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Abstract

Standard single-turn, static benchmarks fall short in evaluating the nuanced ca-
pabilities of Large Language Models (LLMs) on complex tasks such as software
engineering. In this work, we propose a novel interactive evaluation framework
that assesses LLMs on multi-requirement programming tasks through structured,
feedback-driven dialogue. Each task is modeled as a requirement dependency
graph, and an “interviewer” LLM, aware of the ground-truth solution, provides
minimal, targeted hints to an “interviewee” model to help correct errors and fulfill
target constraints. This dynamic protocol enables fine-grained diagnostic insights
into model behavior, uncovering strengths and systematic weaknesses that static
benchmarks fail to measure. We build on DevAl, a benchmark of 55 curated
programming tasks, by adding ground-truth solutions and evaluating the relevance
and utility of interviewer hints through expert annotation. Our results highlight the
importance of dynamic evaluation in advancing the development of collaborative
code-generating agents.

1 Introduction

The integration of Large Language Models (LLMs) into software development has transformed coding
from a solitary, linear process into a dynamic, iterative collaboration. Modern tools like ChatGPT
[[L6]], DeepSeek [4]], and Al-first IDEs such as Cursor exemplify this shift, where developers no
longer simply request code but refine it through multiturn dialogues. Feedback, whether clarifications,
corrections, or incremental constraints, has become the scaffold for progress, allowing models to
adapt to ambiguities, edge cases, and evolving requirements. Yet, despite this reality, the prevailing
benchmarks continue to evaluate LLMs as static single-turn code generators, ignoring the very
interactions that define their practical utility.

The Gap in Current Evaluation Current evaluation paradigms for software engineering problems
suffer from two critical misalignments with real-world software workflows. (i) First, they treat
tasks as monolithic problems [2| 6], ignoring their compositional nature. For example, building a
recommendation system requires strict dependencies: data loading — feature engineering — model
training — API exposure. Yet static evaluations force models to “guess correctly” on the first attempt,
conflating understanding of requirements with luck in initial output. This penalizes models for early
errors (e.g., data loading) and obscures their ability to recover in downstream steps (e.g., model
training), even though real development often involves debugging partial solutions. (ii) Second, while
recent work explores interactive evaluation [19} [14], these efforts rely on shallow feedback (e.g.,
binary correctness checks) or unstructured hints, failing to capture the directed repair behavior of
human-AlI collaboration. In practice, a model’s value depends on its ability to adapt, say fixing a
missing edge case after a developer’s nudge, but benchmarks rarely measure this. The gap is systemic:
without evaluating how LLMs leverage feedback to navigate dependencies or rectify cascading errors,
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we risk overestimating failures (where models could recover) or underestimating pitfalls (where
models pass single-turn tests but reveal critical flaws when exposed to step-by-step refinement) -
precisely the dynamics that define their practical utility.

Our framework: Interactive, Dependency-Grounded
Assessment We propose a structured, feedback-driven
evaluation framework (Figure|1) for software engineering
tasks. Each task is decomposed into a directed acyclic
graph (DAG) of requirements, capturing the hierarchical
dependencies between subtasks. A model is evaluated not

only on its initial output but also on its ability to improve
iteratively through targeted feedback loops. These hints
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are automatically generated by an LLM-based interviewer «

Task specification
Reference Solution
Evaluation Guidelines
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with access to ground truth solutions and task requirements.
If a model fails an early subtask, we guide it past the error
to assess its performance on subsequent steps - mirroring
how human developers work around intermediate bugs to

<~
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. . Executor
evaluate deeper functionality.
S0/,
A critical design feature is our lightweight integration pro- W J_KQ\
tocol. The framework exposes simple interfaces that allow . R Lo
any LLM to participate as either interviewer or intervie- =

wee with minimal adaptation. Researchers can evaluate
new models by implementing just these basic interaction
primitives, while still benefiting from the full power of
our dependency-aware assessment pipeline. This modular
design ensures wide applicability without compromising
the richness of evaluation, enabling both controlled bench-
marking and real-world deployment testing.

Task specification
Solution Protocol
Delivery Format

Figure 1: The Interactive Evaluation
pipeline.

Contributions Our main contributions are:

1. A Dependency-Driven Interactive Evaluation Protocol: We introduce the first framework
that jointly models software task decomposition and iterative feedback for LLM assessment.
The framework’s novel structure enables quantifying error propagation and recovery through
guided feedback and easy integration via minimal interface requirements, allowing any LLM
to participate as interviewer or interviewee with trivial adaptation.

2. An enhanced DevAl benchmark: We augment DevAl [23]] with verified Ground-Truth
solutions, using the original Agent-as-a-Judge methodology to ensure correctness. This
extension enables guided, multi-stage evaluation through our framework’s structured feed-
back mechanism, resulting in an improved benchmark that serves as both (i) an evaluation
platform for our experiments and (ii) a reusable resource for future interactive assessment
frameworks.

3. Our experiments reveal that failures in static evaluations become recoverable with targeted
feedback, suggesting that single-turn benchmarks severely underestimate LLM capabilities.
We also identify critical failure modes where models cannot effectively incorporate feedback,
revealing limitations in their ability to refine solutions even with iterative guidance.

By bridging the gap between static benchmarks and real-world software workflows, our work advances
practical LLM evaluation for software engineering problems.

2 Related Work

Traditional evaluations of LLMs rely on static benchmarks with fixed inputs and binary success
criteria. While benchmarks such as HumanEval [2], APPS [6]], and MBPP [1]] have driven rapid
progress in code generation, they fail to capture the process-oriented, iterative nature of real-world
problem solving. These benchmarks typically assess models based on functional correctness of output
in a single shot setting, which assumes complete and unambiguous task specifications, an assumption
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that does not hold in most practical development scenarios. Extensions like CodeXGLUE [10] and
SWE-bench [7] move towards more realistic evaluation tasks, such as bug fixing and issue resolution
in real codebases. However, they still emphasize static correctness over dynamic reasoning, offering
limited insight into how models handle ambiguity, adapt over time, or respond to developer intent.

To address these shortcomings, recent work has explored interactive evaluation, where models are
assessed over multiple turns with access to feedback or clarification. Human-in-the-loop setups
such as iEval [[17] and CheckMate [3] demonstrate that interactivity reveals model competencies
overlooked by static scoring, particularly in complex domains like mathematics or natural language
understanding. These studies show that model performance can vary substantially when they are
allowed to ask questions, request hints, or revise outputs based on critique. More scalable frameworks
simulate interaction using LLMs both as agents and evaluators, as in IQA-Eval [8]], KIEval [20], and
medical roleplay systems [9], enabling broader experimentation without relying on human annotators.
These frameworks highlight the potential of structured feedback to surface model behaviors that are
otherwise invisible in single-turn evaluations.

Complementary to interactivity, adaptive evaluation dynamically adjusts testing based on model
responses. DyVal [22] and DyVal 2 extend this idea using reasoning graphs and skill-specific probes
to isolate weaknesses and trace error propagation through multistep reasoning tasks. These tools
allow for a more diagnostic view of model performance, showing not just whether a model fails, but
how and why it fails across different cognitive skills. Similarly, AdaTest [[15] and benchmark self-
evolving frameworks [18]] generate targeted adversarial examples to stress-test models under varying
conditions. By continuously updating the test set in response to model behavior, these approaches
create a moving target that reveals brittleness or blind spots that static benchmarks overlook.

In the software engineering domain, a few agent-based approaches have emerged to better reflect
realistic development pipelines. Notably, Agent-as-a-Judge [23]] evaluates LLMs on tasks involving
interdependent components such as planning, execution, and evaluation. These methods begin
to address compositionality and dependency tracking, yet often lack structured mechanisms for
feedback-based refinement. They typically evaluate outputs at isolated checkpoints, without modeling
how developer guidance might help correct or improve the model’s trajectory through a task.

