
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCALABLE OPTION LEARNING IN HIGH THROUGHPUT
ENVIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Hierarchical reinforcement learning (RL) has the potential to enable effective
decision-making over long timescales. Existing approaches, while promising,
have yet to realize the benefits of large-scale training. In this work, we identify and
solve several key challenges in scaling online hierarchical RL to high-throughput
environments. We propose Scalable Option Learning (SOL), a highly scalable hi-
erarchical RL algorithm which achieves a ~35x higher throughput compared to
existing hierarchical methods. To demonstrate SOL’s performance and scalability,
we train hierarchical agents using 30 billion frames of experience on the complex
game of NetHack, significantly surpassing flat agents and demonstrating positive
scaling trends. We also validate SOL on MiniHack and Mujoco environments,
showcasing its general applicability. [Our code will be open sourced].

1 INTRODUCTION

Training agents to effectively solve decision-making tasks spanning long timescales is a fundamen-
tal challenge in reinforcement learning (RL) and control. This problem is difficult because the
optimization landscape at the lowest level of sensorimotor control is often hard to optimize, due
to sparsity of rewards or local minima. Consider a human whose goal is to go from New York to
Paris. When viewed as an RL problem, where actions consist of joint movements and the cost is
the distance to Paris, gradient information is often uninformative or misleading. The optimization
landscape is rife with local minima, such as the agent becoming stuck in the easternmost corner
of a room; and globally optimal trajectories, such as taking the subway to the airport, are likely to
encounter many local increases in the cost function, making them difficult to discover.

Hierarchy presents itself as a natural approach to address this challenge (Sutton et al., 1999). By
decomposing a long task into a hierarchy of decisions at different timescales, one can hope to ease
the problems of credit assignment and exploration, which become increasingly difficult as the hori-
zon of the problem increases. At higher levels of the hierarchy, actions span longer timescales and
are thus fewer, making for shorter decision-making tasks. Meanwhile, lower levels of the hierarchy
aim to solve sub-tasks determined by the higher levels, which are also shorter and thus easier to
optimize. An effective solution to hierarchical RL could benefit many areas of AI which involve
long-horizon tasks where progress is limited by difficult exploration, delayed rewards and the need
to coordinate different behaviors.

A significant body of work has explored ways to incorporate hierarchy into RL algorithms, through
options (Sutton et al., 1999; Precup & Sutton, 2000; Bacon et al., 2017), feudal RL (Dayan &
Hinton, 1992; Vezhnevets et al., 2017), and other manager-worker architectures (Nachum et al.,
2018; Gürtler et al., 2021; Li et al., 2020; Levy et al., 2017). These methods have shown promising
benefits of hierarchy over flat policies and laid important conceptual foundations. Nevertheless,
by modern AI standards, they have remained in the relatively small data regime. Whereas flat RL
agents and computer vision models are routinely trained on billions of samples (Radford et al.,
2021; Kirillov et al., 2023; Ravi et al., 2025; Espeholt et al., 2018; Petrenko et al., 2020; Matthews
et al., 2024) and language models on trillions of tokens (Brown et al., 2020; OpenAI, 2024; Kaplan
et al., 2020; Touvron et al., 2023; Dubey et al., 2024; Team, 2024), existing hierarchical agents are
typically trained on millions of samples only—several orders of magnitude less data. Therefore,
hierarchical RL has yet to realize the benefits of large-scale training, which has driven progress in

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

many other areas of machine learning (Silver et al., 2016; 2017; Wijmans et al., 2019; Le et al.,
2023; Brown et al., 2020; OpenAI, 2024; Kaplan et al., 2020).

In this work, we take a step towards bridging this gap and present Scalable Option Learning (SOL),
a highly scalable hierarchical policy gradient algorithm. We identify and solve several challenges
which prevent straightforward scaling of hierarchical agents via GPU parallelization, enabling us
to train on billions of samples on a single GPU. SOL achieves ~35-580x faster throughput com-
pared to existing hierarchical RL algorithms. We apply SOL to the complex, open-ended NetHack
Learning Environment (NLE) (Küttler et al., 2020) and train hierarchical agents for 30 billion steps,
significantly surpassing flat agents and demonstrating promising scaling trends. We additionally
evaluate our algorithm on simpler MiniHack (Samvelyan et al., 2021) and PointMaze environments
(de Lazcano et al., 2024), showcasing its general applicability.

2 BACKGROUND AND PROBLEM SETTING

2.1 MARKOV DECISION PROCESSES

We consider a standard Markov decision process (MDP) (Sutton & Barto, 2018) defined by a tuple
(S,A, µ, p,R, γ) where S is the state space, A is the action space, µ is the initial state distribution,
p is the transition function, R is the reward and γ < 1 is a discount factor. At the beginning of
each episode, a state s0 is sampled from µ. At each time step t ≥ 0, the agent takes an action
at conditioned on st, which causes the environment to transition to a new state st+1 ∼ p(·|st, at)
and a reward rt = R(st, at) to be given to the agent. The goal of the agent is to learn a policy
π : S → ∆(A) which maximizes the sum of discounted returns Eπ[

∑∞
t=1 γ

trt]. We adopt the fully-
observed MDP framework for simplicity of notation, however, states can be replaced by observation
histories without loss of generality and our experiments include partially-observed environments.

2.2 OPTIONS

The options paradigm (Sutton et al., 1999; Precup & Sutton, 2000) provides a framework for
decision-making at different levels of temporal abstraction. Each option ω ∈ Ω represents a tempo-
rally extended behavior, and is defined by a tuple (πω, Iω, βω). Here πω : S → ∆(A) is the option
policy defining the agent’s behavior while the option is being executed, Iω ⊆ S is the initiation set
of states where the option can be started, and βω : S → {0, 1} is the termination function indicating
when the option should be ended. In addition to the option policies πω , there is a controller policy
πΩ : S → ∆(Ω) which determines which option to execute next in a given state. Note that Ω could
be infinite and continuously parameterized, in which case πΩ has a continuous action space.

We adopt the call-and-return paradigm (Bacon et al., 2017; Klissarov & Precup, 2021) where options
are sequentially executed. At the first timestep, an option ω ∼ πΩ(·|s0) is sampled. The agent then
executes actions at ∼ πω(·|st) until βω(st) = 1, at which point a new option ω′ ∼ πΩ(·|st) is
sampled. The agent then executes actions sampled from πω′ until the termination function βω′ is
activated, and the process continues.

A central question is how to define or learn the options (πω, βω, Iω)ω∈Ω as well as the controller
policy πΩ. Different settings which have been studied include: i) predefining the option policies
πω and subsequently learning πΩ (Sutton et al., 1999) ii) pre-specifying or incrementally adding
goal states and learning option policies using distances to goals as rewards (McGovern & Barto,
2001; Stolle & Precup, 2002; Menache et al., 2002; Şimşek & Barto, 2008), iii) jointly learning both
option policies and the controller policy end-to-end using the task reward alone (Bacon et al., 2017;
Li et al., 2020; Nachum et al., 2018; Klissarov et al., 2017; Klissarov & Precup, 2021).

In this work, for most of our experiments we assume access to a set of intrinsic reward functions
{Rω}ω∈Ω, and focus on jointly learning corresponding option policies πω and the controller πΩ in
a scalable manner. This assumes more prior knowledge than purely end-to-end options methods,
however, we also show in Section 5.3 that our method can be combined with methods for automatic
reward synthesis which do not assume any prior knowledge. Our scalable algorithm is agnostic to
how option rewards are defined, and can be used whether they are handcoded or learned.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.3 HIGH-THROUGHPUT RL

Several algorithms and libraries have been proposed to efficiently train RL agents on billions of
samples, such as IMPALA (Espeholt et al., 2018), MooLib (Mella et al., 2022), RLLib (Liang et al.,
2018; Wu et al., 2021), Sample Factory (Petrenko et al., 2020) and Pufferlib (Suarez, 2024). A
common feature is asynchronous data collection paired with parallelized policy updates. A set of
actors, typically operating across multiple CPU cores, collect experience from many parallel envi-
ronment instances. Concurrently, a learner process receives batches of experience and updates the
policy using parallelized GPU operations. The objective optimized is typically the policy gradi-
ent objective (Williams, 1992) with modifications such as PPO’s trust region constraints (Schulman
et al., 2017) and/or IMPALA’s V-trace off-policy correction. Additional systems-level optimizations
such as double-buffered sampling can also be included (Petrenko et al., 2020). However, all the
above high-throughput RL libraries operate using flat, non-hierarchical agents. We next describe the
challenges associated with parallelizing hierarchical agents, and our approach to solving them.

3 METHOD

In this section we introduce Scalable Option Learning (SOL), our hierarchical RL method designed
to optimize both performance and computational throughput.

3.1 OBJECTIVE

At a high level, we jointly optimize actor-critic objectives (Konda & Tsitsiklis, 1999) for all the op-
tions as well as the controller, each of which consists of a policy loss, a value loss, and an exploration
loss. In addition to the controller policy πΩ and option policies πω , we learn controller and option
value function estimators V̂Ω and V̂ω , which estimate the future returns of the controller and option
policies using their respective reward functions. Each time the controller is called, it outputs both
the next option ω to execute and the number of time steps l ∈ L = {1, 2, 4, . . . , 128} to execute the
option for. This is equivalent to using an augmented option set Ω̄ = Ω×L, and allows the controller
to adaptively select option lengths without task-specific tuning. For simplicity of notation we use Ω
rather than Ω̄ in the following, but always use this mechanism unless otherwise specified.

Policy Objective The policy objective we seek to optimize is:

Lpolicy = Eτ

[∞∑
t=0

∑
ω∈Ω

(
δzt=πΩ

log πΩ(ω|st)Atask(st, ω) + δzt=πω
log πω(at|st)Aω(st, at)

)]

where τ = (s0, z0, a0, r0, s1, z1, a1, r1, ...) represents trajectories generated by the agent. The vari-
able zt represents the policy being executed at time t, which can be either the controller πΩ or any
of the option policies πω , and δ represents a one-hot indicator. Here Atask represents the advantage
associated with the controller πΩ and task reward R, and Aω represents the advantage associated
with the option policy πω and option reward Rω . On timesteps where the controller selects a new
option, no environment-level action is taken, so a duplicated state is inserted to be acted upon by the
newly selected option on the next timestep. More details and exact definitions are in Appendix E.1.

Value Objective Our value objective is given below, where V̂Ω and V̂ω denote the agent’s param-
eterized value estimates of the task reward R and option reward Rω , respectively:

Lvalue = Eτ

[∞∑
t=0

(
δzt=πΩ(VΩ(st)− V̂Ω(st))

2 +
∑
ω∈Ω

δzt=πω (Vω(st)− V̂ω(st))
2
)]

An important property to note is that the definitions of Aω and V ω do not depend on any of the other
options or the controller, however their estimators are trained on the distribution of states induced
by the entire system. This is designed to produce independent options, while avoiding hand-off
errors resulting from training each option separately. At first glance, it might be unclear how to

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

estimate V ω from trajectories where different options are called, since it depends on an infinite sum
of rewards induced by following a single option πω . We address this by applying the following
recurrence relation and approximation:

V ω(st) = Eπω
[

∞∑
k=0

γkRω(st+k, at+k|st)] ≈ Eπω
[

K∑
k=0

γkRω(st+k, at+k|st) + γK+1V̂ ω(st+K)]

Here K is the remaining number of steps the current option ω is executed for before a different
option is called. During training, we approximate this expectation with a single bootstrapped Monte
Carlo rollout, and the resulting scalar is then used as a target for V̂ ω(st).

