
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Prediction without Preclusion
Recourse Verification with Reachable Sets

Anonymous Authors1

Abstract
Machine learning models are now used to de-
cide who will receive a loan, a job interview, or
a public service. Standard techniques to build
these models use features that characterize people
but overlook their actionability. In domains like
lending and hiring, models can assign predictions
that are fixed—-meaning that consumers who are
denied loans and interviews are precluded from
access to credit and employment. In this work,
we introduce a formal testing procedure to flag
models that assign “predictions without recourse,"
called recourse verification. We develop machin-
ery to reliably test the feasibility of recourse for
any model under user-specified actionability con-
straints. We demonstrate how these tools can
ensure recourse and adversarial robustness and
use them to study the infeasibility of recourse in
real-world lending datasets. Our results highlight
how models can inadvertently assign fixed predic-
tions that preclude access and motivate the need
to design algorithms that account for actionability
when developing models and providing recourse.

1. Introduction
Machine learning models routinely assign predictions to
people – be it to approve an applicant for a loan [29], a job
interview [6, 55], or a public benefit [69, 15, 19]. Models
in such applications use features that capture individual
characteristics without accounting for how individuals can
change them. In turn, models may assign predictions that
are invariant to the actions of their decision subjects. In
effect, even the most accurate model can assign a prediction
that is fixed (see Fig. 1).

The responsiveness of predictions to actions is a vital aspect
of their safety in consumer-facing applications. In fraud
detection and content moderation [31, 47, 39], for example,
models should assign fixed predictions to prevent malicious
actors from circumventing detection. In lending and hiring,
however, predictions should exhibit some sensitivity to ac-
tions. Otherwise, models that deny loans and interviews

Features Action Set Reachable Set Dataset ERM

has_phd age≥60 A(x1, x2) RA(x) n− n+ f̂ R̂(f̂)

0 0 {(1, 1), (0, 1), (1, 0), (0, 0)} {(1, 1), (0, 1), (1, 0), (0, 0)} 10 25 + 10
0 1 {(1, 0), (0, 0)} {(1, 1), (0, 0)} 11 25 + 11
1 0 {(0, 1), (0, 0)} {(1, 1), (0, 0)} 12 25 + 12
1 1 {(0, 0)} {(0, 0)} 27 15 - 15

Figure 1: Stylized classification task where the most accu-
rate linear classifier assigns a prediction without recourse to a
fixed point. We predict y = repay_loan using two features
(x1, x2) = (has_phd, age≥60) that can only change from 0
to 1. Here, (x1, x2) = (1, 1) is a fixed point that will be as-
signed a prediction without recourse by any classifier f such that
f(1, 1) = −1. We show that this point is assigned a prediction
without recourse by f̂ , the empirical risk minimizer for a dataset
with n− = 60 negative examples and n+ = 90 positive examples.

may permanently preclude access to credit and employment
– thus violating rights and regulations like equal opportu-
nity [4] and universal access [10].

There is a broad lack of awareness that models in lending
and hiring may inadvertently assign fixed predictions. In
this work, we propose to test for this effect by certifying the
infeasibility of recourse [61, 63, 35]. In contrast to prior
work on recourse [36, 64], our goal is verification – i.e.,
to check if a model assigns predictions that every decision
subject can change through actions on its features. This
procedure can return falsifiable information about a model
by certifying that recourse is feasible under custom action-
ability constraints. In practice, verification is a challenging
computational ask – as a procedure may return information
that is “incorrect” or “inconclusive” when it fails to complex
actionability constraints or fails to check the predictions of
a model over the entire space defined by these constraints.

We propose a model-agnostic approach for recourse verifi-
cation with reachable sets – i.e., regions of feature space
that are confined by actionability constraints. Reachable
sets are a powerful tool for verification because they can be
constructed directly from the actionability constraints and
can be used to characterize the feasibility of recourse for
all possible models. In particular, any model will assign
a prediction without recourse if it fails to assign a target
prediction over its reachable set.

Related Work Our work is related to research on algorith-
mic recourse, which studies how to change the prediction

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

of a given model through actions in feature space [61, 63].
Much work on this topic develops methods for provision –
i.e., to provide a person with an action to change the predic-
tion of a given model [see e.g., 30, 13, 51, 36, 64, 65, 56, 33].
We focus on verification – i.e., to test if a model assigns
predictions that each person can change using any action. Al-
though actionability is a defining characteristic of recourse,
the fact that it may induce infeasibility is not often dis-
cussed [see 61, 37, 11, for exceptions]. Our work motivates
the need to study and test infeasibility by showing that re-
course may not exist under realistic actionability constraints.

We motivate the need for verification as a procedure to
safeguard access in consumer-facing applications, and to
operationalize recourse provision [63, 58]. Our motiva-
tion is shared by a stream of recent work on the robust-
ness of recourse with respect to distributions shifts [57, 21],
model updates [60, 53], group dynamics [3, 52, 24], and
causal effects [45, 35, 66]. Testing infeasibility may be
valuable for eliciting individual preferences over recourse
actions [68, 71, 70], measuring the effort required to ob-
tain a target prediction [27, 22], and building classifiers that
incentivize improvement [59, 40, 41, 2, 26], or preventing
strategic manipulation [23, 12, 43, 49, 48, 17, 8, 25]. Our
tools can support other verification tasks that test the sensi-
tivity of model predictions to perturbations in semantically
meaningful feature spaces, such as ensuring adversarial ro-
bustness on tabular data [44, 34, 28, 67, 47, 39] or stress
testing for counterfactual invariance [62, 46, 54].

2. Recourse Verification
We consider a standard classification task where we are
given a model f : X → Y to predict a label y ∈ Y =
{−1,+1} using a feature vector x = [x1, . . . , xd] in a
bounded feature space X1 × . . . × Xd = X . We assume
each instance represents a person, and that f(x) = +1
represents a target prediction (e.g., loan approval).

We study if a person can attain a target prediction from
a given model by performing actions on its features. We
represent each action as a vector a = [a1, . . . , ad] ∈ Rd

that would shift a feature vector from x to x+a = x′ ∈ X .
We denote the set of all actions available to a person from
x ∈ X through the action set A(x) where 0 ∈ A(x).

Recourse Given a model f : X → Y and a point x ∈ X
with action set a ∈ A(x), the recourse provision task seeks
to find an action to attain a target prediction by solving an
optimization problem of the form:

min cost(a | x)
s.t. f(x+ a) = +1,

a ∈ A(x),

(1)

where cost(a | x) ≥ 0 is the cost of enacting a from x [61].

The recourse verification task seeks to determine the fea-
sibility of the optimization problem in (1) – i.e., to test if
f(x) = f(x+ a) for all a ∈ A(x). We formalize the
verification procedure as a function such that:

Recourse(x, f, A) =


Yes, only if there exists a ∈ A(x)

such that f(x+ a) = +1

No, only if f(x+ a) = −1
for all a ∈ A(x)

⊥, otherwise

We say that the procedure certifies feasibility for x if it
returns Yes, and certifies infeasibility if it returns No. The
procedure also abstains by outputting ⊥ when it cannot
evaluate the conditions to certify feasibility or infeasibility.
This may occur, for example, when we call verification using
an underspecified action set Ã(x) ⊂ A(x) and discover that
f(x+ a) = −1 for all a ∈ Ã(x).

Specifying Action Sets Semantically meaningful features
will often admit hard actionability constraints. As shown
in Table 1, we can state these conditions in natural lan-
guage and encode them as constraints in an optimization
problem. Although actionability differs substantially across
individuals and context [see 63, 5], every task will admit a
set of minimal constraints that can be gleaned from a data
dictionary –e.g., conditions that pertain to how a feature is
encoded or its physical limits. In settings where we may
wish to impose assumptions constraints on actionability, the
functionality shown in Table 1 can handle these assumptions
in a way that promotes transparency, contestability, and par-
ticipatory design. Individuals can write their assumptions in
natural language – allowing stakeholders to scrutinize and
contest these assumptions even without technical expertise
in machine learning. If stakeholders disagree on these as-
sumptions, they can tell if these disagreements impact the
results of their analysis (e.g., via an ablation study). Ulti-
mately if stakeholders cannot reach a consensus, one can
run verification under the “most conservative” actionability
constraints they agree on. We observe that this collection
is not empty, as it will always contain a set of minimal
constraints.

3. Verification with Reachable Sets
We introduce a model-agnostic approach for recourse ver-
ification. Our approach stems from the observation that
recourse is feasible over regions of features that are con-
fined by actionability constraints. We call these regions
reachable sets.

