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Abstract

Standard single-turn, static benchmarks fall short in evaluating the nuanced ca-1

pabilities of Large Language Models (LLMs) on complex tasks such as software2

engineering. In this work, we propose a novel interactive evaluation framework3

that assesses LLMs on multi-requirement programming tasks through structured,4

feedback-driven dialogue. Each task is modeled as a requirement dependency5

graph, and an “interviewer” LLM, aware of the ground-truth solution, provides6

minimal, targeted hints to an “interviewee” model to help correct errors and fulfill7

target constraints. This dynamic protocol enables fine-grained diagnostic insights8

into model behavior, uncovering strengths and systematic weaknesses that static9

benchmarks fail to measure. We build on DevAI, a benchmark of 55 curated10

programming tasks, by adding ground-truth solutions and evaluating the relevance11

and utility of interviewer hints through expert annotation. Our results highlight the12

importance of dynamic evaluation in advancing the development of collaborative13

code-generating agents.14

1 Introduction15

The integration of Large Language Models (LLMs) into software development has transformed coding16

from a solitary, linear process into a dynamic, iterative collaboration. Modern tools like ChatGPT17

[16], DeepSeek [4], and AI-first IDEs such as Cursor exemplify this shift, where developers no18

longer simply request code but refine it through multiturn dialogues. Feedback, whether clarifications,19

corrections, or incremental constraints, has become the scaffold for progress, allowing models to20

adapt to ambiguities, edge cases, and evolving requirements. Yet, despite this reality, the prevailing21

benchmarks continue to evaluate LLMs as static single-turn code generators, ignoring the very22

interactions that define their practical utility.23

The Gap in Current Evaluation Current evaluation paradigms for software engineering problems24

suffer from two critical misalignments with real-world software workflows. (i) First, they treat25

tasks as monolithic problems [2, 6], ignoring their compositional nature. For example, building a26

recommendation system requires strict dependencies: data loading → feature engineering → model27

training → API exposure. Yet static evaluations force models to “guess correctly” on the first attempt,28

conflating understanding of requirements with luck in initial output. This penalizes models for early29

errors (e.g., data loading) and obscures their ability to recover in downstream steps (e.g., model30

training), even though real development often involves debugging partial solutions. (ii) Second, while31

recent work explores interactive evaluation [19, 14], these efforts rely on shallow feedback (e.g.,32

binary correctness checks) or unstructured hints, failing to capture the directed repair behavior of33

human-AI collaboration. In practice, a model’s value depends on its ability to adapt, say fixing a34

missing edge case after a developer’s nudge, but benchmarks rarely measure this. The gap is systemic:35

without evaluating how LLMs leverage feedback to navigate dependencies or rectify cascading errors,36
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we risk overestimating failures (where models could recover) or underestimating pitfalls (where37

models pass single-turn tests but reveal critical flaws when exposed to step-by-step refinement) -38

precisely the dynamics that define their practical utility.39

Interviewee

Task specification
Reference Solution

Evaluation Guidelines

Task specification
Solution Protocol
Delivery Format

Figure 1: The Interactive Evaluation
pipeline.

Our framework: Interactive, Dependency-Grounded40

Assessment We propose a structured, feedback-driven41

evaluation framework (Figure 1) for software engineering42

tasks. Each task is decomposed into a directed acyclic43

graph (DAG) of requirements, capturing the hierarchical44

dependencies between subtasks. A model is evaluated not45

only on its initial output but also on its ability to improve46

iteratively through targeted feedback loops. These hints47

are automatically generated by an LLM-based interviewer48

with access to ground truth solutions and task requirements.49

If a model fails an early subtask, we guide it past the error50

to assess its performance on subsequent steps - mirroring51

how human developers work around intermediate bugs to52

evaluate deeper functionality.53

A critical design feature is our lightweight integration pro-54

tocol. The framework exposes simple interfaces that allow55

any LLM to participate as either interviewer or intervie-56

wee with minimal adaptation. Researchers can evaluate57

new models by implementing just these basic interaction58

primitives, while still benefiting from the full power of59

our dependency-aware assessment pipeline. This modular60

design ensures wide applicability without compromising61

the richness of evaluation, enabling both controlled bench-62

marking and real-world deployment testing.63

Contributions Our main contributions are:64

1. A Dependency-Driven Interactive Evaluation Protocol: We introduce the first framework65

that jointly models software task decomposition and iterative feedback for LLM assessment.66

The framework’s novel structure enables quantifying error propagation and recovery through67

guided feedback and easy integration via minimal interface requirements, allowing any LLM68

to participate as interviewer or interviewee with trivial adaptation.69

2. An enhanced DevAI benchmark: We augment DevAI [23] with verified Ground-Truth70

solutions, using the original Agent-as-a-Judge methodology to ensure correctness. This71

extension enables guided, multi-stage evaluation through our framework’s structured feed-72

back mechanism, resulting in an improved benchmark that serves as both (i) an evaluation73

platform for our experiments and (ii) a reusable resource for future interactive assessment74

frameworks.75

3. Our experiments reveal that failures in static evaluations become recoverable with targeted76

feedback, suggesting that single-turn benchmarks severely underestimate LLM capabilities.77

We also identify critical failure modes where models cannot effectively incorporate feedback,78

revealing limitations in their ability to refine solutions even with iterative guidance.79

By bridging the gap between static benchmarks and real-world software workflows, our work advances80

practical LLM evaluation for software engineering problems.81

2 Related Work82

Traditional evaluations of LLMs rely on static benchmarks with fixed inputs and binary success83

criteria. While benchmarks such as HumanEval [2], APPS [6], and MBPP [1] have driven rapid84

progress in code generation, they fail to capture the process-oriented, iterative nature of real-world85

problem solving. These benchmarks typically assess models based on functional correctness of output86

in a single shot setting, which assumes complete and unambiguous task specifications, an assumption87
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that does not hold in most practical development scenarios. Extensions like CodeXGLUE [10] and88

SWE-bench [7] move towards more realistic evaluation tasks, such as bug fixing and issue resolution89

in real codebases. However, they still emphasize static correctness over dynamic reasoning, offering90

limited insight into how models handle ambiguity, adapt over time, or respond to developer intent.91

To address these shortcomings, recent work has explored interactive evaluation, where models are92

assessed over multiple turns with access to feedback or clarification. Human-in-the-loop setups93

such as iEval [17] and CheckMate [3] demonstrate that interactivity reveals model competencies94

overlooked by static scoring, particularly in complex domains like mathematics or natural language95

understanding. These studies show that model performance can vary substantially when they are96

allowed to ask questions, request hints, or revise outputs based on critique. More scalable frameworks97

simulate interaction using LLMs both as agents and evaluators, as in IQA-Eval [8], KIEval [20], and98

medical roleplay systems [9], enabling broader experimentation without relying on human annotators.99

These frameworks highlight the potential of structured feedback to surface model behaviors that are100

otherwise invisible in single-turn evaluations.101

Complementary to interactivity, adaptive evaluation dynamically adjusts testing based on model102

responses. DyVal [22] and DyVal 2 extend this idea using reasoning graphs and skill-specific probes103

to isolate weaknesses and trace error propagation through multistep reasoning tasks. These tools104

allow for a more diagnostic view of model performance, showing not just whether a model fails, but105

how and why it fails across different cognitive skills. Similarly, AdaTest [15] and benchmark self-106

evolving frameworks [18] generate targeted adversarial examples to stress-test models under varying107

conditions. By continuously updating the test set in response to model behavior, these approaches108

create a moving target that reveals brittleness or blind spots that static benchmarks overlook.109

In the software engineering domain, a few agent-based approaches have emerged to better reflect110

realistic development pipelines. Notably, Agent-as-a-Judge [23] evaluates LLMs on tasks involving111

interdependent components such as planning, execution, and evaluation. These methods begin112

to address compositionality and dependency tracking, yet often lack structured mechanisms for113

feedback-based refinement. They typically evaluate outputs at isolated checkpoints, without modeling114

how developer guidance might help correct or improve the model’s trajectory through a task.115