Exploration Objective It is standard to include a bonus on the entropy H of a policy to encour-
age local exploration (Williams & Peng, 1991; Mnih et al., 2016). We include these on both the
controller policy and the option policies:

Lexplore = Eτ

[∞∑
t=0

δzt=πΩ
H(πΩ(·|st)) +

∑
ω∈Ω

δzt=πω
H(πω(·|st))

]
Our global objective is the sum of the above objectives, and is trained on the data generated by the
agent. We next discuss how to optimize our global objective in high-throughput settings.

3.2 SCALING CHALLENGES

Before discussing the details of our system design, it is important to understand why scaling hier-
archical RL methods is not straightforward. Hierarchical systems execute a sequence of policies,
chosen from ΠΩ = {πΩ} ∪ {πω}ω∈Ω, which depends on the observations. Because of this, in a
batch of trajectory segments of size B×T , any given slice of size B at time t will likely correspond
to several different policies, with correspondingly different reward functions (see Figure 1). As a
result, both the forward passes through the policy network, which are needed to compute the action
probabilities and value estimates, as well as the return or advantage computations, which operate on
the different option and controller rewards, are difficult to parallelize. Current hierarchical methods
such as (Nachum et al., 2018; Gürtler et al., 2021; Levy et al., 2017; Klissarov et al., 2017) process
a single trajectory at a time, which is sufficient for the continuous control settings in which they
are tested which require a relatively small number of samples (in the millions). However, com-
plex, open-ended environments such as NetHack typically require billions of samples, which in turn
requires more scalable hierarchical methods.

3.3 SYSTEM DESIGN

We address these challenges through three design choices: i) a single neural network with multiple
action heads and an indexing vector which represents both high and low-level policies, ii) an en-
vironment wrapper in the actor workers which tracks active policies and computes corresponding
rewards, and iii) efficient parallelized masking when computing the advantages and value targets for
each policy. These enable leveraging existing high-throughput asynchronous RL libraries such as
Sample Factory (Petrenko et al., 2020). We provide a system overview in Figure 1 and describe each
component in detail next.

Architecture In order to process trajectory batches efficiently in parallel, we adopt a single neural
network architecture which represents all the option policies as well as the controller policy. In
addition to the environment observation, the network receives a one-hot vector u of dimension |Ω|+1
which indicates which of the policies in {πω}ω∈Ω ∪ {πΩ} to represent. The network’s output space
is A×Ω×L, where L is the set of possible option lengths. For each input observation, the network
outputs three distributions: a distribution over environment actions ∆(A), a distribution over options
∆(Ω), and a distribution over option lengths ∆(L). If u represents one of the option policies πω ,
then ∆(A) is kept and sent to the environment wrapper which we describe next. Otherwise if u
represents πΩ, the distributions over options and option lengths ∆(Ω),∆(L) are sent instead. See
Appendix E.2 for an illustration and more details.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Rewards

POLICY NETWORK

Observations

Policy indices

Action probabilities

Predicted values

Single FOR loop computes
discounted returns for all
policies in parallel

Target values

Advantages

VALUE LOSS

POLICY LOSS

LEARNER WORKERACTOR WORKERS (xN)

POLICY NETWORK

ENV

Env
actions

Controller
actions

Observations

Policy
Index

option 2 rewards

option 1 rewards

controller rewards

Batched
trajectories

Policy
weights

Figure 1: System overview. We use a single network with an augmented action space to represent
both option policies and the controller policy, enabling batched forward passes for all policies at
once. In the actor workers, a modified environment wrapper tracks the policy index based on the
high-level controller actions, and routs the low-level actions to the environment. The learner worker
continuously updates the policy with batched forward passes through the policy network and effi-
cient tensorized return computations. Different shades indicate quantities associated with different
policies: darkest is the controller, the other two are options ω1 and ω2.

Actor Workers The second component is an environment wrapper in each actor worker which
tracks which policy is currently being executed, switches them based on the termination conditions
and controller actions, computes option rewards, and duplicates the last observation whenever the
controller policy is called. Specifically, a variable p tracks which policy is currently active, and at
each time step is converted to the one-hot vector u which is fed as input to the network in addition
to the observation. Each time an option terminates after being executed for the number of steps last
output by the controller, p changes based on the controller distribution ∆(Ω) output by the network,
and the next option length l ∼ ∆(L) is recorded in the environment wrapper. Otherwise, an action
is sampled from ∆(A) and routed to the environment instance. The rewards for each of the option
policies πω are computed using Rω from the observation directly. The reward used to train the
controller policy πΩ, which is the sum of the task rewards for the option that it calls, depends on the
future execution of that option and is computed in the learner thread. Pseudocode providing more
details is included in Appendix E.3.

Learner Worker Given the above two components, the learner process which updates the policy
network receives the following tensors: observations O of size B×T×d (where d is the observation
dimension), rewards R of size B × T , episode terminations of size B × T , and one-hot policy
indices P of size B × T × |Ω| + 1. Note that the rewards in R are of mixed types: Rij is of the
type corresponding to the policy Pij . The first step is to fill in the rewards R corresponding to the
controller policy, which could not be previously computed in the actor threads since they depend on
the future execution of the option policy that the controller calls. This is done with a single FOR
loop compiled to C using Cython (Behnel et al., 2011). Next, for each policy indexed by P , the
learner process must compute two main quantities: the empirical returns and the advantages. By
using tensorized operations and caching various intermediate quantities for each policy, we are able
to compute both of these quantities for all policies simultaneously, using their respective rewards,
with a single backward FOR loop over the time dimension T . At a high level, this is done by: i)
tracking which policies have had their bootstrapped values already added to the cumulative returns,
ii) at each time step t, adding the rewards R[:, t] to the appropriate policy returns based on the current
policy indices P [:, t], and iii) appropriately handling episode terminations for each policy, based on

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

the last observation during which it is executed. Finally, V-trace off-policy corrections are applied
to both the controller and option policies, to account for potential lags between the actor and learner
workers in asynchronous settings. See Appendix E.4 for source code with full details.

Throughput Comparison We instantiate our algorithm using the Sample Factory codebase (Pe-
trenko et al., 2020). In Figure 2 we compare the throughput of our algorithm with that of public
implementations of four other hierarchical algorithms: HIRO (Nachum et al., 2018), Option-Critic
(Bacon et al., 2017), Multiple Option Critic (MOC) (Klissarov & Precup, 2021) and the hierarchi-
cal training implemented in RLLib (Wu et al., 2021). For HIRO and Option-Critic we use the
same NLE encoder as in our experiments in Section 5, for MOC and RLLib we used a visual
rendering pipeline instead for code compatibility reasons (SOL evaluated with the same pipeline
gets similar throughput as with our standard encoder). We used the same hardware for all com-
parisons and tuned the batch size and number of environments where applicable to obtain the
best throughput. Additional details can be found in Appendix C.3. Our algorithm is ~35x-580x
faster than the other four hierarchical methods, and retains 86% of the speed of the flat agent.

0 1 2 3 4 5
Environment Steps per Second 1e4

HIRO (~55)

Option-Critic (~75)

Hierarchical RLLib (~780)

Multiple Option-Critic (~1200)

SOL (ours, ~43000)

Asynchronous PPO (~50000)
Hi

er
ar

ch
ica

l
Fl

at

Figure 2: Throughput comparison of hi-
erarchical and flat methods on the NLE.

We note that the design decisions above are not library-
specific and our algorithm could be instantiated with
other implementations which use asynchronous actor
workers to collect experience and a learner worker to per-
form batch policy updates on the GPU, which is a com-
mon design in distributed RL (Espeholt et al., 2018; Küt-
tler et al., 2019; Mella et al., 2022; Suarez, 2024).

Different Algorithm Instantiation Our system is gen-
eral and enables instantiating high-throughput versions of
certain existing hierarchical algorithms or designing new
ones. For example, by setting all option rewards to equal
the task reward, we recover an objective analogous to
HiPPO (Li et al., 2020), a hierarchical PPO variant that
learns using the task reward only, which we include in
our comparisons. Alternatively, some or all of the option rewards can be produced by methods
for automatic reward synthesis, such as DIAYN (Eysenbach et al., 2019), which we investigate in
Section 5.3. We discuss other possibilities in Appendix A as potential future work. .

4 RELATED WORK

Early hierarchical methods focus on the tabular setting, such as Hierarchical Q-learning (Wiering &
Schmidhuber, 1997; Singh, 1992a;b; Kaelbling, 1993) and feudal RL (Dayan & Hinton, 1992).

Options (Sutton et al., 1999) provide a general framework for temporally extended decision-making.
The original work considers methods for learning value functions or models over a set of hardcoded
options in the tabular setting. Several follow-up works have explored learning options instead, for
example by identifying bottleneck states (McGovern & Barto, 2001; Stolle & Precup, 2002; Men-
ache et al., 2002; Şimşek & Barto, 2008) and defining rewards based on reaching them. The Option-
Critic architecture (Bacon et al., 2017) jointly learns the option policies with a value function over
options using only the task reward. However, the benefits of this method were primarily in transfer
to new tasks, and it was not shown to clearly improve over a flat policy on the original task.

Several hierarchical methods based on deep RL have been proposed and evaluated on continuous
control environments, such as HIRO (Nachum et al., 2018), HAC (Levy et al., 2017), and HiTS
(Gürtler et al., 2021). While improving over flat policies, these methods focus on sample-efficient
learning through off-policy learning, rather than scaling to large numbers of samples. As a result,
implementations are single-process and not designed to scale to billions of samples.

Closer to our work are hierarchical variants of PPO (Schulman et al., 2017), which include HiPPO
(Li et al., 2020), PPOC (Klissarov et al., 2017) and MOC (Klissarov & Precup, 2021). These meth-
ods optimize a special case of our objective where all option rewards equal the task reward. PPOC
and MOC use the more highly optimized OpenAI baselines library (Dhariwal et al., 2017) which

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

uses parallelized experience collection, and are an order of magnitude faster than the above methods.
However, MOC is still over an order of magnitude slower than ours.

Feudal Networks (Vezhnevets et al., 2017) are another deep RL architecture, which is conceptually
similar to HIRO but defines goals in embedding space rather than the original state space. This work
reported promising results, however the official code has not been released and we were unable to
find third-party reimplementations which reproduced their results, making comparisons difficult.

Our approach is related to the joint skill learning described in MaestroMotif (Klissarov et al., 2025),
but differs in several ways: i) we learn our controller jointly with the options, whereas they use
a frozen LLM, ii) we do not use hardcoded initiation and termination conditions, and iii) we use
separate value function bootstrapping across the different options and controller policy.

Similar to SOL, Agent57 (Badia et al., 2020) achieves high throughput by indexing a family of
policies with a shared neural network using a one-hot vector, which are then selected by a controller
trained to maximize the task reward. A key difference is that SOL can switch between different
policies within a single episode, whereas Agent57 executes the same policy for the full episode. This
in turn requires several of the design choices in Section 3.3, see Appendix G.1 for more discussion.

There are a number of works on hierarchical agents for robotics and embodied AI (Heess et al.,
2016; Peng et al., 2017; Yokoyama et al., 2023; Szot et al., 2021; Qi et al., 2025; Pertsch et al.,
2020; Chen et al., 2023) which learn each option (or skill) separately, and subsequently train a
high-level controller to coordinate them. This approach has been shown to be effective in real and
simulated robotics settings. However, learning each skill independently requires a starting state
distribution that is sufficiently diverse, which may not be the case when the appropriate states may
only be reached by mastering and coordinating other skills (see for example Klissarov et al. (2025)).

Recent work by Park et al. (2025) also studies hierarchical RL at scale, but in the offline setting,
whereas we focus on developing scalable methods for the online setting. Their results also show the
limits of naively scaling flat policies, further highlighting the need for scalable hierarchical methods.