Definition 1 (Reachable Set). Given a point x and action
set A(x), its reachable set contains all feature vectors that
can be attained using an action a ∈ A(x): RA(x) :=
{x+ a | a ∈ A(x)}.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Constraint Type Sep. Cvx. Sample Constraint Features Encoding

Immutability ✓ ✓ n_dependents should not change xj = n_dependents aj = 0

Monotonicity ✓ ✓ prior_applicant can only increase xj = prior_applicant aj ≥ 0

Integrality ✓ ✗ n_accounts must be positive integer ≤ 10 xj = n_accounts aj ∈ Z ∩ [0− xj , 10− xj]

Encoding: Categorical Features ✗ ✗
preserve one-hot encoding
of married, single

xj = married

xk = single
aj + ak = 1, {aj , ak} ∈ {0, 1}

Encoding: Ordinal Features ✗ ✗
preserve one-hot encoding of
max_degree_BS, max_degree_MS

xj = max_degree_BS

xk = max_degree_MS

aj = x′
j − xj ak = x′

k − xk

x′
j + x′

k = 1 x′
k ≥ x′

j ,

{x′
j , x

′
k} ∈ {0, 1}

Logical Implications ✗ ✗

if is_employed = TRUE

then work_hrs_per_week ≥ 0

else work_hrs_per_week = 0

xj = is_employed,
xk = work_hrs_per_week

aj = x′
j − xj ak = x′

k − xk

x′
j ∈ {0, 1} x′

k ∈ [0, 168],
x′
k ≤ 168 x′

j

Deterministic Causal ✗ ✗
if years_at_residence increases
then age will increase commensurately

xj = years_at_residence

xk = age
aj ≤ ak

Table 1: Catalog of actionability constraints. We show whether a constraint is separable (can be specified for each feature independently)
and convex. We show an example of each constraint type to show that they can be expressed in natural language and encoded as a
constraint in a combinatorial optimization problem.

Even though reachable sets map to action sets, action sets
are easier to specify indirectly through constraints (see Sec-
tion 2). Obtaining the reachable set from a specification
of the action set is not trivial, and we provide methods for
doing so in the next sections.

Given any model f : X → Y , we can verify recourse for a
point x by evaluating predictions over its reachable set R =
RA(x) or its interior approximation R = Rint

A ⊂ RA(x).

Recourse(x, f, R) =



Yes, if there exists x′ ∈ R

such that f(x′) = +1

No, if f(x′) = −1

for all x′ ∈ R = RA(x)

⊥, if f(x′) = −1

for all x′ ∈ R ⊂ RA(x)

The procedure in Eq. (2) has two key benefits:

Model-Agnostic Certification: It provides a way to certify
infeasibility for any model. In this setting, a model-agnostic
approach may simplify verification because it only consid-
ers actionability constraints. In contrast, a model-specific
approach would have to solve an optimization problem with
two kinds of challenging constraints as in Eq. (1): (i) pre-
diction constraints f(x+ a) = +1, and (ii) actionability
constraints a ∈ A(x).

Safety through Abstention: It will abstain when it can-
not certify recourse. For instance, suppose that we call the
procedure using an interior approximation of the reachable
set Rint

A (x) ⊂ RA(x) and fail to find a point in Rint
A (x) that

achieves the target prediction. In this case, an abstention is
valuable because it flags x as a potential prediction without
recourse. In practice, this leads to practical benefits. For
example, we can call Recourse(x, f, R) with an approxi-
mate reachable set R = Rint

A (x) to screen points that have
recourse. We can then revisit those points on which the
procedure abstained with either a better approximation or
the full reachable set R = RA(x).

Certain classes of reachable sets can support verification:

Definition 2 (Fixed Point). A point x is fixed if its reachable
set only contains itself: RA(x) = {x}.

Definition 3 (Fixed Region). A fixed region is a reach-
able set RA(x) such that for any x′ ∈ RA(x) we have
RA(x

′) ⊆ RA(x).

Given a fixed point, we can determine if a model violates
recourse by checking its prediction on a single point. Given
a fixed region, we can verify recourse for all points within it
without generating reachable sets.

Reachable sets let us verify recourse for an arbitrary classi-
fier using a set of labeled examples.

Theorem 4 (Certification with Labeled Examples). Suppose
we have a dataset of labeled examples {(xi, yi)}ni=1. Every
model f : X → Y can provide recourse to x if:

FNR(f) <
1

n+

n∑
i=1

1[xi ∈ R ∧ yi = +1] (2)

where FNR(f) := 1
n+

∑n
i=1 1[f(xi) = −1 ∧ yi = +1]

is the false negative rate of f and where n+ is number of
positive examples, and R ⊆ RA(x) is any subset of the
reachable set.

The proof of Theorem 4 relies on the pigeonhole principle,
and is provided in Appendix B. The theorem states that
given a reachable set RA(x), we immediately know that
any model that is sufficiently accurate on positive examples
in the dataset must provide recourse for x. Conversely,
having measured a model’s false negative rate, we know
that there exists recourse for reachable sets with a certain
level of prevalence of positive examples.

4. Algorithms & Demonstrations
We present algorithms for recourse verification with reach-
able sets in Appendix C, and demonstrations for how they

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

can be used to ensure recourse in lending and adversar-
ial robustness in content moderation in Appendix D. Our
algorithms are designed to certify recourse in a way that
minimizes abstentions – i.e., to cover the detection of as
many predictions without recourse as possible. To this end,
they can delineate fixed points in general feature spaces,
construct reachable sets over discrete feature spaces, and
identify predictions with recourse by testing reachability
over samples.

5. Experiments
We present an empirical study of infeasibility in recourse.
Our goal is to study the prevalence of predictions without
recourse under actionability constraints, and to characterize
the reliability of verification using existing methods. We
include code to reproduce our results in our anonymized
repository and additional details in Appendix E.

Setup We work with three publicly available lending
datasets in Table 2. Each dataset pertains to a task where
predictions without recourse preclude credit access and re-
course provision. To certify the infeasibility of recourse for
every possible instance, we discretize all mutable features
in each dataset. We then use each dataset to fit a classi-
fier using logistic regression (LR) and XGBoost (XGB). We
construct reachable sets by calling Algorithm 1 in CPLEX
v22.1 on a 3.2GHz CPU with 8GB RAM. We benchmark
our method (Reach) against baselines for recourse provision:
AR [61], a model-specific method that can certify infeasibil-
ity for linear models with separable actionability constraints;
DiCE [50], a model-agnostic method that supports separa-
ble actionability constraints. We evaluate the feasibility of
recourse under nested action sets: Non-Separable, which
includes constraints on immutability, monotonicity, and non-
separable constraints; Separable, which only includes con-
straints on immutability and monotonicity; Simple, which
only includes constraints on immutability.

On Predictions without Recourse We summarize the
reliability of recourse verification for each dataset, method,
and model class in Table 2. Our results show how recourse
may not exist under actionability constraints. Recourse
is generally feasible under simple constraints such as im-
mutability and integrality, with infeasibility mainly arising
as we consider more complex constraints. On german, for
example, LR only assigns predictions without recourse un-
der Separable and Non-Separable constraints to 0.4% and
2.1% of the data, respectively.

We find minor variations in the prevalence of predictions
without recourse across model classes. Given that the reach-
able sets do not change under a fixed dataset and actionabil-
ity constraints, these differences reflect differences in the

Simple Separable Non-Separable

Dataset Model Type Metrics Reach AR DiCE Reach AR DiCE Reach AR DiCE

german

Dua & Graff [14]
n = 1, 000

d = 24

LR

Recourse
No Recourse

Abstain
Loopholes
Blindspots

90.8%
0.0%
9.2%

—
—

99.1%
0.9%

—
0.0%
0.0%

94.7%
—
—

0.0%
5.3%

91.9%
0.4%
7.7%

—
—

95.5%
4.5%

—
0.0%
0.0%

82.7%
—
—

0.0%
17.3%

94.9%
2.1%
3.0%

—
—

22.4%
4.5%

—
73.1%
0.0%

11.3%
—
—

71.4%
17.3%

XGB

Recourse
No Recourse

Abstain
Loopholes
Blindspots

90.4%
0.0%
9.6%

—
—

—

94.7%
—
—

0.0%
5.3%

91.9%
0.4%
7.7%

—
—

—

84.5%
—
—

0.0%
15.5%

94.9%
2.1%
3.0%

—
—

—

21.3%
—
—

62.8%
16.0%

givemecredit

Kaggle [32]
n = 8, 000

d = 13

LR

Recourse
No Recourse

Abstain
Loopholes
Blindspots

100.0%
0.0%
0.0%

—
—

100.0%
0.0%

—
0.0%
0.0%

100.0%
—
—

0.0%
0.0%

99.9%
0.0%
0.1%

—
—

99.9%
0.1%

—
0.0%
0.0%

99.9%
—
—

0.0%
0.1%

99.9%
0.1%
0.1%

—
—

64.9%
0.0%

—
35.1%
0.0%

53.6%
—
—

46.4%
0.0%

XGB

Recourse
No Recourse

Abstain
Loopholes
Blindspots

100.0%
0.0%
0.0%

—
—

—

100.0%
—
—

0.0%
0.0%

99.9%
0.0%
0.1%

—
—

—

99.9%
—
—

0.0%
0.1%

99.9%
0.1%
0.1%

—
—

—

28.6%
—
—

71.4%
0.0%

heloc

FICO [16]
n = 3, 184

d = 29

LR

Recourse
No Recourse

Abstain
Loopholes
Blindspots

24.7%
0.0%

75.3%
—
—

85.2%
14.8%

—
0.0%
0.0%

51.7%
—
—

0.0%
48.3%

29.0%
0.0%

71.0%
—
—

62.2%
37.8%

—
0.0%
0.0%

48.2%
—
—

0.0%
51.8%

57.3%
41.9%
0.8%

—
—

23.5%
37.8%

—
38.8%
0.0%

20.4%
—
—

27.8%
51.8%

XGB

Recourse
No Recourse

Abstain
Loopholes
Blindspots

84.4%
0.0%

15.6%
—
—

—

99.8%
—
—

0.0%
0.2%

35.1%
0.0%

64.9%
—
—

—

57.5%
—
—

0.0%
42.5%

73.2%
26.4%
0.5%

—
—

—

23.4%
—
—

34.1%
42.5%

Table 2: Reliability of recourse of verification over datasets, model
classes, and actionability constraints. We determine the feasibility
of recourse for training examples using our method (Reach), then
use them to evaluate the reliability of verification using salient
methods for recourse provision. We report the following metrics
for each method and model type: Recourse – % of points where a
method certifies that recourse exists, No Recourse – % of points
where the method certifies no recourse exists, Abstain – % of points
in which Reach cannot determine if recourse exists, Loopholes
– % of points whose actions are inactionable, Blindspots – % of
points where a method fails to return an action.

number of negative predictions across models. We observe
that predictions without recourse can drastically change
across model types that are equally accurate at a population
level. In Non-Separable heloc, for example, we observe a
15.5% difference in predictions without recourse between
LR and XGB even though both classifiers have similar per-
formance in terms of the area under the ROC curve (AUC)
on the test dataset (0.729 vs 0.737). This highlights the
potential to choose between models to ensure recourse.