Our work builds on this trajectory by introducing an interactive evaluation framework tailored to soft-116

ware engineering tasks. Unlike prior efforts that isolate interactivity, adaptivity, or software-specific117

evaluation, our approach unifies these aspects through requirement decomposition, dependency-aware118

scoring, and guided iterative feedback. This allows for a more granular and realistic assessment of how119

models reason, adapt, and improve in complex engineering workflows, capturing the collaborative120

dynamics that characterize human-AI co-programming.121

3 Problem Formulation122

We define Interactive Software Engineering Evaluation as a multi-stage assessment framework123

designed to evaluate large language models through iterative refinement cycles guided by structured124

feedback. This approach specifically addresses complex, decomposable tasks characterized by three125

key properties: first, the presence of hierarchical dependencies among requirements; second, the126

potential need for incremental correction of partial solutions; and third, the necessity to evaluate both127

initial capability and adaptive improvement. The framework represents tasks as Directed Acyclic128

Graphs (DAGs) of requirements, where vertices correspond to verifiable subtasks, and edges encode129

functional dependencies.130

Unlike traditional binary evaluations, which assess success or failure on a task as a whole, interactive131

evaluation captures both the model’s initial performance and its ability to refine and repair its output132

in response to minimal guidance. This approach aligns closely with real-world software engineering,133

where developers iteratively build and correct solutions in response to feedback.134

Structured Tasks with Hierarchical Dependencies We focus on problems that consist of multiple135

interdependent requirements, where progress on earlier subtasks enables progress on later ones.136

Formally, let a task T be defined by a set of requirements R = {r1, r2, . . . , rm}, with each rj137

representing a subcomponent or constraint of the overall solution.138
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To capture the hierarchical and sequential structure of such tasks, we can model their dependencies as139

a DAG G = (R,E), where an edge (ri, rj) ∈ E indicates that requirement rj can only be addressed140

after requirement ri has been successfully completed. Let P (rj) denote the set of prerequisite141

requirements for rj , and let g : R → {0, 1} be the initial evaluation function that checks whether142

each requirement r ∈ R is satisfied (1) or not (0). Then, rj is evaluable only if all its parents are143

satisfied: ∀ri ∈ P (rj), g(ri) = 1.144

The effective (dependency-aware) evaluation score for the task is then defined as:145

SG =
1

m

m∑
j=1

g(rj) · I [∀ri ∈ P (rj), g(ri) = 1] (1)

This formulation allows us to credit partial progress while respecting the task’s logical structure,146

avoiding overly coarse binary evaluations.147

Guided Evaluation via Feedback Crucially, we are interested not just in how well a model148

performs on its first attempt, but in how effectively it improves when given feedback. In software149

engineering, a developer might suggest minimal edits (“rename this variable”, “fix the off-by-one150

error”), guiding progress without solving the problem outright. We aim to replicate this process in151

evaluation.152

Let Rfail ⊆ R be the set of requirements the model initially fails, and let H = {h1, h2, . . . , hk} be a153

minimal set of corrective hints provided by the evaluator. These hints serve as feedback for revision.154

The updated evaluation function g′H(rj) checks if the revised response meets rj given H .155

We define the final interactive evaluation score as:156

S′
G =

1

m

m∑
j=1

g′H(rj) · I [∀ri ∈ P (rj), g
′
H(ri) = 1] (2)

By comparing SG and S′
G, we gain insight into a model’s capacity not just for initial accuracy, but for157

refinement—an essential skill in real-world applications. This interactive framework enables more158

efficient exploration of the solution space through feedback, aligning model evaluation with realistic159

software development workflows.160

Report Example
Error Handling in Image Downloading: The initial im-
plementation of the download_image function did not
adequately handle connection errors...
URL Accessibility: The model initially used a URL for
the style image that resulted in a 404 error...
Logging and Feedback: The model’s initial logging for
download attempts was minimal...
Code Organization: While the code was well-
structured...
Adaptability: The model demonstrated good adaptabil-
ity...
Overall, the hints provided were instrumental...

Figure 2: Example evaluation report

Post-Evaluation Report Follow-161

ing the interactive evaluation pro-162

cess, we generate a structured perfor-163

mance report to analyze the model’s164

strengths, weaknesses, and adaptabil-165

ity. Rather than providing a single166

aggregate score, this report captures167

multiple dimensions of the model’s168

behavior. It assesses problem-solving169

ability (e.g., whether the model can170

comprehend complex tasks and pro-171

duce structured solutions), optimiza-172

tion awareness (e.g., consideration of173

time or space complexity), and, where174

applicable, code quality and organiza-175

tion. It also examines the model’s abil-176

ity to recognize and correct its own177

mistakes, its responsiveness to mini-178

mal feedback, and its handling of am-179

biguity or incomplete information.180
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4 Methodology181

We introduce a structured methodology to evaluate LLMs on complex, structured software engineering182

tasks. The process consists of three stages: requirement extraction and initial evaluation, interactive183

refinement through feedback, and post-evaluation analysis.184

4.1 Ground Truth Construction, Requirement Extraction and Initial Evaluation185

Given a task T , we construct a ground-truth solution S∗ and define a set of core requirements186

R = {r1, r2, . . . , rm}, representing essential aspects a correct solution must satisfy. These are187

structured as a DAG G = (R,E), where an edge (ri, rj) ∈ E indicates that rj depends on the prior188

satisfaction of ri. We demonstrate our framework using the DevAI benchmark, which provides189

structured requirements but lacks Ground-Truth solutions.190

To evaluate a model-generated solution S, we segment it into chunks C = {c1, c2, . . . , cn} and embed191

both requirements and chunks using a sentence encoder fenc. For each requirement rj , we retrieve192

the most similar chunk c∗k via cosine similarity. The pair (rj , c∗k) is then passed to an LLM-based193

classifier, which predicts whether the requirement is satisfied, conditioned on the satisfaction of its194

parent requirements in the DAG.195

This initial evaluation procedure follows the Agent as a Judge approach [23], and we adopt their196

judge implementation in our experiments.197

4.2 Interactive Evaluation198

Interviewee: o3-mini, Problem: S26
Your solution currently does not explicitly
load the Electronics subset of the Amazon
Reviews 2023 dataset using the datasets
library as required. Instead, it reads from a
local CSV or uses a dummy dataset fallback.
To meet the requirement, please implement
data loading in src/data_loader.py us-
ing the load_dataset function from the
"McAuley-Lab/Amazon-Reviews-2023"
dataset and "raw_review_Electronics"
configuration, as shown in the reference
solution. Also, please add explicit inline
comments referencing the requirement for data
loading and preprocessing steps.

Figure 3: Hint provided by the interviewer

To measure a model’s ability to improve its so-199

lution with guidance, we introduce an iterative200

evaluation loop. At each iteration t, the model201

submits a revised solution S(t), which is exe-202

cuted in a sandboxed Python environment to203

produce outputs O(t) and errors E(t) if any.204

A separate LLM-based component, the inter-205

viewer I , analyzes the current output, execution206

errors, the evaluation graph G, and the ground-207

truth solution S∗. Based on this, it generates208

a minimal set of natural language hints H(t)209

intended to help the model correct its current210

deficiencies. These hints target specific failed211

requirements while preserving as much of the212

model’s original reasoning as possible. A con-213

crete example of such hint can be seen in Figure214

3, demonstrating how they guide iterative im-215

provement without overcorrecting. Additional216

examples showing hint variation across different217

failure modes are provided in Appendix C.218

The evaluated model receives H(t) as input and219

produces an updated response S(t+1). This loop continues until either all requirements are satisfied220

according to I, or a predefined maximum number of iterations is reached.221

At the end of the process, we compute the final interactive score using Equation (2).222

4.3 Post-Evaluation Reporting223

Beyond correctness scores, we produce a qualitative report analyzing the model’s behavior throughout224

the evaluation trajectory {S(t), H(t)}Tt=1. This report is generated by an LLM-based analyzer R,225

which synthesizes insights about the model’s reasoning process, adaptability, and robustness.226

The analysis covers multiple dimensions, including problem-solving ability, sensitivity to feedback,227

optimization awareness (e.g., runtime or memory considerations), handling of ambiguity, and quality228
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Example task: Tweets sentiment analysis on Sentiment140 dataset from HF

Query
Build a sentiment analysis system using the Sentiment140 dataset from Hugging Face. Load and clean the
data (remove stop words, punctuation, special characters) in src/data_loader.py. Use Word2Vec or GloVe
for vectorization in the same file. Train an SVM classifier in src/model.py and save the accuracy in
results/metrics/accuracy_score.txt.