5 EXPERIMENTS

We evaluate our proposed approach across three environments: MiniHack, NetHack, and Mujoco.
The NetHack Learning Environment (NLE) (Küttler et al., 2020) is based on the notoriously diffi-
cult roguelike game of NetHack, which requires the player to descend through many procedurally
generated dungeon levels to recover a magical amulet. The game involves hundreds of object and
monster types, and succeeding requires mastering many capabilities including exploration, combat,
resource management and long-horizon reasoning, with successful episodes often lasting 104 − 105

steps (Paglieri et al., 2025). MiniHack (Samvelyan et al., 2021) is a framework based on NetHack
which enables easy design of RL environments, allowing the targeted testing of agent capabilities.

In the next two sections, we assume access to a given set of option intrinsic rewards Rω , which we
specify (we also investigate automatically discovering Rω in Section 5.3). We consider the following
methods in our comparisons:

• APPO(task reward): a flat asynchronous PPO agent trained with task reward only.
• APPO(task+option rewards): a flat APPO agent trained with a linear combination

of task reward and option rewards Rω , with coefficients optimized by grid search.
• SOL-HiPPO: an instantiation of HiPPO (Li et al., 2020) using our scalable framework.

This uses only the task reward and no option rewards.
• SOL: our hierarchical agent.

This set of comparisons allows us to disentangle the effect of the hierarchical architecture from
benefits due to prior knowledge in the form of option rewards. APPO(task+option rewards)
has access to the the same additional option rewards as SOL, and incorporates them with a flat
architecture. SOL has access to option rewards, and makes use of them through a hierarchical
architecture. SOL-HiPPO has a hierarchical architecture, but does not use option rewards.

We did not include the prior hierarchical RL methods shown in Figure 2, since they would require an
intractably long time to process the same number of samples as SOL. An exception is MOC, which

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

we were able to run on Mujoco. This was possible because MOC is the fastest among prior methods
and Mujoco requires much fewer samples than MiniHack and NetHack.

We additionally include Motif (Klissarov et al., 2024), a method which uses an LLM to synthesize
intrinsic rewards, in our NetHack experiments since it is the current state of the art, but note that it is
orthogonal and can be combined with our method, for example by adding its rewards to one or more
of our option rewards. We include this variant in our comparisons under the name SOL+Motif.
Motif also makes different assumptions: it requires an LLM and observations with a meaningful
textual component, hence it cannot be directly applied to environments like Mujoco. Full experiment
details, including architectures and hyperparameters, can be found in Appendix C.2.

5.1 MINIHACK AND NETHACK

0 1 2 3 4
Train steps 1e9

0

2

4

6

8

10

12

Ki
ll

Co
un

ts

ZombieHorde

0.00 0.25 0.50 0.75 1.00
Train steps 1e8

12.5
15.0
17.5

20.0
22.5
25.0
27.5

Sc
or

e

TreasureDash

SOL
SOL+HiPPO

APPO (task reward)
APPO (task+option rewards)

Figure 3: Results on MiniHack. Shaded regions repre-
sent two standard errors over 10 seeds.

In addition to NetHack, we design two
MiniHack environments which specifi-
cally test the ability to perform difficult
credit assignment and coordinate different
behaviors, while also being fast to run.
These environments are described next,
with more details in Appendix D.1.

ZombieHorde The agent is initialized
in a room with a horde of zombies it must
defeat, which also contains a safe temple
area the zombies cannot enter. The zombies are too numerous to fight at once, however, and the
agent must periodically retreat to the temple to heal whenever its health becomes too low. This
poses a challenging credit assignment problem due to delayed rewards: healing takes dozens of time
steps while giving no rewards, but leads to much higher rewards in the long term since it allows the
agent to survive future fights. The option rewards here are Rω1

= ∆Score, Rω2
= ∆Health,

indicating the per-timestep changes in agent score (which increases for each zombie destroyed) and
hit points. For hierarchical methods, the controller’s reward is also ∆Score.

TreasureDash The agent is initialized in a hallway filled with piles of gold next to a staircase.
The agent has a small number of timesteps in which it can choose to gather gold for a small amount
of reward or descend the stairs for a large one-time reward and episode termination. The optimal
strategy is to gather as much gold as possible in the given time before descending the stairs on the
final timestep. Agents that fail to balance the two competing sources of reward can fall into the local
optima of either immediately descending the stairs or gathering gold until the timer runs out. The
option rewards are Rω1 = AtStairs, Rω2 = ∆Gold, and the controller optimizes total reward.

NetHackScore We use the NetHackScore environment from the NLE paper, with the modified
EAT action used in Klissarov et al. (2024) (see Appendix D.2 for details). The game score serves
as the task reward function. The option rewards we consider here are Rω1 = ∆Score, Rω2 =
∆Health. Hierarchical methods also use ∆Score as their controller reward.

Results On ZombieHorde (Fig. 3, left), all baselines quickly saturate after ~5 kills, while
SOL keeps improving and achieves a significantly higher final performance. On TreasureDash
(Fig. 3, right), SOL achieves close to the optimal performance of 28 points, whereas the other meth-
ods saturate earlier. In both cases, continued training of the baselines does not result in higher
performance, illustrating that scaling alone can be insufficient for tasks involving hard credit assign-
ment. On NetHackScore, we train all agents for 30 billion steps. In Figure 4 (left) we compare
LLM-free methods: both flat APPO agents perform similarly, indicating that adding intrinsic re-
wards (Health) to the task reward (Score) is not helpful here. This can be explained by the fact
that rewarding the change in health discourages the agent from engaging in combat (which causes
loss of health) and exploring. SOL-HiPPO converges to similar performance as the two flat agents,
indicating it is not able to leverage hierarchical structure. SOL steadily improves and achieves higher
performance than the other agents. In Figure 4 (right) we compare methods which leverage LLMs.
Motif improves over the flat APPO baseline, consistent with prior work. Our method SOL+Motif,
which adds Motif rewards to its Score option, significantly improves on Motif and sets a new state

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1 2 3
Train steps 1e10

0
250
500
750

1000
1250
1500
1750

Sc
or

e

NetHackScore (w/o LLM)

0 1 2 3
Train steps 1e10

0
250
500
750

1000
1250
1500
1750

2000
NetHackScore (w/ LLM)

Hierarchical:
SOL
SOL+Motif (requires LLM)
SOL+HiPPO

Flat:
Motif (requires LLM)
APPO (task reward)
APPO (task+option rewards)

Figure 4: Results on NetHackScore environment with the Monk character. Shaded regions rep-
resent two standard errors computed over 5 seeds.

0.0 0.5 1.0 1.5
Train steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

U-maze

0.0 0.5 1.0 1.5
Train steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

G-maze G-maze

SOL SOL+HiPPO APPO (task reward) APPO (task+option rewards) MOC

Figure 5: Results on two PointMaze layouts. Shading represents two standard errors over 10 seeds.

of the art on NetHackScore. In Appendix F.1, we repeat these experiments with two other NetHack
characters different from the default Monk, and find that these trends are maintained. It is notable
that SOL’s performance still appears to be increasing after 30 billion steps (~2 weeks of training),
suggesting the that benefits of scale unlocked by our method remain to be fully realized.

In Appendix F.2, we include visualizations which shed light on SOL’s behavior. In particular, we
find that: i) options are able to effectively optimize their respective rewards, and yield qualitatively
different yet complementary behaviors, ii) the controller is able to effectively coordinate the options
and call them in a state-dependent manner, and iii) the controller is able to adapt the option execution
length based on the task and option. We also include ablations studying fixed vs. adaptive option
lengths (Appendix F.3), option reward scaling (Appendix F.4), and the effect of adding redundant or
unhelpful options (Appendix F.5).

5.2 CONTINUOUS CONTROL

To test our algorithm’s generality, we next consider continuous control mazes provided by Gymna-
sium Robotics (de Lazcano et al., 2024). We first found that flat APPO agents were able to solve
all existing PointMaze environments (U-Maze, Medium and Large) when trained sufficiently, indi-
cating that these mazes do not require hierarchy in the large sample regime (details in Appendix
F.6). We therefore designed a more challenging maze called the G-maze, shown in Figure 5 (right).
The agent (green dot) must navigate to the goal (red dot), and the reward is given by the change in
euclidean distance between the two. The agent is initially close to the goal but separated by a wall,
and the optimal trajectory requires an initial increase in distance followed by a larger decrease. This
creates a local optimum in the reward landscape that is difficult to escape. We choose option rewards
Rω to be the velocity in the positive and negative x and y directions (which are already provided as
part of the state), as well as the task reward, for a total of 5 options. Results for both the U-Maze and
our G-maze are shown in Figure 5. On the U-Maze, all agents are able to achieve high success rates.
However, on the G-maze, SOL is the only method able to make progress, achieving roughly 70%
success while the others remain at zero. This provides evidence for SOL’s generality, conditioned
on reasonable option rewards being available.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5.3 AUTOMATICALLY LEARNING OPTION REWARDS

We next provide an experiment illustrating that SOL is compatible with methods for auto-
matic reward synthesis and can be used to experiment with them at scale. We define a
variant SOL+DIAYN where the option rewards {Rω}ω∈Ω are learned using DIAYN (Eysen-
bach et al., 2019), a method for automatic skill discovery. DIAYN operates by training a
discriminator online to classify different policies based on the state, while the policies are
trained using the discriminator’s class probabilities as rewards. This has the effect of produc-
ing policies which visit distinct states, enabling them to be distinguished by the discriminator.

0 1 2 3 4
Train steps 1e9

0

2

4

6

8

10

12

Ki
ll

Co
un

ts

ZombieHorde

0.00 0.25 0.50 0.75 1.00
Train steps 1e8

5

10

15

20

25

Sc
or

e

TreasureDash

SOL (hardcoded rewards)
SOL (DIAYN rewards)

APPO (task reward)

Figure 6: Results on MiniHack. Shaded regions repre-
sent two standard errors over 5 seeds.

In our setting, a discriminator D : S →
∆(Ω) is trained online to classify the |Ω|
different option policies. One option re-
ward is set to be the task reward, and each
remaining option ω has reward given by
Rω(s) = pD(ω|s). As before, the con-
troller’s reward is the task reward. The
discriminator is trained and assigns option
rewards fully on the GPU in the learner
thread, causing a drop in throughput of
only ~7%. Full experimental details can
be found in Appendix C.2. Results on both
MiniHack environments are shown in Fig-
ure 6. In both cases, SOL+DIAYN learns more slowly than SOL but converges to similar final
performance, significantly outperforming the flat baseline while requiring no prior knowledge in the
form of option rewards.

5.4 DISCUSSION

Taken together, our experimental results point to several takeaways. First, for the difficult credit
assignment tasks we consider, flat agents struggle to escape suboptimal local minima, even when
equipped with prior knowledge in the form of intrinsic rewards. Second, hierarchical structure
alone is not sufficient either, as illustrated by the fact that SOL-HiPPO , which is trained with the
task reward only, does not outperform flat agents. This is consistent with other works which have
reported that hierarchical agents trained with the task reward alone have difficulty outperforming
flat baselines (Bacon et al., 2017; Smith et al., 2018). Our best performing agent SOL combines
both hierarchical structure with useful option rewards, which can be derived from prior knowledge
or learned, that reflect the optimal policy in certain parts of the state space. This suggests that for
certain classes of hard credit assignment problems, both hierarchy and good intrinsic rewards are
necessary to unlock each others’ benefits.

6 CONCLUSION

This work introduces, to our knowledge, the first online hierarchical RL algorithm which is able
to scale to billions of samples. Its scalability is enabled by several systems-level design decisions
which enable efficient GPU parallelization. When trained at scale on the challenging NetHack
Learning Environment, our algorithm surpasses flat baselines and learns options with different be-
haviors which are effectively coordinated by the controller. It also proves effective in continuous
control and MiniHack environments, showcasing its generality. We discuss potential ways to im-
prove our algorithm along with current limitations in Appendix A. We hope that by releasing our
code, we can facilitate future work in bringing the benefits of scale to hierarchical RL, and enable
progress in long-horizon decision-making more broadly.

