JS-divergence effectively reduces the second term of (25) in
practice.

Note that the vanilla diffusion models neglect the second term of (25) while DDGAN (Xiao et al.,
2022) disregards the first term of (25). On the contrary, the proposed method considers both
components, leading to effective optimization. In practice, both ξ(β̃τi) and 1− ξ(β̃τi) are expected
to be non-trivial in fast sampling with relatively large β̃τi .
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Table 1: FID and recall scores for various NFEs when the projection function fθ(·) aligns to the
sampler as Euler method 1. ‘OGDM’ represents that the models are trained from scratch while
‘OGDM (ft)’ indicates that the models are fine-tuned from the pretrained baseline models.

NFEs 25 20 15 10

Dataset (Backbone) Method FID↓ Rec.↑ FID↓ Rec.↑ FID↓ Rec.↑ FID↓ Rec.↑

CIFAR-10 (ADM)
Baseline 7.08 0.583 8.05 0.582 9.93 0.567 15.20 0.527
OGDM 6.26 0.587 6.81 0.587 7.96 0.578 11.63 0.546
OGDM (ft) 6.69 0.582 7.26 0.581 8.15 0.571 11.18 0.549

CIFAR-10 (EDM) Baseline 5.32 0.572 6.82 0.558 10.02 0.524 19.32 0.452
OGDM (ft) 3.21 0.603 3.53 0.600 4.64 0.587 9.28 0.546

CelebA (ADM)
Baseline 7.20 0.441 7.88 0.429 9.34 0.392 11.92 0.315
OGDM 3.80 0.541 3.94 0.534 5.06 0.502 7.91 0.451
OGDM (ft) 4.61 0.576 4.61 0.571 4.80 0.552 7.04 0.504

LSUN Church (LDM) Baseline 7.87 0.443 8.40 0.434 8.83 0.399 15.02 0.326
OGDM (ft) 7.46 0.449 7.92 0.444 8.76 0.402 14.84 0.331

Table 2: FID and recall scores for various NFEs when the projection function fθ(·) aligns to the
sampler as Heun’s method 2. ‘OGDM (ft)’ indicates that the models are fine-tuned from the pretrained
baseline models.

NFEs 35 25 19 15 11

Dataset (Backbone) Method FID↓ Rec.↑ FID↓ Rec.↑ FID↓ Rec.↑ FID↓ Rec.↑ FID↓ Rec.↑
CIFAR-10 (EDM) Baseline 2.07 0.618 2.19 0.616 2.73 0.616 4.48 0.604 14.71 0.536

OGDM (ft) 2.15 0.620 2.17 0.622 2.56 0.620 4.21 0.619 13.54 0.589

4 EXPERIMENTS

4.1 DATASETS, IMPLEMENTATION, AND EVALUATION

Datasets We conduct the unconditional image generations on several standard benchmarks with
various resolutions—CIFAR-10 (Krizhevsky et al., 2009) (32×32), CelebA (Liu et al., 2015) (64×64)
and LSUN Church (Yu et al., 2015) (256×256).

Architecture We apply our method upon three strong baselines, ADM (Dhariwal & Nichol, 2021) 1

on CIFAR-10 and CelebA, EDM (Karras et al., 2022) 2 on CIFAR-10, and LDM (Rombach et al.,
2022) 3 on LSUN Church, using their official source codes. For the implementation of the time-
dependent discriminator, we mostly follow the architecture proposed in Diffusion-GAN (Wang
et al., 2022), which is based on the implementation of StyleGAN2 (Karras et al., 2020) 4 while
time indices are injected into the discriminator as in the conditional GAN. The only modification in
our implementation is an additional time index, s in (16), which denotes the number of lookahead
time steps from the current time index, t. The number of additional parameters required for the
implementation of our approach is negligible compared to the baseline methods.

Training We use the default hyperparameters and optimization settings provided by the official
codes of baseline algorithms for all experiments except for discriminator training. We consistently
obtain favorable results with k ∈ [0.1, 0.2] and γ ∈ [0.005, 0.025] across all datasets and present our
choices of the hyperparameters for reproducibility in Tables 5 and 6 of Appendix C.

Evaluation protocol For quantitative evaluation, we measure FID (Heusel et al., 2017) and re-
call (Kynkäänniemi et al., 2019) using the implementation provided by ADM1. To calculate FID, we
employ the full training data as a reference set and 50K generated images as an evaluation set. For
the recall metric, we utilize 50K images for both reference and generated sets.