Requirements
■ R0 Sentiment140 is loaded in src/data_loader.py.

Dependencies →{}

■ R1 Dataset is cleaned (stop words, punctuation, special characters) in src/data_loader.py.
Dependencies →{R0}

■ R2 Word2Vec or GloVe embeddings applied in src/data_loader.py.
Dependencies →{R0, R1}

■ R3 SVM model trained in src/model.py.
Dependencies →{R0, R1, R2}

■ R4 Accuracy written to results/metrics/accuracy_score.txt.
Dependencies →{R1, R2, R3}

Figure 5: A task example in DevAI.

of code structure and organization. Rather than summarizing with a single metric, this report provides229

a structured breakdown of the model’s strengths and failure patterns, offering deeper insight into230

its underlying capabilities. The example in Figure 2 shows a typical report. Additional reports231

showcasing varied response patterns across different model architectures and task categories are232

available in Appendix B.233

An overview of this multi-phase evaluation process is illustrated in Figure 1, showing how model234

responses evolve through feedback and refinement.235

5 Experimental Setup: Benchmark and Models236
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0/2

Percentage of Problems from each Category with Perfect Ground Truth

Figure 4: Percentage of problems with perfect
ground truth accuracy by category.

For the Interactive Evaluation experiments, we237

utilize problems sourced from the DevAI bench-238

mark, running all computations on an Apple M2239

Pro system (12-core CPU with 8 performance/4240

efficiency cores, 19-core GPU with Metal 3 ac-241

celeration, and 16GB unified memory). These242

software engineering problems span several ma-243

chine learning and data science domains, includ-244

ing classification, natural language processing,245

and recommender systems. Among its several246

components, Figure 4 presents the categorical247

distribution of problems in DevAI. Each prob-248

lem in Devai is not merely a question with a249

binary correct/incorrect outcome, but rather a250

structured task, decomposed into multiple re-251

quirements.252

As illustrated in Figure 5, every problem is ac-253

companied by: 1) The main question statement, which describes the problem to be solved. 2) A set of254

requirements, representing the individual steps, constraints, or conditions that a correct solution must255

satisfy. 3) A dependency graph, capturing the logical dependencies between requirements. Certain256

requirements can only be evaluated if prerequisite requirements have already been satisfied.257

For the granular evaluation process, which assesses the quality of a solution produced by a candidate258

model, we employ OpenAI’s gpt-4o-mini. For each requirement, the model provides a binary259

judgment (satisfied or unsatisfied), along with a natural language explanation justifying its decision.260
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Since DevAI does not provide official Ground-Truth solutions for its tasks, we constructed reference261

solutions. To ensure their reliability, we verified that each solution satisfied all predefined requirements262

using our granular evaluation framework prior to inclusion in experiments. As shown in Figure 7,263

most tasks achieve 100% requirement satisfaction. In a few cases, lower satisfaction scores occur due264

to two main factors: (1) some tasks rely on external datasets that are no longer publicly available,265

and (2) the LLM judge occasionally misclassifies correct outputs as unsatisfied due to limitations in266

understanding. Notably, this issue persists even with more capable judge models. However, even in267

cases with lower percentages, the absolute number of unsatisfied requirements is often small, usually268

a single missed requirement in tasks with few total requirements.269

Our interactive evaluation experiments employ gpt-4.1-mini and gpt-4o-mini in separate eval-270

uation runs, with each model serving independently as evaluator. The evaluator provides iterative271

feedback by analyzing the ground truth solution, the set of predefined requirements, the solution272

produced by the evaluated model (interviewee), as well as any errors encountered during execution in273

a Python interpreter.274

For the interactive interviewer evaluator model, we set the temperature parameter to 0.3 to encourage275

responses that balance determinism and creativity, while ensuring a degree of consistency across276

repeated evaluations. The interviewee model uses the same temperature setting (0.3) for comparable277

behavior in solution generation. We configure the maximum token limit to 2000 tokens for the278

interviewer, allowing it to handle detailed feedback within each evaluation step, while permitting279

5000 tokens for the interviewee to accommodate longer solutions to complex problems.280

To ensure consistent behavior during interactive evaluation, we design a set of role-specific prompts281

for both the evaluator and the interviewee model. The evaluator is guided by a system prompt that282

defines its objectives and communication style, as well as an assistant prompt that specifies evaluation283

criteria, feedback strategies, and hinting procedures. The interviewee model receives a system prompt284

outlining its role, expected behavior, and response format, along with a detailed user prompt that285

directs its problem-solving approach and ensures adherence to task requirements. All prompts are286

provided in Appendix A.287

6 Evaluation288
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Hint Quality Assessment by Category

Figure 6: Hint quality scores across problem cate-
gories (mean = 4.32, σ = 1.18). These hints were
produced by GPT-4.1-mini.

We begin by rigorously evaluating the quality of289

our enhanced DevAI benchmark through multi-290

ple complementary analyses. First, we examine291

the requirement satisfaction rates of our curated292

Ground-Truth solutions. Figure 7 reveals that293

92.6% of all requirements are satisfied on aver-294

age across the benchmark, with a strong majority295

of problems achieving perfect 100% compliance296

(shown in green). This high overall quality en-297

sures that the interviewer model generates hints298

based on fundamentally sound reference imple-299

mentations, establishing a solid foundation for300

reliable interactive evaluation.301

Deeper category-level analysis in Figure 4 ex-302

poses important variations in solution qual-303

ity across different software engineering do-304

mains. While well-structured tasks maintain305

near-perfect ground truth rates, more complex306

domains exhibit noticeable gaps. Specifically, generative models, computer vision, and NLP tasks307

demonstrate lower compliance rates. We attribute these differences to three key factors: (1) inherent308

ambiguity in problem specifications for creative tasks, (2) dependency on external data sources that309

may become unavailable, and (3) greater implementation variability in cutting-edge domains where310

best practices are still evolving.311

To assess how these benchmark characteristics translate to actual interactive evaluation quality, we312

conducted a comprehensive user study with 100 expert-annotated hints sampled from real evaluation313

sessions (20 hints × 5 interviewee models) using GPT-4.1-mini as the interviewer. The results in314
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Requirement Satisfaction by Problem
Total Judgments: 365 | Satisfaction Rate: 92.6% | Perfect Problems: 41/55
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Figure 7: Requirement satisfaction rates of ground truths across all problems. Green bars indicate
fully satisfied problems (100%). The orange line shows the average requirement satisfaction (92.6%).

Figure 6 demonstrate that overall hint quality remains strong (µ=4.32/5, σ=1.18). We observe the315

predicted correlation between ground truth quality and hint effectiveness: where in categories with316

lower ground truth quality, we have slightly lower scores and hints showed greater variability. We317

replicated this study with GPT-4o-mini as the interviewer, with complete results and comparative318

analysis presented in Appendix C, revealing consistent patterns in hint effectiveness across both319

interviewer models.320
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Figure 8: Breakdown of guidance impact across
model variants per requirement category.