REFERENCES

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings
of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, pp. 1726–1734. AAAI
Press, 2017.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the Atari human bench-
mark. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 507–517.
PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/badia20a.
html.

S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, and K. Smith. Cython: The best of
both worlds. Computing in Science Engineering, 13(2):31 –39, 2011. ISSN 1521-9615. doi:
10.1109/MCSE.2010.118.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR,
abs/2005.14165, 2020. URL https://arxiv.org/abs/2005.14165.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019.

Yuanpei Chen, Chen Wang, Li Fei-Fei, and C Karen Liu. Sequential dexterity: Chaining dexterous
policies for long-horizon manipulation. arXiv preprint arXiv:2309.00987, 2023.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078, 2014. URL http://arxiv.org/abs/1406.
1078.

NetHackWiki contributors. Nethack standard strategy. URL https://nethackwiki.com/
wiki/Standard_strategy.

Özgür Şimşek and Andrew G. Barto. Skill characterization based on betweenness. In Proceedings
of the 22nd International Conference on Neural Information Processing Systems, NIPS’08, pp.
1497–1504, Red Hook, NY, USA, 2008. Curran Associates Inc. ISBN 9781605609492.

Peter Dayan and Geoffrey E. Hinton. Feudal reinforcement learning. In Proceedings of the 6th
International Conference on Neural Information Processing Systems, NIPS’92, pp. 271–278, San
Francisco, CA, USA, 1992. Morgan Kaufmann Publishers Inc. ISBN 1558602747.

Rodrigo de Lazcano, Kallinteris Andreas, Jun Jet Tai, Seungjae Ryan Lee, and Jordan
Terry. Gymnasium robotics, 2024. URL http://github.com/Farama-Foundation/
Gymnasium-Robotics.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. https:
//github.com/openai/baselines, 2017.

Abhimanyu Dubey et al. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/
2407.21783.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA:
Scalable distributed deep-RL with importance weighted actor-learner architectures. In Jennifer
Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pp. 1407–1416. PMLR, 10–
15 Jul 2018. URL https://proceedings.mlr.press/v80/espeholt18a.html.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. In International Conference on Learning Representa-
tions, 2019. URL https://openreview.net/forum?id=SJx63jRqFm.

11

https://proceedings.mlr.press/v119/badia20a.html
https://proceedings.mlr.press/v119/badia20a.html
https://arxiv.org/abs/2005.14165
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
https://nethackwiki.com/wiki/Standard_strategy
https://nethackwiki.com/wiki/Standard_strategy
http://github.com/Farama-Foundation/Gymnasium-Robotics
http://github.com/Farama-Foundation/Gymnasium-Robotics
https://github.com/openai/baselines
https://github.com/openai/baselines
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://proceedings.mlr.press/v80/espeholt18a.html
https://openreview.net/forum?id=SJx63jRqFm

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew
Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended em-
bodied agents with internet-scale knowledge. In Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2022. URL https://openreview.
net/forum?id=rc8o_j8I8PX.

Nico Gürtler, Dieter Büchler, and Georg Martius. Hierarchical reinforcement learning with timed
subgoals. In Proceedings of the 35th International Conference on Neural Information Processing
Systems, NIPS ’21, Red Hook, NY, USA, 2021. Curran Associates Inc. ISBN 9781713845393.

Nicolas Manfred Otto Heess, Greg Wayne, Yuval Tassa, Timothy P. Lillicrap, Martin A. Ried-
miller, and David Silver. Learning and transfer of modulated locomotor controllers. ArXiv,
abs/1610.05182, 2016. URL https://api.semanticscholar.org/CorpusID:
9692454.

Mikael Henaff, Roberta Raileanu, Minqi Jiang, and Tim Rocktäschel. Exploration via elliptical
episodic bonuses. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022.

Leslie Pack Kaelbling. Hierarchical learning in stochastic domains: preliminary results. In Pro-
ceedings of the Tenth International Conference on International Conference on Machine Learn-
ing, ICML’93, pp. 167–173, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc.
ISBN 1558603077.

Anssi Kanervisto and Karolis Jucys. Nethack learning environment sample factory baseline.
https://github.com/Miffyli/nle-sample-factory-baseline, 2022. Ac-
cessed: 2025-03-28.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. CoRR, abs/2001.08361, 2020. URL https://arxiv.org/abs/2001.08361.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything. arXiv:2304.02643, 2023.

Martin Klissarov and Doina Precup. Flexible option learning. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?id=L5vbEVIePyb.

Martin Klissarov, Pierre-Luc Bacon, Jean Harb, and Doina Precup. Learnings options end-
to-end for continuous action tasks. ArXiv, abs/1712.00004, 2017. URL https://api.
semanticscholar.org/CorpusID:1809550.

Martin Klissarov, Pierluca D’Oro, Shagun Sodhani, Roberta Raileanu, Pierre-Luc Bacon, Pascal
Vincent, Amy Zhang, and Mikael Henaff. Motif: Intrinsic motivation from artificial intelligence
feedback. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=tmBKIecDE9.

Martin Klissarov, Mikael Henaff, Roberta Raileanu, Shagun Sodhani, Pascal Vincent, Amy Zhang,
Pierre-Luc Bacon, Doina Precup, Marlos C. Machado, and Pierluca D’Oro. Maestromotif:
Skill design from artificial intelligence feedback. 2025. URL https://openreview.net/
forum?id=or8mMhmyRV.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In S. Solla, T. Leen, and
K. Müller (eds.), Advances in Neural Information Processing Systems, volume 12. MIT Press,
1999. URL https://proceedings.neurips.cc/paper_files/paper/1999/
file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.

Heinrich Küttler, Nantas Nardelli, Thibaut Lavril, Marco Selvatici, Viswanath Sivakumar,
Tim Rocktäschel, and Edward Grefenstette. TorchBeast: A PyTorch Platform for Dis-
tributed RL. arXiv preprint arXiv:1910.03552, 2019. URL https://github.com/
facebookresearch/torchbeast.

12

https://openreview.net/forum?id=rc8o_j8I8PX
https://openreview.net/forum?id=rc8o_j8I8PX
https://api.semanticscholar.org/CorpusID:9692454
https://api.semanticscholar.org/CorpusID:9692454
https://github.com/Miffyli/nle-sample-factory-baseline
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=L5vbEVIePyb
https://api.semanticscholar.org/CorpusID:1809550
https://api.semanticscholar.org/CorpusID:1809550
https://openreview.net/forum?id=tmBKIecDE9
https://openreview.net/forum?id=or8mMhmyRV
https://openreview.net/forum?id=or8mMhmyRV
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://github.com/facebookresearch/torchbeast
https://github.com/facebookresearch/torchbeast

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Heinrich Küttler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco Selvatici, Edward
Grefenstette, and Tim Rocktäschel. The NetHack Learning Environment. In Proceedings of the
Conference on Neural Information Processing Systems (NeurIPS), 2020.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. In The Eleventh International Conference on Learning Representations, 2023a. URL
https://openreview.net/forum?id=10uNUgI5Kl.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023b.

Matthew Le, Apoorv Vyas, Bowen Shi, Brian Karrer, Leda Sari, Rashel Moritz, Mary Williamson,
Vimal Manohar, Yossi Adi, Jay Mahadeokar, and Wei-Ning Hsu. Voicebox: Text-guided mul-
tilingual universal speech generation at scale. In Alice Oh, Tristan Naumann, Amir Glober-
son, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), NeurIPS, 2023. URL http:
//dblp.uni-trier.de/db/conf/nips/neurips2023.html#LeVSKSMWMAMH23.

Andrew Levy, Robert Platt Jr., and Kate Saenko. Hierarchical actor-critic. CoRR, abs/1712.00948,
2017. URL http://arxiv.org/abs/1712.00948.

Alexander Li, Carlos Florensa, Ignasi Clavera, and Pieter Abbeel. Sub-policy adaptation for hierar-
chical reinforcement learning. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=ByeWogStDS.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph E.
Gonzalez, Michael I. Jordan, and Ion Stoica. RLlib: Abstractions for distributed reinforcement
learning. In International Conference on Machine Learning (ICML), 2018. URL https://
arxiv.org/pdf/1712.09381.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. arXiv preprint arXiv: Arxiv-2310.12931, 2023.

Michael T. Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Thomas
Jackson, Samuel Coward, and Jakob Nicolaus Foerster. Craftax: A lightning-fast benchmark
for open-ended reinforcement learning. In ICML, 2024. URL https://openreview.net/
forum?id=hg4wXlrQCV.

Amy McGovern and Andrew G. Barto. Automatic discovery of subgoals in reinforcement learning
using diverse density. In Proceedings of the Eighteenth International Conference on Machine
Learning, ICML ’01, pp. 361–368, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers
Inc. ISBN 1558607781.

Vegard Mella, Eric Hambro, Danielle Rothermel, and Heinrich Küttler. moolib: A Platform for
Distributed RL. 2022. URL https://github.com/facebookresearch/moolib.

Ishai Menache, Shie Mannor, and Nahum Shimkin. Q-cut - dynamic discovery of sub-goals in
reinforcement learning. In Proceedings of the 13th European Conference on Machine Learning,
ECML ’02, pp. 295–306, Berlin, Heidelberg, 2002. Springer-Verlag. ISBN 3540440364.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. CoRR, abs/1602.01783, 2016. URL http://arxiv.org/abs/1602.01783.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforce-
ment learning. In Proceedings of the 32nd International Conference on Neural Information Pro-
cessing Systems, NIPS’18, pp. 3307–3317, Red Hook, NY, USA, 2018. Curran Associates Inc.

OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

13

https://openreview.net/forum?id=10uNUgI5Kl
http://dblp.uni-trier.de/db/conf/nips/neurips2023.html#LeVSKSMWMAMH23
http://dblp.uni-trier.de/db/conf/nips/neurips2023.html#LeVSKSMWMAMH23
http://arxiv.org/abs/1712.00948
https://openreview.net/forum?id=ByeWogStDS
https://arxiv.org/pdf/1712.09381
https://arxiv.org/pdf/1712.09381
https://openreview.net/forum?id=hg4wXlrQCV
https://openreview.net/forum?id=hg4wXlrQCV
https://github.com/facebookresearch/moolib
http://arxiv.org/abs/1602.01783
https://arxiv.org/abs/2303.08774

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Davide Paglieri, Bartłomiej Cupiał, Samuel Coward, Ulyana Piterbarg, Maciej Wolczyk, Akbir
Khan, Eduardo Pignatelli, Łukasz Kuciński, Lerrel Pinto, Rob Fergus, Jakob Nicolaus Foerster,
Jack Parker-Holder, and Tim Rocktäschel. BALROG: Benchmarking agentic LLM and VLM
reasoning on games. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=fp6t3F669F.

Seohong Park, Kevin Frans, Deepinder Mann, Benjamin Eysenbach, Aviral Kumar, and Sergey
Levine. Horizon reduction makes rl scalable, 2025. URL https://arxiv.org/abs/2506.
04168.

Xue Bin Peng, Glen Berseth, Kangkang Yin, and Michiel Van De Panne. Deeploco: Dynamic
locomotion skills using hierarchical deep reinforcement learning. ACM Trans. Graph., 36(4):
41:1–41:13, July 2017. ISSN 0730-0301. doi: 10.1145/3072959.3073602. URL http://doi.
acm.org/10.1145/3072959.3073602.

Karl Pertsch, Youngwoon Lee, and Joseph J. Lim. Accelerating reinforcement learning with learned
skill priors. In Conference on Robot Learning (CoRL), 2020.

Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav S. Sukhatme, and Vladlen Koltun. Sam-
ple factory: Egocentric 3d control from pixels at 100000 FPS with asynchronous reinforcement
learning. In Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Re-
search, pp. 7652–7662. PMLR, 2020. URL http://proceedings.mlr.press/v119/
petrenko20a.html.

Doina Precup and Richard S. Sutton. Temporal abstraction in reinforcement learning. PhD thesis,
2000. AAI9978540.

Haozhi Qi, Brent Yi, Mike Lambeta, Yi Ma, Roberto Calandra, and Jitendra Malik. From simple to
complex skills: The case of in-hand object reorientation, 2025. URL https://arxiv.org/
abs/2501.05439.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. CoRR,
abs/2103.00020, 2021. URL https://arxiv.org/abs/2103.00020.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollar, and Christoph Fe-
ichtenhofer. SAM 2: Segment anything in images and videos. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=Ha6RTeWMd0.

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi Jiang, Eric Hambro,
Fabio Petroni, Heinrich Kuttler, Edward Grefenstette, and Tim Rocktäschel. Minihack the planet:
A sandbox for open-ended reinforcement learning research. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021. URL https:
//openreview.net/forum?id=skFwlyefkWJ.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap, Karen
Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm. CoRR, abs/1712.01815, 2017. URL http://arxiv.org/abs/
1712.01815.

14

https://openreview.net/forum?id=fp6t3F669F
https://arxiv.org/abs/2506.04168
https://arxiv.org/abs/2506.04168
http://doi.acm.org/10.1145/3072959.3073602
http://doi.acm.org/10.1145/3072959.3073602
http://proceedings.mlr.press/v119/petrenko20a.html
http://proceedings.mlr.press/v119/petrenko20a.html
https://arxiv.org/abs/2501.05439
https://arxiv.org/abs/2501.05439
https://arxiv.org/abs/2103.00020
https://openreview.net/forum?id=Ha6RTeWMd0
https://openreview.net/forum?id=Ha6RTeWMd0
https://openreview.net/forum?id=skFwlyefkWJ
https://openreview.net/forum?id=skFwlyefkWJ
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Satinder P. Singh. Scaling reinforcement learning algorithms by learning variable temporal reso-
lution models. In Derek H. Sleeman and Peter Edwards (eds.), Proceedings of the Ninth Inter-
national Workshop on Machine Learning (ML 1992), Aberdeen, Scotland, UK, July 1-3, 1992,
pp. 406–415. Morgan Kaufmann, 1992a. doi: 10.1016/B978-1-55860-247-2.50058-9. URL
https://doi.org/10.1016/b978-1-55860-247-2.50058-9.

Satinder P. Singh. Reinforcement learning with a hierarchy of abstract models. In Proceedings of
the Tenth National Conference on Artificial Intelligence, AAAI’92, pp. 202–207. AAAI Press,
1992b. ISBN 0262510634.

Matthew Smith, Herke van Hoof, and Joelle Pineau. An inference-based policy gradient method for
learning options. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
4703–4712. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/
smith18a.html.

Martin Stolle and Doina Precup. Learning options in reinforcement learning. In Proceedings of the
5th International Symposium on Abstraction, Reformulation and Approximation, pp. 212–223,
Berlin, Heidelberg, 2002. Springer-Verlag. ISBN 3540439412.

Joseph Suarez. Pufferlib: Making reinforcement learning libraries and environments play nice,
2024. URL https://arxiv.org/abs/2406.12905.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artif. Intell., 112(1-2):181–211, 1999. URL
http://dblp.uni-trier.de/db/journals/ai/ai112.html#SuttonPS99.

Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah Maestre,
Mustafa Mukadam, Devendra Chaplot, Oleksandr Maksymets, Aaron Gokaslan, Vladimir Von-
drus, Sameer Dharur, Franziska Meier, Wojciech Galuba, Angel Chang, Zsolt Kira, Vladlen
Koltun, Jitendra Malik, Manolis Savva, and Dhruv Batra. Habitat 2.0: training home assistants
to rearrange their habitat. In Proceedings of the 35th International Conference on Neural Infor-
mation Processing Systems, NIPS ’21, Red Hook, NY, USA, 2021. Curran Associates Inc. ISBN
9781713845393.

Gemini Team. Gemini: A family of highly capable multimodal models, 2024. URL https:
//arxiv.org/abs/2312.11805.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17,
pp. 3540–3549. JMLR.org, 2017.

Marco Wiering and Jürgen Schmidhuber. Hq-learning. Adaptive Behavior, 6(2):219–246, 1997.
ISSN 1059-7123.

15

https://doi.org/10.1016/b978-1-55860-247-2.50058-9
https://proceedings.mlr.press/v80/smith18a.html
https://proceedings.mlr.press/v80/smith18a.html
https://arxiv.org/abs/2406.12905
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://dblp.uni-trier.de/db/journals/ai/ai112.html#SuttonPS99
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2307.09288

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh, Manolis
Savva, and Dhruv Batra. Decentralized distributed PPO: solving pointgoal navigation. CoRR,
abs/1911.00357, 2019. URL http://arxiv.org/abs/1911.00357.

Ronald Williams and Jing Peng. Function optimization using connectionist reinforcement learning
algorithms. Connection Science, 3(3):241–268, 1991. doi: 10.1080/09540099108946587.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Mach. Learn., 8(3–4):229–256, May 1992. ISSN 0885-6125. doi: 10.1007/
BF00992696. URL https://doi.org/10.1007/BF00992696.

Zhanghao Wu, Eric Liang, Michael Luo, Sven Mika, Joseph E. Gonzalez, and Ion Stoica. RLlib
flow: Distributed reinforcement learning is a dataflow problem. In Conference on Neural In-
formation Processing Systems (NeurIPS), 2021. URL https://proceedings.neurips.
cc/paper/2021/file/2bce32ed409f5ebcee2a7b417ad9beed-Paper.pdf.

Naoki Yokoyama, Alexander William Clegg, Joanne Truong, Eric Undersander, Jimmy Yang, Ser-
gio Arnaud, Sehoon Ha, Dhruv Batra, and Akshara Rai. ASC: Adaptive Skill Coordination for
Robotic Mobile Manipulation. IEEE Robotics and Automation Letters, 2023.

Qinqing Zheng, Mikael Henaff, Amy Zhang, Aditya Grover, and Brandon Amos. Online intrinsic
rewards for decision making agents from large language model feedback, 2024. URL https:
//arxiv.org/abs/2410.23022.

16

http://arxiv.org/abs/1911.00357
https://doi.org/10.1007/BF00992696
https://proceedings.neurips.cc/paper/2021/file/2bce32ed409f5ebcee2a7b417ad9beed-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/2bce32ed409f5ebcee2a7b417ad9beed-Paper.pdf
https://arxiv.org/abs/2410.23022
https://arxiv.org/abs/2410.23022

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A LIMITATIONS AND FUTURE WORK

First, while we provide evidence that SOL is compatible with both hardcoded and learned option re-
wards, the question of how best to learn option rewards remains an open area of research, and more
work is needed to find truly general methods which are successful across a wide range of environ-
ments. There are several potential ways to generate option rewards automatically, which constitute
interesting future work. These include: using diversity measures (Eysenbach et al., 2019) to define
rewards which induce a diverse set of option policies (we we explore in this work), novelty bonuses
(Burda et al., 2019; Henaff et al., 2022) which could encourage exploratory options, distances to
goals output by the controller (Nachum et al., 2018; Vezhnevets et al., 2017), or using LLMs syn-
thesize rewards via code generation or preference ranking (Klissarov et al., 2024; 2025; Ma et al.,
2023; Kwon et al., 2023b;a; Fan et al., 2022).

Second, our system is designed for computational efficiency, not sample efficiency. It focuses on
achieving superior asymptotic performance in the large sample regime, rather than making optimal
use of limited samples. Therefore, it is currently limited to settings where samples are easy to gather
and compute is the bottleneck, such as video games, digital agents or sim-to-real transfer. Some
of the design decisions, such as using a single neural network to represent both high and low-level
policies, and the parallelized return computations, could in principle be incorporated into a model-
based RL framework, which could potentially improve sample efficiency.

B BROADER IMPACTS

This paper works on a foundational topic in RL, namely long-horizon decision-making. RL meth-
ods can eventually lead to positive applications (home assistants, digital assisstants, robotic surgery,
medical and scientific discovery, autonomous driving, more efficient resource allocation) or negative
ones (autonomous weapons, cyberattacks). Our work is not tied to direct applications or deploy-
ments, hence we do not see particular impacts worth highlighting at this time.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C EXPERIMENT DETAILS

C.1 ARCHITECTURES

For all MiniHack and NetHack experiments, we used a neural network architecture which mostly
follows the Chaotic Dwarven GPT5 architecture of (Kanervisto & Jucys, 2022) with one change: we
replaced the pipeline which renders glyphs to pixel images and runs them through an image-based
convnet with a direct glyph embedding layer followed by 2 convolutional layers. We found this
reduced the memory footprint (allowing us to have a larger PPO batch size) while giving slightly
better performance. The pipelines processing the messages and bottom-line statistics (blstats) were
unchanged. Specifically, the blstats are processed by a two-layer MLP with 128 hidden units at each
layer, and the message character values are divided by 255 and also processed by a 2-layer MLP.
The embeddings for the glyph images, blstats and messages are then concatenated and passed to a
recurrent GRU (Cho et al., 2014). For the hierarchical models, we embed the policy index to a 128-
dimensional vector which is concatenated with the other embeddings before passing to the GRU.
This same vector is also replicated and added to all spatial locations in the glyph image crop. We
also include an extra linear layer mapping the last hidden layer to controller actions.

For Mujoco experiments, we used a 2-layer network with 64 hidden units at each layer and tanh ac-
tivations. The network outputs the mean and variance of a Gaussian distribution over actions, whose
dimension is that of the action space. For hierarchical agents, the policy one-hot is concatenated
with the input. As before, we add an extra linear layer mapping the last hidden layer to controller
actions. The observation includes the agent’s (x, y) position as well as the desired goal position. We
do not use a GRU for Mujoco experiments since the environment is fully observed.

C.2 HYPERPARAMETERS

For all NLE agents, we used the common PPO hyperparameters which are listed in Table 1. Our
SOL agents additionally use the hyperparameters listed in Table 5.

Table 1: Common PPO Hyperparameters for different environments. The same set of hyperparam-
eters are used for MiniHack and NetHack, a different set is used for Mujoco PointMaze.

Hyperparameter MiniHack&NetHack Mujoco PointMaze

Rollout length 1024 256
GRU recurrence 256 none
GRU layers 1 none
PPO epochs 1 10
PPO clip ratio 0.1 0.2
PPO clip value 1.0 1.0
Encoder crop dimension 12 N/A
Encoder embedding dimension 128 N/A
Reward Scaling 0.01 10
Exploration loss coefficient 0.003 0.001
Exploration loss entropy entropy
Value loss coefficient 0.5 0.5
Max gradient norm 4.0 0.1
Learning Rate 0.0001 0.003
Batch size 32768 32768
Worker number of splits for double-buffering 2 2
V-trace ρ 1.0 1.0
V-trace c 1.0 1.0
Discount factor γ 0.99 0.99

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 2: APPO (task/task+option rewards) Hyperparameters

Environment Hyperparameter Value Values swept

MiniHack-
ZombieHorde

Score reward scale 1 1
Health reward scale 1 0, 1, 3, 10, 20

MiniHack-
TreasureDash

Stairs option reward scaling 1 1
Gold option reward scaling 0.1 0, 0.1, 0.3, 1, 3, 10

NetHackScore Score option reward scaling 1 1
Health option reward scaling 1 0, 1, 3, 10

PointMaze-
GMaze

True goal reward scaling 1 1
Goal option reward scaling 1 0, 0.01, 0.1, 1, 10

Table 3: SOL Hyperparameters. The controller extra exploration loss scaling is a factor which is
used to further scale the exploration loss coefficient from Table 1 applied to the controller outputs.
We found that having this greater than 1 was sometimes helpful.

