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Abstract

Machine learning models are now used to de-
cide who will receive a loan, a job interview, or
a public service. Standard techniques to build
these models use features that characterize people
but overlook their actionability. In domains like
lending and hiring, models can assign predictions
that are fived—-meaning that consumers who are
denied loans and interviews are precluded from
access to credit and employment. In this work,
we introduce a formal testing procedure to flag
models that assign “predictions without recourse,"
called recourse verification. We develop machin-
ery to reliably test the feasibility of recourse for
any model under user-specified actionability con-
straints. We demonstrate how these tools can
ensure recourse and adversarial robustness and
use them to study the infeasibility of recourse in
real-world lending datasets. Our results highlight
how models can inadvertently assign fixed predic-
tions that preclude access and motivate the need
to design algorithms that account for actionability
when developing models and providing recourse.

1. Introduction

Machine learning models routinely assign predictions to
people — be it to approve an applicant for a loan [29], a job
interview [6, 55], or a public benefit [69, 15, 19]. Models
in such applications use features that capture individual
characteristics without accounting for how individuals can
change them. In turn, models may assign predictions that
are invariant to the actions of their decision subjects. In
effect, even the most accurate model can assign a prediction
that is fixed (see Fig. 1).

The responsiveness of predictions to actions is a vital aspect
of their safety in consumer-facing applications. In fraud
detection and content moderation [31, 47, 39], for example,
models should assign fixed predictions to prevent malicious
actors from circumventing detection. In lending and hiring,
however, predictions should exhibit some sensitivity to ac-
tions. Otherwise, models that deny loans and interviews
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Figure 1: Stylized classification task where the most accu-
rate linear classifier assigns a prediction without recourse to a
fixed point. We predict y = repay_loan using two features
(z1,22) = (has_phd, age>60) that can only change from 0
to 1. Here, (z1,z2) = (1,1) is a fixed point that will be as-
signed a prediction without recourse by any classifier f such that

f(1,1) = —1. We show that this point is assigned a prediction
without recourse by f, the empirical risk minimizer for a dataset
with n™ = 60 negative examples and n™ = 90 positive examples.

may permanently preclude access to credit and employment
— thus violating rights and regulations like equal opportu-
nity [4] and universal access [10].

There is a broad lack of awareness that models in lending
and hiring may inadvertently assign fixed predictions. In
this work, we propose to test for this effect by certifying the
infeasibility of recourse [61, 63, 35]. In contrast to prior
work on recourse [36, 64], our goal is verification — i.e.,
to check if a model assigns predictions that every decision
subject can change through actions on its features. This
procedure can return falsifiable information about a model
by certifying that recourse is feasible under custom action-
ability constraints. In practice, verification is a challenging
computational ask — as a procedure may return information
that is “incorrect” or “inconclusive” when it fails to complex
actionability constraints or fails to check the predictions of
a model over the entire space defined by these constraints.

We propose a model-agnostic approach for recourse verifi-
cation with reachable sets — i.e., regions of feature space
that are confined by actionability constraints. Reachable
sets are a powerful tool for verification because they can be
constructed directly from the actionability constraints and
can be used to characterize the feasibility of recourse for
all possible models. In particular, any model will assign
a prediction without recourse if it fails to assign a target
prediction over its reachable set.

Related Work Our work is related to research on algorith-
mic recourse, which studies how to change the prediction



of a given model through actions in feature space [61, 63].
Much work on this topic develops methods for provision —
i.e., to provide a person with an action to change the predic-
tion of a given model [see e.g., 30, 13, 51, 36, 64, 65, 56, 33].
We focus on verification — i.e., to test if a model assigns
predictions that each person can change using any action. Al-
though actionability is a defining characteristic of recourse,
the fact that it may induce infeasibility is not often dis-
cussed [see 61, 37, 11, for exceptions]. Our work motivates
the need to study and test infeasibility by showing that re-
course may not exist under realistic actionability constraints.

We motivate the need for verification as a procedure to
safeguard access in consumer-facing applications, and to
operationalize recourse provision [63, 58]. Our motiva-
tion is shared by a stream of recent work on the robust-
ness of recourse with respect to distributions shifts [57, 21],
model updates [60, 53], group dynamics [3, 52, 24], and
causal effects [45, 35, 66]. Testing infeasibility may be
valuable for eliciting individual preferences over recourse
actions [68, 71, 70], measuring the effort required to ob-
tain a target prediction [27, 22], and building classifiers that
incentivize improvement [59, 40, 41, 2, 26], or preventing
strategic manipulation [23, 12, 43, 49, 48, 17, 8, 25]. Our
tools can support other verification tasks that test the sensi-
tivity of model predictions to perturbations in semantically
meaningful feature spaces, such as ensuring adversarial ro-
bustness on tabular data [44, 34, 28, 67, 47, 39] or stress
testing for counterfactual invariance [62, 46, 54].