Our work builds on this trajectory by introducing an interactive evaluation framework tailored to soft-
ware engineering tasks. Unlike prior efforts that isolate interactivity, adaptivity, or software-specific
evaluation, our approach unifies these aspects through requirement decomposition, dependency-aware
scoring, and guided iterative feedback. This allows for a more granular and realistic assessment of how
models reason, adapt, and improve in complex engineering workflows, capturing the collaborative
dynamics that characterize human-Al co-programming.

3 Problem Formulation

We define Interactive Software Engineering Evaluation as a multi-stage assessment framework
designed to evaluate large language models through iterative refinement cycles guided by structured
feedback. This approach specifically addresses complex, decomposable tasks characterized by three
key properties: first, the presence of hierarchical dependencies among requirements; second, the
potential need for incremental correction of partial solutions; and third, the necessity to evaluate both
initial capability and adaptive improvement. The framework represents tasks as Directed Acyclic
Graphs (DAGs) of requirements, where vertices correspond to verifiable subtasks, and edges encode
functional dependencies.

Unlike traditional binary evaluations, which assess success or failure on a task as a whole, interactive
evaluation captures both the model’s initial performance and its ability to refine and repair its output
in response to minimal guidance. This approach aligns closely with real-world software engineering,
where developers iteratively build and correct solutions in response to feedback.

Structured Tasks with Hierarchical Dependencies We focus on problems that consist of multiple
interdependent requirements, where progress on earlier subtasks enables progress on later ones.
Formally, let a task 7" be defined by a set of requirements R = {ry,rs,...,ry}, with each r;
representing a subcomponent or constraint of the overall solution.
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To capture the hierarchical and sequential structure of such tasks, we can model their dependencies as
aDAG G = (R, E), where an edge (r;,7;) € E indicates that requirement r; can only be addressed
after requirement r; has been successfully completed. Let P(r;) denote the set of prerequisite
requirements for r;, and let g: R — {0, 1} be the initial evaluation function that checks whether
each requirement r € R is satisfied (1) or not (0). Then, r; is evaluable only if all its parents are
satisfied: Vr; € P(r;),g(r;) = 1.

The effective (dependency-aware) evaluation score for the task is then defined as:

1 m
Sa = ;gm) [Vri € P(ry), g(ri) = 1] M

This formulation allows us to credit partial progress while respecting the task’s logical structure,
avoiding overly coarse binary evaluations.

Guided Evaluation via Feedback Crucially, we are interested not just in how well a model
performs on its first attempt, but in how effectively it improves when given feedback. In software
engineering, a developer might suggest minimal edits (“rename this variable”, “fix the off-by-one
error”’), guiding progress without solving the problem outright. We aim to replicate this process in
evaluation.

Let Rpi C R be the set of requirements the model initially fails, and let H = {hy, ha,...,h;} bea
minimal set of corrective hints provided by the evaluator. These hints serve as feedback for revision.
The updated evaluation function g/; (r;) checks if the revised response meets r; given H.

‘We define the final interactive evaluation score as:

m

1
St = — 3 gha(ry) - L[¥ri € P(ry). giglrs) = 1] @
j=1

By comparing S¢ and S¢;, we gain insight into a model’s capacity not just for initial accuracy, but for
refinement—an essential skill in real-world applications. This interactive framework enables more
efficient exploration of the solution space through feedback, aligning model evaluation with realistic
software development workflows.

Post-Evaluation Report Follow-
ing the interactive evaluation pro- ( Report Example )
cess, we generate a structured perfor-

mance report to analyze the model’s
strengths, weaknesses, and adaptabil-
ity. Rather than providing a single
aggregate score, this report captures
multiple dimensions of the model’s
behavior. It assesses problem-solving
ability (e.g., whether the model can
comprehend complex tasks and pro-
duce structured solutions), optimiza-
tion awareness (e.g., consideration of
time or space complexity), and, where
applicable, code quality and organiza-
tion. It also examines the model’s abil-
ity to recognize and correct its own
mistakes, its responsiveness to mini-
mal feedback, and its handling of am-
biguity or incomplete information.

Error Handling in Image Downloading: The initial im-
plementation of the download_image function did not
adequately handle connection errors...

URL Accessibility: The model initially used a URL for
the style image that resulted in a 404 error...

Logging and Feedback: The model’s initial logging for
download attempts was minimal...

Code Organization: While the code was well-
structured...

Adaptability: The model demonstrated good adaptabil-
ity...

Overall, the hints provided were instrumental...

Figure 2: Example evaluation report
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4 Methodology

We introduce a structured methodology to evaluate LLMs on complex, structured software engineering
tasks. The process consists of three stages: requirement extraction and initial evaluation, interactive
refinement through feedback, and post-evaluation analysis.

4.1 Ground Truth Construction, Requirement Extraction and Initial Evaluation

Given a task 7', we construct a ground-truth solution S* and define a set of core requirements
R = {ry,7a,...,mm}, representing essential aspects a correct solution must satisfy. These are
structured as a DAG G = (R, E), where an edge (r;,7;) € E indicates that r; depends on the prior
satisfaction of r;. We demonstrate our framework using the DevAl benchmark, which provides
structured requirements but lacks Ground-Truth solutions.

To evaluate a model-generated solution S, we segment it into chunks C' = {¢y, ¢a, . . ., ¢,, } and embed
both requirements and chunks using a sentence encoder fen.. For each requirement 7, we retrieve
the most similar chunk ¢ via cosine similarity. The pair (r;, ¢};) is then passed to an LLM-based
classifier, which predicts whether the requirement is satisfied, conditioned on the satisfaction of its
parent requirements in the DAG.

This initial evaluation procedure follows the Agent as a Judge approach [23], and we adopt their
judge implementation in our experiments.

4.2 Interactive Evaluation

To measure a model’s ability to improve its so-
lution Wlth guidance, we }ntroc'luce an iterative Interviewee: 03-mini, Problem: S26 2
evaluation loop. At each iteration ¢, the model

submits a revised solution S®), which is exe-
cuted in a sandboxed Python environment to
produce outputs O*) and errors E®*) if any.

Your solution currently does not explicitly
load the Electronics subset of the Amazon
Reviews 2023 dataset using the datasets
library as required. Instead, it reads from a

A separate LLM-based component, the inter-
viewer I, analyzes the current output, execution
errors, the evaluation graph G, and the ground-
truth solution S*. Based on this, it generates
a minimal set of natural language hints H®)
intended to help the model correct its current
deficiencies. These hints target specific failed
requirements while preserving as much of the
model’s original reasoning as possible. A con-
crete example of such hint can be seen in Figure
[l demonstrating how they guide iterative im-
provement without overcorrecting. Additional
examples showing hint variation across different
failure modes are provided in Appendix C.

The evaluated model receives H*) as input and

local CSV or uses a dummy dataset fallback.
To meet the requirement, please implement
data loading in src/data_loader.py us-
ing the load_dataset function from the
"McAuley-Lab/Amazon-Reviews-2023"
dataset and "raw_review_Electronics"”
configuration, as shown in the reference
solution.  Also, please add explicit inline
comments referencing the requirement for data
loading and preprocessing steps.

Figure 3: Hint provided by the interviewer

produces an updated response S(“*+1). This loop continues until either all requirements are satisfied
according to Z, or a predefined maximum number of iterations is reached.

At the end of the process, we compute the final interactive score using Equation (2).

4.3 Post-Evaluation Reporting

Beyond correctness scores, we produce a qualitative report analyzing the model’s behavior throughout

the evaluation trajectory {S), H(Y)}T_| . This report is generated by an LLM-based analyzer R,

which synthesizes insights about the model’s reasoning process, adaptability, and robustness.

