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ABSTRACT

Hierarchical reinforcement learning (RL) has the potential to enable effective
decision-making over long timescales. Existing approaches, while promising,
have yet to realize the benefits of large-scale training. In this work, we identify and
solve several key challenges in scaling online hierarchical RL to high-throughput
environments. We propose Scalable Option Learning (SOL), a highly scalable hi-
erarchical RL algorithm which achieves a ~35x higher throughput compared to
existing hierarchical methods. To demonstrate SOL’s performance and scalability,
we train hierarchical agents using 30 billion frames of experience on the complex
game of NetHack, significantly surpassing flat agents and demonstrating positive
scaling trends. We also validate SOL on MiniHack and Mujoco environments,
showcasing its general applicability. [Our code will be open sourced].

1 INTRODUCTION

Training agents to effectively solve decision-making tasks spanning long timescales is a fundamen-
tal challenge in reinforcement learning (RL) and control. This problem is difficult because the
optimization landscape at the lowest level of sensorimotor control is often hard to optimize, due
to sparsity of rewards or local minima. Consider a human whose goal is to go from New York to
Paris. When viewed as an RL problem, where actions consist of joint movements and the cost is
the distance to Paris, gradient information is often uninformative or misleading. The optimization
landscape is rife with local minima, such as the agent becoming stuck in the easternmost corner
of a room; and globally optimal trajectories, such as taking the subway to the airport, are likely to
encounter many local increases in the cost function, making them difficult to discover.

Hierarchy presents itself as a natural approach to address this challenge (Sutton et al., 1999). By
decomposing a long task into a hierarchy of decisions at different timescales, one can hope to ease
the credit assignment problem. At higher levels of the hierarchy, actions span longer timescales and
are thus fewer, making for shorter decision-making tasks; whereas lower levels of the hierarchy aim
to solve sub-tasks determined by the higher levels, which are also shorter and thus easier to optimize.

A significant body of work has explored ways to incorporate hierarchy into RL algorithms, through
options (Sutton et al., 1999; Precup & Sutton, 2000; Bacon et al., 2017), feudal RL (Dayan &
Hinton, 1992; Vezhnevets et al., 2017), and other manager-worker architectures (Nachum et al.,
2018; Gürtler et al., 2021; Li et al., 2020; Levy et al., 2017). These methods have shown promising
benefits of hierarchy over flat policies and laid important conceptual foundations. Nevertheless,
by modern AI standards, they have remained in the relatively small data regime. Whereas flat RL
agents and computer vision models are routinely trained on billions of samples (Radford et al.,
2021; Kirillov et al., 2023; Ravi et al., 2025; Espeholt et al., 2018; Petrenko et al., 2020; Matthews
et al., 2024) and language models on trillions of tokens (Brown et al., 2020; OpenAI, 2024; Kaplan
et al., 2020; Touvron et al., 2023; Dubey et al., 2024; Team, 2024), existing hierarchical agents are
typically trained on millions of samples only—several orders of magnitude less data. Therefore,
hierarchical RL has yet to realize the benefits of large-scale training, which has driven progress in
many other areas of machine learning (Silver et al., 2016; 2017; Wijmans et al., 2019; Le et al.,
2023; Brown et al., 2020; OpenAI, 2024; Kaplan et al., 2020).

In this work, we take a step towards bridging this gap and present Scalable Option Learning (SOL),
a highly scalable hierarchical policy gradient algorithm. We identify and solve several challenges
which prevent straightforward scaling of hierarchical agents via GPU parallelization, enabling us
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to train on billions of samples on a single GPU. SOL achieves ~35-580x faster throughput com-
pared to existing hierarchical RL algorithms. We apply SOL to the complex, open-ended NetHack
Learning Environment (NLE) (Küttler et al., 2020) and train hierarchical agents for 30 billion steps,
significantly surpassing flat agents and demonstrating promising scaling trends. We additionally
evaluate our algorithm on simpler MiniHack (Samvelyan et al., 2021) and PointMaze environments
(de Lazcano et al., 2024), showcasing its general applicability.

2 BACKGROUND AND PROBLEM SETTING

2.1 MARKOV DECISION PROCESSES

We consider a standard Markov decision process (MDP) (Sutton & Barto, 2018) defined by a tuple
(S,A, µ, p,R, γ) where S is the state space, A is the action space, µ is the initial state distribution,
p is the transition function, R is the reward and γ < 1 is a discount factor. At the beginning of
each episode, a state s0 is sampled from µ. At each time step t ≥ 0, the agent takes an action
at conditioned on st, which causes the environment to transition to a new state st+1 ∼ p(·|st, at)
and a reward rt = R(st, at) to be given to the agent. The goal of the agent is to learn a policy
π : S → ∆(A) which maximizes the sum of discounted returns Eπ[

∑∞
t=1 γ

trt]. We adopt the fully-
observed MDP framework for simplicity of notation, however, states can be replaced by observation
histories without loss of generality and our experiments include partially-observed environments.

2.2 OPTIONS

The options paradigm (Sutton et al., 1999; Precup & Sutton, 2000) provides a framework for
decision-making at different levels of temporal abstraction. Each option ω ∈ Ω represents a tempo-
rally extended behavior, and is defined by a tuple (πω, Iω, βω). Here πω : S → ∆(A) is the option
policy defining the agent’s behavior while the option is being executed, Iω ⊆ S is the initiation set
of states where the option can be started, and βω : S → {0, 1} is the termination function indicating
when the option should be ended. In addition to the option policies πω , there is a controller policy
πΩ : S → ∆(Ω) which determines which option to execute next in a given state. Note that Ω could
be infinite and continuously parameterized, in which case πΩ has a continuous action space.

We adopt the call-and-return paradigm (Bacon et al., 2017; Klissarov & Precup, 2021) where options
are sequentially executed. At the first timestep, an option ω ∼ πΩ(·|s0) is sampled. The agent then
executes actions at ∼ πω(·|st) until βω(st) = 1, at which point a new option ω′ ∼ πΩ(·|st) is
sampled. The agent then executes actions sampled from πω′ until the termination function βω′ is
activated, and the process continues.

A central question is how to define or learn the options (πω, βω, Iω)ω∈Ω as well as the controller
policy πΩ. Different settings which have been studied include: i) predefining the option policies
πω and subsequently learning πΩ (Sutton et al., 1999) ii) pre-specifying or incrementally adding
goal states and learning option policies using distances to goals as rewards (McGovern & Barto,
2001; Stolle & Precup, 2002; Menache et al., 2002; Şimşek & Barto, 2008), iii) jointly learning both
option policies and the controller policy end-to-end using the task reward alone (Bacon et al., 2017;
Li et al., 2020; Nachum et al., 2018; Klissarov et al., 2017; Klissarov & Precup, 2021).

In this work, we assume access to a set of intrinsic reward functions {Rω}ω∈Ω, and focus on jointly
learning corresponding option policies πω and the controller πΩ in a scalable manner. This assumes
more prior knowledge than purely end-to-end options methods, however our system can also operate
end-to-end by letting all Rω equal the task reward R, which we include in our comparisons. We
discuss other ways of generating Rω automatically as directions for future work in Appendix A.

2.3 HIGH-THROUGHPUT RL

Several algorithms and libraries have been proposed to efficiently train RL agents on billions of
samples, such as IMPALA (Espeholt et al., 2018), MooLib (Mella et al., 2022), RLLib (Liang et al.,
2018; Wu et al., 2021), Sample Factory (Petrenko et al., 2020) and Pufferlib (Suarez, 2024). A
common feature is asynchronous data collection paired with parallelized policy updates. A set of
actors, typically operating across multiple CPU cores, collect experience from many parallel envi-
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ronment instances. Concurrently, a learner process receives batches of experience and updates the
policy using parallelized GPU operations. The objective optimized is typically the policy gradi-
ent objective (Williams, 1992) with modifications such as PPO’s trust region constraints (Schulman
et al., 2017) and/or IMPALA’s V-trace off-policy correction. Additional systems-level optimizations
such as double-buffered sampling can also be included (Petrenko et al., 2020). However, all the
above high-throughput RL libraries operate using flat, non-hierarchical agents. We next describe the
challenges associated with parallelizing hierarchical agents, and our approach to solving them.