2. Recourse Verification

We consider a standard classification task where we are
given a model f : X — ) to predict a label y € )V =

{=1,+1} using a feature vector x = [x1,...,24] in a
bounded feature space X} x ... x X3 = &X. We assume
each instance represents a person, and that f(x) = +1

represents a target prediction (e.g., loan approval).

We study if a person can attain a target prediction from
a given model by performing actions on its features. We
represent each action as a vector @ = [a1,...,aq] € R4
that would shift a feature vector fromxz tox +a =’ € X.
We denote the set of all actions available to a person from
x € X through the action set A(x) where 0 € A(x).

Recourse Givenamodel f: X — )Y and a pointx € X
with action set a € A(x), the recourse provision task seeks
to find an action to attain a target prediction by solving an
optimization problem of the form:
min cost(a | x)
st. flx+a)=+1, €))
a € A(x),

where cost(a | ) > 0 is the cost of enacting a from x [61].

The recourse verification task seeks to determine the fea-
sibility of the optimization problem in (1) —i.e., to test if
f(x) = f(x+a) for all a € A(x). We formalize the
verification procedure as a function such that:

Yes, only if there exists a € A(x)
such that f(x + a) = +1

Recourse(x, f, A) = ¢ No, onlyif f(x+a)=—-1
forall a € A(x)
1, otherwise

We say that the procedure certifies feasibility for x if it
returns Yes, and certifies infeasibility if it returns No. The
procedure also abstains by outputting | when it cannot
evaluate the conditions to certify feasibility or infeasibility.
This may occur, for example, when we call verification using
an underspecified action set A(x) C A(z) and discover that
f(x+a)=—1foralla € A(x).

Specifying Action Sets Semantically meaningful features
will often admit hard actionability constraints. As shown
in Table 1, we can state these conditions in natural lan-
guage and encode them as constraints in an optimization
problem. Although actionability differs substantially across
individuals and context [see 63, 5], every task will admit a
set of minimal constraints that can be gleaned from a data
dictionary —e.g., conditions that pertain to how a feature is
encoded or its physical limits. In settings where we may
wish to impose assumptions constraints on actionability, the
functionality shown in Table 1 can handle these assumptions
in a way that promotes transparency, contestability, and par-
ticipatory design. Individuals can write their assumptions in
natural language — allowing stakeholders to scrutinize and
contest these assumptions even without technical expertise
in machine learning. If stakeholders disagree on these as-
sumptions, they can tell if these disagreements impact the
results of their analysis (e.g., via an ablation study). Ulti-
mately if stakeholders cannot reach a consensus, one can
run verification under the “most conservative” actionability
constraints they agree on. We observe that this collection
is not empty, as it will always contain a set of minimal
constraints.

3. Verification with Reachable Sets

We introduce a model-agnostic approach for recourse ver-
ification. Our approach stems from the observation that
recourse is feasible over regions of features that are con-
fined by actionability constraints. We call these regions
reachable sets.

Definition 1 (Reachable Set). Given a point x and action
set A(x), its reachable set contains all feature vectors that
can be attained using an action a € A(xz): Ra(x) =
{x+alacAlx)}



Constraint Type Sep. Cvx. Sample Constraint Features Encoding
Immutability v v n_dependents should not change aj = n_dependents a; =0
Monotonicity v v prior_applicant can only increase aj = prior_applicant a; >0
Integrality v X n_accounts must be positive integer < 10 Zj = n_accounts a; € ZN[0— 2,10 — 2]
. : reserve one-hot encodin, aj =married
Encoding: Categorical Features X x P e ! aj+ap =1, {aj,a;} € {0,1}
of married,single I = single
. aj =) —x; ap =) — )
. preserve one-hot encoding of zj = max_degree_BS ) ] , ,
Encoding: Ordinal Features X LS i+ =1z >al,
max_degree_BS,max_degree_MS T} = max_degree_MS o 7
{a}, 21} € {0,1}
if is_employed = TRUE i aj =) —x; ap =) —
. . z; = is_employed, ] ,
Logical Implications X X then work_hrs_per_week >0 e . TE {0,1} =} €[0,168],
2} = work_hrs_per_wee .
else work_hrs_per_week = 0 j, < 168 x’,
. if years_at_residence increases Zj = years_at_residen
Deterministic Causal X X N s a; < ap

then age will increase commensurately

) = age

Table 1: Catalog of actionability constraints. We show whether a constraint is separable (can be specified for each feature independently)
and convex. We show an example of each constraint type to show that they can be expressed in natural language and encoded as a

constraint in a combinatorial optimization problem.