The analysis covers multiple dimensions, including problem-solving ability, sensitivity to feedback,

optimization awareness (e.g., runtime or memory considerations), handling of ambiguity, and quality
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Example task: Tweets sentiment analysis on Sentiment140 dataset from HF

Query
Build a sentiment analysis system using the Sentimentl40 dataset from Hugging Face. Load and clean the
data (remove stop words, punctuation, special characters) in src/data_loader.py. Use Word2Vec or GloVe
for vectorization in the same file. Train an SVM classifier in src/model.py and save the accuracy in
results/metrics/accuracy_score. tzt.

Requirements

B RO Sentiment140 is loaded in src/data_loader.py.
Dependencies —{}

B R1 Dataset is cleaned (stop words, punctuation, special characters) in src/data_loader.py.
Dependencies —{R0}

B R2 Word2Vec or GloVe embeddings applied in src/data_loader.py.
Dependencies —{R0, R1}

B R3 SVM model trained in src/model.py.
Dependencies —{R0, R1, R2}

B R4 Accuracy written to results/metrics/accuracy_score. tzt.
Dependencies —{R1, R2, R3}

Figure 5: A task example in DevAl

of code structure and organization. Rather than summarizing with a single metric, this report provides
a structured breakdown of the model’s strengths and failure patterns, offering deeper insight into
its underlying capabilities. The example in Figure 2] shows a typical report. Additional reports
showcasing varied response patterns across different model architectures and task categories are
available in Appendix B.

An overview of this multi-phase evaluation process is illustrated in Figure[T] showing how model
responses evolve through feedback and refinement.

5 Experimental Setup: Benchmark and Models

For the Interactive Evaluation experiments, we

utilize problems sourced from the DevAl bench-
mark, running all computations on an Apple M2
Pro system (12-core CPU with 8 performance/4
efficiency cores, 19-core GPU with Metal 3 ac-
celeration, and 16GB unified memory). These
software engineering problems span several ma-
chine learning and data science domains, includ-
ing classification, natural language processing,
and recommender systems. Among its several
components, Figure ] presents the categorical
distribution of problems in DevAl. Each prob-
lem in Devai is not merely a question with a
binary correct/incorrect outcome, but rather a
structured task, decomposed into multiple re-
quirements.

As illustrated in Figure[5] every problem is ac-

Percentage of Problems from cach Category with Perfect Ground Truth
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[RR ===
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0% 20% 40% 60% 80% 100%.

Figure 4: Percentage of problems with perfect
ground truth accuracy by category.

companied by: 1) The main question statement, which describes the problem to be solved. 2) A set of
requirements, representing the individual steps, constraints, or conditions that a correct solution must
satisfy. 3) A dependency graph, capturing the logical dependencies between requirements. Certain
requirements can only be evaluated if prerequisite requirements have already been satisfied.

For the granular evaluation process, which assesses the quality of a solution produced by a candidate
model, we employ OpenAl’s gpt-4o-mini. For each requirement, the model provides a binary
judgment (satisfied or unsatisfied), along with a natural language explanation justifying its decision.
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Since DevAl does not provide official Ground-Truth solutions for its tasks, we constructed reference
solutions. To ensure their reliability, we verified that each solution satisfied all predefined requirements
using our granular evaluation framework prior to inclusion in experiments. As shown in Figure[7}
most tasks achieve 100% requirement satisfaction. In a few cases, lower satisfaction scores occur due
to two main factors: (1) some tasks rely on external datasets that are no longer publicly available,
and (2) the LLM judge occasionally misclassifies correct outputs as unsatisfied due to limitations in
understanding. Notably, this issue persists even with more capable judge models. However, even in
cases with lower percentages, the absolute number of unsatisfied requirements is often small, usually
a single missed requirement in tasks with few total requirements.

Our interactive evaluation experiments employ gpt-4.1-mini and gpt-4o0-mini in separate eval-
uation runs, with each model serving independently as evaluator. The evaluator provides iterative
feedback by analyzing the ground truth solution, the set of predefined requirements, the solution
produced by the evaluated model (interviewee), as well as any errors encountered during execution in
a Python interpreter.

For the interactive interviewer evaluator model, we set the temperature parameter to 0.3 to encourage
responses that balance determinism and creativity, while ensuring a degree of consistency across
repeated evaluations. The interviewee model uses the same temperature setting (0.3) for comparable
behavior in solution generation. We configure the maximum token limit to 2000 tokens for the
interviewer, allowing it to handle detailed feedback within each evaluation step, while permitting
5000 tokens for the interviewee to accommodate longer solutions to complex problems.

To ensure consistent behavior during interactive evaluation, we design a set of role-specific prompts
for both the evaluator and the interviewee model. The evaluator is guided by a system prompt that
defines its objectives and communication style, as well as an assistant prompt that specifies evaluation
criteria, feedback strategies, and hinting procedures. The interviewee model receives a system prompt
outlining its role, expected behavior, and response format, along with a detailed user prompt that
directs its problem-solving approach and ensures adherence to task requirements. All prompts are
provided in Appendix A.

6 Evaluation

We begin by rigorously evaluating the quality of
our enhanced DevAl benchmark through multi-
ple complementary analyses. First, we examine

Hint Quality Assessment by Category

t . a Natural Language Processing 3.9£15
the requirement satisfaction rates of our curated Audio Processing - 40517
. . Generative Models - —_—————— 4.1£12
Ground-Truth solutions. Figure [/|reveals that Medical Analysis | 42614
92.6% of all requirements are satisfied on aver- ¢ R " |
age across the benchmark, with a strong majority & L Slasitcaion | S ot s s B
. . A o ime Series F ing - 1.3
of problems achieving perfect 100% compliance 2 Other e 4409
1 1 3 ; Regression - —o—— 48:04
(shown in gre'en). Thls high overall quahty.en- Unsuperised i | A
sures that the interviewer model generates hints Reinforcement Learning —e—i 49:04
. Recommender Systems ® 5.0:0.0
based on fundamentally sound reference imple- Financial Analysis J o 50:00
mentations, establishing a solid foundation for S
reliable interactive evaluation. Score (mean £ SD)

Deeper category-level analysis in Figure fex- g; gure 6: Hint quality scores across problem cate-

poses impoytant variations  in So_luti"? qual- gories (mean = 4.32, o = 1.18). These hints were
ity across different software engineering do- produced by GPT-4.1-mini.

mains. While well-structured tasks maintain

near-perfect ground truth rates, more complex

domains exhibit noticeable gaps. Specifically, generative models, computer vision, and NLP tasks
demonstrate lower compliance rates. We attribute these differences to three key factors: (1) inherent
ambiguity in problem specifications for creative tasks, (2) dependency on external data sources that
may become unavailable, and (3) greater implementation variability in cutting-edge domains where
best practices are still evolving.

To assess how these benchmark characteristics translate to actual interactive evaluation quality, we
conducted a comprehensive user study with 100 expert-annotated hints sampled from real evaluation
sessions (20 hints x 5 interviewee models) using GPT-4.1-mini as the interviewer. The results in
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Requirement Satisfaction by Problem
Total Judgments: 365 | Satisfaction Rate: 92.6% | Perfect Problems: 41/55

——  Average (92.8%)

Problem Instance

Figure 7: Requirement satisfaction rates of ground truths across all problems. Green bars indicate
fully satisfied problems (100%). The orange line shows the average requirement satisfaction (92.6%).

Figure [6|demonstrate that overall hint quality remains strong (¢=4.32/5, 0=1.18). We observe the
predicted correlation between ground truth quality and hint effectiveness: where in categories with
lower ground truth quality, we have slightly lower scores and hints showed greater variability. We
replicated this study with GPT-40-mini as the interviewer, with complete results and comparative
analysis presented in Appendix C, revealing consistent patterns in hint effectiveness across both
interviewer models.