Environment Hyperparameter Value Values swept

MiniHack-
ZombieHorde

Controller extra exploration loss scaling 1 1, 3, 10
Controller reward scaling 0.001 0.001, 0.01, 0.1
Score option reward scaling 1 -
Health option reward scaling 20 10, 20

MiniHack-
TreasureDash

Controller extra exploration loss scaling 1 1, 3, 10
Controller reward scaling 0.001 0.001, 0.01, 0.1
Stairs option reward scaling 1 -
Gold option reward scaling 1 -

NetHackScore

Controller extra exploration loss scaling 10 1, 3, 10
Controller reward scaling 0.001 0.001, 0.01, 0.1
Score option reward scaling 1 -
Health option reward scaling 10 10, 20

PointMaze-
GMaze

Controller extra exploration loss scaling 1 1, 3, 10, 30
Controller reward scaling 1 0.01, 0.1, 1, 10
Goal option reward scaling 1 -

Table 4: SOL-HiPPO Hyperparameters. We set the number of options to be the same as SOL and
swept hyperparameters in the same ranges.

Environment Hyperparameter Value Values swept

MiniHack-
ZombieHorde

Controller extra exploration loss scaling 1 1, 3, 10, 30
Controller reward scaling 0.001 0.001, 0.01, 0.1
Number of options 2 -

MiniHack-
TreasureDash

Controller extra exploration loss scaling 1 1, 3, 10, 30
Controller reward scaling 0.001 0.001, 0.01, 0.1
Number of options 2 -

NetHackScore
Controller extra exploration loss scaling 10 1, 3, 10, 30
Controller reward scaling 0.001 0.001, 0.01, 0.1
Number of options 2 -

PointMaze-
GMaze

Controller extra exploration loss scaling 1 1, 3, 10, 30
Controller reward scaling 1 0.01, 0.1, 1, 10
Number of options 5 -

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 5: SOL-DIAYN Hyperparameters. The discriminator shares the same architecture as the
observation encoder, with a 2-layer MLP added with |Ω| outputs.

Environment Hyperparameter Value Values swept

MiniHack-
ZombieHorde

Controller extra exploration loss scaling 10 1, 3, 10
Controller reward scaling 0.001 0.001, 0.01, 0.1
DIAYN Reward Scaling 0.03 0.01, 0.03, 0.1, 0.3, 1.0
Discriminator Learning Rate 0.0001 0.0001
Number of options 3 2, 3, 4

MiniHack-
TreasureDash

Controller extra exploration loss scaling 1 1, 3, 10
Controller reward scaling 0.001 0.001, 0.01, 0.1
DIAYN Reward Scaling 0.3 0.01, 0.03, 0.1, 0.3, 1.0
Discriminator Learning Rate 0.0001 0.0001
Number of options 3 2, 3, 4

Table 6: Motif Hyperparameters. We trained the reward model using the official source code, data
and default hyperparameters. We then trained APPO agents with the same hyperparameters as other
agents (Table 1) and tuned the coefficient of the reward model.

Hyperparameter Value Values swept

LLM reward coefficient 0.1 (default) 0.1, 0.3, 1

Table 7: MOC Hyperparameters. Despite our hyperparameter sweep, results did not change much:
MOC worked well on PointMaze-UMaze, and failed to learn on PointMaze-GMaze. Therefore we
report results with default hyperparameters.

Hyperparameter Value Values swept

Number of options 2 (default) 2, 4, 8
Learning rate 0.0008 (default) 0.001, 0.0003, 0.0001, 0.00008
Probability of updating all options η 0.9 (default) 0.1, 0.9

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.3 THROUGHPUT COMPARISON DETAILS

All experiments were conducted on an NVIDIA V100-SXM2-32GB GPU. We used the same NLE
encoder described in Appendix C.1 for HIRO and Option-Critic. We used the following implemen-
tations:

• HIRO: https://github.com/watakandai/hiro_pytorch
• Option-Critic: https://github.com/lweitkamp/option-critic-pytorch
• MOC: https://github.com/mklissa/MOC
• Hierarchical RLLib: https://docs.ray.io/en/latest/rllib/
hierarchical-envs.html

Other than changing the architecture to process NLE observations, we kept the rest of the hyper-
parameters at their default values except for the following. We experimented with different batch
sizes of off-policy updates for HIRO and Option-Critic, but this did not significantly change the
throughput.

For MOC, we increased the number of parallel environments until the throughput saturated, which
was 256 here. We used the NLE visual rendering pipeline from (Kanervisto & Jucys, 2022), where
NLE glyphs are rendered to pixels and then processed by a standard Atari DQN convolutional en-
coder. The reason we did this was because the MOC codebase (based on OpenAI Baselines) only
supported pixel and continuous vector inputs. We also ran SOL with the same visual rendering
pipeline and found that its speed was around 10% faster than the symbolic encoder for the same
batch size, hence we do not believe that using a visual rendering pipeline penalizes methods in these
comparisons.

C.4 COMPUTE DETAILS

All experiments were run on single NVIDIA V100-SXM2-32GB GPU machines. For MiniHack ex-
periments, we used 16 CPUs per experiment. Running a job took around 5 hours for TreasureDash
and 10 hours for ZombieHorde. For NetHack experiments, we used 48 CPUs per experiment. Run-
ning a job for 30 billion steps took around 14 days. For Mujoco, we used 8 CPUs per experiment.
Each job ran for less than one day.

C.5 OTHER CODE LINKS

We use the public codebase for our Motif reward model: https://github.com/mklissa/
maestromotif. Our codebase is built upon Sample Factory: https://github.com/
alex-petrenko/sample-factory, which is licensed under an MIT license.

21

https://github.com/watakandai/hiro_pytorch
https://github.com/lweitkamp/option-critic-pytorch
https://github.com/mklissa/MOC
https://docs.ray.io/en/latest/rllib/hierarchical-envs.html
https://docs.ray.io/en/latest/rllib/hierarchical-envs.html
https://github.com/mklissa/maestromotif
https://github.com/mklissa/maestromotif
https://github.com/alex-petrenko/sample-factory
https://github.com/alex-petrenko/sample-factory

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D ENVIRONMENT DETAILS

D.1 MINIHACK

Here we describe the details of our MiniHack environments. Both have a simple action space con-
sisting of 4 movement actions (north, south, east, west) and the EAT action. We note that movement
also serves to attack: attempting to move on a square occupied by an enemy attacks it.

In ZombieHorde (Figure 7a), the agent @ must defeat all the zombies Z . Since they are too
numerous to fight at once, the agent must periodically retreat to the altar _ which the zombies
cannot get close to, in order to heal. The priest @ has no effect here. The time limit is 1500 steps,
which enables long periods of healing. Agents in NetHack heal at a rate of about 1 hit point per
10 timesteps, hence full healing can require over 100 steps. Each zombie destroyed gives 20 score
points.

In TreasureDash, the agent gets 20 points for exiting through the stairs > , which ends the episode.
Each piece of gold $ gives 1 point. The episode time limit is 40 steps. If the agent goes right the
whole time, it gathers 20 gold pieces for 20 total points. If it goes left only, it exits and also gets 20
points. The optimal strategy is to gather 8 gold pieces on the right, and then go left all the way to the
staircase. This requires stopping the gold-gathering behavior and switching to seeking the staircase.

(a) ZombieHorde.

(b) TreasureDash

Figure 7: MiniHack environments designed to present challenging credit assignment problems.

D.2 NETHACK

The NetHackScore environment from the NLE paper includes the following actions: all move-
ment actions, as well as SEARCH (needed for finding secret doors, which is often necessary to
explore the full level and go to the next), KICK (needed for kicking down locked doors, also needed
to explore the visit the full level) and EAT (needed for eating the comestibles the agent starts with).
If the agent does not eat, it will starve before too long which limits the episode length and the
maximum progress the agent can make. However, the EAT action alone is not enough to eat the co-
mestibles in the agent’s inventory, due to the NLE’s context-dependent action space. After selecting
the EAT action, the agent must also select which item in inventory to eat, which requires pressing a
key corresponding to the item’s inventory slot, which must be included in the original action space,
which is often not the case. Therefore, we adopt the modification introduced in (Klissarov et al.,
2024), where every time the EAT action is selected, the next action is chosen at random from the
available inventory slots given in the message. This is also discussed in Appendix G of their paper.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D.3 POINTMAZE

The PointMaze environment uses Gymnasium Robotics and we simply pass the maze map as argu-
ment. The agent and goal location are fixed rather than resetting each episode. The reward is the
change in euclidean distance between the agent and the goal, and the episode ends whenever the
goal is reached according to the default PointMaze criterion.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

E ALGORITHM DETAILS

E.1 OBJECTIVES

Here we give the exact definitions of some of the functions used in Section 3.1. Let µ : S → ∆(A)
denote the flattened hierarchical policy, i.e. the mapping from states to actions obtained by executing
the options and controller using the call-and-return process. We define the state-option value, state
value, and option-advantage functions of µ associated with the task reward as:

Qµ
task(st, ω) = Eµ[

∞∑
k=0

γkR(st+k, at+k)|st = s, ωt = ω]

V µ
task(s) = Eµ[

∞∑
k=0

γkR(st+k, at+k)|st = s]

Atask(st, ω) = Qµ
task(st, ω)− V µ

task(st)

The state-action value, state value, and advantage functions for an option ω are given by:

Qω(st, at) = Eπω
[

∞∑
k=0

γkRω(st+k, at+k)|st = s, at = a]

V ω(st) = Eπω [

∞∑
k=0

γkRω(st+k, at+k)|st = s]

Aω(st, at) = Qω(st, at)− V ω(st)

In Section 3.1 we mentioned that calling the controller does not cause the MDP to transition, which
means that states in τ are duplicated each controller call. To illustrate this, let us consider the first
time step, with s0 being the first state. First the controller must be called, since we don’t know what
low-level option to execute. We therefore run s0 through the controller and obtain ω3, l ∼ πΩ(·|s0).
This means we will execute option policy πω3

for l timesteps. The first state we must apply it to is
still s0, since we haven’t passed any actions to the MDP yet. We therefore compute a0 ∼ πω3(·|s0),
sample s1 ∼ p(·|s0, a0), and repeat this process for l timesteps. We then call the controller again at
sl, which produces (for example) ω2, l

′ ∼ πΩ(·|sl), meaning we will execute πω2 for l′ timesteps.
Again, since we have not executed any actions in the environment, we then run sl through πω2 and
the process continues. See Table 8 for an example trace.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

E.2 NEURAL NETWORK ARCHITECTURE

SOL’s single neural network architecture is shown in Figure 8. A one-hot vector u of dimension
|Ω| + 1 indicates which of the policies (among the option policies and the controller policy) to
represent. In the actor workers, if u marks the controller, the softmaxes over options and option ex-
ecution lengths are sampled from and the results are used to update the environment wrapper shown
in Appendix E.3. Otherwise, if u marks one of the options, the softmax over environment actions
|A| is sampled from and the sampled action is executed in the environment. In the learner worker,
the softmaxes over options and option lengths constitute the action probabilities of the controller
and are used to compute the advantage and policy loss at each step it is called. The softmax over
environment actions gives the action probabilities of the option policies and is used to compute the
advantage and policy loss at any steps that they are called. The scalar value output represents the
value estimate of the policy currently marked by the policy indicator u, and is used in the learner
worker to compute the value loss and advantages of both the controller and option policies. A key
advantage of our design is that trajectories can be processed in batch, regardless of which policies
are being executed, since they are only differentiated by the policy indicators u which are also fed
in as a batch.