To set baseline expectations, we begin by con-321

textualizing model capabilities using OpenAI’s322

published benchmark results [11, 12, 13]. The323

GPT-4.1-mini outperforms the GPT-4o-mini in324

traditional coding and instruction evaluations,325

scoring 24% versus 9% on SWE-bench, 35%326

compared to 4% on Aider’s Polyglot benchmark327

[5], and 84% against 78% on IFEval [21]. No-328

tably, the o3-mini surpasses both variants in stan-329

dalone coding assessments with a 42.9% score330

on SWE-bench, while the o4-mini exhibits com-331

prehensive superiority across all major bench-332

marks.333

These static benchmark results present an in-334

triguing paradox when contrasted with our in-335

teractive evaluation findings. In the context336

of complex, multi-requirement software engi-337

neering tasks requiring iterative feedback and338

refinement, in Figure 9, where GPT-4.1-mini339

acts as the interviwer, we observe that (inter-340

viewee) GPT-4.1-mini’s performance degrades341

relative to GPT-4o-mini, with guided variants342

only matching GPT-4o-mini’s baseline unguided343

performance. Furthermore, while o4-mini ini-344

tially demonstrates suboptimal performance on345

certain problem categories, its capacity for in-346

struction following becomes evident through the347

guidance process, ultimately surpassing all other348

model variants in final performance. This diver-349

gence suggests that GPT-4.1-mini exhibits lim-350

itations in processing and incorporating multi-351

turn feedback during refinement cycles, while352

o4-mini’s robust instruction-following capabilities enable it to overcome initial implementation353

challenges (particularly those related to dataset and environment configuration, as detailed in Figure354

8) and achieve superior final results.355

Figure 10 shows that most models achieve only marginal gains when using hints from GPT-4o-mini,356

suggesting these hints provide limited value. Notably, GPT-4.1-mini exhibits a similar pattern – its357
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guided variants (-g).
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performance deteriorates when relying on such hints. This decline stems from two compounding358

issues: the hints’ inherent weaknesses and the model’s inability to effectively utilize iterative refine-359

ments. Ultimately, this combination produces worse results than when the model generates solutions360

independently.361

The observed behavior of GPT-3.5-turbo aligns with expectations given its architectural limitations.362

As a smaller model with constrained context window size, it struggles to: (1) retain and apply past363

refinements across iterations, (2) consistently produce complete solutions when task complexity364

exceeds its capacity, and (3) reliably follow instructions to regenerate full solutions – a weakness also365

documented in Aider’s Polyglot benchmark. These limitations manifest consistently regardless of the366

interviewer model (GPT-4o-mini or GPT-4.1-mini), confirming fundamental capability constraints367

rather than interviewer-specific effects.368

The transition plot (Figure 8) reveals distinct patterns in how models respond to hint interventions369

across task categories. All models exhibit their most pronounced performance improvements in the370

Dataset or Environment category, with consistent positive counts observed for every model variant.371

This trend likely stems from the inherent challenges posed by benchmark tasks requiring manipulation372

of recent or niche datasets, where models frequently lack sufficient pretraining exposure or precise373

location information. The availability of ground truth references in hints appears particularly effective374

for resolving such environment-specific ambiguities. Beyond this commonality, models demonstrate375

divergent response profiles to hinting. These differential responses suggest that hint efficacy depends376

both on the task domain and the specific model’s capability profile, with no universal improvement377

pattern emerging across the evaluated categories.378

7 Conclusion379

Our work establishes a new paradigm for evaluating LLMs in software engineering tasks through380

three fundamental contributions. First, we demonstrate that dependency-aware interactive evaluation381

reveals capabilities and limitations obscured by static benchmarks - where models like GPT-4.1-382

mini show unexpected performance degradation when processing iterative feedback, while o4-mini383

leverages its superior instruction follow-up capacity to overcome initial implementation challenges.384

Second, we enhance with Ground-Truths and validate the DevAI benchmark, and we expose how385

error recovery in later stages (e.g., model training) often compensates for early failures (e.g., data386

loading) when guided by targeted hints. Third, our findings challenge the prevailing assumption387

that benchmark performance directly translates to interactive settings, as evidenced by the weak388

correlation between static scores and guided improvement rates across model variants.389

Several limitations warrant consideration. First, requirement extraction inherits ambiguities from390

natural language specifications, potentially introducing noise in task decomposition. Second, vari-391

ability in automated feedback generation introduces a subtle but important fairness consideration392

in model comparisons. While our interviewer model generates hints consistently for all evaluated393

models, the effectiveness of these hints may vary based on each model’s architectural strengths.394

Most critically, the framework must carefully balance guidance intensity: overly specific hints risk395

revealing solutions, while vague suggestions may fail to trigger meaningful improvements.396

9



References397

[1] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David398

Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis399

with large language models, 2021.400

[2] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,401

Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul402

Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke403

Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad404

Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias405

Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex406

Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,407

William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,408

Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,409

Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech410

Zaremba. Evaluating large language models trained on code, 2021.411

[3] Katherine M. Collins, Albert Q. Jiang, Simon Frieder, Lionel Wong, Miri Zilka, Umang Bhatt,412

Thomas Lukasiewicz, Yuhuai Wu, Joshua B. Tenenbaum, William Hart, Timothy Gowers,413

Wenda Li, Adrian Weller, and Mateja Jamnik. Evaluating language models for mathematics414

through interactions, 2023.415

[4] DeepSeek-AI. Deepseek-v3 technical report, 2025.416

[5] Paul Gauthier. Aider chat leaderboards documentation. https://aider.chat/docs/417

leaderboards/, 2025. Accessed: 2025-08-1.418

[6] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,419

Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding420

challenge competence with apps, 2021.421

[7] Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and422

Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024.423

[8] Ruosen Li, Ruochen Li, Barry Wang, and Xinya Du. IQA-EVAL: Automatic evaluation of424

human-model interactive question answering. In The Thirty-eighth Annual Conference on425

Neural Information Processing Systems, 2024.426

[9] Yusheng Liao, Yutong Meng, Yuhao Wang, Hongcheng Liu, Yanfeng Wang, and Yu Wang.427

Automatic interactive evaluation for large language models with state aware patient simulator,428

2024.429

[10] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin430

Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long431

Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng,432

Shengyu Fu, and Shujie Liu. Codexglue: A machine learning benchmark dataset for code433

understanding and generation, 2021.434

[11] OpenAI. GPT-4.1 Preview. https://openai.com/index/gpt-4-1/, 2025. Accessed:435

2025-08-1.436

[12] OpenAI. Introducing O3 and O4 Mini. https://openai.com/index/437

introducing-o3-and-o4-mini/, 2025. Accessed: 2025-08-1.438

[13] OpenAI. OpenAI O3 Mini. https://openai.com/index/openai-o3-mini/, 2025. Ac-439

cessed: 2025-08-1.440

[14] Jane Pan, Ryan Shar, Jacob Pfau, Ameet Talwalkar, He He, and Valerie Chen. When benchmarks441

talk: Re-evaluating code llms with interactive feedback. arXiv preprint arXiv:2502.18413,442

2025.443

10

https://aider.chat/docs/leaderboards/
https://aider.chat/docs/leaderboards/
https://aider.chat/docs/leaderboards/
https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/openai-o3-mini/


[15] Marco Tulio Ribeiro and Scott Lundberg. Adaptive testing and debugging of NLP models. In444

Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors, Proceedings of the 60th445

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),446

pages 3253–3267, Dublin, Ireland, May 2022. Association for Computational Linguistics.447

[16] John Schulman, Barret Zoph, Christina Kim, Jacob Hilton, Jacob Menick, Jiayi Weng, Juan448

Felipe Ceron Uribe, Liam Fedus, Luke Metz, Michael Pokorny, et al. Chatgpt: Optimizing449

language models for dialogue. OpenAI blog, 2(4), 2022.450

[17] Ekaterina Svikhnushina, Anastasiia Filippova, and Pearl Pu. iEval: Interactive evaluation frame-451

work for open-domain empathetic chatbots. In Oliver Lemon, Dilek Hakkani-Tur, Junyi Jessy452