1https://github.com/openai/guided-diffusion
2https://github.com/NVlabs/edm
3https://github.com/CompVis/latent-diffusion
4https://github.com/NVlabs/stylegan2-ada-pytorch
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Table 3: FID and recall scores for various NFEs when the projection function fθ(·) is a step of Euler
method 1 while two different PNDM (Liu et al., 2022) algorithms are used as samplers. ‘OGDM’
represents that the models are trained from scratch while ‘OGDM (ft)’ indicates that the models are
fine-tuned from the pretrained baseline models.

NFEs 25 20 15 10

Sampler Dataset (Backbone) Method FID↓ Rec.↑ FID↓ Rec.↑ FID↓ Rec.↑ FID↓ Rec.↑

S-PNDM

CIFAR-10 (ADM) Baseline 5.31 0.601 5.95 0.596 7.09 0.577 10.32 0.548
OGDM 5.03 0.611 5.09 0.605 5.58 0.601 7.54 0.582

CIFAR-10 (EDM) Baseline 2.74 0.604 3.21 0.597 4.48 0.586 9.51 0.531
OGDM (ft) 3.75 0.604 3.62 0.605 3.60 0.600 4.97 0.586

CelebA (ADM) Baseline 3.67 0.553 4.15 0.539 5.22 0.511 7.33 0.445
OGDM 2.62 0.607 2.70 0.604 2.96 0.585 4.35 0.545

LSUN Church (LDM) Baseline 8.41 0.470 8.21 0.471 8.07 0.475 9.14 0.464
OGDM (ft) 7.69 0.480 7.48 0.489 7.48 0.481 8.68 0.478

F-PNDM

CIFAR-10 (ADM) Baseline 5.17 0.609 6.19 0.600 10.55 0.535 - -
OGDM 5.40 0.609 6.72 0.600 8.84 0.557 - -

CelebA (ADM) Baseline 3.39 0.562 4.25 0.539 7.08 0.488 - -
OGDM 2.81 0.615 3.10 0.609 5.14 0.576 - -

LSUN Church (LDM) Baseline 9.04 0.474 9.10 0.483 12.75 0.493 - -
OGDM (ft) 8.24 0.481 8.39 0.495 11.78 0.505 - -

4.2 QUANTITATIVE RESULTS

Tables 1 and 2 demonstrate quantitative comparison results when a projection function fθ(·) aligns
with a sampler well. They show that a proper combination of a projection function and a sampler
substantially improves FID and recall in all cases with NFEs ≤ 25. This observation implies
that the proposed method yields a robust denoising network for large step sizes. Table 1 also
compares performance between our models trained from scratch and the ones with fine-tuning on
‘CIFAR-10 (ADM)’ and ‘CelebA (ADM)’. We observe that the fine-tuned models exhibit competitive
performance with a small fraction (5–10%) of the training iterations when compared to the models
optimized through full training. Detailed analysis and comparisons are provided in Table 6 of
Appendix C. These findings highlight the practicality and computational efficiency of the proposed
method.

Table 3 presents FID and recall scores in the case that the projection function fθ(·) is a step of the
Euler method while the samplers are either S-PNDM or F-PNDM. Unless the projection function and
the sampler align properly, the benefit from our approach is not guaranteed because the observations
may be inaccurately projected onto the manifold from the perspective of the sampler. Despite this
reasonable concern, both S-PNDM and F-PNDM still achieve great performance gains especially
when NFEs are small. Notably, the combination of the proposed method and S-PNDM shows
consistent performance improvements. We infer that the models with the Euler projection and
S-PNDM harness synergy because the steps of S-PNDM are similar to the Euler method except for
the initial step.

Table 4 presents the FIDs of various algorithms combined with fast inference techniques in a wide
range of NFEs. The results show that the proposed approach is advantageous when the number of
time steps for inference is small.