On Pitfalls of Verification Our results highlight common
failure modes in using methods for recourse provision for
verification as described in Section 2. In heloc, for exam-
ple, we observe 26.4% of points without recourse with XGB.
In cases where recourse is feasible, methods may fail to
return any actions. However, we may be unable to tell if a
point has recourse or if a method was unable to generate it
in the first place. For example, DiCE fails to find actions for
42.5% of points. However, there may exist feasible actions.
This effect highlights the potential failure to account for ac-
tionability constraints by, e.g., post-hoc filtering [42]. In this
case, DiCE cannot produce any actions after filtering a set of
diverse counterfactual explanations to enforce implication
constraints related to deterministic causal relationships and
a thermometer encoding.

4

https://anonymous.4open.science/r/infeasible-recourse-3E10/README.md
https://anonymous.4open.science/r/infeasible-recourse-3E10/README.md

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

References
[1] 2013. URL https://www.

consumercomplianceoutlook.
org/2013/second-quarter/
adverse-action-notice-requirements-under-ecoa-fcra/.

[2] Alon, T., Dobson, M., Procaccia, A., Talgam-Cohen, I., and
Tucker-Foltz, J. Multiagent evaluation mechanisms. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 1774–1781, 2020.

[3] Altmeyer, P., Angela, G., Buszydlik, A., Dobiczek, K., van
Deursen, A., and Liem, C. Endogenous macrodynamics in
algorithmic recourse. In First IEEE Conference on Secure
and Trustworthy Machine Learning.

[4] Arneson, R. Equality of Opportunity. In Zalta, E. N. (ed.),
The Stanford Encyclopedia of Philosophy. Metaphysics Re-
search Lab, Stanford University, Summer 2015 edition, 2015.

[5] Barocas, S., Selbst, A. D., and Raghavan, M. The hidden as-
sumptions behind counterfactual explanations and principal
reasons. In Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, pp. 80–89, 2020.

[6] Bogen, M. and Rieke, A. Help wanted: An examination of
hiring algorithms, equity, and bias. Upturn, December, 7,
2018.

[7] Calzavara, S., Lucchese, C., Tolomei, G., Abebe, S. A., and
Orlando, S. Treant: training evasion-aware decision trees.
Data Min. Knowl. Discov., 2020.

[8] Chen, Y., Wang, J., and Liu, Y. Strategic recourse in linear
classification. arXiv preprint arXiv:2011.00355, 2020.

[9] Chien, J., Roberts, M. E., and Ustun, B. Learning through
Recourse under Censoring. NeurIPS Workshop on Learning
and Decision-Making with Strategic Feedback, 2021.

[10] Daniels, N. Equity of access to health care: some conceptual
and ethical issues. The Milbank Memorial Fund Quarterly.
Health and Society, pp. 51–81, 1982.

[11] Dominguez-Olmedo, R., Karimi, A. H., and Schölkopf, B.
On the adversarial robustness of causal algorithmic recourse.
In International Conference on Machine Learning, pp. 5324–
5342. PMLR, 2022.

[12] Dong, J., Roth, A., Schutzman, Z., Waggoner, B., and Wu,
Z. S. Strategic classification from revealed preferences. In
Proceedings of the 2018 ACM Conference on Economics and
Computation, pp. 55–70. ACM, 2018.

[13] Downs, M., Chu, J. L., Yacoby, Y., Doshi-Velez, F., and
Pan, W. Cruds: Counterfactual recourse using disentangled
subspaces. ICML WHI, 2020:1–23, 2020.

[14] Dua, D. and Graff, C. UCI machine learning repository, 2017.
URL http://archive.ics.uci.edu/ml.

[15] Eubanks, V. Automating inequality: How high-tech tools
profile, police, and punish the poor. St. Martin’s Press, 2018.

[16] FICO. Fico heloc, 2018. URL
https://community.fico.com/s/
explainable-machine-learning-challenge.

[17] Ghalme, G., Nair, V., Eilat, I., Talgam-Cohen, I., and Rosen-
feld, N. Strategic classification in the dark. In International
Conference on Machine Learning, pp. 3672–3681. PMLR,
2021.

[18] Gilani, Z., Kochmar, E., and Crowcroft, J. Classification of
twitter accounts into automated agents and human users. In
Proceedings of the 2017 IEEE/ACM international conference
on advances in social networks analysis and mining 2017,
pp. 489–496, 2017.

[19] Gilman, M. E. Poverty lawgorithms: A poverty lawyer’s
guide to fighting automated decision-making harms on low-
income communities. Data & Society, 2020.

[20] Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bas-
tubbe, M., Berthold, T., Christophel, P., Jarck, K., Koch, T.,
Linderoth, J., et al. Miplib 2017: data-driven compilation of
the 6th mixed-integer programming library. Mathematical
Programming Computation, 13(3):443–490, 2021.

[21] Guo, H., Jia, F., Chen, J., Squicciarini, A., and Yadav, A.
Rocoursenet: Distributionally robust training of a prediction
aware recourse model. arXiv preprint arXiv:2206.00700,
2022.

[22] Gupta, V., Nokhiz, P., Roy, C. D., and Venkatasubrama-
nian, S. Equalizing recourse across groups. arXiv preprint
arXiv:1909.03166, 2019.

[23] Hardt, M., Megiddo, N., Papadimitriou, C., and Wootters,
M. Strategic classification. In Proceedings of the 2016 ACM
Conference on Innovations in Theoretical Computer Science,
pp. 111–122. ACM, 2016.

[24] Hardt, M., Mazumdar, E., Mendler-Dünner, C., and Zrnic,
T. Algorithmic collective action in machine learning. arXiv
preprint arXiv:2302.04262, 2023.

[25] Harris, K., Heidari, H., and Wu, S. Z. Stateful strategic regres-
sion. Advances in Neural Information Processing Systems,
34:28728–28741, 2021.

[26] Harris, K., Chen, V., Kim, J., Talwalkar, A., Heidari, H.,
and Wu, S. Z. Bayesian persuasion for algorithmic recourse.
Advances in Neural Information Processing Systems, 35:
11131–11144, 2022.

[27] Heidari, H., Nanda, V., and Gummadi, K. On the long-term
impact of algorithmic decision policies: Effort unfairness and
feature segregation through social learning. In International
Conference on Machine Learning, pp. 2692–2701. PMLR,
2019.

[28] Hein, M. and Andriushchenko, M. Formal guarantees on the
robustness of a classifier against adversarial manipulation. In
NIPS, 2017.

[29] Hurley, M. and Adebayo, J. Credit scoring in the era of big
data. Yale JL & Tech., 18:148, 2016.

[30] Joshi, S., Koyejo, O., Vijitbenjaronk, W., Kim, B., and Ghosh,
J. Towards realistic individual recourse and actionable ex-
planations in black-box decision making systems. arXiv
preprint arXiv:1907.09615, 2019.

5

https://www.consumercomplianceoutlook.org/2013/second-quarter/adverse-action-notice-requirements-under-ecoa-fcra/
https://www.consumercomplianceoutlook.org/2013/second-quarter/adverse-action-notice-requirements-under-ecoa-fcra/
https://www.consumercomplianceoutlook.org/2013/second-quarter/adverse-action-notice-requirements-under-ecoa-fcra/
https://www.consumercomplianceoutlook.org/2013/second-quarter/adverse-action-notice-requirements-under-ecoa-fcra/
http://archive.ics.uci.edu/ml
https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

[31] Jurgovsky, J., Granitzer, M., Ziegler, K., Calabretto, S.,
Portier, P.-E., He-Guelton, L., and Caelen, O. Sequence
classification for credit-card fraud detection. Expert Systems
with Applications, 100:234–245, 2018.

[32] Kaggle. Give Me Some Credit. http://www.kaggle.
com/c/GiveMeSomeCredit/, 2011.

[33] Kanamori, K., Takagi, T., Kobayashi, K., and Ike, Y. Counter-
factual explanation trees: Transparent and consistent action-
able recourse with decision trees. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 1846–1870.
PMLR, 2022.

[34] Kantchelian, A., Tygar, J. D., and Joseph, A. D. Evasion and
hardening of tree ensemble classifiers. In ICML, 2016.

[35] Karimi, A.-H., Von Kügelgen, J., Schölkopf, B., and Valera,
I. Algorithmic recourse under imperfect causal knowledge:
a probabilistic approach. Advances in neural information
processing systems, 33:265–277, 2020.