Even though reachable sets map to action sets, action sets
are easier to specify indirectly through constraints (see Sec-
tion 2). Obtaining the reachable set from a specification
of the action set is not trivial, and we provide methods for
doing so in the next sections.

Given any model f : X — ), we can verify recourse for a
point x by evaluating predictions over its reachable set R =
R () or its interior approximation R = R'}' C R4 (x).

Yes, if there exists ©’ € R
such that f(a') = +1
No, if f(z')=-1

Recourse(z, f, R) = forall #' € R = Ra(x)

1, if f(a')=-1
forallz’ € R C Ra(x)

The procedure in Eq. (2) has two key benefits:

Model-Agnostic Certification: It provides a way to certify
infeasibility for any model. In this setting, a model-agnostic
approach may simplify verification because it only consid-
ers actionability constraints. In contrast, a model-specific
approach would have to solve an optimization problem with
two kinds of challenging constraints as in Eq. (1): (i) pre-
diction constraints f(x + a) = +1, and (ii) actionability
constraints a € A(x).

Safety through Abstention: It will abstain when it can-
not certify recourse. For instance, suppose that we call the
procedure using an interior approximation of the reachable
set R (z) C R4(z) and fail to find a point in R'(z) that
achieves the target prediction. In this case, an abstention is
valuable because it flags « as a potential prediction without
recourse. In practice, this leads to practical benefits. For
example, we can call Recourse(x, f, R) with an approxi-
mate reachable set R = R''(z) to screen points that have
recourse. We can then revisit those points on which the
procedure abstained with either a better approximation or
the full reachable set R = R4 ().

Certain classes of reachable sets can support verification:

Definition 2 (Fixed Point). A point x is fixed if its reachable
set only contains itself: Ra(x) = {x}.

Definition 3 (Fixed Region). A fixed region is a reach-
able set Ra(x) such that for any ¥’ € Ra(x) we have
Ra(x’) C Ra(z).

Given a fixed point, we can determine if a model violates
recourse by checking its prediction on a single point. Given
a fixed region, we can verify recourse for all points within it
without generating reachable sets.

Reachable sets let us verify recourse for an arbitrary classi-
fier using a set of labeled examples.

Theorem 4 (Certification with Labeled Examples). Suppose
we have a dataset of labeled examples {(x;,y;)}7—,. Every
model f : X — ) can provide recourse to x if:

n

1
FNR(f) < Fi;]l[:ci €ER A y; =+1] )

where FNR(f) := L 5" 1[f(z;) = =1 A y; = +1]
is the false negative rate of f and where n™ is number of
positive examples, and R C R(x) is any subset of the
reachable set.

The proof of Theorem 4 relies on the pigeonhole principle,
and is provided in Appendix B. The theorem states that
given a reachable set R4 (x), we immediately know that
any model that is sufficiently accurate on positive examples
in the dataset must provide recourse for . Conversely,
having measured a model’s false negative rate, we know
that there exists recourse for reachable sets with a certain
level of prevalence of positive examples.

4. Algorithms & Demonstrations

We present algorithms for recourse verification with reach-
able sets in Appendix C, and demonstrations for how they



can be used to ensure recourse in lending and adversar-
ial robustness in content moderation in Appendix D. Our
algorithms are designed to certify recourse in a way that
minimizes abstentions — i.e., to cover the detection of as
many predictions without recourse as possible. To this end,
they can delineate fixed points in general feature spaces,
construct reachable sets over discrete feature spaces, and
identify predictions with recourse by testing reachability
over samples.

5. Experiments

We present an empirical study of infeasibility in recourse.
Our goal is to study the prevalence of predictions without
recourse under actionability constraints, and to characterize
the reliability of verification using existing methods. We
include code to reproduce our results in our anonymized
repository and additional details in Appendix E.

Setup We work with three publicly available lending
datasets in Table 2. Each dataset pertains to a task where
predictions without recourse preclude credit access and re-
course provision. To certify the infeasibility of recourse for
every possible instance, we discretize all mutable features
in each dataset. We then use each dataset to fit a classi-
fier using logistic regression (LR) and XGBoost (XGB). We
construct reachable sets by calling Algorithm 1 in CPLEX
v22.1 on a 3.2GHz CPU with 8GB RAM. We benchmark
our method (Reach) against baselines for recourse provision:
AR [61], a model-specific method that can certify infeasibil-
ity for linear models with separable actionability constraints;
DiCE [50], a model-agnostic method that supports separa-
ble actionability constraints. We evaluate the feasibility of
recourse under nested action sets: Non-Separable, which
includes constraints on immutability, monotonicity, and non-
separable constraints; Separable, which only includes con-
straints on immutability and monotonicity; Simple, which
only includes constraints on immutability.