To set baseline expectations, we begin by con-
textualizing model capabilities using OpenAl’s
published benchmark results [11], 12, [13]]. The

Performance Transitions by Model and Category (Improved vs. Regressed)
ol Regesed

3.5-turbo 4.1-mini

GPT-4.1-mini outperforms the GPT-40-mini in
traditional coding and instruction evaluations,
scoring 24% versus 9% on SWE-bench, 35%
compared to 4% on Aider’s Polyglot benchmark
[3], and 84% against 78% on IFEval [21]]. No-
tably, the 03-mini surpasses both variants in stan-
dalone coding assessments with a 42.9% score
on SWE-bench, while the 04-mini exhibits com-
prehensive superiority across all major bench-
marks.

These static benchmark results present an in-
triguing paradox when contrasted with our in-
teractive evaluation findings. In the context
of complex, multi-requirement software engi-
neering tasks requiring iterative feedback and
refinement, in Figure 0] where GPT-4.1-mini
acts as the interviwer, we observe that (inter-
viewee) GPT-4.1-mini’s performance degrades
relative to GPT-40-mini, with guided variants
only matching GPT-40-mini’s baseline unguided
performance. Furthermore, while o4-mini ini-
tially demonstrates suboptimal performance on
certain problem categories, its capacity for in-
struction following becomes evident through the
guidance process, ultimately surpassing all other
model variants in final performance. This diver-
gence suggests that GPT-4.1-mini exhibits lim-
itations in processing and incorporating multi-
turn feedback during refinement cycles, while

o4-mini’s robust instruction-following capabilities enable it to overcome initial implementation
challenges (particularly those related to dataset and environment configuration, as detailed in Figure

[B) and achieve superior final results.

Figure[T0]shows that most models achieve only marginal gains when using hints from GPT-40-mini,
suggesting these hints provide limited value. Notably, GPT-4.1-mini exhibits a similar pattern — its

Visualization |
Save Trained Model
Performance Metrics
Other
Machine Learning Method
Human Computer Interaction |

Dataset or Environment {
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03-mini

Visualization |

Performance Metrics

Other

Machine Learning Method

Human Computer Interaction |

Dataset or Environment |
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Visualization |
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Performance Metrics
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Machine Learning Method

Human Computer Interaction|
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Figure 8: Breakdown of guidance impact across

.......

model variants per requirement category.
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Figure 9: Average requirements passed by model ~ Figure 10: Average requirements passed by
variant using GPT-4.1.mini as interviewer. Blue ~ model variant using GPT-40-mini as interviewer.
bars represent base models, orange bars show  Blue bars represent base models, orange bars
guided variants (-g). show guided variants (-g).

performance deteriorates when relying on such hints. This decline stems from two compounding
issues: the hints’ inherent weaknesses and the model’s inability to effectively utilize iterative refine-
ments. Ultimately, this combination produces worse results than when the model generates solutions
independently.

The observed behavior of GPT-3.5-turbo aligns with expectations given its architectural limitations.
As a smaller model with constrained context window size, it struggles to: (1) retain and apply past
refinements across iterations, (2) consistently produce complete solutions when task complexity
exceeds its capacity, and (3) reliably follow instructions to regenerate full solutions — a weakness also
documented in Aider’s Polyglot benchmark. These limitations manifest consistently regardless of the
interviewer model (GPT-4o0-mini or GPT-4.1-mini), confirming fundamental capability constraints
rather than interviewer-specific effects.

The transition plot (Figure[8) reveals distinct patterns in how models respond to hint interventions
across task categories. All models exhibit their most pronounced performance improvements in the
Dataset or Environment category, with consistent positive counts observed for every model variant.
This trend likely stems from the inherent challenges posed by benchmark tasks requiring manipulation
of recent or niche datasets, where models frequently lack sufficient pretraining exposure or precise
location information. The availability of ground truth references in hints appears particularly effective
for resolving such environment-specific ambiguities. Beyond this commonality, models demonstrate
divergent response profiles to hinting. These differential responses suggest that hint efficacy depends
both on the task domain and the specific model’s capability profile, with no universal improvement
pattern emerging across the evaluated categories.

7 Conclusion

Our work establishes a new paradigm for evaluating LLMs in software engineering tasks through
three fundamental contributions. First, we demonstrate that dependency-aware interactive evaluation
reveals capabilities and limitations obscured by static benchmarks - where models like GPT-4.1-
mini show unexpected performance degradation when processing iterative feedback, while 04-mini
leverages its superior instruction follow-up capacity to overcome initial implementation challenges.
Second, we enhance with Ground-Truths and validate the DevAl benchmark, and we expose how
error recovery in later stages (e.g., model training) often compensates for early failures (e.g., data
loading) when guided by targeted hints. Third, our findings challenge the prevailing assumption
that benchmark performance directly translates to interactive settings, as evidenced by the weak
correlation between static scores and guided improvement rates across model variants.

Several limitations warrant consideration. First, requirement extraction inherits ambiguities from
natural language specifications, potentially introducing noise in task decomposition. Second, vari-
ability in automated feedback generation introduces a subtle but important fairness consideration
in model comparisons. While our interviewer model generates hints consistently for all evaluated
models, the effectiveness of these hints may vary based on each model’s architectural strengths.
Most critically, the framework must carefully balance guidance intensity: overly specific hints risk
revealing solutions, while vague suggestions may fail to trigger meaningful improvements.
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Appendix

A. Prompt Templates

This appendix provides the complete collection of prompt templates employed in our interactive
evaluation framework, systematically documenting their roles and design principles. The prompts
are categorized according to their function within the evaluation pipeline, distinguishing between
system-level instructions that govern model behavior, user-initiated task specifications that define
problem parameters, and assistant-generated responses that structure the interaction flow. Each
prompt has been carefully crafted to maintain consistency across evaluation sessions while allowing
for necessary flexibility in task-specific adaptations.

7.0.1 Initial solution construction

The initial solution generation phase establishes the baseline implementation that subsequent inter-
active evaluation will refine. This process involves two critical prompt components: (1) a system
prompt that configures the interviewee model’s behavior as a coding assistant, specifying general
constraints on response format and technical approach (Fig[IT)); and (2) a user instruction prompt
that precisely structures the solution output to facilitate automated workspace generation (Fig[12)).
Together, these prompts ensure solutions adhere to both functional requirements and our framework’s
parsing conventions while maintaining natural coding practices.

[ System Prompt for Interviewee (Unguided) ]

You are a skilled coding interviewee. Provide complete, functional code solutions to programming problems. Include clear comments to
highlight key parts of the solution. Do not include explanations—only the code.

Figure 11: System prompt provided to the interviewee for initial solution generation

7.0.2 Interactive Guided Evaluation

In this subsection, we describe the structure of prompts used for the Interactive Guided Evaluation
protocol. The interaction begins with a system prompt for the interviewer, setting its role and
responsibilities (Fig [[4). This is followed by an assistant prompt instructing the interviewer to
critically evaluate a specific problem instance using a reference solution and a predefined set of
evaluation guidelines (Fig[I5). Within this context, the interviewer is also made aware of its evaluative
responsibilities and communicates this understanding explicitly, including a message directed at the
interviewee stating the problem to be solved (Fig[I6). Next, we define the system prompt for the
interviewee, which provides general behavioral guidelines, especially regarding how to interpret and
respond to feedback (Fig[I3)). The user prompt to the interviewer then presents the initial solution
proposed by the interviewee. Following this, a user prompt to the interviewee provides detailed
instructions on how to respond thoughtfully and constructively during the evaluation (same as Fig
[I2). The user prompt to the interviewee is then repeated to formally present the problem along with
any relevant instructions (Fig[T7), and the assistant prompt of the interviewee follows with the initial
solution. Finally, a user prompt to the interviewer requests the final assessment report based on the
interaction (Fig|[T8§).