4.3 QUALITATIVE RESULTS

Comparsions to baselines We provide qualitative results on CIFAR-10, CelebA, and LSUN
Church obtained by a few sampling steps in comparison with the baseline methods in Appendix E.
The baseline models often produce blurry samples when utilizing fast inference methods. In contrast,
our models generate crispy and clear images as well as show more diverse colors and tones compared
to the corresponding baselines. Since we use deterministic generative process, Moreover, on the left-
hand side of Figure 1, the baseline model generates face images with inconsistent genders by varying
NFEs. On the other hand, our model maintains the information accurately, which is deirable results
under deterministic generative process. This is because the additional loss term of our method enables
the model to approximate each backward step more accurately, even with coarse discretization.
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Table 4: Comparisons of FIDs on CIFAR-10 (32×32) and CelebA (64×64) to various methods. ‘†’
means the values are copied from the literature and ‘*’ means the values are obtained by applying
DDIM (Song et al., 2021a) as a sampler. ‘OGDM (euler)’ and ‘OGDM (heun)’ employ a step of
Euler and Heun’s method as a projection function, respectively.

CIFAR-10 CelebA

Method (+ Sampler) \ NFEs 25 20 15 10 25 20 15 10
DDIM (Song et al., 2021a) †* - 6.84 - 13.36 - 13.73 - 17.33
Analytic-DPM (Bao et al., 2022b) †* 5.81 - - 14.00 9.22 - - 15.62
FastDPM (Kong & Ping, 2021) †* - 5.05 - 9.90 - 10.69 - 15.31
GENIE (Dockhorn et al., 2022) † 3.64 3.94 4.49 5.28 - - - -
Watson et al. (2022) † 4.25 4.72 5.90 7.86 - - - -
CT (Song et al., 2023) 6.94 6.63 6.36 6.20 - - - -
ADM Backbone
Baseline + Euler 1 7.08 8.05 9.93 15.20 7.20 7.88 9.34 11.92
Baseline + S-PNDM 5.31 5.95 7.09 10.32 3.67 4.15 5.22 7.33
Baseline + F-PNDM 5.17 6.19 10.55 - 3.39 4.25 7.08 -
OGDM (euler) + Euler 1 6.26 6.81 7.96 11.18 3.80 3.94 4.80 7.04
OGDM (euler) + S-PNDM 5.03 5.09 5.58 7.54 2.62 2.70 2.96 4.35
EDM Backbone
Baseline + Euler 1 5.32 6.82 10.02 19.32 - - - -
Baseline + S-PNDM 2.74 3.21 4.48 9.51 - - - -
Baseline + Heun’s 2 2.19 - 4.48 - - - - -
OGDM (euler) + Euler 1 3.21 3.53 4.64 9.28 - - - -
OGDM (euler) + S-PNDM 3.75 3.62 3.60 4.97 - - - -
OGDM (huen) + Heun’s 2 2.17 - 4.21 - - - - -

Nearest neighborhoods Figure 5 of Appendix D illustrates the nearest neighbor examples of our
generated examples in the training datasets. According to the results, the samples are sufficiently
different from the training examples, confirming that our models do not simply memorize data but
increase scores properly by improving diversity in generated samples.

5 DISCUSSION

Although not explored in this work, there is more room for amplifying the impact of the proposed
approach. For example, integrating the lookahead variable s as an additional input to diffusion
models may further improve performance. We can also obtain specialized denoising network for the
specific sampling steps by leraning corresponding noise levels of manifolds more frequently during
training. This can be realized by selecting s adaptively, rather than uniform sampling. Moreover,
considering that ξ(β) tends to be positively correlated with β (Figure 4(b) of Appendix A.4), it would
be reasonable to set a hyperparameter γ as an increasing function with respect to 1− ᾱt

ᾱt−s
.

While we examine the observations following the Bernoulli distribution and implement them using
the discriminators of GANs, it is important to note that there are multiple possibilities for defining and
implementing the observation factors. Although we have presented a single approach in our direction,
other generalized formulations of the extended surrogate (9) can be explored; the formulations are
potentially specific to target tasks, available resources, and measurement methods. Such flexibility in
choosing the best approach for a given situation is one of the advantages of the proposed method.

6 CONCLUSION

We presented a diffusion probabilistic model that introduces observations into the plain Markov chain
of Ho et al. (2020). As a feasible and effective way forward, we have concretized the surrogate loss for
negative log-likelihood using observations following the Bernoulli distribution, and integrated GAN
training loss by adding a discriminator network that simulates the observation. Our strategy regulates
the denoising network to minimize the accurate negative log-likelihood surrogate at inference, thereby
increasing robustness in a few steps sampling. As a result, our method facilitates faster inference
by mitigating quality degradation. We demonstrated the effectiveness of the proposed method on
well-known baseline models and multiple datasets.