3 METHOD

In this section we introduce Scalable Option Learning (SOL), our hierarchical RL method designed
to optimize both performance and computational throughput.

3.1 OBJECTIVE

At a high level, we jointly optimize actor-critic objectives (Konda & Tsitsiklis, 1999) for all the op-
tions as well as the controller, each of which consists of a policy loss, a value loss, and an exploration
loss. In addition to the controller policy πΩ and option policies πω , we learn controller and option
value function estimators V̂Ω and V̂ω , which estimate the future returns of the controller and option
policies using their respective reward functions. Each time the controller is called, it outputs both
the next option ω to execute and the number of time steps l ∈ L = {1, 2, 4, . . . , 128} to execute the
option for. This is equivalent to using an augmented option set Ω̄ = Ω×L, and allows the controller
to adaptively select option lengths without task-specific tuning. For simplicity of notation we use Ω
rather than Ω̄ in the following, but always use this mechanism unless otherwise specified.

Policy Objective The policy objective we seek to optimize is:

Lpolicy = Eτ

[ ∞∑
t=0

∑
ω∈Ω

(
δzt=πΩ log πΩ(ω|st)Atask(st, ω) + δzt=πω log πω(at|st)Aω(st, at)

)]

where τ = (s0, z0, a0, r0, s1, z1, a1, r1, ...) represents trajectories generated by the agent. The vari-
able zt represents the policy being executed at time t, which can be either the controller πΩ or any
of the option policies πω , and δ represents a one-hot indicator. Here Atask represents the advantage
associated with the controller πΩ and task reward R, and Aω represents the advantage associated
with the option policy πω and option reward Rω . On timesteps where the controller selects a new
option, no environment-level action is taken, so a duplicated state is inserted to be acted upon by the
newly selected option on the next timestep. More details and exact definitions are in Appendix E.1.

Value Objective Our value objective is given below, where V̂Ω and V̂ω denote the agent’s param-
eterized value estimates of the task reward R and option reward Rω , respectively:

Lvalue = Eτ

[ ∞∑
t=0

(
δzt=πΩ

(VΩ(st)− V̂Ω(st))
2 +

∑
ω∈Ω

δzt=πω
(Vω(st)− V̂ω(st))

2
)]

An important property to note is that the definitions of Aω and V ω do not depend on any of the other
options or the controller, however their estimators are trained on the distribution of states induced
by the entire system. This is designed to produce independent options, while avoiding hand-off
errors resulting from training each option separately. At first glance, it might be unclear how to
estimate V ω from trajectories where different options are called, since it depends on an infinite sum
of rewards induced by following a single option πω . We address this by applying the following
recurrence relation and approximation:

V ω(st) = Eπω [

∞∑
k=0

γkRω(st+k, at+k|st)] ≈ Eπω [

K∑
k=0

γkRω(st+k, at+k|st) + γK+1V̂ ω(st+K)]

3
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Here K is the remaining number of steps the current option ω is executed for before a different
option is called. During training, we approximate this expectation with a single bootstrapped Monte
Carlo rollout, and the resulting scalar is then used as a target for V̂ ω(st).

Exploration Objective It is standard to include a bonus on the entropy H of a policy to encour-
age local exploration (Williams & Peng, 1991; Mnih et al., 2016). We include these on both the
controller policy and the option policies:

Lexplore = Eτ

[ ∞∑
t=0

δzt=πΩ
H(πΩ(·|st)) +

∑
ω∈Ω

δzt=πω
H(πω(·|st))

]

Our global objective is the sum of the above objectives, and is trained on the data generated by the
agent. We next discuss how to optimize our global objective in high-throughput settings.

3.2 SCALING CHALLENGES

Before discussing the details of our system design, it is important to understand why scaling hier-
archical RL methods is not straightforward. Hierarchical systems execute a sequence of policies,
chosen from ΠΩ = {πΩ} ∪ {πω}ω∈Ω, which depends on the observations. Because of this, in a
batch of trajectory segments of size B×T , any given slice of size B at time t will likely correspond
to several different policies, with correspondingly different reward functions (see Figure 1). As a
result, both the forward passes through the policy network, which are needed to compute the action
probabilities and value estimates, as well as the return or advantage computations, which operate on
the different option and controller rewards, are difficult to parallelize. Current hierarchical methods
such as (Nachum et al., 2018; Gürtler et al., 2021; Levy et al., 2017; Klissarov et al., 2017) process
a single trajectory at a time, which is sufficient for the continuous control settings in which they
are tested which require a relatively small number of samples (in the millions). However, com-
plex, open-ended environments such as NetHack typically require billions of samples, which in turn
requires more scalable hierarchical methods.

3.3 SYSTEM DESIGN

We address these challenges through three design choices: i) a single neural network with multiple
action heads and an indexing vector which represents both high and low-level policies, ii) an en-
vironment wrapper in the actor workers which tracks active policies and computes corresponding
rewards, and iii) efficient parallelized masking when computing the advantages and value targets for
each policy. These enable leveraging existing high-throughput asynchronous RL libraries such as
Sample Factory (Petrenko et al., 2020). We provide a system overview in Figure 1 and describe each
component in detail next.

Architecture In order to process trajectory batches efficiently in parallel, we adopt a single neural
network architecture which represents all the option policies as well as the controller policy. In
addition to the environment observation, the network receives a one-hot vector u of dimension |Ω|+1
which indicates which of the policies in {πω}ω∈Ω ∪ {πΩ} to represent. The network’s output space
is A×Ω×L, where L is the set of possible option lengths. For each input observation, the network
outputs three distributions: a distribution over environment actions ∆(A), a distribution over options
∆(Ω), and a distribution over option lengths ∆(L). If u represents one of the option policies πω ,
then ∆(A) is kept and sent to the environment wrapper which we describe next. Otherwise if u
represents πΩ, the distributions over options and option lengths ∆(Ω),∆(L) are sent instead.

Actor Workers The second component is an environment wrapper in each actor worker which
tracks which policy is currently being executed, switches them based on the termination conditions
and controller actions, computes option rewards, and duplicates the last observation whenever the
controller policy is called. Specifically, a variable p tracks which policy is currently active, and is
fed as input to the network in addition to the observation. Each time an option terminates, p changes
based on the controller distribution ∆(Ω) output by the network, and the option length l ∼ ∆(L)
is recorded in the environment wrapper. Otherwise, an action is sampled from ∆(A) and routed to

4
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Rewards

POLICY NETWORK

Observations

Policy indices

Action probabilities

Predicted values

Single FOR loop computes 
discounted returns for all 
policies in parallel

Target values

Advantages

VALUE LOSS

POLICY LOSS

LEARNER WORKERACTOR WORKERS (xN)

POLICY NETWORK

ENV

Env 
actions

Controller 
actions

Observations

Policy 
Index

option 2 rewards

option 1 rewards

controller rewards

Batched 
trajectories

Policy 
weights

Figure 1: System overview. We use a single network with an augmented action space to represent
both option policies and the controller policy, enabling batched forward passes for all policies at
once. In the actor workers, a modified environment wrapper tracks the policy index based on the
high-level controller actions, and routs the low-level actions to the environment. The learner worker
continuously updates the policy with batched forward passes through the policy network and effi-
cient tensorized return computations. Different shades indicate quantities associated with different
policies: darkest is the controller, the other two are options ω1 and ω2.

the environment instance. The rewards for each of the option policies πω are computed using Rω

from the observation directly. The reward used to train the controller policy πΩ, which is the sum
of the task rewards for the option that it calls, depends on the future execution of that option and is
computed in the learner thread. Pseudocode providing more details is included in Appendix E.2.