[36] Karimi, A.-H., Barthe, G., Schölkopf, B., and Valera, I. A
survey of algorithmic recourse: definitions, formulations,
solutions, and prospects. 2021.

[37] Karimi, A.-H., Schölkopf, B., and Valera, I. Algorithmic
recourse: from counterfactual explanations to interventions.
In Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency, pp. 353–362, 2021.

[38] Kilbertus, N., Gomez-Rodriguez, M., Schölkopf, B., Muan-
det, K., and Valera, I. Improving consequential deci-
sion making under imperfect predictions. arXiv preprint
arXiv:1902.02979, 2019.

[39] Kireev, K., Kulynych, B., and Troncoso, C. Adversarial
robustness for tabular data through cost and utility aware-
ness. In Network and Distributed System Security (NDSS)
Symposium, 2023.

[40] Kleinberg, J. and Raghavan, M. How Do Classifiers Induce
Agents To Invest Effort Strategically? ArXiv e-prints, art.
arXiv:1807.05307, July 2018.

[41] Kleinberg, J. and Raghavan, M. How do classifiers induce
agents to invest effort strategically? ACM Transactions on
Economics and Computation (TEAC), 8(4):1–23, 2020.

[42] Laugel, T., Jeyasothy, A., Lesot, M.-J., Marsala, C., and
Detyniecki, M. Achieving diversity in counterfactual
explanations: a review and discussion. arXiv preprint
arXiv:2305.05840, 2023.

[43] Levanon, S. and Rosenfeld, N. Strategic classification made
practical. In International Conference on Machine Learning,
pp. 6243–6253. PMLR, 2021.

[44] Lowd, D. and Meek, C. Adversarial learning. In ACM
SIGKDD international conference on Knowledge discovery
in data mining, pp. 641–647, 2005.

[45] Mahajan, D., Tan, C., and Sharma, A. Preserving causal con-
straints in counterfactual explanations for machine learning
classifiers. arXiv preprint arXiv:1912.03277, 2019.

[46] Makar, M., Packer, B., Moldovan, D., Blalock, D., Halpern,
Y., and D’Amour, A. Causally motivated shortcut removal us-
ing auxiliary labels. In International Conference on Artificial
Intelligence and Statistics, pp. 739–766. PMLR, 2022.

[47] Mathov, Y., Levy, E., Katzir, Z., Shabtai, A., and Elovici, Y.
Not all datasets are born equal: On heterogeneous tabular
data and adversarial examples. Knowledge-Based Systems,
242:108377, 2022.

[48] Miller, J., Milli, S., and Hardt, M. Strategic classification is
causal modeling in disguise. In International Conference on
Machine Learning, pp. 6917–6926. PMLR, 2020.

[49] Milli, S., Miller, J., Dragan, A. D., and Hardt, M. The
social cost of strategic classification. In Proceedings of the
Conference on Fairness, Accountability, and Transparency,
pp. 230–239, 2019.

[50] Mothilal, R. K., Sharma, A., and Tan, C. Explaining machine
learning classifiers through diverse counterfactual explana-
tions. In Proceedings of the 2020 conference on fairness,
accountability, and transparency, pp. 607–617, 2020.

[51] Nguyen, D., Bui, N., and Nguyen, V. A. Feasible recourse
plan via diverse interpolation. In International Conference on
Artificial Intelligence and Statistics, pp. 4679–4698. PMLR,
2023.

[52] O’Brien, A. and Kim, E. Toward multi-agent algorithmic re-
course: Challenges from a game-theoretic perspective. In The
International FLAIRS Conference Proceedings, volume 35,
2022.

[53] Pawelczyk, M., Datta, T., van-den Heuvel, J., Kasneci, G.,
and Lakkaraju, H. Algorithmic recourse in the face of noisy
human responses. arXiv preprint arXiv:2203.06768, 2022.

[54] Quinzan, F., Casolo, C., Muandet, K., Kilbertus, N., and
Luo, Y. Learning counterfactually invariant predictors. arXiv
preprint arXiv:2207.09768, 2022.

[55] Raghavan, M., Barocas, S., Kleinberg, J., and Levy, K. Mit-
igating bias in algorithmic hiring: Evaluating claims and
practices. In Proceedings of the 2020 conference on fairness,
accountability, and transparency, pp. 469–481, 2020.

[56] Ramakrishnan, G., Lee, Y. C., and Albarghouthi, A. Syn-
thesizing action sequences for modifying model decisions.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pp. 5462–5469, 2020.

[57] Rawal, K., Kamar, E., and Lakkaraju, H. Algorithmic re-
course in the wild: Understanding the impact of data and
model shifts. arXiv preprint arXiv:2012.11788, 2020.

[58] Ross, A., Lakkaraju, H., and Bastani, O. Learning models
for actionable recourse. Advances in Neural Information
Processing Systems, 34:18734–18746, 2021.

[59] Shavit, Y., Edelman, B., and Axelrod, B. Causal strategic
linear regression. In International Conference on Machine
Learning, pp. 8676–8686. PMLR, 2020.

[60] Upadhyay, S., Joshi, S., and Lakkaraju, H. Towards ro-
bust and reliable algorithmic recourse. arXiv preprint
arXiv:2102.13620, 2021.

6

http://www.kaggle.com/c/GiveMeSomeCredit/
http://www.kaggle.com/c/GiveMeSomeCredit/

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

[61] Ustun, B., Spangher, A., and Liu, Y. Actionable recourse
in linear classification. pp. 10–19. doi: 10.1145/3287560.
3287566.

[62] Veitch, V., D’Amour, A., Yadlowsky, S., and Eisenstein, J.
Counterfactual invariance to spurious correlations: Why and
how to pass stress tests. arXiv preprint arXiv:2106.00545,
2021.

[63] Venkatasubramanian, S. and Alfano, M. The philosophical
basis of algorithmic recourse. In Proceedings of the 2020
Conference on Fairness, Accountability, and Transparency,
pp. 284–293, 2020.

[64] Verma, S., Dickerson, J., and Hines, K. Counterfactual
explanations for machine learning: A review, 2020.

[65] Verma, S., Hines, K., and Dickerson, J. P. Amortized gen-
eration of sequential algorithmic recourses for black-box
models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 8512–8519, 2022.

[66] von Kügelgen, J., Karimi, A.-H., Bhatt, U., Valera, I., Weller,
A., and Schölkopf, B. On the fairness of causal algorithmic
recourse. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 9584–9594, 2022.

[67] Vos, D. and Verwer, S. Efficient training of robust decision
trees against adversarial examples. In Meila, M. and Zhang,
T. (eds.), ICML, 2021.

[68] Wang, Z. J., Wortman Vaughan, J., Caruana, R., and Chau,
D. H. Gam coach: Towards interactive and user-centered
algorithmic recourse. In Proceedings of the 2023 CHI Con-
ference on Human Factors in Computing Systems, pp. 1–20,
2023.

[69] Wykstra, S. Government’s use of algorithm serves up false
fraud charges. undark, 6 january, 2020.

[70] Yadav, P., Hase, P., and Bansal, M. Inspire: A framework for
integrating individual user preferences in recourse.

[71] Yadav, P., Hase, P., and Bansal, M. Low-cost algorithmic re-
course for users with uncertain cost functions. arXiv preprint
arXiv:2111.01235, 2021.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Supplementary Material

A Notation 1

B Proofs 2
B.1 Proof of Theorem 4 . 2

B.2 Additional Theory on Existence and Composition . 2

C Algorithms 4
C.1 Outline . 4

C.2 MIP Formulation for FindAction . 5

C.3 MIP Formulation for IsReachable . 6

C.4 Encoding Actionability Constraints . 6

D Demonstrations 8
D.1 Ensuring Recourse in Lending . 8

D.2 Certifying Adversarial Robustness in Content Moderation . 10

E Supplement to Section 5 – Experiments 12
E.1 Actionability Constraints for the heloc Dataset . 12

E.2 Actionability Constraints for the givemecredit Dataset . 12

E.3 Actionability Constraints for the german Dataset . 15

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

A. Notation

Symbol Meaning

X ⊆ Rd feature space
Y = {−1,+1} label space
Xj ⊆ R feature space for feature j

a ∈ A(x) action vector from x ∈ X
A(x) action set for x ∈ X . 0 ∈ A(x)

Aj(x) set of feasible actions for feature j from x

RA(x) := {x+ a | a ∈ A(x)} reachable set from x

Rint
A (x) ⊂ RA(x) inner approximation of a reachable set from x

NA(x) set of sibling points from x

f : X → Y classification model
S+ := {(xi, yi)}n

+

i=1 s.t. yi = +1 a set of positive examples
S− := {(xi, yi)}n

+

i=1 s.t. yi = −1 a set of negative examples
n+ := |S+| number of positive examples in a sample
n− := |S−| number of negative examples in a sample
[k] := {1, . . . , k} set of positive integers from 1 to k

Table 3: Table of Notation

1

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

B. Proofs
In this Appendix, we present proofs of our claims in Section 3.

B.1. Proof of Theorem 4

Theorem 4. Suppose we have a dataset of labeled examples {(xi, yi)}ni=1. Every model f : X → Y can provide recourse
to x if:

FNR(f) <
1

n+

n∑
i=1

1[xi ∈ R ∧ yi = +1] (3)

where FNR(f) := 1
n+

∑n
i=1 1[f(xi) = −1 ∧ yi = +1] is the false negative rate of f and where n+ is number of positive

examples, and R ⊆ RA(x) is any subset of the reachable set.