9
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Reproducibility statement We provide implementation and evaluation details in Section 4.1, and
hyperparameters in Appendix C to facilitate reproduction of the results presented in Section 4.2. We
will release the source code.

Ethics statement Deep generative models possess some potentials to be applied in harmful or
abusive contexts. While our work involves unconditional image generations using facial datasets,
it primarily presents a generic framework based on diffusion models to alleviate the computational
burdensome at inference stage. In fact, enhancing the efficiency of inference is expected to yield
societal benefits by making diffusion models more practical for real-world applications and promoting
resource conservation. Importantly, our algorithm is not inherently related to specific applications
associated with ethical issues.
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Endre Süli and David Mayers. An Introduction to Numerical Analysis. Cambridge University Press,
1 edition, 2003. ISBN 0-521-00794-1.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In CVPR, 2016.

Sauer Timothy. Numerical Analysis. Pearson, 3 edition, 2017. ISBN 2017028491, 9780134696454,
013469645X.

Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Diffusion-
GAN: Training GANs with diffusion. arXiv preprint arXiv:2206.02262, 2022.

Daniel Watson, William Chan, Jonathan Ho, and Mohammad Norouzi. Learning fast samplers for
diffusion models by differentiating through sample quality. In ICLR, 2022.

Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with
denoising diffusion GANs. In ICLR, 2022.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. LSUN:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, and Karsten
Kreis. LION: Latent point diffusion models for 3D shape generation. In NeurIPS, 2022.

11



Under review as a conference paper at ICLR 2024

APPENDIX

A DETAILS OF SECTION 3

A.1 PROOF OF (3)

q(x1:T ,y0:T |x0) = q(y0|x0)

T−1∏
t=0

q(xt+1|x0:t,y0:t)q(yt+1|x0:t+1,y0:t)

= q(y0|x0)

T−1∏
t=0

q(xt+1|xt)q(yt+1|xt+1) (∵ (1))

=

T∏
t=0

q(yt|xt)
T−1∏
t=0

q(xt+1|xt)

=

T∏
t=0

q(yt|xt)

[
q(x1|x0)

T−1∏
t=1

q(xt+1|xt,x0)

]
(∵ (1))

=

T∏
t=0

q(yt|xt)

[
q(x1|x0)

T−1∏
t=1

q(xt+1,xt|x0)

q(xt|x0)

]

=

T∏
t=0

q(yt|xt)

[
q(x1|x0)

T−1∏
t=1

q(xt+1|x0)q(xt|xt+1,x0)

q(xt|x0)

]

= q(xT |x0)

T∏
t=2

q(xt−1|xt,x0)

T∏
t=0

q(yt|xt).

A.2 PROOF OF (4)

p(xT :0,yT :0) = p(xT )p(yT |xT )

1∏
t=T

p(xt−1|xT :t,yT :t)p(yt−1|xT :t−1,yT :t)

= p(xT )p(yT |xT )

1∏
t=T

p(xt−1|xt)p(yt−1|xt−1)(∵ (1))

= p(xT )

1∏
t=T

p(xt−1|xt)
0∏

t=T

p(yt|xt).

A.3 PROOF OF LEMMA 1

Lemma 1 For u ∼ pu and v|u ∼ N (
√

1− βu, βI), we obtain the following two asymptotic
distributions of p(β)

u|v(u|v):

p
(β)
u|v(u|v) ≈ N

(
u;

1√
1− β

(v + β∇ log pu(v)), βI

)
for β � 1, (20)

lim
β→1−

p
(β)
u|v(u|v) = pu(u). (21)

proof of (20). Let u′ =
√

1− βu. Then,

pv|u′(v|u′) = N (v;u′, βI) = (2πβ)−d/2 exp(− 1

2β
||v − u′||2) = N (u′;v, βI) = qu′|v(u′|v)

By talyor expansion of pu′(u′) at v,

pu′(u
′) = pu′(v)+ < ∇pu′(v),u′ − v > +O(||u′ − v||2).
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Then,∫
qu′|v(u′|v)pu′(u

′)du′ = Eu′∼N (v,βI)[pu′(v)+ < ∇pu′(v),u′ − v > +O(||u′ − v||2)]

= pu′(v) +O(β).