Learner Worker Given the above two components, the learner process which updates the policy
network receives the following tensors: observations O of size B×T×d (where d is the observation
dimension), rewards R of size B × T , episode terminations of size B × T , and one-hot policy
indices P of size B × T × |Ω| + 1. Note that the rewards in R are of mixed types: Rij is of the
type corresponding to the policy Pij . The first step is to fill in the rewards R corresponding to the
controller policy, which could not be previously computed in the actor threads since they depend on
the future execution of the option policy that the controller calls. This is done with a single FOR
loop compiled to C using Cython (Behnel et al., 2011). Next, for each policy indexed by P , the
learner process must compute two main quantities: the empirical returns and the advantages. By
using tensorized operations and caching various intermediate quantities for each policy, we are able
to compute both of these quantities for all policies simultaneously, using their respective rewards,
with a single backward FOR loop over the time dimension T . At a high level, this is done by: i)
tracking which policies have had their bootstrapped values already added to the cumulative returns,
ii) at each time step t, adding the rewards R[:, t] to the appropriate policy returns based on the current
policy indices P [:, t], and iii) appropriately handling episode terminations for each policy, based on
the last observation during which it is executed. See Appendix E.3 for source code with full details.

Throughput Comparison We instantiate our algorithm using the Sample Factory codebase
(Petrenko et al., 2020). In Figure 2 we compare the throughput of our algorithm with
that of public implementations of four other hierarchical algorithms: HIRO (Nachum et al.,
2018), Option-Critic (Bacon et al., 2017), Multiple Option Critic (MOC) (Klissarov & Pre-
cup, 2021) and the hierarchical training implemented in RLLib (Wu et al., 2021). For HIRO
and Option-Critic we use the same NLE encoder as in our experiments in Section 5, for
MOC and RLLib we used a visual rendering pipeline instead for code compatibility rea-
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sons (SOL evaluated with the same pipeline gets similar throughput as with our standard en-
coder). Additional details can be found in Appendix C.3. Our algorithm is ~35x-580x faster
than the other four hierarchical methods, and retains 86% of the speed of the flat agent.

0 1 2 3 4 5
Steps per second 1e4

HIRO (~55)

Option-Critic (~75)

Hierarchical RLLib (~780)

Multiple Option-Critic (~1200)

SOL (ours, ~43000)

Asynchronous PPO (~50000)

Hi
er

ar
ch

ica
l

Fl
at

Figure 2: Throughput comparison of hi-
erarchical and flat methods on the NLE.

We note that the design decisions above are not library-
specific and our algorithm could be instantiated with
other implementations which use asynchronous actor
workers to collect experience and a learner worker to per-
form batch policy updates on the GPU, which is a com-
mon design in distributed RL (Espeholt et al., 2018; Küt-
tler et al., 2019; Mella et al., 2022; Suarez, 2024).

Different Algorithm Instantiation Our system is gen-
eral and enables instantiating high-throughput versions of
certain existing hierarchical algorithms or designing new
ones. For example, by setting all option rewards to equal
the task reward, we recover an objective analogous to
HiPPO (Li et al., 2020), a hierarchical PPO variant which
learns using the task reward only. We compare to this
variant in our experiments and discuss other possibilities in Appendix A as potential future work.

4 RELATED WORK

Early hierarchical methods focus on the tabular setting, such as Hierarchical Q-learning (Wiering &
Schmidhuber, 1997; Singh, 1992a;b; Kaelbling, 1993) and feudal RL (Dayan & Hinton, 1992).

Options (Sutton et al., 1999) provide a general framework for temporally extended decision-making.
The original work considers methods for learning value functions or models over a set of hardcoded
options in the tabular setting. Several follow-up works have explored learning options instead, for
example by identifying bottleneck states (McGovern & Barto, 2001; Stolle & Precup, 2002; Men-
ache et al., 2002; Şimşek & Barto, 2008) and defining rewards based on reaching them. The Option-
Critic architecture (Bacon et al., 2017) jointly learns the option policies with a value function over
options using only the task reward. However, the benefits of this method were primarily in transfer
to new tasks, and it was not shown to clearly improve over a flat policy on the original task.

Several hierarchical methods based on deep RL have been proposed and evaluated on continuous
control environments, such as HIRO (Nachum et al., 2018), HAC (Levy et al., 2017), and HiTS
(Gürtler et al., 2021). While improving over flat policies, these methods focus on sample-efficient
learning through off-policy learning, rather than scaling to large numbers of samples. As a result,
implementations are single-process and not designed to scale to billions of samples.

Closer to our work are hierarchical variants of PPO (Schulman et al., 2017), which include HiPPO
(Li et al., 2020), PPOC (Klissarov et al., 2017) and MOC (Klissarov & Precup, 2021). These meth-
ods optimize a special case of our objective where all option rewards equal the task reward. PPOC
and MOC use the more highly optimized OpenAI baselines library (Dhariwal et al., 2017) which
uses parallelized experience collection, and are an order of magnitude faster than the above methods.
However, MOC is still over an order of magnitude slower than ours.

Feudal Networks (Vezhnevets et al., 2017) are another deep RL architecture, which is conceptually
similar to HIRO but defines goals in embedding space rather than the original state space. This work
reported promising results, however the official code has not been released and we were unable to
find third-party reimplementations which reproduced their results, making comparisons difficult.

Our approach is related to the joint skill learning described in MaestroMotif (Klissarov et al., 2025),
but differs in several ways: i) we learn our controller jointly with the options, whereas they use
a frozen LLM, ii) we do not use hardcoded initiation and termination conditions, and iii) we use
separate value function bootstrapping across the different options and controller policy.

There are a number of works on hierarchical agents for robotics and embodied AI (Heess et al.,
2016; Peng et al., 2017; Yokoyama et al., 2023; Szot et al., 2021; Qi et al., 2025; Pertsch et al.,
2020; Chen et al., 2023) which learn each option (or skill) separately, and subsequently train a
high-level controller to coordinate them. This approach has been shown to be effective in real and
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simulated robotics settings. However, learning each skill independently requires a starting state
distribution that is sufficiently diverse, which may not be the case when the appropriate states may
only be reached by mastering and coordinating other skills (see for example Klissarov et al. (2025)).

Recent work by Park et al. (2025) also studies hierarchical RL at scale, but in the offline setting,
whereas we focus on developing scalable methods for the online setting. Their results also show the
limits of naively scaling flat policies, further highlighting the need for scalable hierarchical methods.

5 EXPERIMENTS

We evaluate our proposed approach across three environments: MiniHack, NetHack, and Mujoco.
The NetHack Learning Environment (NLE) (Küttler et al., 2020) is based on the notoriously diffi-
cult roguelike game of NetHack, which requires the player to descend through many procedurally
generated dungeon levels to recover a magical amulet. The game involves hundreds of object and
monster types, and succeeding requires mastering many capabilities including exploration, combat,
resource management and long-horizon reasoning, with successful episodes often lasting 104 − 105

steps (Paglieri et al., 2025). MiniHack (Samvelyan et al., 2021) is a framework based on NetHack
which enables easy design of RL environments, allowing the targeted testing of agent capabilities.

In all of our experiments, we assume access to a given set of option intrinsic rewards Rω which we
specify in each section. We consider the following methods in our comparisons:

• APPO(task reward): a flat asynchronous PPO agent trained with task reward only.
• APPO(task+option rewards): a flat APPO agent trained with a linear combination

of task reward and option rewards Rω , with coefficients optimized by grid search.
• SOL-HiPPO: an instantiation of HiPPO (Li et al., 2020) using our scalable framework.

This uses only the task reward and no option rewards.
• SOL: our hierarchical agent.