On Predictions without Recourse We summarize the
reliability of recourse verification for each dataset, method,
and model class in Table 2. Our results show how recourse
may not exist under actionability constraints. Recourse
is generally feasible under simple constraints such as im-
mutability and integrality, with infeasibility mainly arising
as we consider more complex constraints. On german, for
example, LR only assigns predictions without recourse un-
der Separable and Non-Separable constraints to 0.4% and
2.1% of the data, respectively.

We find minor variations in the prevalence of predictions
without recourse across model classes. Given that the reach-
able sets do not change under a fixed dataset and actionabil-
ity constraints, these differences reflect differences in the

Simple Separable Non-Separable

Dataset Model Type Metrics  Reach AR DIiCE Reach AR DIiCE Reach AR DIiCE
Recourse  908%  99.1%  947% 91.9% 955% 827% 949% 224% 113%
“DTI;";'L}WH 1 NoRecourse  0.0%  09% — 04%  45% —
LR Abstin  9.2% — - 77% - =
n=1,000
o Loopholes ~ —  0.0%  0.0% —  00%  00%
Blindspots ~ —  00%  53% — 00% 173%
Recourse  90.4% 94.7%  91.9% 84.5%
No Recourse 0.0% — 0.4% —
xGB Abstain  9.6%  — - 1% — —
Loopholes  — 0.0% — 00%  — 62.8%
Blindspots ~ — 5.3% — 15.5% — 16.0%
] Recourse  1000%  100.0% 100.0% 99.9% 99.9% 99.9% 99.9% 64.9% 53.6%
“K’l;;:m:‘ ' NoRecourse  00%  0.0% — 00% 01%  — 01% 00% —
e LR Abstain  0.0% — — 0% L A —
I, Loopholes —  00%  00%  — 00% 00%  — 351% 464%
Blindspots —  00%  00%  — 00% 01% — 00% 00%
Recourse  100.0% 100.0%  99.9% 99.9%  99.9% 28.6%
NoRecourse  0.0% — 0% — 0% —
XGB Abstain  0.0%  — — 0% — — 0% — —
Loopholes — 00%  — 00%  — 71.4%
Blindspots — 00%  — 0.1% — 0.0%
etoe Recourse 247%  852%  517% 29.0% 622% 482% 573% 23.5% 204%
y NoRecourse  0.0%  14.8% — 00% 318%  — 419% 378% = —
FICO [16]
s LR Abstain  75.3% — — 710% - — 08 - -
N Loopholes — —  0.0%  0.0% — 00% 00%  — 388% 27.8%
Blindspots ~ —  0.0%  48.3% —  00% 518%  — 00% 51.8%
Recourse  84.4% 99.8%  35.1% 57.5% 132% 23.4%
NoRecourse  0.0% — 0% — 264% —
XGB Abswin  156% ~ — — 9% — — 0s%  — —
Loopholes ~ — 0.0% — 00%  — 34.1%
Blindspots ~ — 02% — 25% — 42.5%

Table 2: Reliability of recourse of verification over datasets, model
classes, and actionability constraints. We determine the feasibility
of recourse for training examples using our method (Reach), then
use them to evaluate the reliability of verification using salient
methods for recourse provision. We report the following metrics
for each method and model type: Recourse — % of points where a
method certifies that recourse exists, No Recourse — % of points
where the method certifies no recourse exists, Abstain — % of points
in which Reach cannot determine if recourse exists, Loopholes
— % of points whose actions are inactionable, Blindspots — % of
points where a method fails to return an action.

number of negative predictions across models. We observe
that predictions without recourse can drastically change
across model types that are equally accurate at a population
level. In Non-Separable heloc, for example, we observe a
15.5% difference in predictions without recourse between
LR and XGB even though both classifiers have similar per-
formance in terms of the area under the ROC curve (AUC)
on the test dataset (0.729 vs 0.737). This highlights the
potential to choose between models to ensure recourse.