By Bayes’ rule and above result,

pu′|v(u′|v) =
pv|u′(v|u′)pu′(u′)∫
pv|u′(v|u′)pu′(u′)du′

=
qu′|v(u′|v)pu′(u

′)∫
qu′|v(u′|v)pu′(u′)du′

= qu′|v(u′|v)
pu′(v)+ < ∇pu′(v),u′ − v > +O(||u′ − v||2)

pu′(v) +O(β)

= qu′|v(u′|v)(1+ <
∇pu′(v)

pu′(v)
,u′ − v > +O(||u′ − v||2))(1 +O(β))

= qu′|v(u′|v) exp(< ∇ log pu′(v),u′ − v >) +O(β)

= (2πβ)−d/2 exp(− 1

2β
||v − u′||2) exp(< ∇ log pu′(v),u′ − v >) +O(β)

= (2πβ)−d/2 exp(− 1

2β
(||v − u′||2 − 2β < ∇ log pu′(v),u′ − v >)) +O(β)

= (2πβ)−d/2 exp(− 1

2β
||u′ − v − β∇ log pu′(v)||2 +O(β)) +O(β)

≈ N (u′;v + β∇ log pu′(v), βI) for β � 1.

From u′ =
√

1− βu,

pu|v(u|v) = N (u;
1√

1− β
(v + β∇ log pu(v)),

β

1− β
I)

≈ N (u;
1√

1− β
(v + β∇ log pu(v)), βI) for β � 1�

proof of (21).

lim
β→1−

pv|u(v|u) = lim
β→1−

(2πβ)−d/2 exp(− 1

2β
||v −

√
1− βu||2)

= (2π)−d/2 exp(−1

2
||v||2) := f(v).

From Bayes’ rule and above results,

∴ lim
β→1−

pu|v(u|v) = lim
β→1−

pv|u(v|u)pu(u)∫
pv|u(v|u)pu(u)du

=
limβ→1− pv|u(v|u)pu(u)∫
limβ→1− pv|u(v|u)pu(u)du

=
f(v)pu(u)∫
f(v)pu(u)du

=
pu(u)∫
pu(u)du

= pu(u)�

A.4 BEHAVIORS OF p
(β)
u|v(u|v), q(ξ)

u|v(u|v), AND ξ(β).

In this section, we justify the approximation on the density function of reverse distribution by showing
behaviors of p(β)

u|v(u|v), q(ξ)
u|v(u|v), and ξ(β) on toy examples.
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Followings are the definitions in Sections 3.5. For u ∼ pu and v|u ∼ N (
√

1− βu, βI), p(β)
u|v(u|v)

is a real backward density function,

q
(ξ)
u|v(u|v) = C(N (u;

1√
1− β

(v + β∇ log pu(v)), βI))1−ξp(u)ξ,

and

ξ(β) ∈ arg min
ξ∈[0,1]

∫ ∞
−∞

(q
(ξ)
u|v(u|v)− p(β)

u|v(u|v))2du.

For arbitrary µ > 0, let

pu(u) =
1

2
(N (u;µ, 1) +N (u;−µ, 1))

=
1

2
(2π)−1/2(exp(−(u− µ)2/2) + exp(−(u + µ)2/2))

Then,N (u; 1√
1−β (v+ β∇ log pu(v)), β), and p(β)

u|v(u|v) =
pv|u(v|u)pu(u)∫
pv|u(v|u)pu(u)du

can be explicitly

expressed. Moreover, q(ξ)
u|v(u|v) can be calculated numerically. Therefore, we can numerically

calculate `2-norm between p(β)
u|v(u|v) and q(ξ)

u|v(u|v). Finally, we can obtain ξ(β) for each v and β.

(a) (b) (c)

Figure 4: Simulations when µ = 2. (a) `2-norm between p(β)
u|v(u|v), and q(ξ)

u|v(u|v) with respect to ξ
when v = 0.1. (b) The graph of ξ(β) with respect to β for various v. (c) Pdfs of four distributions
when v = 0.1, β = 0.4, and ξ = ξ(β) = 0.55.