This set of comparisons allows us to disentangle the effect of the hierarchical architecture from
benefits due to prior knowledge in the form of option rewards. APPO(task+option rewards)
has access to the the same additional option rewards as SOL, and incorporates them with a flat
architecture. SOL has access to option rewards, and makes use of them through a hierarchical
architecture. SOL-HiPPO has a hierarchical architecture, but does not use option rewards.

We additionally include Motif (Klissarov et al., 2024), a method which uses an LLM to synthesize
intrinsic rewards, in our NetHack experiments since it is the current state of the art, but note that it is
orthogonal and can be combined with our method, for example by adding its rewards to one or more
of our option rewards. We include this variant in our comparisons under the name SOL+Motif.
Motif also makes different assumptions: it requires an LLM and observations with a meaningful
textual component, hence it cannot be directly applied to environments like Mujoco. We also include
MOC (Klissarov & Precup, 2021) in our Mujoco experiments. Full experiment details, including
architectures and hyperparameters, can be found in Appendix C.2.

5.1 MINIHACK AND NETHACK

0 1 2 3 4
Train steps 1e9

0

2

4

6

8

10

12

Ki
ll 

Co
un

ts

ZombieHorde

0.00 0.25 0.50 0.75 1.00
Train steps 1e8

12.5
15.0
17.5

20.0
22.5
25.0
27.5

Sc
or

e

TreasureDash

SOL
SOL+HiPPO

APPO (task reward)
APPO (task+option rewards)

Figure 3: Results on MiniHack. Shaded regions repre-
sent two standard errors over 10 seeds.

In addition to NetHack, we design two
MiniHack environments which specifi-
cally test the ability to perform difficult
credit assignment and coordinate different
behaviors, while also being fast to run.
These environments are described next,
with more details in Appendix D.1.

ZombieHorde The agent is initialized
in a room with a horde of zombies it must
defeat, which also contains a safe temple
area the zombies cannot enter. The zombies are too numerous to fight at once, however, and the
agent must periodically retreat to the temple to heal whenever its health becomes too low. This
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Figure 4: Results on NetHackScore environment with the Monk character. Shaded regions rep-
resent two standard errors computed over 5 seeds.

poses a challenging credit assignment problem due to delayed rewards: healing takes dozens of time
steps while giving no rewards, but leads to much higher rewards in the long term since it allows the
agent to survive future fights. The option rewards here are Rω1 = ∆Score, Rω2 = ∆Health,
indicating the per-timestep changes in agent score (which increases for each zombie destroyed) and
hit points. For hierarchical methods, the controller’s reward is also ∆Score.

TreasureDash The agent is initialized in a hallway filled with piles of gold next to a staircase.
The agent has a small number of timesteps in which it can choose to gather gold for a small amount
of reward or descend the stairs for a large one-time reward and episode termination. The optimal
strategy is to gather as much gold as possible in the given time before descending the stairs on the
final timestep. Agents that fail to balance the two competing sources of reward can fall into the local
optima of either immediately descending the stairs or gathering gold until the timer runs out. The
option rewards are Rω1

= AtStairs, Rω2
= ∆Gold, and the controller optimizes total reward.

NetHackScore We use the NetHackScore environment from the NLE paper, with the modified
EAT action used in Klissarov et al. (2024) (see Appendix D.2 for details). The game score serves
as the task reward function. The option rewards we consider here are Rω1

= ∆Score, Rω2
=

∆Health. Hierarchical methods also use ∆Score as their controller reward.

Results On ZombieHorde (Fig. 3, left), all baselines quickly saturate after ~5 kills, while
SOL keeps improving and achieves a significantly higher final performance. On TreasureDash
(Fig. 3, right), SOL achieves close to the optimal performance of 28 points, whereas the other meth-
ods saturate earlier. In both cases, continued training of the baselines does not result in higher
performance, illustrating that scaling alone can be insufficient for tasks involving hard credit assign-
ment. On NetHackScore, we train all agents for 30 billion steps. In Figure 4 (left) we compare
LLM-free methods: both flat APPO agents perform similarly, indicating that adding intrinsic re-
wards (Health) to the task reward (Score) is not helpful here. This can be explained by the fact
that rewarding the change in health discourages the agent from engaging in combat (which causes
loss of health) and exploring. SOL-HiPPO converges to similar performance as the two flat agents,
indicating it is not able to leverage hierarchical structure. SOL steadily improves and achieves higher
performance than the other agents. In Figure 4 (right) we compare methods which leverage LLMs.
Motif improves over the flat APPO baseline, consistent with prior work. Our method SOL+Motif,
which adds Motif rewards to its Score option, significantly improves on Motif and sets a new state
of the art on NetHackScore. In Appendix F.1, we repeat these experiments with two other NetHack
characters different from the default Monk, and find that these trends are maintained. It is notable
that SOL’s performance still appears to be increasing after 30 billion steps (~2 weeks of training),
suggesting the that benefits of scale unlocked by our method remain to be fully realized.

In Appendix F.2, we include visualizations which shed light on SOL’s behavior. In particular, we
find that: i) options are able to effectively optimize their respective rewards, and yield qualitatively
different yet complementary behaviors, ii) the controller is able to effectively coordinate the options
and call them in a state-dependent manner, and iii) the controller is able to adapt the option execution
length based on the task and option. We also include ablations studying fixed vs. adaptive option
lengths (Appendix F.3) and the effect of adding redundant or unhelpful options (Appendix F.4).
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Figure 5: Results on two PointMaze layouts. Shading represents two standard errors over 10 seeds.

5.2 CONTINUOUS CONTROL

To test our algorithm’s generality, we next consider continuous control mazes provided by Gymna-
sium Robotics (de Lazcano et al., 2024). We first found that flat APPO agents were able to solve
all existing PointMaze environments (U-Maze, Medium and Large) when trained sufficiently, indi-
cating that these mazes do not require hierarchy in the large sample regime (details in Appendix
F.5). We therefore designed a more challenging maze called the G-maze, shown in Figure 5 (right).
The agent (green dot) must navigate to the goal (red dot), and the reward is given by the change in
euclidean distance between the two. The agent is initially close to the goal but separated by a wall,
and the optimal trajectory requires an initial increase in distance followed by a larger decrease. This
creates a local optimum in the reward landscape that is difficult to escape. We choose option rewards
Rω to be the velocity in the positive and negative x and y directions (which are already provided as
part of the state), as well as the task reward, for a total of 5 options. Results for both the U-Maze and
our G-maze are shown in Figure 5. On the U-Maze, all agents are able to achieve high success rates.
However, on the G-maze, SOL is the only method able to make progress, achieving roughly 70%
success while the others remain at zero. This provides evidence for SOL’s generality, conditioned
on reasonable option rewards being available.

5.3 DISCUSSION

Taken together, our experimental results point to several takeaways. First, for the difficult credit
assignment tasks we consider, flat agents struggle to escape suboptimal local minima, even when
equipped with the prior knowledge in the form of intrinsic rewards we assume are available. Second,
hierarchical structure alone is not sufficient either, as illustrated by the fact that SOL-HiPPO , which
is trained with the task reward only, does not outperform flat agents. This is consistent with other
works which have reported that hierarchical agents trained with the task reward alone have difficulty
outperforming flat baselines (Bacon et al., 2017; Smith et al., 2018). Our best performing agent
SOL combines both hierarchical structure with useful option rewards that reflect the optimal policy
in certain parts of the state space. This suggests that for certain classes of hard credit assignment
problems, both hierarchy and intrinsic rewards are necessary to unlock each others’ benefits.