Figure 8: SOL’s single neural network architecture. The environment actions (bottom right) repre-
sent those from NetHack/MiniHack here, but can also be continuous (e.g. in MuJoCo experiments).
The set of option lengths in our experiments is {1, 2, 4, 8, 16, 32, 64, 128}.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

E.3 ENVIRONMENT WRAPPER PSEUDOCODE

Pseudocode for the environment wrapper in the actor workers is shown below.

1 class HierarchicalWrapper(gym.Wrapper):
2

3 def __init__(self, env, ...):
4 self.env = env
5 self.option_policies = [...]
6 self.option_length = ...
7

8

9 def compute_option_reward(self, option):
10 ...
11

12 def reset(self):
13 obs = self.env.reset()
14 self.current_policy = "controller"
15 obs["current_policy"] = self.current_policy
16 return obs
17

18 def step(self, action):
19

20 env_action, option_indx, option_length = action
21

22 if self.current_policy == "controller":
23 self.current_policy = self.option_policies[option_indx]
24 obs["current_policy"] = self.current_policy
25 self.option_length = option_length
26 done = False
27 # the controller reward depends on the future, so we compute
28 # it in the learner thread and flag for now.
29 reward = 42
30 self.option_steps = 0
31 info = {}
32 return obs, reward, done, info
33 else:
34 obs, done, task_reward, info = self.env.step(env_action)
35 reward = self.compute_option_reward(obs, self.current_policy)
36 self.option_steps += 1
37

38 if self.option_steps == self.option_length:
39 self.current_policy = "controller"
40 obs["current_policy"] = self.current_policy
41

42 return obs, done, reward, info

The wrapper produces trajectories of the form shown below in Table 8. Note that observations are
duplicated each time the option changes: they are used first as input to the controller, which chooses
the option to execute next, and then the same observation is used as input to the chosen option. The
Action row contains both actions of the controller policy, which are options ω ∈ Ω, and low-level
environment actions of the option policies, which are in the MDP’s action space A. The State,
Action, Policy Index and Policy Rewards correspond to the st, at, zt and rt variables of τ in Section
3.1. The Policy Rewards corresponding to controller calls (marked in red) are the sum of the task
rewards over the course of the next policy call—these are computed in the learner thread, since they
depend on the future not known to the actor thread at the current time step.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

State s1 s1 s2 s3 s4 s5 s5 s6 s7 s8
Action ω1 aenv1 aenv2 aenv3 aenv4 ω3 aenv5 aenv6 aenv7 aenv8
Task Reward - r1 r2 r3 r4 - r5 r6 r7 r8
Policy Reward

∑4
t=1 rt r11 r12 r13 r14

∑8
t=5 rt r35 r36 r37 r38

Policy Index Ω ω1 ω1 ω1 ω1 Ω ω3 ω3 ω3 ω3

Termination 0 0 0 0 0 0 0 1 0 0

Table 8: Example trajectory produced by the environment wrapper. The quantities in red are com-
puted later in the learner thread (see above), and are included for completeness.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E.4 PARALLELIZED V-TRACE

1

2 """
3 This function computes advantages and value targets for all policies

in the batch simultaneously. The arguments are:
4

5

6 ratios: ratio of action probs between current and old policy
7 values: bootstrapped value predictions
8 dones: episode terminals
9 rewards: rewards of mixed type, see Policy Reward in Table 7.

10 rho_hat: V-trace truncation parameter
11 c_hat: V-trace truncation parameter
12 num_trajectories: number of trajectories in the batch
13 recurrence: number of timesteps in the batch
14 gamma: discounting factor
15 policy_indx: the Policy Index in Table 7, also z_t in Section 3.1
16 num_policies: total number of policies (options and controller, i.e.

|\Omega| + 1).
17 """
18

19 def _compute_vtrace_sol(
20 ratios,
21 values,
22 dones,
23 rewards,
24 rho_hat,
25 c_hat,
26 num_trajectories,
27 recurrence,
28 gamma,
29 policy_indx,
30 num_policies,
31):
32 vtrace_rho = torch.min(rho_hat, ratios)
33 vtrace_c = torch.min(c_hat, ratios)
34

35 # tensors to store the advantages and value predictions
36 adv = torch.zeros((num_trajectories * recurrence,))
37 vs = torch.zeros((num_trajectories * recurrence,))
38

39

40 next_values = torch.zeros(num_trajectories, num_policies)
41 next_vs = torch.zeros(num_trajectories, num_policies)
42 delta_s = torch.zeros(num_trajectories, num_policies)
43

44 # V-trace returns are computed using a base case followed
45 # by recurrence relation. This marks which policies the
46 # base case is handled for.
47 is_base_case_handled = torch.zeros(
48 num_trajectories, num_policies, dtype=torch.bool
49)
50

51 # When an episode ends, we need to zero out the returns for
52 # each policy using the last timestep it is executed for
53 # before the episode ends.
54 is_episode_done = torch.zeros(
55 num_trajectories, num_policies, dtype=torch.bool
56)
57

58 for i in reversed(range(recurrence)):
59 current_policies_one_hot = F.one_hot(
60 policy_indx[i::recurrence], num_classes = num_policies
61).bool()

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

62

63 rewards = rewards[i::recurrence]
64 curr_dones = dones[i::recurrence].bool()
65

66 # when we encounter a "done", mark all policies as done.
67 # we will unmark the ones at the current timestep for
68 # which we mask out the returns.
69 is_episode_done = is_episode_done | curr_dones.view(-1, 1)
70

71 dones = is_episode_done[current_policies_one_hot].to(dtype)
72 not_done = 1.0 - dones
73 not_done_times_gamma = not_done * gamma
74

75 curr_values = values[i::recurrence]
76 curr_vtrace_rho = vtrace_rho[i::recurrence]
77 curr_vtrace_c = vtrace_c[i::recurrence]
78

79 # we have accounted for the latest episode termination
80 # of the current policies in ’not_done_times_gamma’,
81 # so reset this until the next ’done’ is encountered.
82 is_episode_done[current_policies_one_hot] = False
83

84

85 if i < recurrence - 3:
86 controller_indx = num_policies - 1
87 trajs_with_changed_options = (
88 (policy_indx[(i+1)::recurrence] == controller_indx) &
89 (policy_indx[i::recurrence] != policy_indx[(i+2)::

recurrence])
90)
91 # for any trajectories where the option switched,
92 # reset the base case so that bootstrapped returns
93 # are applied
94 is_base_case_handled[current_policies_one_hot] = \
95 is_base_case_handled[current_policies_one_hot] & \
96 ~trajs_with_changed_options
97

98

99 base_case_indices = (~is_base_case_handled) &
current_policies_one_hot

100 base_case_indices_any = torch.any(base_case_indices, dim = 1)
101

102 next_values[base_case_indices] = (
103 values[i :: recurrence][base_case_indices_any]
104 - rewards[i :: recurrence][base_case_indices_any]
105) / gamma
106

107 next_vs[base_case_indices] = next_values[base_case_indices]
108

109 is_base_case_handled = is_base_case_handled |
base_case_indices

110

111 if not is_base_case_handled.any().item():
112 continue
113

114 delta_s[current_policies_one_hot] = curr_vtrace_rho * (
115 rewards
116 + not_done_times_gamma * next_values[

current_policies_one_hot]
117 - curr_values
118)
119

120 adv[i::recurrence] = curr_vtrace_rho * (
121 rewards

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

122 + not_done_times_gamma * next_vs[current_policies_one_hot
]

123 - curr_values
124)
125

126 next_vs[current_policies_one_hot] = (
127 curr_values
128 + delta_s[current_policies_one_hot]
129 + not_done_times_gamma
130 * curr_vtrace_c
131 * (next_vs[current_policies_one_hot] -
132 next_values[current_policies_one_hot])
133)
134 vs[i::recurrence] = next_vs[current_policies_one_hot]
135 next_values[current_policies_one_hot] = curr_values
136

137 return adv, vs

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

F ADDITIONAL EXPERIMENT RESULTS

F.1 ADDITIONAL NETHACK CHARACTERS

Here we report results with additional NetHack characters. Most prior work (Klissarov et al., 2024;
2025; Zheng et al., 2024) uses the Monk character, however this is only one out of 13 characters in
the game. Here we compare all methods on two other characters: the Ranger and Archaeologist. The
trends we observed for the Monk are repeated here: SOL and SOL+Motif significantly outperform
the other methods, and their performance continues to improve over the course of 30 billion training
samples. This shows that our conclusions are not particular to the Monk character.

We also note that the scores for the Ranger and Archaeologist are significantly lower than the Monk,
which is likely due to the fact that the Monk starts proficient in unarmed combat and can succeed in
the early game without needing to learn how to equip weapons and armor.

0 1 2 3
Train steps 1e10

0
250
500
750

1000
1250
1500
1750

Sc
or

e

Monk

0 1 2 3
Train steps 1e10

0
100

200
300
400
500
600
700

Ranger

0 1 2 3
Train steps 1e10

0

100

200

300

400

500

600

Archaeologist

SOL SOL+HiPPO APPO (task reward) APPO (task+option rewards)

0 1 2 3
Train steps 1e10

0
250
500
750

1000
1250
1500
1750

2000

Sc
or

e

Monk

0 1 2 3
Train steps 1e10

0
100

200
300
400
500
600
700
800

Ranger

0 1 2 3
Train steps 1e10

0
100

200
300
400
500
600
700

Archaeologist

SOL+Motif (requires LLM) Motif (requires LLM) APPO (task reward)

Figure 9: Results on NetHackScore for three different characters. Curves represent the mean and
shaded regions represent two standard errors computed over 5 seeds.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

F.2 VISUALIZATIONS AND ANALYSIS

Score Option Health Option0.0
0.5
1.0
1.5

2.0
2.5
3.0

Sc
or

e

Score Option Health Option
0.5
0.4
0.3
0.2
0.1

0.0

He
al

th

ZombieHorde

Stairs Option Gold Option0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

St
ai

rs

Stairs Option Gold Option0.0

0.1

0.2

0.3

0.4

Go
ld

TreasureDash

Score Option Health Option0.0
0.5
1.0
1.5

2.0
2.5
3.0

Sc
or

e

Score Option Health Option
0.125
0.100

0.075
0.050
0.025
0.000
0.025
0.050

He
al

th

NetHackScore

Figure 10: Option mean returns, normalized by option execution length. Error bars represent two
standard errors computed over 500 episodes.

In this section we provide visualizations which help shed light on SOL’s behavior. In Figure 10, for
each environment we report the average return in terms of each option reward when executing each
option policy. On both ZombieHorde and NetHackScore, the Score option accumulates higher
score than the Health option (as shown by its higher ∆Score return), but sustains damage over
time (as shown by its negative ∆Health return). The Health option accumulates less score,
but recovers health over time (as shown by its positive value in terms of ∆Health, enabling the
agent to survive longer overall. For TreasureDash, the Stairs option achieves positive ∆Stairs
reward (indicating it has descended a staircase) and no ∆Gold reward (indicating it has collected
no gold), whereas the Gold reward is the opposite. Overall, this shows that SOL is able to learn
different options which produce distinct behaviors.

We additionally measured overlap between option policies by computing the normalized mutual
information (NMI) between their action distributions over the course of 100 evaluation episodes,
shown in Table 9. The NMI between variables X and Y is defined as: I(X,Y)/min(H(X), H(Y))
and can range between 0 (fully independent) and 1 (fully redundant). We see that the NMI is low
for all three environments, providing further evidence that the sub-policies learn distinct behaviors.
Interestingly, it is lowest for TreasureDash, which also has the most distinct options in terms of
return, with no overlap between their respective rewards.