Proof. The proof is based on an application of the pigeonhole principle over the positive examples S+ := {xi | yi =
+1, i ∈ [n]}. Given a classifier f , denote the total number of true positive and false negative predictions over S+ as:

TP(f) :=
n∑

i=1

1[f(xi) = +1 ∧ yi = +1] FN(f) :=
n∑

i=1

1[f(xi) = −1 ∧ yi = +1].

Say that for a given point x with a reachable set R = RA(x), the classifier obeys:

TP(f) > n+ − |S+ ∩R|.

In other words, the number of correct positive predictions exceeds the number of positive examples outside R. In this case,
by the pigeonhole principle, the classifier f must assign a correct prediction to at least one of the positive examples in R –
i.e., there exists a point x′ ∈ S+ ∩ R such that f(x′) = yi = +1. Given R ⊆ RA(x), we have that x ∈ RA(x). Thus,
we can reach x′ from x by performing the action a = x′ − x – i.e., we can change the prediction from f(x) = −1 to
f(x+ a) = +1.

We recover the condition in the statement of the Theorem as follows:

TP(f) > n+ − |S+ ∩R| (4)

FN(f) < |S+ ∩R|, (5)

FNR(f) <
1

n+

n∑
i=1

1[xi ∈ R ∧ yi = +1] (6)

Here, we proceed from Eqn. (4) to Eqn. (5) by using the fact that TP(f) = n+ − FN(f), and from Eqn. (5) to (6) by
dividing both sides by 1

n+ and applying the definition of the false negative rate.

B.2. Additional Theory on Existence and Composition

Proposition 5. Any classification task with bounded features whose actions obey monotonicity constraints must contain at
least one fixed point.

Proof. Consider a set of d features (x1, . . . , xd) = x ∈ X over a bounded feature space. Let lj and uj denote the lower and
upper bounds on feature j, so that xj ∈ [lj , uj] for all j ∈ [d]

We will proceed to construct a fixed point over X under the following conditions: (i) each feature is monotonically increasing,
so that aj ≥ 0 for all j ∈ [d]; (ii) each feature is monotonically decreasing, so that aj ≤ 0 for all j ∈ [d]; (iii) each feature is
either monotonically increasing or monotonically decreasing so that aj ≥ 0 or aj ≤ 0 for all j ∈ [d].

In the case of (i), the fixed point corresponds to a feature vector x ∈ X such that xj = uj for all j ∈ [d]. We proceed by
contradiction. Suppose x is not a fixed point, then there exists an action a′ ∈ A(x) such that a′ ̸= {0}. In turn, there exists

2

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

a′j > 0. Let x′ = x+ a′ then x′
j = xj + a′j > uj which violates our initial assumption that x′

j ∈ [lj , uj]. Thus, x must be
a fixed point.

In the case of (ii), the fixed point corresponds to a feature vector x ∈ X such that xj = lj for all j ∈ [d]. We proceed by
contradiction. Suppose x is not a fixed point, then there exists an action a′ ∈ A(x) such that a′ ̸= {0}. In turn, there exists
a′j < 0. Let x′ = x+ a′ then x′

j = xj + a′j < lj which violates our initial assumption that x′
j ∈ [lj , uj]. Thus, x must be a

fixed point.

In the case of (iii), by combining the above, it can be seen that as long as xj satisfies monotonicity constraints which can
either be increasing or decreasing there must contain at least one fixed point.

xj =

{
uj , if j ∈ J+

lj , if j ∈ J−

where J+ is the set of indices with monotonically increasing constraints and J− is the set of indices with monotonically
decreasing constraints.

Proposition 6 (Composition of Fixed Points). Consider adding a new feature Xd+1 ⊆ R to a set of d features X ⊆ Rd.
Any fixed point x ∈ X induces the following confined regions in the (d+ 1)-dimensional space:

• |Xd+1| fixed points in the (d+ 1)-dimensional feature space, if xd+1 is immutable.

• A fixed point z0 := (x, xd+1) where xd+1 is an extreme point of Xd+1, that is, xd+1 := maxXd+1 or xd+1 := minXd+1

if (d+ 1)-th feature is monotonically increasing (respectively, decreasing) in the action set A(z0), and the constraints in
A(z0) are separable.

• A fixed region if RA(x1, x2, . . . , xd, xd+1) = RA(x1, x2, . . . , xd, x
′
d+1) for any two xd+1, x

′
d+1 ∈ Xd+1.

Proof. Let us denote the (d+ 1)-dimensional feature space as X̄ := X1 × . . .×Xd ×Xd+1.

• Suppose a point x′ ∈ X̄ has the same feature values as x in its first d dimensions. As xd+1 is immutable, the only feasible
action for x′

d+1 is ad+1 = 0. This holds for any possible value of x′
d+1. This implies that for all feature values of the

(d+ 1)-th feature, x′ remains a fixed point. Therefore, there must exist |Xd+1| fixed points.

• Observe that if vd+1 is an extreme point, then the only possible action is ad+1 = 0 because the d + 1-th feature must
satisfy a monotonicity constraint. As the constraints in A(z0) are separable by assumption, and A(x) = {0}, z0 must
also have only one possible action A(z0) = {0}.

• Given any x′ ∈ X̄ where the first d dimensions are the same as in x, we have RA(x
′) = RA(x). As any other

x′′ ∈ RA(x
′) also shares the first d dimensions and is also x′′ ∈ RA(x), we have that RA(x

′) ⊆ RA(x).

3

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

C. Algorithms
In this Appendix, we will first outline our machinery to delineate fixed regions and use them to perform a recourse audit.
Next, we describe how to formulate and solve the optimization problems in Section 4 as mixed-integer programs. We
start by presenting a MIP formulation for the optimization problem solved in the FindAction(x, A(x)) routine and the
IsReachable(x,x′, A(x)) routine. Finally, we describe how this formulation can be extended to the complex actionability
constraints in Table 1.

C.1. Outline

Fixed Point Detection We start with a method to detect fixed points, which we also use as a building block in later
methods. We verify if x is a fixed point by solving the optimization problem:

FindAction(x, A(x)) ∈ argmin ∥a∥
s.t. a ∈ A(x) \ {0}.

If FindAction(x, A(x)) is infeasible, we know that x is a fixed point. We formulate FindAction(x, A(x)) as a mixed
integer program, and solve it with an off-the-shelf solver [see e.g., 20]. Once we know that x is fixed, we can certify
Recourse(x, f, A) = Yes if f(x) = +1 and No if f(x) = −1. This approach avoids loopholes and blindspots by
addressing the key requirements for verification. In particular, it supports a rich class of actionability constraints. We present
a formulation that can encode all actionability constraints from Table 1 in ??.

Verification on Observed Data The next method can certify recourse by testing if a point x can reach another point x′

assigned a positive prediction:

IsReachable(x,x′, A(x)) := min 1

s.t. x = x′ − a

a ∈ A(x)

As before, we formulate this problem as a mixed integer program and solve it using an off-the-shelf solver. Given a set
of positive samples S+, we can apply this method for all x′ ∈ S+ to maximize the chance of finding if the point x has
recourse. If we have identified such reachable points using this method, we can certify Recourse(x, f, A) = Yes.

Reachable Set Generation Our next method can certify feasibility and infeasibility in a discrete feature space by
constructing a reachable set. We present the procedure for generating a reachable set of a given point x in Algorithm 1. For
this, we repeatedly solve FindAction(x, A(x)) (line 3), while removing the previous solution from the considered action set
at every next step (Line 5). The procedure continues until the problem becomes infeasible or another stopping condition
is met. For example, as described in Section 3, we might be interested in generating only a subset of the reachable set
Rint

A (x) ⊂ RA(x). In this case, the stopping condition could be that the algorithm has identified a certain minimum number
of points in the reachable set.

Algorithm 1 GetReachableSet

Require: x ∈ X , where X is discrete; A(x)
Require: Action Sets A(x)

R← {x}, F ← A(x)
repeat

if FindAction(x, F) is feasible then
a∗ ← FindAction(x, F)

R← R ∪ {x+ a∗}
F ← F \ {a∗}

until stopping condition
Output R ⊆ RA(x)

Reachable Set Generation In Algorithm 1, we present a procedure that uses the optimization in ?? to generate a reachable
set RA(x) or its part in a discrete feature space X . For this, the procedure repeatedly solves ?? (line 3), while reducing the

4

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

considered action set by the previous solution at every step (line 5). The procedure continues until the problem becomes
infeasible or another stopping condition is met. For example, as described in Section 3, we might be interested in generating
only a subset of the reachable set Rint

A (x) ⊂ RA(x). In this case, the stopping condition could be that the algorithm has
identified a certain minimum number of points in the reachable set.

Full Sample Audit In Algorithm 2, we present an algorithm to produce a collection of reachable sets for each point in a
dataset – i.e., a collection that can be used to perform the verification procedure in Eq. (2). Our procedure seeks to reduce the
time needed to build this data reachable sets by exploiting the properties of fixed points and fixed regions in Section 3 For
instance, if a reachable set is a fixed region, then by definition we do not need to generate reachable sets for any other point
in the fixed region. We detail the full auditing procedure with optimizations In certain use cases, we can do this without the
need to get the reachable sets of all points in a dataset. For example, if we run the audit during model development to ensure
feasibility, we can stop once we find any prediction without recourse.