7.1 B. Hints and additional statistics

This appendix provides comprehensive supporting data from our interactive evaluation experiments.
First, we present characteristic examples of generated hints (Figures [19] 20| 21} 22] 23] [24] 23] 26}
28] 291 B0l 311 [32] B3) across different model configurations and problem categories, illustrating
the variation in feedback quality and specificity. These examples demonstrate how hint formulation
adapts to both the interviewee model’s capabilities and the problem’s technical requirements. The
section concludes with a complementary visualization of model performance.

Figure |34| presents the performance distribution across problem categories for both guided and
unguided model variants. The results reveal distinct capability profiles among models, with each
variant exhibiting relative strengths in specific domains. Notably, the response to guidance varies
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Interviewee instruction prompt (Unguided)

Follow these steps strictly for the upcoming problem:

1. Understand the problem: Grasp the requirements, constraints, and expected output. Resolve any ambiguities using standard coding
assumptions.

2. Plan the solution: Organize your approach for modularity, efficiency, and readability.

3. Write the code: Output each time the COMPLETE solution with properly structured files. Separate each file with a header in a code block,
e.g.

‘“‘python

# filename.py

(code)

13

or

‘“‘python

# directory/filename.py

(code)

13

4. For each runtime-generated file (e.g., logs, results, models, metrics), include a plaintext block (outside code blocks) specifically for this
file, with its path and a note stating it will be created at runtime:

‘““plaintext

# filenamel.extension

# This file will be created at runtime

13

‘“‘plaintext

# directory/filename2.extension

# This file will be created at runtime

13

5. Ensure completeness: Include all necessary imports, function definitions, and components.

6. No explanations: Provide only the code, with inline comments clearly referencing each corresponding requirement.

7. Modularize: Implement each requirement in its own function.

8. Follow best practices: Write clean, well-documented, maintainable code that handles edge cases.

9. Assume a fully prepared environment: Do not include dependency installations or directory creation commands; focus solely on
functionality. However, don’t assume datasets are readily available; you may need to install them if needed.

10. Also, include a file named execute_workspace.sh that runs all components in sequence, ensuring the code executes correctly and produces
all required outputs. Use the following format:

‘“‘bash

# execute_workspace.sh

(code)

113

Output only the structured code with proper file separation and no extra commentary.

. J

Figure 12: User prompt provided to the interviewee for the guidelines

[ Interviewee system prompt ]

You are a highly skilled coding interviewee tasked with solving programming problems efficiently. Your role is to provide complete,
structured, and fully functional solutions without explanations, or reasoning—only the code itself. If given feedback, modify the solution
accordingly in order to fix potential errors and always give the complete solution. Have commenting in code where requirements are
implemented. Maintain the specified format at all times.

Figure 13: System prompt for the interviewee

Interviewer System Prompt

You are a technical interviewer specialized in evaluating coding and problem-solving skills of a candidate model. Your goal is to provide
precise, minimal, and structured feedback, strictly addressing the requirements of the problem presented.

Always follow these evaluation rules:

1. Requirement-Oriented: Explicitly reference the provided requirements and criteria.

2. Dependency-Aware: Consider requirement dependencies; if a prerequisite requirement is unmet, prioritize hints addressing that first.

3. Minimal and Incremental: Provide the minimal hint necessary for the candidate to identify their mistake.

4. Objective and Specific: Clearly point out exactly one concrete issue per hint. Avoid vague or subjective feedback.

5. Iterative Improvement: Assume multiple iterations. Guide incrementally without prematurely solving the entire task for the candidate.
Your hints should be minimal, concise, and may include: - Conceptual pointers (e.g., "Verify the dimensions of your array.") - Specific
references to requirements - Clarifying questions prompting the candidate to think critically.

\ J

Figure 14: System prompt provided to the interviewer for the interactive evaluation
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Interviewer assistant prompt guideline

Problem for that I will be evaluating:

[START OF PROBLEM] problem [END OF PROBLEM]

Reference Solution for Guidance:

[START OF REFERENCE SOLUTION] reference_solution [END OF REFERENCE SOLUTION]

Evaluation Guidelines:

1. T will assess the given solution strictly based on the problem requirements without revealing my reasoning. I will:

- Verify correctness, logic, and adherence to constraints.

- Ensure all stated requirements are met (IMPORTANT).

- Check that each requirement is implemented with an explicit inline comment linking it to the corresponding requirement.

- Not introduce or evaluate any unstated requirements.

2. If the solution meets all requirements and is executed without errors, I will immediately respond with: "INTERVIEW IS OVER."

3. If the solution is incomplete or partially correct, I will provide one concise paragraph of minimal hints based on the reference solution:
- I will focus solely on improvements based on the stated requirements.

- I will avoid asking for execution details, test cases, outputs, or explanations.

-1 WILL NOT ASK FOR EXECUTION OF THE SCRIPT.

- I will request explicit inline comments that reference each specific requirement.

- I will not offer compliments (e.g., “Good job” or “Well done”).

- I will provide hints informed by the reference solution—unknown to the interviewee—to guide their improvements. If the solution remains
uncorrected and the same error persists, I will progressively reveal more explicit hints based on the reference solution. If the mistake repeats,
I will provide code snippets from the reference solution to steer them toward the correct approach.

4. T WILL NOT ASK THE INTERVIEWEE TO RUN THE CODE.

5. IMPORTANT: I WILL PROVIDE the snippet from the reference solution that downloads the dataset for the problem.

I will assume a fully prepared execution environment with all required packages installed. But I won’t assume the datasets are readily
available; the interviewee may need to install them.

Figure 15: Assistant prompt for the interviewer for the guidelines

[ Interviewer acknowledgment prompt ]

Understood. Now I will address the user. I will now act as technical interviewer and guide through the evaluation process.
The problem we will examine is as follows:
[START OF PROBLEM] problem [END OF PROBLEM]

Figure 16: Assistant prompt for the interviewer acknowledging the evaluation process and stating the
problem

[ Interviewee problem user prompt ]

[START OF PROBLEM] query [END OF PROBLEM]

From now on, I will provide feedback on your solution. After receiving feedback, please adjust your code accordingly in order to correct
it, focusing on correctness, efficiency, and clarity. Provide complete, structured, and fully functional solutions without explanations, or
reasoning—only the code itself. At all times maintain the specified format. Always give the FULL SOLUTION, not just the modifications.

Figure 17: User prompt to interviewee for presenting the problem

Report prompt

Provide a structured assessment of my performance, focusing only on areas where I was incorrect or required hints. Include a detailed
breakdown of the hints given, explaining their impact on my reasoning and how they guided the solution. Do not provide feedback on correct
aspects of my solution—keep the evaluation concise and strictly focused on areas that needed improvement

. J

Figure 18: User prompt to interviewer for report

[ Interviewee: 0o4-mini, Problem: S10 ]

Your code attempts to load the dataset using fetch_openml with the name heart-disease-uc4, but this dataset is not found on OpenML,
causing a failure to load data. The requirement explicitly states to use the UCI Heart Disease dataset from the provided link, and the
reference solution downloads and extracts it manually or via a Kaggle dataset. Please revise your src/data_loader.py to download and
load the dataset from the official source or a reliable mirror, ensuring the dataset is available at runtime as in the reference solution. Also,
add explicit inline comments referencing the requirement for dataset loading.