Li, Arash Ashrafzadeh, Daniel Hernández Garcia, Malihe Alikhani, David Vandyke, and Ondřej453
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Appendix472

A. Prompt Templates473

This appendix provides the complete collection of prompt templates employed in our interactive474

evaluation framework, systematically documenting their roles and design principles. The prompts475

are categorized according to their function within the evaluation pipeline, distinguishing between476

system-level instructions that govern model behavior, user-initiated task specifications that define477

problem parameters, and assistant-generated responses that structure the interaction flow. Each478

prompt has been carefully crafted to maintain consistency across evaluation sessions while allowing479

for necessary flexibility in task-specific adaptations.480

7.0.1 Initial solution construction481

The initial solution generation phase establishes the baseline implementation that subsequent inter-482

active evaluation will refine. This process involves two critical prompt components: (1) a system483

prompt that configures the interviewee model’s behavior as a coding assistant, specifying general484

constraints on response format and technical approach (Fig 11); and (2) a user instruction prompt485

that precisely structures the solution output to facilitate automated workspace generation (Fig 12).486

Together, these prompts ensure solutions adhere to both functional requirements and our framework’s487

parsing conventions while maintaining natural coding practices.488

System Prompt for Interviewee (Unguided)
You are a skilled coding interviewee. Provide complete, functional code solutions to programming problems. Include clear comments to
highlight key parts of the solution. Do not include explanations—only the code.

Figure 11: System prompt provided to the interviewee for initial solution generation

7.0.2 Interactive Guided Evaluation489

In this subsection, we describe the structure of prompts used for the Interactive Guided Evaluation490

protocol. The interaction begins with a system prompt for the interviewer, setting its role and491

responsibilities (Fig 14). This is followed by an assistant prompt instructing the interviewer to492

critically evaluate a specific problem instance using a reference solution and a predefined set of493

evaluation guidelines (Fig 15). Within this context, the interviewer is also made aware of its evaluative494

responsibilities and communicates this understanding explicitly, including a message directed at the495

interviewee stating the problem to be solved (Fig 16). Next, we define the system prompt for the496

interviewee, which provides general behavioral guidelines, especially regarding how to interpret and497

respond to feedback (Fig 13). The user prompt to the interviewer then presents the initial solution498

proposed by the interviewee. Following this, a user prompt to the interviewee provides detailed499

instructions on how to respond thoughtfully and constructively during the evaluation (same as Fig500

12). The user prompt to the interviewee is then repeated to formally present the problem along with501

any relevant instructions (Fig 17), and the assistant prompt of the interviewee follows with the initial502

solution. Finally, a user prompt to the interviewer requests the final assessment report based on the503

interaction (Fig 18).504

7.1 B. Hints and additional statistics505

This appendix provides comprehensive supporting data from our interactive evaluation experiments.506

First, we present characteristic examples of generated hints (Figures 19, 20, 21, 22, 23. 24, 25, 26,507

27, 28, 29, 30, 31, 32, 33) across different model configurations and problem categories, illustrating508

the variation in feedback quality and specificity. These examples demonstrate how hint formulation509

adapts to both the interviewee model’s capabilities and the problem’s technical requirements. The510

section concludes with a complementary visualization of model performance.511

Figure 34 presents the performance distribution across problem categories for both guided and512

unguided model variants. The results reveal distinct capability profiles among models, with each513

variant exhibiting relative strengths in specific domains. Notably, the response to guidance varies514
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Interviewee instruction prompt (Unguided)
Follow these steps strictly for the upcoming problem:
1. Understand the problem: Grasp the requirements, constraints, and expected output. Resolve any ambiguities using standard coding
assumptions.
2. Plan the solution: Organize your approach for modularity, efficiency, and readability.
3. Write the code: Output each time the COMPLETE solution with properly structured files. Separate each file with a header in a code block,
e.g.:
“‘python
# filename.py
(code)
“‘
or
“‘python
# directory/filename.py
(code)
“‘
4. For each runtime-generated file (e.g., logs, results, models, metrics), include a plaintext block (outside code blocks) specifically for this
file, with its path and a note stating it will be created at runtime:
“‘plaintext
# filename1.extension
# This file will be created at runtime
“‘
“‘plaintext
# directory/filename2.extension
# This file will be created at runtime
“‘
5. Ensure completeness: Include all necessary imports, function definitions, and components.
6. No explanations: Provide only the code, with inline comments clearly referencing each corresponding requirement.
7. Modularize: Implement each requirement in its own function.
8. Follow best practices: Write clean, well-documented, maintainable code that handles edge cases.
9. Assume a fully prepared environment: Do not include dependency installations or directory creation commands; focus solely on
functionality. However, don’t assume datasets are readily available; you may need to install them if needed.
10. Also, include a file named execute_workspace.sh that runs all components in sequence, ensuring the code executes correctly and produces
all required outputs. Use the following format:
“‘bash
# execute_workspace.sh
(code)
“‘
Output only the structured code with proper file separation and no extra commentary.

Figure 12: User prompt provided to the interviewee for the guidelines

Interviewee system prompt
You are a highly skilled coding interviewee tasked with solving programming problems efficiently. Your role is to provide complete,
structured, and fully functional solutions without explanations, or reasoning—only the code itself. If given feedback, modify the solution
accordingly in order to fix potential errors and always give the complete solution. Have commenting in code where requirements are
implemented. Maintain the specified format at all times.

Figure 13: System prompt for the interviewee

Interviewer System Prompt
You are a technical interviewer specialized in evaluating coding and problem-solving skills of a candidate model. Your goal is to provide
precise, minimal, and structured feedback, strictly addressing the requirements of the problem presented.
Always follow these evaluation rules:
1. Requirement-Oriented: Explicitly reference the provided requirements and criteria.
2. Dependency-Aware: Consider requirement dependencies; if a prerequisite requirement is unmet, prioritize hints addressing that first.
3. Minimal and Incremental: Provide the minimal hint necessary for the candidate to identify their mistake.
4. Objective and Specific: Clearly point out exactly one concrete issue per hint. Avoid vague or subjective feedback.
5. Iterative Improvement: Assume multiple iterations. Guide incrementally without prematurely solving the entire task for the candidate.
Your hints should be minimal, concise, and may include: - Conceptual pointers (e.g., "Verify the dimensions of your array.") - Specific
references to requirements - Clarifying questions prompting the candidate to think critically.

Figure 14: System prompt provided to the interviewer for the interactive evaluation
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Interviewer assistant prompt guideline
Problem for that I will be evaluating:
[START OF PROBLEM] problem [END OF PROBLEM]
Reference Solution for Guidance:
[START OF REFERENCE SOLUTION] reference_solution [END OF REFERENCE SOLUTION]
Evaluation Guidelines:
1. I will assess the given solution strictly based on the problem requirements without revealing my reasoning. I will:
- Verify correctness, logic, and adherence to constraints.
- Ensure all stated requirements are met (IMPORTANT).
- Check that each requirement is implemented with an explicit inline comment linking it to the corresponding requirement.
- Not introduce or evaluate any unstated requirements.
2. If the solution meets all requirements and is executed without errors, I will immediately respond with: "INTERVIEW IS OVER."
3. If the solution is incomplete or partially correct, I will provide one concise paragraph of minimal hints based on the reference solution:
- I will focus solely on improvements based on the stated requirements.
- I will avoid asking for execution details, test cases, outputs, or explanations.
- I WILL NOT ASK FOR EXECUTION OF THE SCRIPT.
- I will request explicit inline comments that reference each specific requirement.
- I will not offer compliments (e.g., “Good job” or “Well done”).
- I will provide hints informed by the reference solution—unknown to the interviewee—to guide their improvements. If the solution remains
uncorrected and the same error persists, I will progressively reveal more explicit hints based on the reference solution. If the mistake repeats,
I will provide code snippets from the reference solution to steer them toward the correct approach.
4. I WILL NOT ASK THE INTERVIEWEE TO RUN THE CODE.
5. IMPORTANT: I WILL PROVIDE the snippet from the reference solution that downloads the dataset for the problem.
I will assume a fully prepared execution environment with all required packages installed. But I won’t assume the datasets are readily
available; the interviewee may need to install them.