On Pitfalls of Verification Our results highlight common
failure modes in using methods for recourse provision for
verification as described in Section 2. In heloc, for exam-
ple, we observe 26.4% of points without recourse with XGB.
In cases where recourse is feasible, methods may fail to
return any actions. However, we may be unable to tell if a
point has recourse or if a method was unable to generate it
in the first place. For example, DiCE fails to find actions for
42.5% of points. However, there may exist feasible actions.
This effect highlights the potential failure to account for ac-
tionability constraints by, e.g., post-hoc filtering [42]. In this
case, DIiCE cannot produce any actions after filtering a set of
diverse counterfactual explanations to enforce implication
constraints related to deterministic causal relationships and
a thermometer encoding.


https://anonymous.4open.science/r/infeasible-recourse-3E10/README.md
https://anonymous.4open.science/r/infeasible-recourse-3E10/README.md
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A. Notation

Symbol Meaning

X C R4 feature space

y={-1,+1} label space

X; CR feature space for feature j

ac A(x) action vector from x € X

A(x) action setforz € X. 0 € A(x)

Aj(z) set of feasible actions for feature j from x

Ra(z) :={x+a|acAx)}
R¥(2) C Ra(a)

NA(:I:)

f:Xx=Y

St = (@, y:) ) sty = +1
S™ = {(i,y) 1y sty = —1
nt =57

n” =S|

(k] :={1,...,k}

reachable set from =

inner approximation of a reachable set from
set of sibling points from x

classification model

a set of positive examples

a set of negative examples

number of positive examples in a sample
number of negative examples in a sample

set of positive integers from 1 to k

Table 3: Table of Notation



B. Proofs

In this Appendix, we present proofs of our claims in Section 3.

B.1. Proof of Theorem 4

Theorem 4. Suppose we have a dataset of labeled examples {(x;,y;)}"_,. Every model f : X — Y can provide recourse
to x if:

1 n
FNR(f jz [, € R A y; = +1] 3)
where FNR(f) := - >°" | 1[f(x;) = —1 A y; = +1] is the false negative rate of f and where n* is number of positive
examples, and R C Ry (x ) is any subset of the reachable set.

Proof. The proof is based on an application of the pigeonhole principle over the positive examples ST := {z; | y; =
+1,4 € [n]}. Given a classifier f, denote the total number of true positive and false negative predictions over S* as:

TP(f) = D 11/ @) = +1 Ay = +1]  FN(/)i= 3" 1[f (@) = —1 Ay; = +1]

i=1 i=1

Say that for a given point & with a reachable set R = R 4(x), the classifier obeys:
TP(f) >nt —|STNR|.

In other words, the number of correct positive predictions exceeds the number of positive examples outside R. In this case,
by the pigeonhole principle, the classifier f must assign a correct prediction to at least one of the positive examples in R —
i.e., there exists a point ' € S* N R such that f(x') = y; = +1. Given R C R4(x), we have that z € R (z). Thus,
we can reach &’ from x by performing the action a = &’ — x — i.e., we can change the prediction from f(x) = —1 to
flx+a)=+1.

‘We recover the condition in the statement of the Theorem as follows:

TP(f) >n" —[STNR| 4

FN(f) < \S* N Rl ®)

FNR(f Z (i € R A y; = +1] (©)

Here, we proceed from Eqn (4) to Eqn. (5) by using the fact that TP(f) = — FN(f), and from Eqn. (5) to (6) by
dividing both sides by — and applying the definition of the false negative rate O

B.2. Additional Theory on Existence and Composition

Proposition 5. Any classification task with bounded features whose actions obey monotonicity constraints must contain at
least one fixed point.

Proof. Consider a set of d features (x1,...,z4) = & € X over a bounded feature space. Let [; and u; denote the lower and
upper bounds on feature j, so that z; € [I;, u;] forall j € [d]

We will proceed to construct a fixed point over X under the following conditions: (i) each feature is monotonically increasing,
so that a; > 0 for all j € [d]; (ii) each feature is monotonically decreasing, so that a; < 0 for all j € [d]; (iii) each feature is
either monotonically increasing or monotonically decreasing so that a; > 0 or a; < 0 forall j € [d].

In the case of (i), the fixed point corresponds to a feature vector & € X such that z; = u; for all j € [d]. We proceed by
contradiction. Suppose  is not a fixed point, then there exists an action @’ € A(x) such that @’ # {0}. In turn, there exists
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aj > 0. Letz’ = x + a' then 2, = z; + a; > u; which violates our initial assumption that «; € [l;, u;]. Thus,  must be
a fixed point.

In the case of (ii), the fixed point corresponds to a feature vector € X such that 2; = [; for all j € [d]. We proceed by
contradiction. Suppose  is not a fixed point, then there exists an action @’ € A(x) such that @’ # {0}. In turn, there exists
aj <0.Letz’ =z +a' then z; = z; + a} < I; which violates our initial assumption that z; € [I;, u;]. Thus,  must be a
fixed point.

In the case of (iii), by combining the above, it can be seen that as long as x; satisfies monotonicity constraints which can
either be increasing or decreasing there must contain at least one fixed point.

uy,if j € Jy
€T, =
T ifj e Jo
where J is the set of indices with monotonically increasing constraints and J_ is the set of indices with monotonically
decreasing constraints.