6 CONCLUSION

This work introduces, to our knowledge, the first online hierarchical RL algorithm which is able
to scale to billions of samples. Its scalability is enabled by several systems-level design decisions
which enable efficient GPU parallelization. When trained at scale on the challenging NetHack
Learning Environment, our algorithm surpasses flat baselines and learns options with different be-
haviors which are effectively coordinated by the controller. It also proves effective in continuous
control and MiniHack environments, showcasing its generality. We discuss potential ways to im-
prove our algorithm along with current limitations in Appendix A. We hope that by releasing our
code, we can facilitate future work in bringing the benefits of scale to hierarchical RL, and enable
progress in long-horizon decision-making more broadly.
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A LIMITATIONS AND FUTURE WORK

Our work has two main limitations. First, we do not address the question of where the intrinsic
reward functions Rω come from. We assume they are given, and focus on how best to make use
of them through a scalable hierarchical architecture. In all the environments we consider, these
intrinsic rewards were either provided by default or can be easily defined with a couple lines of
code. In NetHack and MiniHack, Health and other statistics (armor, experience, strength, . . . ) are
easily accessible as part of the agent observation, Gold and Staircase are already provided as rewards
in the popular Sample Factory codebase, and the velocities in the x, y directions are part of the state
and infos dictionary in Gymnasium PointMaze. We also note that certain embodied AI simulators
such as Habitat (Savva et al., 2019; Szot et al., 2021) ship with reward functions for different skills
such as navigation, picking, placing, opening and closing. In others settings however, defining
intrinsic rewards may be challenging. There are several potential ways to remove this assumption
and generate option rewards automatically, which constitute interesting future work. These include:
using diversity measures (Eysenbach et al., 2019) to define rewards which induce a diverse set of
option policies, novelty bonuses (Burda et al., 2019; Henaff et al., 2022) which could encourage
exploratory options, distances to goals output by the controller (Nachum et al., 2018; Vezhnevets
et al., 2017), or using LLMs synthesize rewards via code generation or preference ranking (Klissarov
et al., 2024; 2025; Ma et al., 2023; Kwon et al., 2023b;a; Fan et al., 2022).

Second, our system is designed for computational efficiency, not sample efficiency. It focuses on
achieving superior asymptotic performance in the large sample regime, rather than making optimal
use of limited samples. Therefore, it is currently limited to settings where samples are easy to gather
and compute is the bottleneck, such as video games, digital agents or sim-to-real transfer. Some
of the design decisions, such as using a single neural network to represent both high and low-level
policies, and the parallelized return computations, could in principle be incorporated into a model-
based RL framework, which could potentially improve sample efficiency.

B BROADER IMPACTS

This paper works on a foundational topic in RL, namely long-horizon decision-making. RL meth-
ods can eventually lead to positive applications (home assistants, digital assisstants, robotic surgery,
medical and scientific discovery, autonomous driving, more efficient resource allocation) or negative
ones (autonomous weapons, cyberattacks). Our work is not tied to direct applications or deploy-
ments, hence we do not see particular impacts worth highlighting at this time.
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C EXPERIMENT DETAILS

C.1 ARCHITECTURES

For all MiniHack and NetHack experiments, we used a neural network architecture which mostly
follows the Chaotic Dwarven GPT5 architecture of (Kanervisto & Jucys, 2022) with one change: we
replaced the pipeline which renders glyphs to pixel images and runs them through an image-based
convnet with a direct glyph embedding layer followed by 2 convolutional layers. We found this
reduced the memory footprint (allowing us to have a larger PPO batch size) while giving slightly
better performance. The pipelines processing the messages and bottom-line statistics (blstats) were
unchanged. Specifically, the blstats are processed by a two-layer MLP with 128 hidden units at each
layer, and the message character values are divided by 255 and also processed by a 2-layer MLP.
The embeddings for the glyph images, blstats and messages are then concatenated and passed to a
recurrent GRU (Cho et al., 2014). For the hierarchical models, we embed the policy index to a 128-
dimensional vector which is concatenated with the other embeddings before passing to the GRU.
This same vector is also replicated and added to all spatial locations in the glyph image crop. We
also include an extra linear layer mapping the last hidden layer to controller actions.

For Mujoco experiments, we used a 2-layer network with 64 hidden units at each layer and tanh ac-
tivations. The network outputs the mean and variance of a Gaussian distribution over actions, whose
dimension is that of the action space. For hierarchical agents, the policy one-hot is concatenated
with the input. As before, we add an extra linear layer mapping the last hidden layer to controller
actions. The observation includes the agent’s (x, y) position as well as the desired goal position. We
do not use a GRU for Mujoco experiments since the environment is fully observed.

C.2 HYPERPARAMETERS

For all NLE agents, we used the common PPO hyperparameters which are listed in Table 1. Our
SOL agents additionally use the hyperparameters listed in Table 4.

Table 1: Common PPO Hyperparameters for different environments. The same set of hyperparam-
eters are used for MiniHack and NetHack, a different set is used for Mujoco PointMaze.

Hyperparameter MiniHack&NetHack Mujoco PointMaze

Rollout length 1024 256
GRU recurrence 256 none
GRU layers 1 none
PPO epochs 1 10
PPO clip ratio 0.1 0.2
PPO clip value 1.0 1.0
Encoder crop dimension 12 N/A
Encoder embedding dimension 128 N/A
Reward Scaling 0.01 10
Exploration loss coefficient 0.003 0.001
Exploration loss entropy entropy
Value loss coefficient 0.5 0.5
Max gradient norm 4.0 0.1
Learning Rate 0.0001 0.003
Batch size 32768 32768
Worker number of splits for double-buffering 2 2
V-trace ρ 1.0 1.0
V-trace c 1.0 1.0
Discount factor γ 0.99 0.99
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Table 2: APPO (task/task+option rewards) Hyperparameters

Environment Hyperparameter Value Values swept

MiniHack-
ZombieHorde

Score reward scale 1 1
Health reward scale 1 0, 1, 3, 10, 20

MiniHack-
TreasureDash

Stairs option reward scaling 1 1
Gold option reward scaling 0.1 0, 0.1, 0.3, 1, 3, 10

NetHackScore Score option reward scaling 1 1
Health option reward scaling 1 0, 1, 3, 10

PointMaze-
GMaze

True goal reward scaling 1 1
Goal option reward scaling 1 0, 0.01, 0.1, 1, 10

Table 3: SOL Hyperparameters. The controller extra exploration loss scaling is a factor which is
used to further scale the exploration loss coefficient from Table 1 applied to the controller outputs.
We found that having this greater than 1 was sometimes helpful.

Environment Hyperparameter Value Values swept

MiniHack-
ZombieHorde

Controller extra exploration loss scaling 1 1, 3, 10
Controller reward scaling 0.001 0.001, 0.01, 0.1
Score option reward scaling 1 -
Health option reward scaling 20 10, 20

MiniHack-
TreasureDash

Controller extra exploration loss scaling 1 1, 3, 10
Controller reward scaling 0.001 0.001, 0.01, 0.1
Stairs option reward scaling 1 -
Gold option reward scaling 1 -

NetHackScore

Controller extra exploration loss scaling 10 1, 3, 10
Controller reward scaling 0.001 0.001, 0.01, 0.1
Score option reward scaling 1 -
Health option reward scaling 10 10, 20

PointMaze-
GMaze

Controller extra exploration loss scaling 1 1, 3, 10, 30
Controller reward scaling 1 0.01, 0.1, 1, 10
Goal option reward scaling 1 -

Table 4: SOL-HiPPO Hyperparameters. We set the number of options to be the same as SOL and
swept hyperparameters in the same ranges.