Figure 19: Hint provided by the interviewer
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[ Interviewee: 0o4-mini, Problem: S10 ]

Your data preprocessing pipeline in src/data_loader. py does not handle categorical string features before applying SelectKBest and
StandardScaler, causing a failure when converting strings like normal to float. The reference solution converts all features to numeric
and removes or encodes categorical columns before feature selection and scaling. Please ensure you preprocess or encode categorical
features to numeric types before feature selection and scaling, and add inline comments referencing the requirement for feature selection and
data standardization. This is a prerequisite before training the model and generating SHAP values

Figure 20: Hint provided by the interviewer

[ Interviewee: o4-mini, Problem: S10 ]

Your solution correctly downloads the dataset from a reliable source, encodes categorical features, applies feature selection and standardiza-
tion with clear inline comments referencing requirements. The model training script implements both XGBoost and Logistic Regression with
performance metrics, saves the XGBoost model under models/saved_models/, and generates SHAP explanations saved in the required
paths. The ROC curve is saved under results/figures/roc_curve.png, and the HTML report includes all required visualizations and
performance comparisons, saved as results/report.html. Inline comments explicitly link code sections to requirements. This meets all
stated requirements.

Figure 21: Hint provided by the interviewer

( Interviewee: o4-mini, Problem: S30 )

Your solution must include a script named ezecute_workspace. sh that runs the full pipeline as described: first data preprocessing and
visualization, then training and evaluation, saving outputs to the specified paths. Please add this script with explicit inline comments
referencing the requirement to run preprocessing, training, inference, and saving results and models accordingly.

Figure 22: Hint provided by the interviewer

[ Interviewee: o4-mini, Problem: S38 ]

Your current download_and_eztract_enron function attempts to download the dataset from a URL but encounters SSL certificate
verification failure. To comply with the requirement to load the Enron-Spam dataset efficiently and reliably, consider using the kagglehub
library as in the reference solution, which downloads the dataset from Kaggle with built-in handling and avoids manual URL and SSL issues.
This also ensures the dataset is loaded in src/data_loader.py as required. Additionally, add explicit inline comments referencing the
requirement about dataset loading and preprocessing for clarity.

Figure 23: Hint provided by the interviewer

( Interviewee: o4-mini, Problem: S38 ]

The DataFrame column name for labels is incorrect. Instead of "Category", use "Spam/Ham" as in the reference solution. Update your
load_data () function to map labels from df ["Spam/Ham"] to 1 for "spam" and O for "ham". This fixes the KeyError and aligns with the
requirement to load and preprocess the Enron-Spam dataset correctly. Also, add an explicit inline comment referencing this requirement

Figure 24: Hint provided by the interviewer

Interviewee: o4-mini, Problem: S45

Your current code does not include explicit inline comments referencing each specific requirement, which is necessary for clarity and grading.
Also, the dataset target column is named Churn in the reference solution, but you use target in preprocess_data; please verify the
exact column name in the loaded dataset. Additionally, your cross-validation uses cross_val_score on the training set only, but the
problem requires cross-validation during training with predictions used for the classification report on the entire dataset. Consider using
cross_val_predict with stratified folds as in the reference. Finally, your data loading function lacks a comment explicitly linking it to the
requirement for error handling during dataset loading. Please add these inline comments and verify column names to align with the problem
requirements.

\ J

Figure 25: Hint provided by the interviewer

[ Interviewee: 03-mini, Problem: S26 )

Your solution currently does not explicitly load the Electronics subset of the Amazon Reviews 2023 dataset using the datasets library as
required. Instead, it reads from a local CSV or uses a dummy dataset fallback. To meet the requirement, please implement data loading in
src/data_loader. py using the load_dataset function from the datasets library with the "McAuley-Lab/Amazon-Reviews-2023"
dataset and "raw_review_Electronics" configuration, as shown in the reference solution. Also, please add explicit inline comments
referencing the requirement for data loading and preprocessing steps.

Figure 26: Hint provided by the interviewer
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[ Interviewee: 03-mini, Problem: S26 ]

Your current matrix factorization training uses SGD with multiple epochs, which can be computationally expensive and may cause timeout
issues. The requirement suggests applying a latent factor model via SVD on a user-item rating matrix after preprocessing (noise removal
and normalization). Consider replacing the SGD training with the SVD-based matrix factorization approach as in the reference solution
(scipy.sparse. linalg. svds on a demeaned rating matrix). This method is more efficient and aligns with the requirement to use a latent
factor model for user-item interactions. Also, please add explicit inline comments referencing each requirement in your code.

Figure 27: Hint provided by the interviewer

( Interviewee: 4.1-mini, Problem: S14 )

Your DCGAN discriminator architecture causes a runtime error due to a convolution kernel size larger than the input feature map size
during forward pass. Verify the dimensions after each Conv2d layer to ensure the kernel size fits the input; the reference solution uses a
simpler discriminator architecture with downsampling steps that reduce 28x28 to 7x7 before flattening, avoiding this issue. Also, your
execute_workspace.sh script tries to save the PDF report to a non-existent nested directory notebooks/results/; ensure the output path
directory exists or adjust the path to save directly under results/ as in the reference solution.

Figure 28: Hint provided by the interviewer

Interviewee: 4.1-mini, Problem: S23

Your updated download_image function now properly sets a User-Agent header and handles HTTP errors, which aligns well with
the requirement to reliably download the content and style images. However, the problem statement also requires saving the
style-transferred images in results/figures/ (not just the final output but also intermediate results), and logging processing
time to results/processing_time.tzt. Please add explicit inline comments referencing these requirements where you save im-
ages and log processing time, to clearly demonstrate compliance. Also, ensure that the intermediate results are saved exactly as
results/figures/intermediate_results.png as required, and the final stylized image is saved in the same directory. Adding
these inline comments will improve clarity and traceability to the problem requirements.

. J

Figure 29: Hint provided by the interviewer

Interviewee: 40-mini, Problem: S17

Your dataset download function in src/data_loader.py is a step in the right direction, but it lacks the specific logic to download and
extract the TuSimple dataset from Kaggle as required. The problem explicitly requires downloading "manideep1108/tusimple” via
Kaggle (using kagglehubd or equivalent), checking for the presence of train_set/and test_set/ folders, and handling ZIP extraction
or directory copying accordingly. Also, your augmentation pipeline should include random cropping, rotation, and scaling (random resized
crop) as per the requirement, rather than fixed resizing after cropping and rotation. Additionally, your model’s final layer outputs 1 unit, but
the problem expects 2 classes (binary classification with 2 outputs) to use CrossEntropyLoss. Please revise your dataset download logic to
match the reference solution’s approach, adjust your augmentation transforms to include RandomResizedCrop and RandomRotation, and
modify your model’s final layer to output 2 classes with appropriate loss. Also, add explicit inline comments referencing each requirement in
your code

. J

Figure 30: Hint provided by the interviewer

[ Interviewee: 40-mini, Problem: S26 ]

Your exzecute_workspace. sh script tries to install packages from requirements. txt, but this file is missing, causing the installation
to fail and the facenet_pytorch module not to be found. Please ensure that requirements. tzt exists in the workspace root with the
necessary packages listed, including facenet-pytorch, and that your script installs from it before running the training script. This will
resolve the missing module error and meet the requirement to load the FaceNet model without issues.

Figure 31: Hint provided by the interviewer

[ Interviewee: 3.5-turbo, Problem: S48 ]

Your load_data function in src/data_loader.py does not load the Telco Customer Churn dataset from the Hugging Face
scikit-learn/churn-prediction dataset as required; instead, it reads from a CSV file path. Also, you need to include error handling
around dataset loading as specified. Please revise load_data to use load_dataset ("scikit-learn/churn-prediction") from
the datasets library with appropriate try-except error handling, and add an explicit inline comment referencing the dataset loading
requirement. This is a prerequisite before addressing feature engineering and imbalance handling

Figure 32: Hint provided by the interviewer
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Interviewee: 3.5-turbo, Problem: S52

Your load_sentiment140_dataset function attempts to load the dataset via ‘pd.read_csv* from a Hugging Face URL, but the Senti-
ment140 dataset should be loaded using the Hugging Face datasets library as per the requirement. Also, your code does not map the
sentiment labels from (0,4) to (0,1) for binary classification, which is required. Additionally, your vectorization function uses a local
Word2Vec model file word2vec.model which is not provided or mentioned; the requirement is to use Word2Vec or GloVe embeddings
loaded programmatically (e.g., via gensim. downloader). Finally, your code lacks explicit inline comments referencing each requirement,
which are requested for clarity. Please revise your data loading to use the Hugging Face load_dataset ("sentiment140") method, map
labels properly, use a pre-trained embedding model loaded in code, and add inline comments referencing each requirement

Figure 33: Hint provided by the interviewer
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Figure 34: Performance across problem categories. Colors indicate different problem categories.

significantly by both model architecture and problem category, demonstrating that hint effectiveness
is context-dependent rather than uniform.