Figure 4(a) shows the that q(ξ(β))
u|v (u|v) better approximates p(β)

u|v(u|v) than q(1)
u|v(u|v) = pu(u) and

q
(0)
u|v(u|v) = N (u; 1√

1−β (v+β∇ log pu(v)), β). We can observe that 0 < ξ(β) < 1 for ∀β ∈ (0, 1)

from Figure 4(b). In Figure 4(c), the black line is the precise reverse distribution while the blue line
is asymptotic function when β → 0+ and the green line is the limit when β → 1−. Note that the
blue line is the approximation used in vanilla diffusion models. The red line which is a normalized
weighted geometric mean of blue and green lines better approximates the real distribution.
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B NUMERICAL ODE SOLVERS

Suppose we are calculating numerical solution for ODE at t = 0 with initial condition xT for

dxt = f(xt, t)dt. (26)

Algorithm 1: Euler Method
T = tN > tk−1 > · · · > t0 = 0
for i = N, · · · , 1 do

xti−1
= xti + (ti−1 − ti)f(xti , ti)

end
return x0

Algorithm 2: Heun’s Method
T = tN > tk−1 > · · · > t0 = 0
for i = N, · · · , 1 do

xti−1
= xti + (ti−1 − ti)f(xti , ti)

if i > 1 then
xti−1

= xti + (ti−1 − ti)( 1
2f(xti , ti) + 1

2f(xti−1
, ti−1))

end
end
return x0

C HYPERPARAMETERS FOR EXPERIMENTS

Table 5: Hyperparameters for Training

Dataset Backbone Training Projection k γ Batch size Seen Images

CIFAR-10

ADM
Baseline - - - 128 38M
OGDM Euler 0.1 0.01 128 38M
OGDM (ft) Euler 0.2 0.025 128 2M

EDM
Baseline - - - 512 200M
OGDM (ft) Euler 0.2 0.025 512 20M
OGDM (ft) Heun’s 0.2 0.005 512 20M

CelebA ADM
Baseline - - - 128 38M
OGDM Euler 0.1 0.01 128 38M
OGDM (ft) Euler 0.2 0.025 128 2M

LSUN Church LDM Baseline - - - 96 48M
OGDM (ft) Euler 0.1 0.01 96 1.5M

Table 6: Hyperparameters for Sampling

Dataset Backbone Sampler Discretization

CIFAR-10

ADM
Euler quadratic

S-PNDM linear
F-PNDM linear

EDM
Euler default of Karras et al. (2022)

Heun’s default of Karras et al. (2022)
S-PNDM default of Karras et al. (2022)

CelebA ADM
Euler linear

S-PNDM linear
F-PNDM linear

LSUN Church LDM
Euler linear

S-PNDM quadratic
F-PNDM quadratic
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D NEAREST NEIGHBORHOODS

CelebA LSUN Church

Figure 5: Nearest neighborhoods of generated samples from CelebA and LSUN Church datasets.
The top row showcases our generated samples using DDIM-50 sampler, while the remaining three
rows display the nearest neighborhoods from each training dataset. The distances are measured in the
Inception-v3 (Szegedy et al., 2016) feature space.

E QUALITATIVE COMPARISONS

We compare the generated images between the baseline and our method using few number of NFEs
in Figures 6–21. While we use Euler method and PNDM for sampling in common, for CIFAR-10,
we further compare the results on EDM backbone sampled by Heun’s method. The images generated
by our method have more vivid color and clearer and less prone to produce unrealistic samples
compared to the baselines. Also, our method complements advanced samplers, other than Euler
method, effectively.
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E.1 CIFAR-10 SAMPLES WITH ADM BASELINE

Baseline + Euler method (NFEs=10) OGDM + Euler method (NFEs=10)
(FID: 15.20, recall: 0.527) (FID: 11.18, recall: 0.549)

Baseline + S-PNDM (NFEs= 10) OGDM + S-PNDM (NFEs= 10)
(FID: 10.32, recall: 0.548) (FID: 7.54, recall: 0.582)

Figure 6: Qualitative results on CIFAR-10 dataset with the ADM backbone using Euler method (top)
and S-PNDM (bottom) with NFEs=10.
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Baseline + Euler method (NFEs=15) OGDM + Euler method (NFEs=15)
(FID: 9.93, recall: 0.567) (FID: 7.96, recall: 0.578)

Baseline + S-PNDM (NFEs= 15) OGDM + S-PNDM (NFEs= 15)
(FID: 7.09, recall: 0.577) (FID: 5.58, recall: 0.601)