Algorithm 2 SampleAudit

Require: Sample S = {xi}ni=1; A(·)
C← { }
repeat

xi ← Pop(S)
Ri ← GenReachableSet(xi, A(xi))
if Ri = {xi} then (for separable action sets)

S ← S \NA(xi, A(xi))
else if Ri is a fixed region then

S ← S \Ri

C← C ∪ {Ri}
until no points remain in S

Output C, collection of reachable sets for xi

C.2. MIP Formulation for FindAction

Given a point x ∈ X , an action set A(x), and a set of previous optima Aopt, we can formulate FindAction(x, A(x)) as the
following mixed-integer program:

min
a

∑
j∈[d]

a+
j + a−

j

s.t. a+
j ≥ aj j ∈ [d] positive component of aj (7a)

a−
j ≥−aj j ∈ [d] negative component of aj (7b)

aj = aj,k + δ+j,k − δ−j,k j ∈ [d],ak ∈ Aopt
distance from prior actions (7c)

εmin≤
∑
j∈[d]

(δ+j,k − δ−j,k) ak ∈ Aopt
any solution is εmin away from ak (7d)

δ+j,k ≤M+
j,kuj,k j ∈ [d],ak ∈ Aopt

δ
+
j,k > 0 =⇒ uj,k = 1 (7e)

δ−j,k ≤M−
j,k(1− uj,k) j ∈ [d],ak ∈ Aopt

δ
−
j,k > 0 =⇒ uj,k = 0 (7f)

aj ∈Aj(x) j ∈ [d] separable actionability constraints on j (7g)

δ+j,k, δ
−
j,k ∈ R+ j ∈ [d] signed distances from aj,k (7h)

uj,k ∈ {0, 1} j ∈ [d] uj,k := 1[δ
+
j,k > 0] (7i)

The formulation finds action in the set a ∈ A(x)/Aopt by combining two classes of constraints: (i) constraints to restrict
actions a ∈ A(x) and (ii) constraints to rule out actions in a ∈ Aopt.

The formulation encodes the separable constraints in A(x) – i.e., a constraint that can be enforced for each feature. The
formulation must be extended with additional variables and constraints to handle constraints as discussed in Appendix C.4.
These constraints are handled through the aj ∈ Aj(x) conditions in Constraint 7g. This constraint can handle a number of
actionability constraints that can be passed solver when defining the variables aj , including bounds (e.g., aj ∈ [−xj , 10−xj]),
integrality (e.g., aj ∈ {0, 1} or aj ∈ {L− xj , L− xj + 1, . . . , U − xj}), and monotonicity (e.g., aj ≥ 0 or aj ≤ 0).

5

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

The formulation rules out actions in a ∈ Aopt through the “no good" constraints in Constraints (7c) to (7f). Here, Constraint
(7d) ensures feasible actions from previous solutions by at least εmin. We set to a sufficiently small number εmin := 10−6 by
default, but use larger values when working with discrete feature sets (e.g., εmin = 1 for cases where every actionable feature
is binary or integer-valued). Constraints (7e) and (7f) ensure that either δ+j,k > 0 or δ−j,k > 0. These are “Big-M constraints"
where the Big-M parameters can be set to represent the largest value of signed distances. Given an action aj ∈ [aLB

j , aUB
j],

we can set M+
j,k := |aUB

j − aj,k) and M−
j,k := |aj,k − aLB

j |.

The formulation chooses each action in a ∈ A(x)/Aopt to minimize the L1 norm. We compute the L1-norm component-
wise as |aj | := a+j +a−j where the variables a+j and a−j are set to the positive and negative components of |aj | in Constraints
(7a) and (7b). This choice of objective is meant to induce sparsity among the actions we recover by repeatedly solving
Algorithm 1. Given that the objective function does not affect the feasibility of the optimization problem, one could set the
objective to 1 when solving the problem for fixed-point detection.

C.3. MIP Formulation for IsReachable

Given a point x ∈ X , an action set A(x), we can formulate the optimization problem for IsReachable(x,x′, A(x))
as a special case of the MIP in (7) in which we set Aopt = ∅ and include the constraint a = x − x′. In this case,
any feasible solution would certify that x′ can be attained from x using the actions in A(x). Thus, we can return
IsReachable(x,x′, A(x)) = 1 if the MIP is feasible and IsReachable(x,x′, A(x)) = 0 if it is infeasible.

C.4. Encoding Actionability Constraints

We describe how to extend the MIP formulation in (7) to encode salient classes of actionability constraints. Our software
includes an ActionSet API that allows practitioners to specify these constraints across each MIP formulation.

Encoding Preservation for Categorical Features Many datasets contain subsets of features that reflect the underlying
value of a categorical attribute. For example, a dataset may encode a categorical attribute with K = 3 categories such
marital_status ∈ {single,married, other} using a subset of K − 1 = 2 features such as married and single. In
such cases, actions on these features must obey non-separable actionability constraints to preserve the encoding – i.e., to
ensure that a person cannot be married and single at the same time.

We can enforce these conditions by adding the following constraints to the MIP Formulation in (7):

L ≤
∑
j∈J

xj + aj ≤ U (8)

Here, J ⊆ [d] is the index set of features with encoding constraints, and L and U are lower and upper limits on the number
of features in J that must hold to preserve an encoding. Given a standard one-hot encoding of a categorical variable with K
categories, J would contain the indices of K − 1 features (i.e., dummy variables for the K − 1 categories other than the
reference category). We would ensure that all actions preserve this encoding by setting L = 0 and U = 1.

Logical Implications & Deterministic Causal Relationships Datasets often include features where actions on one
feature will induce changes in the values and actions for other features. For example, in Table 1, changing is_employed

from FALSE to TRUE would change the value of work_hrs_per_week from 0 to a value ≥ 0.

We capture these conditions by adding variables and constraints that capture logical implications in action space. In the
simplest case, these constraints would relate the values for a pair of features j, j′ ∈ [d] through an if-then condition such as:
“if aj ≥ vj then a′j = vj′". In such cases, we could capture this relationship by adding the following constraints to the MIP
Formulation in (7):

Mu ≥ aj − vj (9)
M(1− u) ≥ vj − aj (10)

uvj′ = aj′ (11)
u ∈ {0, 1}

The constraints shown above capture the “if-then" condition by introducing a binary variable u := 1[aj ≥ vj]. The
indicator is set through the Constraints (9) and (10) where M := aUB

j − vj . If the implication is met, then aj′ is set to vj′

6

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

through Constraint (11). We apply this approach to encode a number of salient actionability constraints shown in Table 1 by
generalizing the constraint shown above to a setting where: (i) the “if" and “then" conditions to handle subsets of features,
and (ii) the implications link actions on mutable features to actions on an immutable feature (i.e. so that actions on a mutable
feature years_since_last_application will induce changes in an immutable feature age).

Custom Reachability Conditions We now describe a general-purpose solution to specify “reachable" values for a subset
of discrete features. These constraints can be used when we need to encode constraints that require fine-grained control over
the actionability of different features. For example, when specifying actions over one-hot encoding of ordinal features (e.g.,
max_degree_BS and max_degree_MS as in Table 1) or as ‘thermometer encoding" (e.g.,monthly_income_geq_2k,
monthly_income_geq_5k, monthly_income_geq_10k). In such cases, we can formulate a set of custom reachability
constraints over these features given the following inputs:

• index set of features J ⊂ [d],

• V , a set of all valid values that can be realized by the features in J .

• E ∈ {0, 1}k×k, a matrix whose entries encode the reachability of points in V : ei,j = 1 if and only if point vi can reach
point vj for vi, vj ∈ V .

Given these inputs, we add the following constraints for each j ∈ J to the MIP Formulation in (7):

aj =
∑

k∈E[i]

ei,kaj,kuj,k (12)

1 =
∑

k∈E[i]

uj,k (13)

uj,k ≤ ei,k (14)
uj,k ∈ {0, 1}

Here, uj,k := 1[x′ ∈ V] indicates if we choose an action to attain point x′ ∈ V . Constraint (12) defines the set of reachable
points from i, while Constraint (12) ensures that only one such point can be selected. Here, ei,k is a parameter obtained
from the entries of E for point i, and the values of aj,k are set as the differences from xj to x′

j where x,x′ ∈ V . We present
examples of how to use these constraints to preserve a one-hot encoding over ordinal features in Fig. 2, and to preserve a
thermometer encoding in Fig. 3.

V

IsEmployedLeq1Yr IsEmployedBt1to4Yrs IsEmployedGeq4Yrs E

0 0 0 [1, 1, 0, 0]

1 0 0 [0, 1, 1, 0]

0 1 0 [0, 0, 1, 1]

0 0 1 [0, 0, 0, 1]

Figure 2: Here V denotes valid combinations of features in columns 1 - 3. E in column 4 and shows which points can be reached. For
example, [1, 1, 0, 0] represents point [0, 0, 0] can be reached and point [1, 0, 0] can be reached, but no other points can be reached.