O

Proposition 6 (Composition of Fixed Points). Consider adding a new feature X311 C R to a set of d features X C RA.
Any fixed point € X induces the following confined regions in the (d + 1)-dimensional space:

* | Xu41]| fixed points in the (d + 1)-dimensional feature space, if x 441 is immutable.

* A fixed point zo := (@, xq41) where T4 is an extreme point of Xg41, that is, g41 := max Xgi1 or Taq1 = min Xgiq
if (d + 1)-th feature is monotonically increasing (respectively, decreasing) in the action set A(zg), and the constraints in
A(zo) are separable.

. , ,
* A fixed region if Rx(x1,%2,...,%q,Tay1) = Ra(w1,22,..., 24,2, ) for any two x4, 1,2} | € g1

Proof. Let us denote the (d + 1)-dimensional feature space as X' := Xy x ... x X3 X Xyg11.

* Suppose a point &’ € X has the same feature values as  in its first d dimensions. As 4 ; is immutable, the only feasible
action for 7, ; is agy1 = 0. This holds for any possible value of x;, ;. This implies that for all feature values of the
(d + 1)-th feature, ' remains a fixed point. Therefore, there must exist | X1 | fixed points.

* Observe that if v441 is an extreme point, then the only possible action is a441 = 0 because the d + 1-th feature must
satisfy a monotonicity constraint. As the constraints in A(zg) are separable by assumption, and A(x) = {0}, zo must
also have only one possible action A(zy) = {0}.

* Given any ' € X where the first d dimensions are the same as in x, we have Ra(z') = Ra(x). As any other
x” € Ra(’) also shares the first d dimensions and is also "/ € R 4 (), we have that R4 (x') C Ra(x).

O



C. Algorithms

In this Appendix, we will first outline our machinery to delineate fixed regions and use them to perform a recourse audit.
Next, we describe how to formulate and solve the optimization problems in Section 4 as mixed-integer programs. We
start by presenting a MIP formulation for the optimization problem solved in the FindAction(x, A(x)) routine and the
IsReachable(x, ', A(x)) routine. Finally, we describe how this formulation can be extended to the complex actionability
constraints in Table 1.

C.1. Outline

Fixed Point Detection We start with a method to detect fixed points, which we also use as a building block in later
methods. We verify if « is a fixed point by solving the optimization problem:

FindAction(x, A(x)) € argmin | al|
s.t. a € A(z)\ {0}.

If FindAction(x, A(x)) is infeasible, we know that x is a fixed point. We formulate FindAction(x, A(x)) as a mixed
integer program, and solve it with an off-the-shelf solver [see e.g., 20]. Once we know that x is fixed, we can certify
Recourse(z, f, A) = Yes if f(x) = +1 and No if f(x) = —1. This approach avoids loopholes and blindspots by
addressing the key requirements for verification. In particular, it supports a rich class of actionability constraints. We present
a formulation that can encode all actionability constraints from Table 1 in ?2.

Verification on Observed Data The next method can certify recourse by testing if a point & can reach another point '
assigned a positive prediction:

IsReachable(x, ', A(x)) :== min 1
st. z=2'—a
a € A(x)

As before, we formulate this problem as a mixed integer program and solve it using an off-the-shelf solver. Given a set
of positive samples ST, we can apply this method for all ' € ST to maximize the chance of finding if the point = has
recourse. If we have identified such reachable points using this method, we can certify Recourse(x, f, A) = Yes.

Reachable Set Generation Our next method can certify feasibility and infeasibility in a discrete feature space by
constructing a reachable set. We present the procedure for generating a reachable set of a given point « in Algorithm 1. For
this, we repeatedly solve FindAction(x, A(x)) (line 3), while removing the previous solution from the considered action set
at every next step (Line 5). The procedure continues until the problem becomes infeasible or another stopping condition
is met. For example, as described in Section 3, we might be interested in generating only a subset of the reachable set
R%(z) C Ra(z). In this case, the stopping condition could be that the algorithm has identified a certain minimum number
of points in the reachable set.

Algorithm 1 GetReachableSet

Require: = € X, where X is discrete; A(x)
Require: Action Sets A(x)
R+ {x},F + A(x)
repeat
if FindAction(a, F) is feasible then
a” « FindAction(z, F)
R+ RU{x+a"}
F + F\{a"}
until stopping condition
Output R C Ra(x)

Reachable Set Generation In Algorithm 1, we present a procedure that uses the optimization in ?? to generate a reachable
set R4 () or its part in a discrete feature space X'. For this, the procedure repeatedly solves ?? (line 3), while reducing the
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considered action set by the previous solution at every step (line 5). The procedure continues until the problem becomes
infeasible or another stopping condition is met. For example, as described in Section 3, we might be interested in generating
only a subset of the reachable set R (z) C Ra(x). In this case, the stopping condition could be that the algorithm has
identified a certain minimum number of points in the reachable set.