In Figure 11, for each environment we plot the distributions of option lengths selected by the con-
troller for each option. On ZombieHorde, the Score option tends to be called for shorter lengths
than Health. This may be explained by the fact that healing takes a long time, around 10 time
steps per hit point: at experience level 1, healing from 7/14 hit points back to full health takes ~70

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

1 2 4 8 16 32 64 128
Option length

0.0

0.1

0.2

0.3

0.4

Score Option

1 2 4 8 16 32 64 128
Option length

0.0

0.1

0.2

0.3

0.4

Health Option
ZombieHorde

1 2 4 8 16 32 64 128
Option length

0.0

0.2

0.4

0.6

0.8

1.0
Staircase Option

1 2 4 8 16 32 64 128
Option length

0.0

0.2

0.4

0.6

0.8

1.0
Gold Option

Treasure Dash

1 2 4 8 16 32 64 128
Option length

0.00

0.05

0.10

0.15

0.20

0.25 Score Option

1 2 4 8 16 32 64 128
Option length

0.00

0.05

0.10

0.15

0.20

0.25 Health Option
NetHackScore (Monk)

Figure 11: Distributions of option execution lengths chosen by the controller. The distribution is
non-uniform, which indicates learning on the part of the controller. Longer option lengths are chosen
more frequently than short ones. The Score option tends to be executed for the longest option length
(128 steps) less often than Health. This may be because calling Score for longer than is optimal
carries a higher risk than for Health: executing Score for too long may result in too much combat
and agent death, whereas executing Health for too long will result in the agent wasting turns trying
to heal at full health, which has fewer negative consequences. Distributions are computed over 500
test episodes.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Environment Normalized Mutual Information
ZombieHorde 0.154
TreasureDash 0.018

NetHack 0.388

Table 9: Normalized Mutual Information (NMI) between action distributions of different option
policies, computed over 100 episodes. The NMI is defined between 0 and 1.

time steps. Also, executing the Score option involves fairly high uncertainty due to the stochas-
ticity of NetHack’s combat system, where damage is dealt randomly based on various statistics: it
may be that the agent gets lucky defeats several monsters in a row, or it may be unlucky and sus-
tain high damage at the beginning, in which case it needs to switch back to the Health option.
Choosing shorter option lengths for Score allows the agent to switch back to the Health option
more quickly if needed. In contrast, healing is mostly deterministic and there is less downside to
selecting the Health option for longer than needed. In TreasureDash, the controller very precisely
chooses the optimal execution length of 16 for the Gold option (the optimal policy moves right for
16 steps to get 8 gold, then moves left for 24 steps to the stairs), and assigns similar lengths to any
of the 3 optimal lengths for the Staircase option (32, 64, 128). For NetHackScore, the option
lengths are more spread out, although Score is still skewed somewhat shorter than Health. We
note that healing is shorter in NetHackScore, because the action space includes extended movement
actions (such as MOVEFAR) than take several game turns, and executing one of these speeds up
healing from the perspective of the agent—this may explain why the difference in option lengths
is less pronounced than for ZombieHorde, even though the option rewards are the same for both
environments.

In Figure 12, we plot the fraction of controller calls to each option conditioned on the agent’s health
and experience level. The controller calls the Health option more frequently when the agent’s
health as low, which makes sense since this enables the agent to recover its health and survive longer.
Interestingly, the controller also tends to call the Health option more often at low experience
levels (96% of the time at Experience Level 1). Upon visualizing trajectories, we found that the
agent still fights monsters that attack it when executing the Health option, but does not seek them
out. This results in the agent staying at the first few dungeon levels, fighting weaker monsters
that appear, and gaining some experience levels. It then begins calling the Score option more
frequently, resulting in it attacking monsters and exploring further into the dungeon. This is similar
to successful human gameplay, which requires careful progression of dungeon levels only when the
agent is strong enough (contributors).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

0.25 0.50 0.75 1.00
Agent Health (normalized)

0.0

0.2

0.4

0.6

0.8

1.0

P(
op

tio
n

ca
ll)

Health Option

0.25 0.50 0.75 1.00
Agent Health (normalized)

0.0

0.2

0.4

0.6

0.8

1.0 Score Option

0 1 2 3 4 5 6 7 8
Experience Level

0.0

0.2

0.4

0.6

0.8

1.0

P(
op

tio
n

ca
ll)

Health Option

0 1 2 3 4 5 6 7 8
Experience Level

0.0

0.2

0.4

0.6

0.8

1.0 Score Option

Figure 12: Fraction of controller calls to the Health and Score options for Monk, conditioned
on the agent’s normalized health (current hit points divided by maximum hit points) and experience
level. The controller calls the Health option more frequently at low health, enabling the agent to
recover and survive longer, and at low experience levels, when the agent is still weak. Distributions
are computed over 500 test episodes.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

F.3 MINIHACK OPTION LENGTH ABLATION

In Figure 13 we report the final results for both MiniHack environments when using different fixed
option lengths in {2, 4, 8, 16, 32, 64}. In this setting, every time the controller selects an option it
is always executed for the same fixed number of steps. Having fixed lengths which are either too
long or too short lengths hurts performance. In contrast, our adaptive selection mechanism is able
to automatically tune the option lengths, and performs comparably to the best fixed option length.

0 2 4 6 8 10 12 14
Kill Counts

Fixed 2
Fixed 4
Fixed 8

Fixed 16
Fixed 32
Fixed 64
Adaptive

Op
tio

n
le

ng
th

ZombieHorde

0 5 10 15 20 25 30
Score

Fixed 2
Fixed 4
Fixed 8

Fixed 16
Fixed 32
Fixed 64
Adaptive

TreasureDash

Figure 13: Final performance on ZombieHorde and TreasureDash for different fixed options lengths
as well as the adaptive option lengths. Bars represent standard errors over 5 seeds.

F.4 MINIHACK OPTION REWARD SCALING ABLATION

0 2 4 6 8 10 12 14
Kill Counts

Flat APPO

SOL, Health Scale = 5.0

SOL, Health Scale = 10.0

SOL, Health Scale = 20.0

SOL, Health Scale = 30.0

ZombieHorde

0 5 10 15 20 25
Score

Flat APPO

SOL, Gold Scale=0.1

SOL, Gold Scale=0.5

SOL, Gold Scale=1.0

SOL, Gold Scale=5.0

SOL, Gold Scale=10.0

TreasureDash

Figure 14: Final performance on ZombieHorde and TreasureDash for different scaling coefficients
of the non-task-reward option. Bars represent standard errors over 5 seeds.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

F.5 MINIHACK OPTION QUALITY ABLATION

In Figure 15 we study how the performance of SOL changes in the presence of redundant or useless
options on both MiniHack tasks. We compare the following variants:

• SOL : our default version, which has two options that are both useful for the task (Ω =
{Score, Health} for ZombieHorde, Ω = {Stairs, Gold} for TreasureDash).

• SOL(+2 duplicate options): has both original options duplicated once each. Its
option set is Ω = {Score, Score2, Health, Health2} for ZombieHorde and
Ω = {Stairs, Stairs2, Gold, Gold2} for TreasureDash. Here Score2 is an
option with identical reward as Score, and same for the other options.

• SOL(+8 duplicate options): has both original options duplicated 4 times
each. Its option set is Ω = {Score,...,Score5, Health,...,Health5} for
ZombieHorde and Ω = {Stairs,...,Stairs5, Gold,...,Gold5} for Trea-
sureDash.

• SOL(+2 useless options): has 2 options added which are unrelated to the task at
hand. For ZombieHorde, the option set is Ω = {Score, Health, Gold, Scout}
and for TreasureDash the option set is Ω = {Stairs, Gold, Scout, Health}.
Here Scout is a reward measuring exploration taken from (Küttler et al., 2020).

Results are shown in Figure 15. Adding duplicates of options that are useful for the task at hand
does not significantly change performance. Adding useless options (which are unrelated to the task
at hand) slows down learning on both tasks, which is unsurprising: without prior knowledge, the
agent must learn through experience which options are useful and which are not (also recall that
we have an entropy bonus on the controller which encourages it to sample all options with some
probability). However, on both tasks the agent with useless options is able to eventually match the
performance of the others, given sufficient training.

0 1 2 3 4
Train steps 1e9

0
2
4
6
8

10
12

Ki
ll

Co
un

ts

ZombieHorde

0.00 0.25 0.50 0.75 1.00
Train steps 1e8

5

10

15

20

25

30

Sc
or

e

TreasureDash

SOL
SOL (+ 2 duplicate options)

SOL (+ 8 duplicate options)
SOL (+ 2 useless options)

Figure 15: Performance of SOL with duplicate or useless options added. Shaded region represents
two standard errors computed over 5 seeds.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

F.6 FLAT APPO RESULTS ON POINTMAZE

0.0 0.2 0.4 0.6 0.8 1.0
Train steps 1e8

0.850

0.875

0.900

0.925

0.950

0.975

1.000

1.025

Su
cc

es
s

PointMaze-UMaze

Flat APPO (task reward only)
0.0 0.2 0.4 0.6 0.8 1.0

Train steps 1e8

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Su
cc

es
s

PointMaze-Medium

Flat APPO (task reward only)
0.0 0.2 0.4 0.6 0.8 1.0

Train steps 1e8

0.4

0.5

0.6

0.7

0.8

Su
cc

es
s

PointMaze-Large

Flat APPO (task reward only)

Figure 16: Flat APPO agents trained on default PointMaze environments from Gymnasium Robotics
(de Lazcano et al., 2024) are largely able to solve all PointMaze environments, indicating that hier-
archy is not needed for these maze layouts.

G ADDITIONAL DISCUSSION

G.1 RELATIONSHIP TO AGENT57

A key difference between SOL and Agent57 (Badia et al., 2020) is that SOL switches between
different sub-policies within the same episode, whereas Agent57 executes the same policy for the
entire episode. Switching between different sub-policies within an episode is essential for the tasks
we consider, for example alternating between fighting and healing in NetHack. This is illustrated in
Appendix F.2, where the controller calls the Health option earlier in the episodes while the agent
has low experience levels or when its health is low, and the Score option later on in the episodes
once it has gained levels and is stronger. Another difference is that SOL’s controller is observation-
conditioned, whereas the controller in Agent57 is a bandit which does not take observations as input.

This difference in turn influences several of the design decision in Section 3.3. For example, jointly
training a controller that is observation-conditioned together with the option policies requires a dif-
ferent neural network architecture that also outputs distributions over options and option execution
lengths, in addition to low-level environment actions (illustrated in Figure 8, Appendix E.2). It also
requires the wrapper in the actor workers (shown in more detail in Appendix E.3) to duplicate obser-
vations each time the controller is called and record the currently active option and option execution
length. Finally, switching between different option policies within the same episode requires par-
ticular handling of the return/advantage computations (detailed in Appendix E.4). Each time the
option policy changes (say from option A to option B), we need to bootstrap the returns of option
A using the last observation where option A was active and mask the future rewards gathered when
executing option B.

38

	Introduction
	Background and Problem Setting
	Markov Decision Processes
	Options
	High-throughput RL

	Method
	Objective
	Scaling Challenges
	System Design

	Related Work
	Experiments
	MiniHack and NetHack
	Continuous Control
	Automatically Learning Option Rewards
	Discussion

	Conclusion
	Limitations and Future Work
	Broader Impacts
	Experiment Details
	Architectures
	Hyperparameters
	Throughput Comparison Details
	Compute Details
	Other code links

	Environment Details
	MiniHack
	NetHack
	PointMaze

	Algorithm Details
	Objectives
	Neural Network Architecture
	Environment wrapper pseudocode
	Parallelized V-trace

	Additional Experiment Results
	Additional NetHack Characters
	Visualizations and Analysis
	MiniHack Option Length Ablation
	MiniHack Option Reward Scaling Ablation
	MiniHack Option Quality Ablation
	Flat APPO results on PointMaze

	Additional Discussion
	Relationship to Agent57