Environment Hyperparameter Value Values swept

MiniHack-
ZombieHorde

Controller extra exploration loss scaling 1 1, 3, 10, 30
Controller reward scaling 0.001 0.001, 0.01, 0.1
Number of options 2 -

MiniHack-
TreasureDash

Controller extra exploration loss scaling 1 1, 3, 10, 30
Controller reward scaling 0.001 0.001, 0.01, 0.1
Number of options 2 -

NetHackScore
Controller extra exploration loss scaling 10 1, 3, 10, 30
Controller reward scaling 0.001 0.001, 0.01, 0.1
Number of options 2 -

PointMaze-
GMaze

Controller extra exploration loss scaling 1 1, 3, 10, 30
Controller reward scaling 1 0.01, 0.1, 1, 10
Number of options 5 -
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Table 5: Motif Hyperparameters. We trained the reward model using the official source code, data
and default hyperparameters. We then trained APPO agents with the same hyperparameters as other
agents (Table 1) and tuned the coefficient of the reward model.

Hyperparameter Value Values swept

LLM reward coefficient 0.1 (default) 0.1, 0.3, 1

Table 6: MOC Hyperparameters. Despite our hyperparameter sweep, results did not change much:
MOC worked well on PointMaze-UMaze, and failed to learn on PointMaze-GMaze. Therefore we
report results with default hyperparameters.

Hyperparameter Value Values swept

Number of options 2 (default) 2, 4, 8
Learning rate 0.0008 (default) 0.001, 0.0003, 0.0001, 0.00008
Probability of updating all options η 0.9 (default) 0.1, 0.9
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C.3 THROUGHPUT COMPARISON DETAILS

All experiments were conducted on an NVIDIA V100-SXM2-32GB GPU. We used the same NLE
encoder described in Appendix C.1 for HIRO and Option-Critic. We used the following implemen-
tations:

• HIRO: https://github.com/watakandai/hiro_pytorch
• Option-Critic: https://github.com/lweitkamp/option-critic-pytorch
• MOC: https://github.com/mklissa/MOC
• Hierarchical RLLib: https://docs.ray.io/en/latest/rllib/
hierarchical-envs.html

Other than changing the architecture to process NLE observations, we kept the rest of the hyper-
parameters at their default values except for the following. We experimented with different batch
sizes of off-policy updates for HIRO and Option-Critic, but this did not significantly change the
throughput.

For MOC, we increased the number of parallel environments until the throughput saturated, which
was 256 here. We used the NLE visual rendering pipeline from (Kanervisto & Jucys, 2022), where
NLE glyphs are rendered to pixels and then processed by a standard Atari DQN convolutional en-
coder. The reason we did this was because the MOC codebase (based on OpenAI Baselines) only
supported pixel and continuous vector inputs. We also ran SOL with the same visual rendering
pipeline and found that its speed was around 10% faster than the symbolic encoder for the same
batch size, hence we do not believe that using a visual rendering pipeline penalizes methods in these
comparisons.

C.4 COMPUTE DETAILS

All experiments were run on single NVIDIA V100-SXM2-32GB GPU machines. For MiniHack ex-
periments, we used 16 CPUs per experiment. Running a job took around 5 hours for TreasureDash
and 10 hours for ZombieHorde. For NetHack experiments, we used 48 CPUs per experiment. Run-
ning a job for 30 billion steps took around 14 days. For Mujoco, we used 8 CPUs per experiment.
Each job ran for less than one day.

C.5 OTHER CODE LINKS

We use the public codebase for our Motif reward model: https://github.com/mklissa/
maestromotif. Our codebase is built upon Sample Factory: https://github.com/
alex-petrenko/sample-factory, which is licensed under an MIT license.

20

https://github.com/watakandai/hiro_pytorch
https://github.com/lweitkamp/option-critic-pytorch
https://github.com/mklissa/MOC
https://docs.ray.io/en/latest/rllib/hierarchical-envs.html
https://docs.ray.io/en/latest/rllib/hierarchical-envs.html
https://github.com/mklissa/maestromotif
https://github.com/mklissa/maestromotif
https://github.com/alex-petrenko/sample-factory
https://github.com/alex-petrenko/sample-factory


1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D ENVIRONMENT DETAILS

D.1 MINIHACK

Here we describe the details of our MiniHack environments. Both have a simple action space con-
sisting of 4 movement actions (north, south, east, west) and the EAT action. We note that movement
also serves to attack: attempting to move on a square occupied by an enemy attacks it.

In ZombieHorde (Figure 6a), the agent @ must defeat all the zombies Z . Since they are too
numerous to fight at once, the agent must periodically retreat to the altar _ which the zombies
cannot get close to, in order to heal. The priest @ has no effect here. The time limit is 1500 steps,
which enables long periods of healing. Agents in NetHack heal at a rate of about 1 hit point per
10 timesteps, hence full healing can require over 100 steps. Each zombie destroyed gives 20 score
points.

In TreasureDash, the agent gets 20 points for exiting through the stairs > , which ends the episode.
Each piece of gold $ gives 1 point. The episode time limit is 40 steps. If the agent goes right the
whole time, it gathers 20 gold pieces for 20 total points. If it goes left only, it exits and also gets 20
points. The optimal strategy is to gather 8 gold pieces on the right, and then go left all the way to the
staircase. This requires stopping the gold-gathering behavior and switching to seeking the staircase.

(a) ZombieHorde.

(b) TreasureDash

Figure 6: MiniHack environments designed to present challenging credit assignment problems.

D.2 NETHACK

The NetHackScore environment from the NLE paper includes the following actions: all move-
ment actions, as well as SEARCH (needed for finding secret doors, which is often necessary to
explore the full level and go to the next), KICK (needed for kicking down locked doors, also needed
to explore the visit the full level) and EAT (needed for eating the comestibles the agent starts with).
If the agent does not eat, it will starve before too long which limits the episode length and the
maximum progress the agent can make. However, the EAT action alone is not enough to eat the co-
mestibles in the agent’s inventory, due to the NLE’s context-dependent action space. After selecting
the EAT action, the agent must also select which item in inventory to eat, which requires pressing a
key corresponding to the item’s inventory slot, which must be included in the original action space,
which is often not the case. Therefore, we adopt the modification introduced in (Klissarov et al.,
2024), where every time the EAT action is selected, the next action is chosen at random from the
available inventory slots given in the message. This is also discussed in Appendix G of their paper.
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D.3 POINTMAZE

The PointMaze environment uses Gymnasium Robotics and we simply pass the maze map as argu-
ment. The agent and goal location are fixed rather than resetting each episode. The reward is the
change in euclidean distance between the agent and the goal, and the episode ends whenever the
goal is reached according to the default PointMaze criterion.
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E ALGORITHM DETAILS

E.1 OBJECTIVES

Here we give the exact definitions of some of the functions used in Section 3.1. Let µ : S → ∆(A)
denote the flattened hierarchical policy, i.e. the mapping from states to actions obtained by executing
the options and controller using the call-and-return process. We define the state-option value, state
value, and option-advantage functions of µ associated with the task reward as:

Qµ
task(st, ω) = Eµ[

∞∑
k=0

γkR(st+k, at+k)|st = s, ωt = ω]

V µ
task(s) = Eµ[

∞∑
k=0

γkR(st+k, at+k)|st = s]

Atask(st, ω) = Qµ
task(st, ω)− V µ

task(st)

The state-action value, state value, and advantage functions for an option ω are given by:

Qω(st, at) = Eπω
[

∞∑
k=0

γkRω(st+k, at+k)|st = s, at = a]

V ω(st) = Eπω [

∞∑
k=0

γkRω(st+k, at+k)|st = s]

Aω(st, at) = Qω(st, at)− V ω(st)

In Section 3.1 we mentioned that calling the controller does not cause the MDP to transition, which
means that states in τ are duplicated each controller call. To illustrate this, let us consider the first
time step, with s0 being the first state. First the controller must be called, since we don’t know what
low-level option to execute. We therefore run s0 through the controller and obtain ω3, l ∼ πΩ(·|s0).
This means we will execute option policy πω3

for l timesteps. The first state we must apply it to is
still s0, since we haven’t passed any actions to the MDP yet. We therefore compute a0 ∼ πω3(·|s0),
sample s1 ∼ p(·|s0, a0), and repeat this process for l timesteps. We then call the controller again at
sl, which produces (for example) ω2, l

′ ∼ πΩ(·|sl), meaning we will execute πω2 for l′ timesteps.
Again, since we have not executed any actions in the environment, we then run sl through πω2 and
the process continues. See Table 7 for an example trace.
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E.2 ENVIRONMENT WRAPPER PSEUDOCODE

Pseudocode for the environment wrapper in the actor workers is shown below.