V

NetFractionRevolvingBurdenGeq90 NetFractionRevolvingBurdenGeq60 NetFractionRevolvingBurdenLeq30 E

0 0 0 [1, 1, 0, 0]

1 0 0 [0, 1, 0, 0]

0 1 0 [1, 1, 1, 0]

0 1 1 [1, 1, 1, 1]

Figure 3: Here V denotes valid combinations of features in columns 1 - 3. For these features, we wanted to produce actions that would
reduce NetFractionRevolvingBurden for consumers. E in column 4 and shows which points can be reached. For example,
[1, 1, 0, 0] represents point [0, 0, 0] can be reached, and point [1, 0, 0] can be reached, but no other points can be reached.

7

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

D. Demonstrations
D.1. Ensuring Recourse in Lending

Setup We work with the FICO heloc dataset [16], which covers n = 3184 consumers and contains d = 29 features
about their credit history. Here, yi = +1 if a consumer i has duly repaid a home equity loan. Our goal is to ensure
recourse over the training data – so that we can flag models that permanently deny access to credit [38, 9], and use
recourse provision methods to produce adverse action notices [1]. We work with a domain expert in the U.S. credit
industry to identify common constraints on features. Our final action set includes 24 constraints, both separable (e.g.,
RevolvingTradesWBalance is a positive integer, MostRecentTradeLastYear can only increase), and non-separable
(e.g., RevolvingDebtBurdenLeq30, RevolvingDebtBurdenGeq60).

Results We generate reachable sets for all points in the training data using Algorithm 1 and use them to perform recourse
verification for LR and XGB classifiers. We summarize the feasibility of recourse in Fig. 4. Our results reveal 733 predictions
without recourse for LR, and 453 for XGB. In this case, we find 5 fixed points that are assigned positive predictions. Thus, all
predictions without recourse stem from a generalized reachable set. The mix of individual feature constraints and constraints
on the interactions between features causes fixed points and reachable sets with no recourse.

Predictions without recourse may have serious implications for consumers attempting to acquire a loan. A specific example
is a consumer with 10 years of account history, and 15 open credit and fixed loans with a majority of them paid off. Among
their open fixed loans, there is a substantial remaining balance that needs to be paid, and they experienced a delinquent trade
within the past year. They are denied by both classifiers. This consumer has the ability to reach 7 other points by reducing
their one credit card loan with balance and increasing the number of years they have open and active loans. However, even if
with all these changes, they will still be denied approval.

Our results can guide interventions in model development to ensure recourse. At a minimum, practitioners can use the
information from this analysis for model selection. In this case, we find that both classifiers have similar performance in
terms of AUC, but XGB assigns 280 fewer predictions without recourse. More generally, we can identify immutable features
that lead to infeasibility in predictions. In this case, our analysis reveals that a key feature among individuals assigned
predictions without recourse is MaxDelqEver, which determines the maximum duration of delinquency. In this case, one
can restore recourse by replacing this feature with an alternative that is mutable MaxDelqInLast5Years.

LR XGB

+
|

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

0

100

0

100

S
iz

e
of

 R
ea

ch
ab

le
 S

et

Recourse − Incorrect
Recourse − Correct
No Recourse − Incorrect
No Recourse − Correct

Figure 4: Composition of reachable sets for the heloc for LR and XGB. Each plot shows the size of reachable sets for each training
example delineated by Algorithm 1. The top row displays sizes of reachable sets for samples with negative predictions and the bottom
row for samples with positive predictions. Correct/incorrect denotes where the true label does/does not equal the predicted label and
Recourse/No Recourse denotes if recourse is feasible/infeasible. We highlight predictions without recourse for both correctly classified
and incorrectly classified negative points. We can see predictions without recourse are prevalent with all reachable set sizes and can be
drastically different between classifiers.

8

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Actions

Feature x a1 a2 a3 a4 a5 a6 a7

AvgYearsInFileGeq3 1 - - - - - - -

AvgYearsInFileGeq5 0 1 - 1 1 1 1 1

AvgYearsInFileGeq7 0 - - 1 - 1 1 1

AvgYearsInFileGeq9 0 - - - - - 1 1

ExternalRiskEstimate 59 - - - - - - -

InitialYearsOfAcctHistory 2 - - - - - - -

ExtraYearsOfAcctHistory 8 - - - - - - -

MostRecentTradeWithinLastYear 1 - - - - - - -

MostRecentTradeWithinLast2Years 1 - - - - - - -

AnyDerogatoryComment 0 - - - - - - -

AnyDelTradeInLastYear 1 - - - - - - -

AnyTrade120DaysDelq 0 - - - - - - -

AnyTrade90DaysDelq 0 - - - - - - -

AnyTrade60DaysDelq 1 - - - - - - -

AnyTrade30DaysDelq 0 - - - - - - -

NumInstallTrades 8 - - - - - - -

NumInstallTradesWBalance 2 - - - - - - -

NumRevolvingTrades 7 - - - - - - -

NumRevolvingTradesWBalance 1 - -1 - -1 -1 - -1

NetFractionInstallBurdenGeq90 0 - - - - - - -

NetFractionInstallBurdenGeq70 1 - - - - - - -

NetFractionInstallBurdenGeq50 1 - - - - - - -

NetFractionInstallBurdenGeq30 1 - - - - - - -

NetFractionInstallBurdenGeq10 1 - - - - - - -

NetFractionInstallBurdenEq0 0 - - - - - - -

NetFractionRevolvingBurdenGeq90 0 - - - - - - -

NetFractionRevolvingBurdenGeq60 0 - - - - - - -

NetFractionRevolvingBurdenLeq30 1 - - - - - - -

NumBank2NatlTradesWHighUtilizationGeq2 0 - - - - - - -

Table 4: Prototype example of a prediction without recourse under LR and XGB for the heloc dataset. Although this consumer has
feasible actions they are still unable to obtain recourse since every reachable point is negatively classified. In this demo, there are 453
examples of consumers that may have feasible actions, but they are still predictions without recourse by LR and XGB. In this table, x
represents all the feature values for this consumer. a1, . . . ,a7 represent all the feasible actions for this consumer.

9

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

D.2. Certifying Adversarial Robustness in Content Moderation

Our machinery can also certify adversarial robustness to manipulations that normally cannot be captured by traditional
threat models such as perturbations within an Lp ball [see, e.g., 28, 47, 34, 67, 7]. In this demonstration, we show that our
methods let us reason about the behavior of arbitrary models under semantically meaningful adversarial manipulations of
the feature vectors. Specifically, we do so by building action sets that encode constraints from Table 1. In what follows, we
showcase this by evaluating the adversarial robustness of a bot detector on a social media platform.

Feature LB UB Actionable

source_automation 0 1 F

source_other 0 1 F

source_branding 0 1 F

source_mobile 0 1 F

source_web 0 1 F

source_app 0 1 F

follower_friend_ratio 0.83 1.16×105 F

age_of_account_in_days_geq_365 0 1 T

age_of_account_in_days_geq_730 0 1 T

age_of_account_in_days_le_365 0 1 T

user_replied_geq_10 0 1 T

user_replied_geq_100 0 1 T

user_replied_le_10 0 1 T

user_favourited_geq_1000 0 1 T

user_favourited_geq_10000 0 1 T

user_favourited_le_1000 0 1 T

user_retweeted_geq_1 0 1 T

user_retweeted_geq_10 0 1 T

user_retweeted_geq_100 0 1 T

user_retweeted_le_1 0 1 T

Table 5: Features used for the Twitter bot detector. The groups of features age_of_account_*, user_replied_*,
user_favourited_*, and user_retweeted_* are non-separable thermometer-encoded.

Setup We use the dataset of Twitter accounts from April 2016 annotated by experts [18] as genuine (“human”) labeled as
y = +1 or those representing inauthentic behavior (“bot”) labeled as y = −1. As before, we consider a processed version
with n = 1438 accounts and d = 20 features on their account history and activity (e.g., age of account, number of tweets,
re-tweets, replies, use of apps), listed in Table 5. As in ??, we train a logistic regression and an XGBoost model. We set
aside 287 accounts (20%) as a held-out test dataset.

Our goal is to demonstrate the use of Algorithm 2 for evaluating the robustness of a detector to adversarial manipulations.
We assume that the adversary starts with a bot account that is correctly detected as bot, and aims to modify the features of
the account until it is classified as human. The capabilities of the adversary include procuring additional tweets, retweets,
and replies; waiting to increase the account age, and adding tweets from previously unused categories of apps. As this is a
complex model of adversarial capabilities which includes non-separable constraints, it cannot be captured by the commonly
considered box constraints or Lp distances.

To evaluate adversarial robustness, we perform the following procedure. We run Algorithm 2 to generate reachable sets for
all correctly classified bot accounts. We then evaluate the prediction of the detector on each of the points in the corresponding
reachable set. Second, we measure adversarial robustness through a version of the robust error metric [as per 39]: the
proportion of the bot accounts from the test set that are correctly classified as bots yet can have their predictions altered
through adversarial actions. Formally, for a set of correctly predicted bot examples {(xi, yi)}mi=1 from the test data, i.e.,

10

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

LR XGB

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

0

100

S
iz

e
of

 R
ea

ch
ab

le
 S

et

Robust
Non−Robust

Figure 5: Composition of reachable sets for Twitter bot detection with LR and XGB models. Each plot shows the size of reachable sets
generated by Algorithm 1 for every correctly classified bot account in the test set. Robust/Non-Robust denotes if the bot example can flip
the prediction via manipulations within the action set or not.