Figure 7: Qualitative results on CIFAR-10 dataset with the ADM backbone using Euler method (top)
and S-PNDM (bottom) with NFEs=15.
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Baseline + Euler method (NFEs=20) OGDM + Euler method (NFEs=20)
(FID: 8.05, recall: 0.582) (FID: 6.81, recall: 0.587)

Baseline + S-PNDM (NFEs= 20) OGDM + S-PNDM (NFEs= 20)
(FID: 5.95, recall: 0.596) (FID: 5.09, recall: 0.605)

Figure 8: Qualitative results on CIFAR-10 dataset with the ADM backbone using Euler method (top)
and S-PNDM (bottom) with NFEs=20.
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Baseline + Euler method (NFEs=25) OGDM + Euler method (NFEs=25)
(FID: 7.08, recall: 0.583) (FID: 6.26, recall: 0.587)

Baseline + S-PNDM (NFEs= 25) OGDM + S-PNDM (NFEs= 25)
(FID: 5.31, recall: 0.601) (FID: 5.03, recall: 0.611)

Figure 9: Qualitative results on CIFAR-10 dataset with the ADM backbone using Euler method (top)
and S-PNDM (bottom) with NFEs=25.
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E.2 CIFAR-10 SAMPLES WITH EDM BASELINE

Baseline + Euler method (NFEs=10) OGDM + Euler method (NFEs=10)
(FID: 19.32, recall: 0.452) (FID: 9.28, recall: 0.546)

Baseline + S-PNDM (NFEs=10) OGDM + S-PNDM (NFEs=10)
(FID: 9.51, recall: 0.531) (FID: 4.97, recall: 0.586)

Figure 10: Qualitative results on CIFAR-10 dataset with the EDM backbone using Euler method
(top), and S-PNDM (bottom) with NFEs=10.
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Baseline + Euler method (NFEs=15) OGDM + Euler method (NFEs=15)
(FID: 10.02, recall: 0.524) (FID: 4.64, recall: 0.578)

Baseline + S-PNDM (NFEs=15) OGDM + S-PNDM (NFEs=15)
(FID: 4.48, recall: 0.586) (FID: 3.60, recall: 0.600)

Baseline + Heun’s method (NFEs=15) OGDM + Heun’s method (NFEs=15)
(FID: 4.48, recall: 0.604) (FID: 4.21, recall: 0.619)

Figure 11: Qualitative results on CIFAR-10 dataset with the EDM backbone using Euler method
(top), S-PNDM (middle) and Heun’s method (bottom) with NFEs=15.
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Baseline + Euler method (NFEs=20) OGDM + Euler method (NFEs=20)
(FID: 6.82, recall: 0.558) (FID: 3.53, recall: 0.600)

Baseline + S-PNDM (NFEs=20) OGDM + S-PNDM (NFEs=20)
(FID: 3.21, recall: 0.597) (FID: 3.62, recall: 0.605)

Figure 12: Qualitative results on CIFAR-10 dataset with the EDM backbone using Euler method
(top), and S-PNDM (bottom) with NFEs=20.
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Baseline + Euler method (NFEs=25) OGDM + Euler method (NFEs=25)
(FID: 5.32, recall: 0.572) (FID: 3.21, recall: 0.603)

Baseline + S-PNDM (NFEs=25) OGDM + S-PNDM (NFEs=25)
(FID: 2.74, recall: 0.604) (FID: 3.75, recall: 0.604)

Baseline + Heun’s method (NFEs=25) OGDM + Heun’s method (NFEs=25)
(FID: 2.19, recall: 0.616) (FID: 2.17, recall: 0.622)

Figure 13: Qualitative results on CIFAR-10 dataset with the EDM backbone using Euler method
(top), S-PNDM (middle) and Heun’s method (bottom) with NFEs=25.
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E.3 CELEBA SAMPLES WITH ADM BASELINE

Baseline + Euler method (NFEs=10) OGDM + Euler method (NFEs=10)
(FID: 11.92, recall: 0.315) (FID: 7.04, recall: 0.504)

Baseline + S-PNDM (NFEs=10) OGDM + S-PNDM (NFEs=10)
(FID: 7.33, recall: 0.445) (FID: 4.35, recall: 0.545)