Figure 15: Assistant prompt for the interviewer for the guidelines

Interviewer acknowledgment prompt
Understood. Now I will address the user. I will now act as technical interviewer and guide through the evaluation process.
The problem we will examine is as follows:
[START OF PROBLEM] problem [END OF PROBLEM]

Figure 16: Assistant prompt for the interviewer acknowledging the evaluation process and stating the
problem

Interviewee problem user prompt
[START OF PROBLEM] query [END OF PROBLEM]
From now on, I will provide feedback on your solution. After receiving feedback, please adjust your code accordingly in order to correct
it, focusing on correctness, efficiency, and clarity. Provide complete, structured, and fully functional solutions without explanations, or
reasoning—only the code itself. At all times maintain the specified format. Always give the FULL SOLUTION, not just the modifications.

Figure 17: User prompt to interviewee for presenting the problem

Report prompt
Provide a structured assessment of my performance, focusing only on areas where I was incorrect or required hints. Include a detailed
breakdown of the hints given, explaining their impact on my reasoning and how they guided the solution. Do not provide feedback on correct
aspects of my solution—keep the evaluation concise and strictly focused on areas that needed improvement

Figure 18: User prompt to interviewer for report

Interviewee: o4-mini, Problem: S10
Your code attempts to load the dataset using fetch_openml with the name heart-disease-uci, but this dataset is not found on OpenML,
causing a failure to load data. The requirement explicitly states to use the UCI Heart Disease dataset from the provided link, and the
reference solution downloads and extracts it manually or via a Kaggle dataset. Please revise your src/data_loader.py to download and
load the dataset from the official source or a reliable mirror, ensuring the dataset is available at runtime as in the reference solution. Also,
add explicit inline comments referencing the requirement for dataset loading.

Figure 19: Hint provided by the interviewer
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Interviewee: o4-mini, Problem: S10
Your data preprocessing pipeline in src/data_loader.py does not handle categorical string features before applying SelectKBest and
StandardScaler, causing a failure when converting strings like normal to float. The reference solution converts all features to numeric
and removes or encodes categorical columns before feature selection and scaling. Please ensure you preprocess or encode categorical
features to numeric types before feature selection and scaling, and add inline comments referencing the requirement for feature selection and
data standardization. This is a prerequisite before training the model and generating SHAP values

Figure 20: Hint provided by the interviewer

Interviewee: o4-mini, Problem: S10
Your solution correctly downloads the dataset from a reliable source, encodes categorical features, applies feature selection and standardiza-
tion with clear inline comments referencing requirements. The model training script implements both XGBoost and Logistic Regression with
performance metrics, saves the XGBoost model under models/saved_models/, and generates SHAP explanations saved in the required
paths. The ROC curve is saved under results/figures/roc_curve.png, and the HTML report includes all required visualizations and
performance comparisons, saved as results/report.html. Inline comments explicitly link code sections to requirements. This meets all
stated requirements.

Figure 21: Hint provided by the interviewer

Interviewee: o4-mini, Problem: S30
Your solution must include a script named execute_workspace.sh that runs the full pipeline as described: first data preprocessing and
visualization, then training and evaluation, saving outputs to the specified paths. Please add this script with explicit inline comments
referencing the requirement to run preprocessing, training, inference, and saving results and models accordingly.

Figure 22: Hint provided by the interviewer

Interviewee: o4-mini, Problem: S38
Your current download_and_extract_enron function attempts to download the dataset from a URL but encounters SSL certificate
verification failure. To comply with the requirement to load the Enron-Spam dataset efficiently and reliably, consider using the kagglehub
library as in the reference solution, which downloads the dataset from Kaggle with built-in handling and avoids manual URL and SSL issues.
This also ensures the dataset is loaded in src/data_loader.py as required. Additionally, add explicit inline comments referencing the
requirement about dataset loading and preprocessing for clarity.

Figure 23: Hint provided by the interviewer

Interviewee: o4-mini, Problem: S38
The DataFrame column name for labels is incorrect. Instead of "Category", use "Spam/Ham" as in the reference solution. Update your
load_data() function to map labels from df["Spam/Ham"] to 1 for "spam" and 0 for "ham". This fixes the KeyError and aligns with the
requirement to load and preprocess the Enron-Spam dataset correctly. Also, add an explicit inline comment referencing this requirement

Figure 24: Hint provided by the interviewer

Interviewee: o4-mini, Problem: S45
Your current code does not include explicit inline comments referencing each specific requirement, which is necessary for clarity and grading.
Also, the dataset target column is named Churn in the reference solution, but you use target in preprocess_data; please verify the
exact column name in the loaded dataset. Additionally, your cross-validation uses cross_val_score on the training set only, but the
problem requires cross-validation during training with predictions used for the classification report on the entire dataset. Consider using
cross_val_predict with stratified folds as in the reference. Finally, your data loading function lacks a comment explicitly linking it to the
requirement for error handling during dataset loading. Please add these inline comments and verify column names to align with the problem
requirements.

Figure 25: Hint provided by the interviewer

Interviewee: o3-mini, Problem: S26
Your solution currently does not explicitly load the Electronics subset of the Amazon Reviews 2023 dataset using the datasets library as
required. Instead, it reads from a local CSV or uses a dummy dataset fallback. To meet the requirement, please implement data loading in
src/data_loader.py using the load_dataset function from the datasets library with the "McAuley-Lab/Amazon-Reviews-2023"
dataset and "raw_review_Electronics" configuration, as shown in the reference solution. Also, please add explicit inline comments
referencing the requirement for data loading and preprocessing steps.

Figure 26: Hint provided by the interviewer
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Interviewee: o3-mini, Problem: S26
Your current matrix factorization training uses SGD with multiple epochs, which can be computationally expensive and may cause timeout
issues. The requirement suggests applying a latent factor model via SVD on a user-item rating matrix after preprocessing (noise removal
and normalization). Consider replacing the SGD training with the SVD-based matrix factorization approach as in the reference solution
(scipy.sparse.linalg.svds on a demeaned rating matrix). This method is more efficient and aligns with the requirement to use a latent
factor model for user-item interactions. Also, please add explicit inline comments referencing each requirement in your code.

Figure 27: Hint provided by the interviewer

Interviewee: 4.1-mini, Problem: S14
Your DCGAN discriminator architecture causes a runtime error due to a convolution kernel size larger than the input feature map size
during forward pass. Verify the dimensions after each Conv2d layer to ensure the kernel size fits the input; the reference solution uses a
simpler discriminator architecture with downsampling steps that reduce 28x28 to 7x7 before flattening, avoiding this issue. Also, your
execute_workspace.sh script tries to save the PDF report to a non-existent nested directory notebooks/results/; ensure the output path
directory exists or adjust the path to save directly under results/ as in the reference solution.

Figure 28: Hint provided by the interviewer

Interviewee: 4.1-mini, Problem: S23
Your updated download_image function now properly sets a User-Agent header and handles HTTP errors, which aligns well with
the requirement to reliably download the content and style images. However, the problem statement also requires saving the
style-transferred images in results/figures/ (not just the final output but also intermediate results), and logging processing
time to results/processing_time.txt. Please add explicit inline comments referencing these requirements where you save im-
ages and log processing time, to clearly demonstrate compliance. Also, ensure that the intermediate results are saved exactly as
results/figures/intermediate_results.png as required, and the final stylized image is saved in the same directory. Adding
these inline comments will improve clarity and traceability to the problem requirements.