Model Type AUC Error Robust Error

LR 0.697 34.1% 44.8%
XGB 0.698 34.5% 33.3%

Table 6: Robust error and performance of LR and XGB models trained for Twitter inauthentic behavior detection task. All metrics are
computed on the test data.

such that every yi = −1 (“bot”) and f(xi) = −1, we define the robust error as:

1

m

m∑
i=1

1[∃x′ ∈ RA(xi) s.t. f(x′) = +1]. (15)

Results In our test data, we have 88 (out of 287 total accounts) bot accounts that are correctly classified as bots. We
generate the 88 corresponding reachable sets for each account, and evaluate the predictions in each. Fig. 5 shows the
distribution of reachable set sizes.

To evaluate the robustness of classifiers, in Table 6, we show the performance metrics of the classifiers along with the
computed robust error. We find that for the majority of bots it is not possible to flip their prediction with any possible action
within the adversarial model, with the robust error being approximately 33.3% for XGB and 44.82% for LR. Despite both
classifiers attaining similar error and AUC, XGB is more robust to adversarial manipulations.

In summary, our method enables us to find adversarial examples, and thus evaluate adversarial robustness, in tabular domains
under a complex model of adversarial capabilities.

11

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

E. Supplement to Section 5 – Experiments
For each dataset, the Simple action set contains only immutability features and integrality constraints. The Separable action
set contains the same actionability constraints as simple and adds monotonicity constraints. The Non-Separable action set
contains all the actionability constraints as separable and adds non-separable constraints. We provide an overview of model
performance on all three datasets in Table 7

Dataset Model Type Sample AUC

heloc LR Train 0.738
heloc LR Test 0.730
heloc XGB Train 0.733
heloc XGB Test 0.737
givemecredit LR Training 0.653
givemecredit LR Test 0.644
givemecredit XGB Training 0.651
givemecredit XGB Test 0.640
german LR Training 0.752
german LR Test 0.690
german XGB Training 0.753
german XGB Test 0.690

Table 7: Performance of LR and XGB models for all 3 datasets. We show the performance of each model on the training dataset and a
held-out dataset. We perform a random grid search to tune the hyperparameters for each model and split the train and test by 80%/ 20%.
We use the entire dataset to calculate the number of predictions without recourse.

E.1. Actionability Constraints for the heloc Dataset

We use the action set shown in Table 8. TWe show a list of all features and their separable actionability constraints in Table 8.
The non-separable actionability constraints for this dataset include:

1. Logical Implications on MostRecentTradeInLastYear and MostRecentTradeInLast2Years is ex-
plained in section Appendix C.4. Here, if MostRecentTradeInLastYear changes from 0 to 1 then
MostRecentTradeInLast2Years must also change from 0 to 1.

2. Custom Constraints to Preserve Thresholds for features NetFractionRevolvingBurdenGeq90,
NetFractionRevolvingBurdenGeq60, NetFractionRevolvingBurdenLeq30. An example can be found
in figure 3. Here, feasible actions must decrease the consumer’s NetFractionRevolvingBurden. Therefore, the
lowest category a consumer can reach is NetFractionRevolvingBurdenLeq30 = 1.

E.2. Actionability Constraints for the givemecredit Dataset

We show a list of all features and their separable actionability constraints in Table 9. The non-separable actionability
constraints for this dataset include:

1. Logical Implications on AnyRealEstateLoans and MultipleRealEstateLoans. Here, if AnyRealEstateLoans
changes from 1 to 0, then MultipleRealEstateLoans must also change from 1 to 0.

2. Logical Implications on AnyOpenCreditLinesAndLoans and MultipleOpenCreditLinesAndLoans. Here, if
AnyOpenCreditLinesAndLoans changes from 1 to 0, then MultipleOpenCreditLinesAndLoans must also
change from 1 to 0.

3. Custom Constraints to Preserve Thresholds for features MonthlyIncomeIn1000sGeq2,
MonthlyIncomeIn1000sGeq5, MonthlyIncomeGeq7K. An example can be found in Fig. 3. Here the feasible actions
increase the consumer’s MonthlyIncome and the maximum value a user can have is where MonthlyIncomeGeq2K =
1, MonthlyIncomeGeq5K = 1, and MonthlyIncomeIn1000sGeq7 = 1

12

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Feature LB UB Actionable Monotonicity
AvgYearsInFileGeq3 0 1 T 0

AvgYearsInFileGeq5 0 1 T 0

AvgYearsInFileGeq7 0 1 T 0

AvgYearsInFileGeq9 0 1 T 0

ExternalRiskEstimate 36 89 F

InitialYearsOfAcctHistory 0 2 T +

ExtraYearsOfAcctHistory 0 48 F

MostRecentTradeWithinLastYear 0 1 T +

MostRecentTradeWithinLast2Years 0 1 T +

AnyDerogatoryComment 0 1 F

AnyDelTradeInLastYear 0 1 F

AnyTrade120DaysDelq 0 1 F

AnyTrade90DaysDelq 0 1 F

AnyTrade60DaysDelq 0 1 F

AnyTrade30DaysDelq 0 1 F

NumInstallTrades 0 55 F

NumInstallTradesWBalance 1 23 F

NumRevolvingTrades 1 85 F

NumRevolvingTradesWBalance 0 32 T -

NetFractionInstallBurdenGeq90 0 1 F

NetFractionInstallBurdenGeq70 0 1 F

NetFractionInstallBurdenGeq50 0 1 F

NetFractionInstallBurdenGeq30 0 1 F

NetFractionInstallBurdenGeq10 0 1 F

NetFractionInstallBurdenEq0 0 1 F

NetFractionRevolvingBurdenGeq90 0 1 T 0

NetFractionRevolvingBurdenGeq60 0 1 T 0

NetFractionRevolvingBurdenLeq30 0 1 T 0

NumBank2NatlTradesWHighUtilizationGeq2 0 1 T -

Table 8: Overview of Separable Actionability Constraints for the heloc dataset.

4. Custom Constraints to Preserve Thresholds for features TotalCreditBalanceGeq1K, TotalCreditBalanceGeq2K,
TotalCreditBalanceGeq5K. An example can be found in figure 3. Here the feasible actions decrease the consumer’s
TotalCreditBalance and the minimum value a consumer can have is where TotalCreditBalanceGeq1K = 0,
TotalCreditBalanceGeq2K = 0, and TotalCreditBalanceGeq5K = 0

13

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Feature Name LB UB Actionable Monotonicity
Age 21 90 F

NumberOfDependents 0 10 F

DebtRatioGeq1 0 1 F

MonthlyIncomeGeq2K 0 1 T 0

MonthlyIncomeGeq5K 0 1 T 0

MonthlyIncomeGeq7K 0 1 T 0

TotalCreditBalanceGeq1K 0 1 T 0

TotalCreditBalanceGeq2K 0 1 T 0

TotalCreditBalanceGeq5K 0 1 T 0

AnyRealEstateLoans 0 1 T 0

MultipleRealEstateLoans 0 1 T 0

AnyOpenCreditLinesAndLoans 0 1 T 0

MultipleOpenCreditLinesAndLoans 0 1 T 0

Table 9: Overview of Separable Actionability Constraints for the givemecredit dataset.

14

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

E.3. Actionability Constraints for the german Dataset

We show a list of all features and their separable actionability constraints in Table 10. The non-separable actionability
constraints for this dataset include:

1. One Hot Encoding for features savings_acct_le_100, savings_acct_bt_100_499,
savings_acct_bt_500_999, savings_acct_ge_1000 An example of this can be found in Appendix C.4.
Here, actions must restrict only one category to be selected.

Feature LB UB Actionable Monotonicity
age 19 75 F

is_male 0 1 F

is_foreign_worker 0 1 F

has_liable_persons 1 1 F

max_approved_loan_duration_geq_10_m 0 1 F

max_approved_loan_amt_geq_10k 0 1 F

max_approved_loan_rate_geq_2 0 1 F

credit_history_no_credits_taken 0 1 F

credit_history_all_credits_paid_till_now 0 1 F

credit_history_delay_or_critical_in_payment 0 1 F

loan_required_for_car 0 1 F

loan_required_for_home 0 1 F

loan_required_for_education 0 1 F

loan_required_for_business 0 1 F

loan_required_for_other 0 1 F

max_val_checking_acct_ge_0 0 1 T +

max_val_savings_acct_ge_0 0 1 T +

years_at_current_home_ge_2 0 1 T +

employed_ge_4_yr 0 1 T +

savings_acct_le_100 0 1 T 0

savings_acct_bt_100_499 0 1 T 0

savings_acct_bt_500_999 0 1 T 0

savings_acct_ge_1000 0 1 T 0

has_history_of_installments 0 1 T +

Table 10: Overview of Separable Actionability Constraints for the german dataset.

15

	Introduction
	Recourse Verification
	Verification with Reachable Sets
	Algorithms & Demonstrations
	Experiments
	 Appendices
	Notation
	Proofs
	Proof of Theorem 4
	Additional Theory on Existence and Composition

	Algorithms
	Outline
	MIP Formulation for FindAction
	MIP Formulation for IsReachable
	Encoding Actionability Constraints

	Demonstrations
	Ensuring Recourse in Lending
	Certifying Adversarial Robustness in Content Moderation

	Supplement to Sec::Experiments – Experiments
	Actionability Constraints for the heloc Dataset
	Actionability Constraints for the givemecredit Dataset
	Actionability Constraints for the german Dataset