Figure [38]aggregates the per-category impact of guidance across all evaluated models, quantifying
both improvements and regressions in requirement satisfaction. The visualization reveals model-
specific response patterns to iterative feedback.

Figures 33] [36] and [37] present examples of the evaluation reports generated during interactive
guidance. These reports provide detailed analyses of model errors, the hints administered during
interaction (including their success rates), task complexity assessments, and other key behavioral
observations. Together, they offer a structured overview of the model’s strengths and weaknesses
under guided evaluation.

7.1.1 C. User study

Figures[39] 40} (41} 2] first illustrate the user study interface used for expert evaluations, demonstrating
our annotation protocol for assessing hint quality. This section presents the resulting expert evaluations
of hints generated by both interviewer models (GPT-4.1-mini and GPT-40-mini). Figures [43|and 4]
present the expert-rated score distributions, while Figure 43| breaks down scores by category. Both
plots exhibit consistent patterns in hint quality across categories. However, the majority of scores
cluster near the baseline (3/5), indicating that most hints were only moderately effective at advancing
interactive evaluation. This limited efficacy likely explains the marginal improvements observed in
guided model variants.
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Report - Interviewee: gpt-4.1-mini, Problem: S16

1. **Initial Data Loading Method**: The candidate initially used ‘imdb.load_data()* instead of the required ‘tfds.load()‘. This indicated a
lack of adherence to the requirement to use TensorFlow Datasets. The hint provided was to switch to using ‘tfds.load("imdb_reviews", ...)‘.
This hint prompted the candidate to align their implementation with the specified requirements, showcasing their ability to adapt to feedback.
2. **Embedding Saving Format**: The candidate initially saved embeddings using ‘pickle‘, which was not specified in the requirements.
The hint suggested saving the embeddings as a “.npy" file using ‘numpy‘. This guidance helped the candidate correct the saving method,
ensuring compliance with the requirements.

3. **Model Architecture Visualization**: The initial implementation did not include saving the model architecture diagram. The hint
emphasized the need to visualize and save the model architecture. This feedback led to the inclusion of the model architecture visualization,
demonstrating the candidate’s responsiveness to feedback.

4. **Inline Comments**: The initial code lacked sufficient inline comments referencing specific requirements. The hint encouraged the
addition of comments to clarify how each part of the code met the requirements. This improvement enhanced the overall organization and
readability of the code.

5. **Handling of Pre-trained Embeddings**: While the candidate used ‘gensim‘ to load embeddings, the hint focused on ensuring that the
embeddings were correctly fetched and mapped. This guidance prompted the candidate to verify the loading process, which is critical for the
model’s performance.

6. **Error Handling and Adaptability**: Throughout the iterations, the candidate demonstrated adaptability by addressing the hints provided
and making necessary corrections. However, there was initially a lack of error handling in the code, particularly when loading embeddings.
The hints did not explicitly address error handling, but the candidate’s ability to implement changes based on feedback improved the
robustness of the solution.

Overall, the hints provided were targeted and specific, focusing on concrete issues that needed correction. Each hint had a direct impact on
improving the solution, leading to a more compliant and organized implementation. The candidate’s ability to adapt to feedback was evident
in their incremental improvements, showcasing a logical approach to problem-solving.

Figure 35: Report after the guided evaluation of gpt-4.1-mini by gpt-4o-mini on problem S16

Report - Interviewee: gpt-4.1-mini, Problem: S37

1. **Error Handling**: In ‘src/data_loader.py‘, the ‘preprocess_image* function raises a ‘FileNotFoundError* if an image cannot be loaded.
While this is a good practice, there is no handling for cases where the dataset path might be incorrect or if the directory structure is not as
expected. A hint to improve this would be to add checks for the existence of the dataset directory and provide user-friendly error messages if
the path is invalid. This would enhance robustness and user experience.

2. **Adaptability to Feedback**: The model’s comments in the code are generally clear, but there was a lack of explicit references to how
the output layer’s activation function relates to the requirement for similarity scoring in ‘src/model.py‘. A hint to improve this would be to
add a comment explaining that the sigmoid activation function outputs a probability-like score, which is essential for determining if two
images represent the same object. This would demonstrate a better understanding of the model’s purpose.

3. **Complexity Awareness**: The model did not explicitly discuss time and space complexity in the implementation. For instance, in
‘generate_pairs‘, the function continuously generates pairs in an infinite loop without any mechanism to limit the number of iterations or to
handle extremely large datasets efficiently. A hint to improve this would be to consider implementing a mechanism to limit the number of
generated pairs or to allow for a configurable number of iterations, which would enhance both performance and usability.

4. **Code Organization**: While the code is structured well, there could be improvements in modularity. For example, the augmentation
logic could be separated into its own class or module to enhance reusability and clarity. A hint to improve this would be to suggest creating a
dedicated augmentation class that encapsulates all augmentation methods, making the codebase cleaner and more maintainable.

5. **Handling Ambiguity**: The model did not address how to handle potential ambiguities in the dataset, such as varying image sizes
or formats. A hint to improve this would be to implement checks or preprocessing steps that standardize image sizes and formats before
processing, ensuring consistency across the dataset.

Overall, the hints provided aimed to enhance error handling, adaptability to feedback, complexity awareness, code organization, and handling
of ambiguities, which would collectively lead to a more robust and maintainable solution.

Figure 36: Report after the guided evaluation of gpt-4.1-mini by gpt-4o-mini on problem S37
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Report - Interviewee: 03-mini, Problem: S8

1. **Missing Function for Metadata Image Generation**: Initially, the solution did not include a function to generate an image with hidden
text embedded in its metadata. The hint provided was to add this function, emphasizing the requirement to generate an image of 1080p
resolution with hidden text in the metadata. This hint prompted the candidate to recognize the oversight and implement the necessary
functionality, thereby aligning the solution with the problem requirements.

2. **Lack of Inline Comments for Metadata Function**: After the function for generating the metadata image was added, it lacked explicit
inline comments referencing the specific requirements. The hint suggested adding comments to clarify how the function met the requirements.
This feedback guided the candidate to improve the documentation of their code, enhancing readability and maintainability.

3. **Verification of Hidden Text**: There was an initial lack of emphasis on the requirement to manually verify that the hidden text was
embedded in the generated images. The hint pointed out the need for comments that explicitly stated this verification step. This led to a more
comprehensive understanding of the problem requirements and improved the clarity of the code regarding its functionality.

4. **Error Handling**: While the solution included some error handling (e.g., checking if the text length exceeded the number of available
pixels), there was no indication of how the model would handle potential issues when reading or writing files (e.g., file permissions,
nonexistent directories). A hint could have encouraged the candidate to consider adding error handling for file operations, which would
improve the robustness of the solution.

5. **Complexity Awareness**: The solution did not address time and space complexity considerations, particularly in the context of
embedding and extracting hidden text. A hint could have prompted the candidate to analyze the efficiency of their algorithms, especially
since they involve manipulating pixel data in images. This would demonstrate a deeper understanding of performance implications in their
solution.