Full Sample Audit In Algorithm 2, we present an algorithm to produce a collection of reachable sets for each point in a
dataset —i.e., a collection that can be used to perform the verification procedure in Eq. (2). Our procedure seeks to reduce the
time needed to build this data reachable sets by exploiting the properties of fixed points and fixed regions in Section 3 For
instance, if a reachable set is a fixed region, then by definition we do not need to generate reachable sets for any other point
in the fixed region. We detail the full auditing procedure with optimizations In certain use cases, we can do this without the
need to get the reachable sets of all points in a dataset. For example, if we run the audit during model development to ensure
feasibility, we can stop once we find any prediction without recourse.

Algorithm 2 SampleAudit
Require: Sample S = {x;}7—1; A(:)
C+{}
repeat
x; < Pop(S)
R; < GenReachableSet(x;, A(x;))
if R, = {:L',} then (for separable action sets)
S <+ S\ Na(xzs, A(z:))
else if R; is a fixed region then
S+ S \ R;
C+ CU{R;}
until no points remain in S
Output C, collection of reachable sets for x;

C.2. MIP Formulation for FindAction

Given a point € X, an action set A(x), and a set of previous optima .A°"', we can formulate FindAction(x, A(x)) as the
following mixed-integer program:

mam E a; + a;

j€ld]

s.t. al >a; j € [d] positive component of a; (7a)
a; > —aj; Jj €d] negative component of a ; (7b)
aj=ajx+06/,— 0., J€l[d,ar€ A™ distance from prior actions (Tc)

emin< D (0, —0;4)  ar € A™ any solution is emin away from aj, (7d)
J€ld]

55 < Mgk jeEld,ar € AT 55 >0 = ujn=1 (Te)

65k <M (1—ujk) jeld,ar e A™ 6, >0 = u;p=0 (76)

aj € Aj(x) j€ld separable actionability constraints on j (7g)

6l 0, ERY j €[d] signed distances from aj.j (7h)

ujk € {0,1} j€ld Uj ke 2= 1[6;‘r,k, > 0] (T)

The formulation finds action in the set a € A(x)/A°" by combining two classes of constraints: (i) constraints to restrict
actions @ € A(x) and (ii) constraints to rule out actions in a € A,

The formulation encodes the separable constraints in A(x) — i.e., a constraint that can be enforced for each feature. The
formulation must be extended with additional variables and constraints to handle constraints as discussed in Appendix C.4.
These constraints are handled through the a; € A;(x) conditions in Constraint 7g. This constraint can handle a number of
actionability constraints that can be passed solver when defining the variables a;, including bounds (e.g., a; € [—x;, 10—x;)),
integrality (e.g., aj € {0,1}oraj € {L —x;,L —x; +1,...,U — x,;}), and monotonicity (e.g., a; > 0 or a; < 0).
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The formulation rules out actions in a € A" through the “no good" constraints in Constraints (7¢) to (7f). Here, Constraint
(7d) ensures feasible actions from previous solutions by at least c,;,. We set to a sufficiently small number ey, := 1076 by
default, but use larger values when working with discrete feature sets (e.g., emin = 1 for cases where every actionable feature

is binary or integer-valued). Constraints (7¢) and (7f) ensure that either 6;.rk > O or 5{1@ > (. These are “Big-M constraints"
LB UB
B 4UB]

where the Big-M parameters can be set to represent the largest value of signed distances. Given an action a; € [a] ) Q;

we can set MF, = |aY® — a; ) and M, = |ajj, — a5®.

The formulation chooses each action in @ € A(x)/.A°" to minimize the L; norm. We compute the L;-norm component-
wise as |a;| := a}' +a; where the variables aj and a; are set to the positive and negative components of |a;| in Constraints
(7a) and (7b). This choice of objective is meant to induce sparsity among the actions we recover by repeatedly solving
Algorithm 1. Given that the objective function does not affect the feasibility of the optimization problem, one could set the

objective to 1 when solving the problem for fixed-point detection.

C.3. MIP Formulation for IsReachable

Given a point * € X, an action set A(x), we can formulate the optimization problem for IsReachable(x, z’, A(x))
as a special case of the MIP in (7) in which we set A°?* = () and include the constraint @ = x — «’. In this case,
any feasible solution would certify that 2’ can be attained from « using the actions in A(x). Thus, we can return
IsReachable(x, ', A(x)) = 1 if the MIP is feasible and IsReachable(x, ', A(x)) = 0 if it is infeasible.