1 class HierarchicalWrapper(gym.Wrapper):
2

3 def __init__(self, env, ...):
4 self.env = env
5 self.option_policies = [...]
6 self.option_length = ...
7

8

9 def compute_option_reward(self, option):
10 ...
11

12 def reset(self):
13 obs = self.env.reset()
14 self.current_policy = "controller"
15 obs["current_policy"] = self.current_policy
16 return obs
17

18 def step(self, action):
19

20 env_action, option_indx, option_length = action
21

22 if self.current_policy == "controller":
23 self.current_policy = self.option_policies[option_indx]
24 obs["current_policy"] = self.current_policy
25 self.option_length = option_length
26 done = False
27 # the controller reward depends on the future, so we compute
28 # it in the learner thread and flag for now.
29 reward = 42
30 self.option_steps = 0
31 info = {}
32 return obs, reward, done, info
33 else:
34 obs, done, task_reward, info = self.env.step(env_action)
35 reward = self.compute_option_reward(obs, self.current_policy)
36 self.option_steps += 1
37

38 if self.option_steps == self.option_length:
39 self.current_policy = "controller"
40 obs["current_policy"] = self.current_policy
41

42 return obs, done, reward, info

The wrapper produces trajectories of the form shown below in Table 7. Note that observations are
duplicated each time the option changes: they are used first as input to the controller, which chooses
the option to execute next, and then the same observation is used as input to the chosen option. The
Action row contains both actions of the controller policy, which are options ω ∈ Ω, and low-level
environment actions of the option policies, which are in the MDP’s action space A. The State,
Action, Policy Index and Policy Rewards correspond to the st, at, zt and rt variables of τ in Section
3.1. The Policy Rewards corresponding to controller calls (marked in red) are the sum of the task
rewards over the course of the next policy call—these are computed in the learner thread, since they
depend on the future not known to the actor thread at the current time step.
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State s1 s1 s2 s3 s4 s5 s5 s6 s7 s8
Action ω1 aenv1 aenv2 aenv3 aenv4 ω3 aenv5 aenv6 aenv7 aenv8
Task Reward - r1 r2 r3 r4 - r5 r6 r7 r8
Policy Reward

∑4
t=1 rt r11 r12 r13 r14

∑8
t=5 rt r35 r36 r37 r38

Policy Index Ω ω1 ω1 ω1 ω1 Ω ω3 ω3 ω3 ω3

Termination 0 0 0 0 0 0 0 1 0 0

Table 7: Example trajectory produced by the environment wrapper. The quantities in red are com-
puted later in the learner thread (see above), and are included for completeness.
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E.3 PARALLELIZED V-TRACE

1

2 """
3 This function computes advantages and value targets for all policies

in the batch simultaneously. The arguments are:
4

5

6 ratios: ratio of action probs between current and old policy
7 values: bootstrapped value predictions
8 dones: episode terminals
9 rewards: rewards of mixed type, see Policy Reward in Table 7.

10 rho_hat: V-trace truncation parameter
11 c_hat: V-trace truncation parameter
12 num_trajectories: number of trajectories in the batch
13 recurrence: number of timesteps in the batch
14 gamma: discounting factor
15 policy_indx: the Policy Index in Table 7, also z_t in Section 3.1
16 num_policies: total number of policies (options and controller, i.e.

|\Omega| + 1).
17 """
18

19 def _compute_vtrace_sol(
20 ratios,
21 values,
22 dones,
23 rewards,
24 rho_hat,
25 c_hat,
26 num_trajectories,
27 recurrence,
28 gamma,
29 policy_indx,
30 num_policies,
31 ):
32 vtrace_rho = torch.min(rho_hat, ratios)
33 vtrace_c = torch.min(c_hat, ratios)
34

35 # tensors to store the advantages and value predictions
36 adv = torch.zeros((num_trajectories * recurrence,))
37 vs = torch.zeros((num_trajectories * recurrence,))
38

39

40 next_values = torch.zeros(num_trajectories, num_policies)
41 next_vs = torch.zeros(num_trajectories, num_policies)
42 delta_s = torch.zeros(num_trajectories, num_policies)
43

44 # V-trace returns are computed using a base case followed
45 # by recurrence relation. This marks which policies the
46 # base case is handled for.
47 is_base_case_handled = torch.zeros(
48 num_trajectories, num_policies, dtype=torch.bool
49 )
50

51 # When an episode ends, we need to zero out the returns for
52 # each policy using the last timestep it is executed for
53 # before the episode ends.
54 is_episode_done = torch.zeros(
55 num_trajectories, num_policies, dtype=torch.bool
56 )
57

58 for i in reversed(range(recurrence)):
59 current_policies_one_hot = F.one_hot(
60 policy_indx[i::recurrence], num_classes = num_policies
61 ).bool()
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62

63 rewards = rewards[i::recurrence]
64 curr_dones = dones[i::recurrence].bool()
65

66 # when we encounter a "done", mark all policies as done.
67 # we will unmark the ones at the current timestep for
68 # which we mask out the returns.
69 is_episode_done = is_episode_done | curr_dones.view(-1, 1)
70

71 dones = is_episode_done[current_policies_one_hot].to(dtype)
72 not_done = 1.0 - dones
73 not_done_times_gamma = not_done * gamma
74

75 curr_values = values[i::recurrence]
76 curr_vtrace_rho = vtrace_rho[i::recurrence]
77 curr_vtrace_c = vtrace_c[i::recurrence]
78

79 # we have accounted for the latest episode termination
80 # of the current policies in ’not_done_times_gamma’,
81 # so reset this until the next ’done’ is encountered.
82 is_episode_done[current_policies_one_hot] = False
83

84

85 if i < recurrence - 3:
86 controller_indx = num_policies - 1
87 trajs_with_changed_options = (
88 (policy_indx[(i+1)::recurrence] == controller_indx) &
89 (policy_indx[i::recurrence] != policy_indx[(i+2)::

recurrence])
90 )
91 # for any trajectories where the option switched,
92 # reset the base case so that bootstrapped returns
93 # are applied
94 is_base_case_handled[current_policies_one_hot] = \
95 is_base_case_handled[current_policies_one_hot] & \
96 ~trajs_with_changed_options
97

98

99 base_case_indices = (~is_base_case_handled) &
current_policies_one_hot

100 base_case_indices_any = torch.any(base_case_indices, dim = 1)
101

102 next_values[base_case_indices] = (
103 values[i :: recurrence][base_case_indices_any]
104 - rewards[i :: recurrence][base_case_indices_any]
105 ) / gamma
106

107 next_vs[base_case_indices] = next_values[base_case_indices]
108

109 is_base_case_handled = is_base_case_handled |
base_case_indices

110

111 if not is_base_case_handled.any().item():
112 continue
113

114 delta_s[current_policies_one_hot] = curr_vtrace_rho * (
115 rewards
116 + not_done_times_gamma * next_values[

current_policies_one_hot]
117 - curr_values
118 )
119

120 adv[i::recurrence] = curr_vtrace_rho * (
121 rewards
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122 + not_done_times_gamma * next_vs[current_policies_one_hot
]

123 - curr_values
124 )
125

126 next_vs[current_policies_one_hot] = (
127 curr_values
128 + delta_s[current_policies_one_hot]
129 + not_done_times_gamma
130 * curr_vtrace_c
131 * (next_vs[current_policies_one_hot] -
132 next_values[current_policies_one_hot])
133 )
134 vs[i::recurrence] = next_vs[current_policies_one_hot]
135 next_values[current_policies_one_hot] = curr_values
136

137 return adv, vs
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F ADDITIONAL EXPERIMENT RESULTS

F.1 ADDITIONAL NETHACK CHARACTERS

Here we report results with additional NetHack characters. Most prior work (Klissarov et al., 2024;
2025; Zheng et al., 2024) uses the Monk character, however this is only one out of 13 characters in
the game. Here we compare all methods on two other characters: the Ranger and Archaeologist. The
trends we observed for the Monk are repeated here: SOL and SOL+Motif significantly outperform
the other methods, and their performance continues to improve over the course of 30 billion training
samples. This shows that our conclusions are not particular to the Monk character.