6. **Code Organization**: The organization of the code could have been improved by separating concerns more clearly, such as grouping
related functions or providing a clearer structure for the main execution flow. A hint suggesting better organization could have encouraged
the candidate to refactor their code for improved clarity and maintainability.

Overall, the hints provided were instrumental in guiding the candidate to address these weaknesses, leading to a more complete and functional
solution that adhered closely to the problem requirements. Each hint prompted the candidate to think critically about their implementation,
ultimately enhancing their problem-solving skills and adaptability to feedback.

Figure 37: Report after the guided evaluation of 03-mini by gpt-40-mini on problem S8

Requirement-Level Impact of Guidance
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Figure 38: Breakdown of guidance impact across model variants. Bars show the number of problems
where performance improved (green), worsened (red).
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Hint Grading Form

You will be asked to evaluate individual hints provided by different models during multi-turn
interactions for various programming problems.

For each question, you are given:

« The model name

« The problem identifier

« The trial number during which the hint was given
« The full hint content

The full interaction histories for all problems will be provided separately. You should locate
the referenced hint in the corresponding interaction and consider its role in context.

Please grade each hint based on the following criteria:

« Does the hint help the model overcome a specific obstacle or satisfy a requirement
that is clearly blocking progress?

« Is the hint minimal, meaning it provides just enough guidance to help the model
improve, without giving away unnecessary detail?

« If the hint is not minimal, is this justified because the model would otherwise remain
stuck?

A score of 5 indicates that the hint is both effective and appropriately minimal. A score of 1
suggests that the hint is either unnecessary, too verbose, or ineffective in helping the
model progress.

Figure 39: Description of user study
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Please evaluate the following hint generated while interviewing model GPT-3.5-
turbo for problem S5. This hint was provided during trial 6 of the interaction.

Hint:

Your “load_gtzan_dataset’ function still needs to implement scanning the
extracted dataset directory to collect audio file paths and their corresponding
genre labels, returning these as lists (X and y). This step is crucial to fulfill
requirement 0. Please add explicit inline comments referencing requirement 0
and ensure you return these lists for further processing. Without this, subsequent
preprocessing and feature extraction cannot proceed.

O 1
O 2
O 3
O 4
O s

Figure 40: Hint example from user study
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10.

Please evaluate the following hint generated while interviewing model GPT-3.5-
turbo for problem S25. This hint was provided during trial 7 of the interaction.

Hint:

Your submission is missing the required "execute_workspace.sh” script file that
sets the FLASK_APP environment variable and runs the Flask app, as specified
in the problem. Please add an "execute_workspace.sh’ file with the following
content exactly (including the shebang line):

““bash

#l/bin/bash

# Set FLASK_APP environment variable and run the Flask application
export FLASK_APP=src/frontend.py

python -m flask run

This script is necessary to run the application correctly.

O 1
O 2
O 3

Figure 41: Hint example from user study
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100.

Please evaluate the following hint generated while interviewing model 04-mini for
problem S18. This hint was provided during trial 7 of the interaction.

Hint:

Your solution now meets all stated requirements: it downloads and caches the
GDSC dataset, loads the correct CSV files, selects numeric gene-expression
features, performs feature selection with k=5, trains an SVM regressor with 5-fold
cross-validation, saves performance metrics, plots actual vs predicted responses,
and generates a PDF report emphasizing feature selection impact. The code
includes explicit comments referencing requirements and uses the recommended
module execution (*python3 -m src.train’). This aligns well with the reference
solution and should run within the time constraints. INTERVIEW IS OVER.

OO OO0O

Figure 42: Hint example from user study
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User Study: Distribution of Hint Grades
Mean = 4.32, Std. Dev. = 1.18
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Figure 43: Distribution of Hint Grades (Interviewer GPT-4.1-mini)

Generated Sequence: Distribution of Grades
Mean = 3.48, Std. Dev. = 1.14
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Figure 44: Distribution of Hint Grades (Interviewer GPT-40-mini)




Hint Quality Assessment by Category

Natural Language Processing - [ o | 3.240.8
Audio Processing - F ) | 2.8+1.5
Generative Models - [ o | 4.0£0.8
Medical Analysis F ) | 3.3+1.2
Supervised Learning - F ) { 3.7+1.1
?0 Computer Vision A f——@—— 3.5+0.5
% Classification - : o | 3.6+1.3
O Time Series Forecasting - F ) { 3.6+0.8
= Other 1 : ® | 34+0.9
Regression F o { 4.0£1.0
Unsupervised Learning - @ 4.0+£0.0
Reinformcement Learning 4| | ) | 2.7£1.7
Recommender Systems - ® 4.0+0.0
F—@—— 4.5+0.5

Financial Analysis -

1.0 15 20 25 30 35 40 45 5.0
Score (mean + SD)

Figure 45: Hint quality scores across problem categories (mean = 3.48, o = 1.14). These hints were
produced by GPT-40-mini.
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s+ NeurIPS Paper Checklist

535 1. Claims

536 Question: Do the main claims made in the abstract and introduction accurately reflect the
537 paper’s contributions and scope?

538 Answer: [Yes]

539 Justification: The abstract and introduction clearly state the claims made, including the
540 contributions made in the paper and assumptions and limitations.

541 2. Limitations

542 Question: Does the paper discuss the limitations of the work performed by the authors?

543 Answer: [Yes]

544 Justification: They are discussed in conclusion.

545 3. Theory assumptions and proofs

546 Question: For each theoretical result, does the paper provide the full set of assumptions and
547 a complete (and correct) proof?

548 Answer: [NA]

549 Justification: The paper does not include theoretical results.

550 4. Experimental result reproducibility

551 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
552 perimental results of the paper to the extent that it affects the main claims and/or conclusions
553 of the paper (regardless of whether the code and data are provided or not)?

554 Answer: [Yes]

555 Justification: The paper provides all necessary code and detailed descriptions of the models,
556 datasets, and hyperparameters used in the experiments. While stochastic elements in model
557 outputs may lead to minor variability across runs, the reported experimental results are
558 expected to be reproducible on average, and the main claims and conclusions are robust to
559 such variations.

560 5. Open access to data and code

561 Question: Does the paper provide open access to the data and code, with sufficient instruc-
562 tions to faithfully reproduce the main experimental results, as described in supplemental
563 material?

564 Answer: [Yes]

565 Justification: The paper provides open access to all code and datasets used in the experiments.
566 Detailed scripts and instructions are included.

567 6. Experimental setting/details

568 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
569 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
570 results?

571 Answer: [Yes]

572 Justification: All relevant experimental details are clearly described in the main paper.
573 Additionally, the provided code offers a complete and precise reference for reproducing the
574 experimental setup.

575 7. Experiment statistical significance

576 Question: Does the paper report error bars suitably and correctly defined or other appropriate
577 information about the statistical significance of the experiments?

578 Answer: [Yes]

579 Justification: The results are accompanied by error bars for the experiments that support the
580 main claims of the paper.

581 8. Experiments compute resources
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10.

11.

12.

13.

14.

15.

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: The hardware specifications used for the experiments are fully reported;
however, the exact execution times are not provided.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Yes, the authors have reviewed the Code of Ethics, and the research has been
conducted in full compliance with its guidelines.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: The paper discusses potential positive societal impacts of the work, which are
highlighted explicitly. However, potential negative societal impacts are not addressed.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All content, data, and resources derived from external sources are appropriately
cited to acknowledge the original authors.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Detailed information regarding the benchmark and the experimental execution
is documented.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: Screenshots illustrating the survey instructions are provided in the appendix.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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16.

Answer: [NA]
Justification: Participation in the survey poses no foreseeable risks to the subjects.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: LLMs are employed both as evaluators and as subjects of evaluation, and this
is explicitly stated in the paper.
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