Figure 14: Qualitative results on CelebA dataset with the ADM backbone using Euler method (top)
and S-PNDM (bottom) with NFEs=10.
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Baseline + Euler method (NFEs=15) OGDM + Euler method (NFEs=15)
(FID: 9.34, recall: 0.392) (FID: 4.80, recall: 0.552)

Baseline + S-PNDM (NFEs=15) OGDM + S-PNDM (NFEs=15)
(FID: 5.22, recall: 0.511) (FID: 2.96, recall: 0.585)

Figure 15: Qualitative results on CelebA dataset with the ADM backbone using Euler method (top)
and S-PNDM (bottom) with NFEs=15.
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Baseline + Euler method (NFEs=20) OGDM + Euler method (NFEs=20)
(FID: 7.88, recall: 0.429) (FID: 3.94, recall: 0.534)

Baseline + S-PNDM (NFEs=20) OGDM + S-PNDM (NFEs=20)
(FID: 4.15, recall: 0.540) (FID: 2.70, recall: 0.604)

Figure 16: Qualitative results on CelebA dataset with the ADM backbone using Euler method (top)
and S-PNDM (bottom) with NFEs=20.
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Baseline + Euler method (NFEs=25) OGDM + Euler method (NFEs=25)
(FID: 7.20, recall: 0.441) (FID: 3.80, recall: 0.541)

Baseline + S-PNDM (NFEs=25) OGDM + S-PNDM (NFEs=25)
(FID: 3.67, recall: 0.553) (FID: 2.62, recall: 0.607)

Figure 17: Qualitative results on CelebA dataset with the ADM backbone using Euler method (top)
and S-PNDM (bottom) with NFEs=25.
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E.4 LSUN CHURCH SAMPLES WITH LDM BASELINE

Baseline + Euler method (NFEs=10) OGDM + Euler method (NFEs=10)
(FID: 15.02, recall: 0.326) (FID: 14.84, recall: 0.331)

Baseline + S-PNDM (NFEs= 10) OGDM + S-PNDM (NFEs= 10)
(FID: 9.14, recall: 0.464) (FID: 8.68, recall: 0.478)

Figure 18: Qualitative results on LSUN Church dataset with the LDM backbone using Euler method
(top) and S-PNDM (bottom) with NFEs=10.
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Baseline + Euler method (NFEs=15) OGDM + Euler method (NFEs=15)
(FID: 8.83, recall: 0.399) (FID: 8.76, recall: 0.402)

Baseline + S-PNDM (NFEs= 15) OGDM + S-PNDM (NFEs= 15)
(FID: 8.07, recall: 0.475) (FID: 7.48, recall: 0.481)

Baseline + F-PNDM (NFEs= 15) OGDM + F-PNDM (NFEs= 15)
(FID: 12.75, recall: 0.493) (FID: 11.78, recall: 0.505)

Figure 19: Qualitative results on LSUN Church dataset with the LDM backbone using Euler method
(top), S-PNDM (middle) and F-PNDM (bottom) with NFEs=15.
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Baseline + Euler method (NFEs=20) OGDM + Euler method (NFEs=20)
(FID: 8.40, recall: 0.434) (FID: 7.92, recall: 0.444)

Baseline + S-PNDM (NFEs= 20) OGDM + S-PNDM (NFEs= 20)
(FID: 8.21, recall: 0.471) (FID: 7.48, recall: 0.489)

Baseline + F-PNDM (NFEs= 20) OGDM + F-PNDM (NFEs= 20)
(FID: 9.10, recall: 0.483) (FID: 8.39, recall: 0.495)

Figure 20: Qualitative results on LSUN Church dataset with the LDM backbone using Euler method
(top), S-PNDM (middle) and F-PNDM (bottom) with NFEs=20.
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Baseline + Euler method (NFEs=25) OGDM + Euler method (NFEs=25)
(FID: 7.87, recall: 0.443) (FID: 7.46, recall: 0.449)

Baseline + S-PNDM (NFEs= 25) OGDM + S-PNDM (NFEs= 25)
(FID: 8.41, recall: 0.470) (FID: 7.69, recall: 0.480)

Baseline + F-PNDM (NFEs= 25) OGDM + F-PNDM (NFEs= 25)
(FID: 9.04, recall: 0.474) (FID: 8.24, recall: 0.481)

Figure 21: Qualitative results on LSUN Church dataset with the LDM backbone using Euler method
(top), S-PNDM (middle) and F-PNDM (bottom) with NFEs=25.
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