We also note that the scores for the Ranger and Archaeologist are significantly lower than the Monk,
which is likely due to the fact that the Monk starts proficient in unarmed combat and can succeed in
the early game without needing to learn how to equip weapons and armor.
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Figure 7: Results on NetHackScore for three different characters. Curves represent the mean and
shaded regions represent two standard errors computed over 5 seeds.
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F.2 VISUALIZATIONS AND ANALYSIS
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Figure 8: Option mean returns, normalized by option execution length. Error bars represent two
standard errors computed over 500 episodes.

In this section we provide visualizations which help shed light on SOL’s behavior. In Figure 8, for
each environment we report the average return in terms of each option reward when executing each
option policy. On both ZombieHorde and NetHackScore, the Score option accumulates higher
score than the Health option (as shown by its higher ∆Score return), but sustains damage over
time (as shown by its negative ∆Health return). The Health option accumulates less score,
but recovers health over time (as shown by its positive value in terms of ∆Health, enabling the
agent to survive longer overall. For TreasureDash, the Stairs option achieves positive ∆Stairs
reward (indicating it has descended a staircase) and no ∆Gold reward (indicating it has collected
no gold), whereas the Gold reward is the opposite. Overall, this shows that SOL is able to learn
different options which produce distinct behaviors.

In Figure 9, for each environment we plot the distributions of option lengths selected by the con-
troller for each option. On ZombieHorde, the Score option tends to be called for shorter lengths
than Health. This may be explained by the fact that healing takes a long time, around 10 time
steps per hit point: at experience level 1, healing from 7/14 hit points back to full health takes ~70
time steps. Also, executing the Score option involves fairly high uncertainty due to the stochas-
ticity of NetHack’s combat system, where damage is dealt randomly based on various statistics: it
may be that the agent gets lucky defeats several monsters in a row, or it may be unlucky and sus-
tain high damage at the beginning, in which case it needs to switch back to the Health option.
Choosing shorter option lengths for Score allows the agent to switch back to the Health option
more quickly if needed. In contrast, healing is mostly deterministic and there is less downside to
selecting the Health option for longer than needed. In TreasureDash, the controller very precisely
chooses the optimal execution length of 16 for the Gold option (the optimal policy moves right for
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Figure 9: Distributions of option execution lengths chosen by the controller. The distribution is non-
uniform, which indicates learning on the part of the controller. Longer option lengths are chosen
more frequently than short ones. The Score option tends to be executed for the longest option length
(128 steps) less often than Health. This may be because calling Score for longer than is optimal
carries a higher risk than for Health: executing Score for too long may result in too much combat
and agent death, whereas executing Health for too long will result in the agent wasting turns trying
to heal at full health, which has fewer negative consequences. Distributions are computed over 500
test episodes.
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Figure 10: Fraction of controller calls to the Health and Score options for Monk, conditioned
on the agent’s normalized health (current hit points divided by maximum hit points) and experience
level. The controller calls the Health option more frequently at low health, enabling the agent to
recover and survive longer, and at low experience levels, when the agent is still weak. Distributions
are computed over 500 test episodes.

16 steps to get 8 gold, then moves left for 24 steps to the stairs), and assigns similar lengths to any
of the 3 optimal lengths for the Staircase option (32, 64, 128). For NetHackScore, the option
lengths are more spread out, although Score is still skewed somewhat shorter than Health. We
note that healing is shorter in NetHackScore, because the action space includes extended movement
actions (such as MOVEFAR) than take several game turns, and executing one of these speeds up
healing from the perspective of the agent—this may explain why the difference in option lengths
is less pronounced than for ZombieHorde, even though the option rewards are the same for both
environments.

In Figure 10, we plot the fraction of controller calls to each option conditioned on the agent’s health
and experience level. The controller calls the Health option more frequently when the agent’s
health as low, which makes sense since this enables the agent to recover its health and survive longer.
Interestingly, the controller also tends to call the Health option more often at low experience
levels (96% of the time at Experience Level 1). Upon visualizing trajectories, we found that the
agent still fights monsters that attack it when executing the Health option, but does not seek them
out. This results in the agent staying at the first few dungeon levels, fighting weaker monsters
that appear, and gaining some experience levels. It then begins calling the Score option more
frequently, resulting in it attacking monsters and exploring further into the dungeon. This is similar
to successful human gameplay, which requires careful progression of dungeon levels only when the
agent is strong enough (contributors).
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F.3 MINIHACK OPTION LENGTH ABLATION

In Figure 11 we report the final results for both MiniHack environments when using different fixed
option lengths in {2, 4, 8, 16, 32, 64}. In this setting, every time the controller selects an option it
is always executed for the same fixed number of steps. Having fixed lengths which are either too
long or too short lengths hurts performance. In contrast, our adaptive selection mechanism is able
to automatically tune the option lengths, and performs comparably to the best fixed option length.
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Figure 11: Final performance on ZombieHorde and TreasureDash for different fixed options lengths
as well as the adaptive option lengths. Bars represent standard errors over 5 seeds.
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F.4 MINIHACK OPTION QUALITY ABLATION

In Figure 12 we study how the performance of SOL changes in the presence of redundant or useless
options on both MiniHack tasks. We compare the following variants:

• SOL : our default version, which has two options that are both useful for the task (Ω =
{Score, Health} for ZombieHorde, Ω = {Stairs, Gold} for TreasureDash).

• SOL(+2 duplicate options): has both original options duplicated once each. Its
option set is Ω = {Score, Score2, Health, Health2} for ZombieHorde and
Ω = {Stairs, Stairs2, Gold, Gold2} for TreasureDash. Here Score2 is an
option with identical reward as Score, and same for the other options.

• SOL(+8 duplicate options): has both original options duplicated 4 times
each. Its option set is Ω = {Score,...,Score5, Health,...,Health5} for
ZombieHorde and Ω = {Stairs,...,Stairs5, Gold,...,Gold5} for Trea-
sureDash.

• SOL(+2 useless options): has 2 options added which are unrelated to the task at
hand. For ZombieHorde, the option set is Ω = {Score, Health, Gold, Scout}
and for TreasureDash the option set is Ω = {Stairs, Gold, Scout, Health}.
Here Scout is a reward measuring exploration taken from (Küttler et al., 2020).

Results are shown in Figure 12. Adding duplicates of options that are useful for the task at hand
does not significantly change performance. Adding useless options (which are unrelated to the task
at hand) slows down learning on both tasks, which is unsurprising: without prior knowledge, the
agent must learn through experience which options are useful and which are not (also recall that
we have an entropy bonus on the controller which encourages it to sample all options with some
probability). However, on both tasks the agent with useless options is able to eventually match the
performance of the others, given sufficient training.
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Figure 12: Performance of SOL with duplicate or useless options added. Shaded region represents
two standard errors computed over 5 seeds.
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F.5 FLAT APPO RESULTS ON POINTMAZE
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Figure 13: Flat APPO agents trained on default PointMaze environments from Gymnasium Robotics
(de Lazcano et al., 2024) are largely able to solve all PointMaze environments, indicating that hier-
archy is not needed for these maze layouts.
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