Figure 29: Hint provided by the interviewer

Interviewee: 4o-mini, Problem: S17
Your dataset download function in src/data_loader.py is a step in the right direction, but it lacks the specific logic to download and
extract the TuSimple dataset from Kaggle as required. The problem explicitly requires downloading "manideep1108/tusimple" via
Kaggle (using kagglehub or equivalent), checking for the presence of train_set/ and test_set/ folders, and handling ZIP extraction
or directory copying accordingly. Also, your augmentation pipeline should include random cropping, rotation, and scaling (random resized
crop) as per the requirement, rather than fixed resizing after cropping and rotation. Additionally, your model’s final layer outputs 1 unit, but
the problem expects 2 classes (binary classification with 2 outputs) to use CrossEntropyLoss. Please revise your dataset download logic to
match the reference solution’s approach, adjust your augmentation transforms to include RandomResizedCrop and RandomRotation, and
modify your model’s final layer to output 2 classes with appropriate loss. Also, add explicit inline comments referencing each requirement in
your code

Figure 30: Hint provided by the interviewer

Interviewee: 4o-mini, Problem: S26
Your execute_workspace.sh script tries to install packages from requirements.txt, but this file is missing, causing the installation
to fail and the facenet_pytorch module not to be found. Please ensure that requirements.txt exists in the workspace root with the
necessary packages listed, including facenet-pytorch, and that your script installs from it before running the training script. This will
resolve the missing module error and meet the requirement to load the FaceNet model without issues.

Figure 31: Hint provided by the interviewer

Interviewee: 3.5-turbo, Problem: S48
Your load_data function in src/data_loader.py does not load the Telco Customer Churn dataset from the Hugging Face
scikit-learn/churn-prediction dataset as required; instead, it reads from a CSV file path. Also, you need to include error handling
around dataset loading as specified. Please revise load_data to use load_dataset("scikit-learn/churn-prediction") from
the datasets library with appropriate try-except error handling, and add an explicit inline comment referencing the dataset loading
requirement. This is a prerequisite before addressing feature engineering and imbalance handling

Figure 32: Hint provided by the interviewer
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Interviewee: 3.5-turbo, Problem: S52
Your load_sentiment140_dataset function attempts to load the dataset via ‘pd.read_csv‘ from a Hugging Face URL, but the Senti-
ment140 dataset should be loaded using the Hugging Face datasets library as per the requirement. Also, your code does not map the
sentiment labels from (0,4) to (0,1) for binary classification, which is required. Additionally, your vectorization function uses a local
Word2Vec model file word2vec.model which is not provided or mentioned; the requirement is to use Word2Vec or GloVe embeddings
loaded programmatically (e.g., via gensim.downloader). Finally, your code lacks explicit inline comments referencing each requirement,
which are requested for clarity. Please revise your data loading to use the Hugging Face load_dataset("sentiment140") method, map
labels properly, use a pre-trained embedding model loaded in code, and add inline comments referencing each requirement

Figure 33: Hint provided by the interviewer
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Figure 34: Performance across problem categories. Colors indicate different problem categories.

significantly by both model architecture and problem category, demonstrating that hint effectiveness515

is context-dependent rather than uniform.516

Figure 38 aggregates the per-category impact of guidance across all evaluated models, quantifying517

both improvements and regressions in requirement satisfaction. The visualization reveals model-518

specific response patterns to iterative feedback.519

Figures 35, 36, and 37 present examples of the evaluation reports generated during interactive520

guidance. These reports provide detailed analyses of model errors, the hints administered during521

interaction (including their success rates), task complexity assessments, and other key behavioral522

observations. Together, they offer a structured overview of the model’s strengths and weaknesses523

under guided evaluation.524

7.1.1 C. User study525

Figures 39, 40, 41, 42 first illustrate the user study interface used for expert evaluations, demonstrating526

our annotation protocol for assessing hint quality. This section presents the resulting expert evaluations527

of hints generated by both interviewer models (GPT-4.1-mini and GPT-4o-mini). Figures 43 and 44528

present the expert-rated score distributions, while Figure 45 breaks down scores by category. Both529

plots exhibit consistent patterns in hint quality across categories. However, the majority of scores530

cluster near the baseline (3/5), indicating that most hints were only moderately effective at advancing531

interactive evaluation. This limited efficacy likely explains the marginal improvements observed in532

guided model variants.533
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Report - Interviewee: gpt-4.1-mini, Problem: S16
1. **Initial Data Loading Method**: The candidate initially used ‘imdb.load_data()‘ instead of the required ‘tfds.load()‘. This indicated a
lack of adherence to the requirement to use TensorFlow Datasets. The hint provided was to switch to using ‘tfds.load("imdb_reviews", ...)‘.
This hint prompted the candidate to align their implementation with the specified requirements, showcasing their ability to adapt to feedback.
2. **Embedding Saving Format**: The candidate initially saved embeddings using ‘pickle‘, which was not specified in the requirements.
The hint suggested saving the embeddings as a ‘.npy‘ file using ‘numpy‘. This guidance helped the candidate correct the saving method,
ensuring compliance with the requirements.
3. **Model Architecture Visualization**: The initial implementation did not include saving the model architecture diagram. The hint
emphasized the need to visualize and save the model architecture. This feedback led to the inclusion of the model architecture visualization,
demonstrating the candidate’s responsiveness to feedback.
4. **Inline Comments**: The initial code lacked sufficient inline comments referencing specific requirements. The hint encouraged the
addition of comments to clarify how each part of the code met the requirements. This improvement enhanced the overall organization and
readability of the code.
5. **Handling of Pre-trained Embeddings**: While the candidate used ‘gensim‘ to load embeddings, the hint focused on ensuring that the
embeddings were correctly fetched and mapped. This guidance prompted the candidate to verify the loading process, which is critical for the
model’s performance.
6. **Error Handling and Adaptability**: Throughout the iterations, the candidate demonstrated adaptability by addressing the hints provided
and making necessary corrections. However, there was initially a lack of error handling in the code, particularly when loading embeddings.
The hints did not explicitly address error handling, but the candidate’s ability to implement changes based on feedback improved the
robustness of the solution.
Overall, the hints provided were targeted and specific, focusing on concrete issues that needed correction. Each hint had a direct impact on
improving the solution, leading to a more compliant and organized implementation. The candidate’s ability to adapt to feedback was evident
in their incremental improvements, showcasing a logical approach to problem-solving.

Figure 35: Report after the guided evaluation of gpt-4.1-mini by gpt-4o-mini on problem S16

Report - Interviewee: gpt-4.1-mini, Problem: S37
1. **Error Handling**: In ‘src/data_loader.py‘, the ‘preprocess_image‘ function raises a ‘FileNotFoundError‘ if an image cannot be loaded.
While this is a good practice, there is no handling for cases where the dataset path might be incorrect or if the directory structure is not as
expected. A hint to improve this would be to add checks for the existence of the dataset directory and provide user-friendly error messages if
the path is invalid. This would enhance robustness and user experience.
2. **Adaptability to Feedback**: The model’s comments in the code are generally clear, but there was a lack of explicit references to how
the output layer’s activation function relates to the requirement for similarity scoring in ‘src/model.py‘. A hint to improve this would be to
add a comment explaining that the sigmoid activation function outputs a probability-like score, which is essential for determining if two
images represent the same object. This would demonstrate a better understanding of the model’s purpose.
3. **Complexity Awareness**: The model did not explicitly discuss time and space complexity in the implementation. For instance, in
‘generate_pairs‘, the function continuously generates pairs in an infinite loop without any mechanism to limit the number of iterations or to
handle extremely large datasets efficiently. A hint to improve this would be to consider implementing a mechanism to limit the number of
generated pairs or to allow for a configurable number of iterations, which would enhance both performance and usability.
4. **Code Organization**: While the code is structured well, there could be improvements in modularity. For example, the augmentation
logic could be separated into its own class or module to enhance reusability and clarity. A hint to improve this would be to suggest creating a
dedicated augmentation class that encapsulates all augmentation methods, making the codebase cleaner and more maintainable.
5. **Handling Ambiguity**: The model did not address how to handle potential ambiguities in the dataset, such as varying image sizes
or formats. A hint to improve this would be to implement checks or preprocessing steps that standardize image sizes and formats before
processing, ensuring consistency across the dataset.
Overall, the hints provided aimed to enhance error handling, adaptability to feedback, complexity awareness, code organization, and handling
of ambiguities, which would collectively lead to a more robust and maintainable solution.

Figure 36: Report after the guided evaluation of gpt-4.1-mini by gpt-4o-mini on problem S37
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Report - Interviewee: o3-mini, Problem: S8
1. **Missing Function for Metadata Image Generation**: Initially, the solution did not include a function to generate an image with hidden
text embedded in its metadata. The hint provided was to add this function, emphasizing the requirement to generate an image of 1080p
resolution with hidden text in the metadata. This hint prompted the candidate to recognize the oversight and implement the necessary
functionality, thereby aligning the solution with the problem requirements.
2. **Lack of Inline Comments for Metadata Function**: After the function for generating the metadata image was added, it lacked explicit
inline comments referencing the specific requirements. The hint suggested adding comments to clarify how the function met the requirements.
This feedback guided the candidate to improve the documentation of their code, enhancing readability and maintainability.
3. **Verification of Hidden Text**: There was an initial lack of emphasis on the requirement to manually verify that the hidden text was
embedded in the generated images. The hint pointed out the need for comments that explicitly stated this verification step. This led to a more
comprehensive understanding of the problem requirements and improved the clarity of the code regarding its functionality.
4. **Error Handling**: While the solution included some error handling (e.g., checking if the text length exceeded the number of available
pixels), there was no indication of how the model would handle potential issues when reading or writing files (e.g., file permissions,
nonexistent directories). A hint could have encouraged the candidate to consider adding error handling for file operations, which would
improve the robustness of the solution.
5. **Complexity Awareness**: The solution did not address time and space complexity considerations, particularly in the context of
embedding and extracting hidden text. A hint could have prompted the candidate to analyze the efficiency of their algorithms, especially
since they involve manipulating pixel data in images. This would demonstrate a deeper understanding of performance implications in their
solution.
6. **Code Organization**: The organization of the code could have been improved by separating concerns more clearly, such as grouping
related functions or providing a clearer structure for the main execution flow. A hint suggesting better organization could have encouraged
the candidate to refactor their code for improved clarity and maintainability.
Overall, the hints provided were instrumental in guiding the candidate to address these weaknesses, leading to a more complete and functional
solution that adhered closely to the problem requirements. Each hint prompted the candidate to think critically about their implementation,
ultimately enhancing their problem-solving skills and adaptability to feedback.

Figure 37: Report after the guided evaluation of o3-mini by gpt-4o-mini on problem S8
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Figure 38: Breakdown of guidance impact across model variants. Bars show the number of problems
where performance improved (green), worsened (red).
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Figure 39: Description of user study
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Figure 40: Hint example from user study
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Figure 41: Hint example from user study
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Figure 42: Hint example from user study
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Figure 43: Distribution of Hint Grades (Interviewer GPT-4.1-mini)
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NeurIPS Paper Checklist534

1. Claims535

Question: Do the main claims made in the abstract and introduction accurately reflect the536

paper’s contributions and scope?537

Answer: [Yes]538

Justification: The abstract and introduction clearly state the claims made, including the539

contributions made in the paper and assumptions and limitations.540

2. Limitations541

Question: Does the paper discuss the limitations of the work performed by the authors?542

Answer: [Yes]543

Justification: They are discussed in conclusion.544

3. Theory assumptions and proofs545

Question: For each theoretical result, does the paper provide the full set of assumptions and546

a complete (and correct) proof?547

Answer: [NA]548

Justification: The paper does not include theoretical results.549

4. Experimental result reproducibility550

Question: Does the paper fully disclose all the information needed to reproduce the main ex-551

perimental results of the paper to the extent that it affects the main claims and/or conclusions552

of the paper (regardless of whether the code and data are provided or not)?553

Answer: [Yes]554

Justification: The paper provides all necessary code and detailed descriptions of the models,555

datasets, and hyperparameters used in the experiments. While stochastic elements in model556

outputs may lead to minor variability across runs, the reported experimental results are557

expected to be reproducible on average, and the main claims and conclusions are robust to558

such variations.559

5. Open access to data and code560

Question: Does the paper provide open access to the data and code, with sufficient instruc-561

tions to faithfully reproduce the main experimental results, as described in supplemental562

material?563

Answer: [Yes]564

Justification: The paper provides open access to all code and datasets used in the experiments.565

Detailed scripts and instructions are included.566

6. Experimental setting/details567

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-568

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the569

results?570

Answer: [Yes]571

Justification: All relevant experimental details are clearly described in the main paper.572

Additionally, the provided code offers a complete and precise reference for reproducing the573

experimental setup.574

7. Experiment statistical significance575

Question: Does the paper report error bars suitably and correctly defined or other appropriate576

information about the statistical significance of the experiments?577

Answer: [Yes]578

Justification: The results are accompanied by error bars for the experiments that support the579

main claims of the paper.580

8. Experiments compute resources581
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Question: For each experiment, does the paper provide sufficient information on the com-582

puter resources (type of compute workers, memory, time of execution) needed to reproduce583

the experiments?584

Answer: [No]585

Justification: The hardware specifications used for the experiments are fully reported;586

however, the exact execution times are not provided.587

9. Code of ethics588

Question: Does the research conducted in the paper conform, in every respect, with the589

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?590

Answer: [Yes]591

Justification: Yes, the authors have reviewed the Code of Ethics, and the research has been592

conducted in full compliance with its guidelines.593

10. Broader impacts594

Question: Does the paper discuss both potential positive societal impacts and negative595

societal impacts of the work performed?596

Answer: [No]597

Justification: The paper discusses potential positive societal impacts of the work, which are598

highlighted explicitly. However, potential negative societal impacts are not addressed.599

11. Safeguards600

Question: Does the paper describe safeguards that have been put in place for responsible601

release of data or models that have a high risk for misuse (e.g., pretrained language models,602

image generators, or scraped datasets)?603

Answer: [NA]604

Justification: The paper poses no such risks.605

12. Licenses for existing assets606

Question: Are the creators or original owners of assets (e.g., code, data, models), used in607

the paper, properly credited and are the license and terms of use explicitly mentioned and608

properly respected?609

Answer: [Yes]610

Justification: All content, data, and resources derived from external sources are appropriately611

cited to acknowledge the original authors.612

13. New assets613

Question: Are new assets introduced in the paper well documented and is the documentation614

provided alongside the assets?615

Answer: [Yes]616

Justification: Detailed information regarding the benchmark and the experimental execution617

is documented.618

14. Crowdsourcing and research with human subjects619

Question: For crowdsourcing experiments and research with human subjects, does the paper620

include the full text of instructions given to participants and screenshots, if applicable, as621

well as details about compensation (if any)?622

Answer: [Yes]623

Justification: Screenshots illustrating the survey instructions are provided in the appendix.624

15. Institutional review board (IRB) approvals or equivalent for research with human625

subjects626

Question: Does the paper describe potential risks incurred by study participants, whether627

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)628

approvals (or an equivalent approval/review based on the requirements of your country or629

institution) were obtained?630
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Answer: [NA]631

Justification: Participation in the survey poses no foreseeable risks to the subjects.632

16. Declaration of LLM usage633

Question: Does the paper describe the usage of LLMs if it is an important, original, or634

non-standard component of the core methods in this research? Note that if the LLM is used635

only for writing, editing, or formatting purposes and does not impact the core methodology,636

scientific rigorousness, or originality of the research, declaration is not required.637

Answer: [Yes]638

Justification: LLMs are employed both as evaluators and as subjects of evaluation, and this639

is explicitly stated in the paper.640
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