C.4. Encoding Actionability Constraints

We describe how to extend the MIP formulation in (7) to encode salient classes of actionability constraints. Our software
includes an ActionSet API that allows practitioners to specify these constraints across each MIP formulation.

Encoding Preservation for Categorical Features Many datasets contain subsets of features that reflect the underlying
value of a categorical attribute. For example, a dataset may encode a categorical attribute with &' = 3 categories such
marital_status € {single, married, other} using a subset of K — 1 = 2 features such as married and single. In
such cases, actions on these features must obey non-separable actionability constraints to preserve the encoding —i.e., to
ensure that a person cannot be married and single at the same time.

We can enforce these conditions by adding the following constraints to the MIP Formulation in (7):

L<> wj+a; <U ®)
j€eT
Here, J C [d] is the index set of features with encoding constraints, and L and U are lower and upper limits on the number
of features in J that must hold to preserve an encoding. Given a standard one-hot encoding of a categorical variable with K
categories, J would contain the indices of K — 1 features (i.e., dummy variables for the K — 1 categories other than the
reference category). We would ensure that all actions preserve this encoding by setting L = 0 and U = 1.

Logical Implications & Deterministic Causal Relationships Datasets often include features where actions on one
feature will induce changes in the values and actions for other features. For example, in Table 1, changing is_employed
from FALSE to TRUE would change the value of work_hrs_per_week from O to a value > 0.

We capture these conditions by adding variables and constraints that capture logical implications in action space. In the
simplest case, these constraints would relate the values for a pair of features j, j € [d] through an if-then condition such as:
“if a; > v; then a} = v;,". In such cases, we could capture this relationship by adding the following constraints to the MIP
Formulation in (7):

Mu > a; —v; O]
M(l—u)zvj—aj (10)
uvjr = a; an
ue{0,1}
The constraints shown above capture the “if-then" condition by introducing a binary variable u := 1[a; > v;]. The

UB

indicator is set through the Constraints (9) and (10) where M := a;

— v;. If the implication is met, then a;: is set to v/
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through Constraint (11). We apply this approach to encode a number of salient actionability constraints shown in Table 1 by
generalizing the constraint shown above to a setting where: (i) the “if" and “then" conditions to handle subsets of features,
and (ii) the implications link actions on mutable features to actions on an immutable feature (i.e. so that actions on a mutable
feature years_since_last_application will induce changes in an immutable feature age).

Custom Reachability Conditions We now describe a general-purpose solution to specify “reachable” values for a subset
of discrete features. These constraints can be used when we need to encode constraints that require fine-grained control over
the actionability of different features. For example, when specifying actions over one-hot encoding of ordinal features (e.g.,
max_degree_BS and max_degree_MS as in Table 1) or as ‘thermometer encoding” (e.g.,monthly_income_geq 2k,
monthly_income_geq_ 5k, monthly_income_geq_10k). In such cases, we can formulate a set of custom reachability
constraints over these features given the following inputs:

* index set of features J C [d],
* V, aset of all valid values that can be realized by the features in 7.

» E € {0,1}*** a matrix whose entries encode the reachability of points in V: e; ; = 1if and only if point v; can reach
point v; for v;,v; € V.

Given these inputs, we add the following constraints for each j € 7 to the MIP Formulation in (7):

a; = Z €i kA5 kU  k (12)
kEEi]

1= Z uj g, (13)
kEE]i]

Uj ke < €k (14
Uj ke € {07 1}

Here, u; ;, := 1[a’ € V] indicates if we choose an action to attain point ' € V. Constraint (12) defines the set of reachable
points from 7, while Constraint (12) ensures that only one such point can be selected. Here, e; j, is a parameter obtained
from the entries of I for point ¢, and the values of a; ; are set as the differences from x; to x; where x, " € V. We present
examples of how to use these constraints to preserve a one-hot encoding over ordinal features in Fig. 2, and to preserve a
thermometer encoding in Fig. 3.

Vv
IsEmployedLeqlYr IsEmployedBtltod4Yrs IsEmployedGeg4Y¥Yrs E
0 0 0 [1,1,0,0]
1 0 0 0,1,1,0]
0 1 0 [Oa07 17 1}
0 0 1 [0,0,0,1]

Figure 2: Here V' denotes valid combinations of features in columns 1 - 3. E in column 4 and shows which points can be reached. For
example, [1,1, 0, 0] represents point [0, 0, 0] can be reached and point [1, 0, 0] can be reached, but no other points can be reached.

\4
NetFractionRevolvingBurdenGeq90 NetFractionRevolvingBurdenGeg60 NetFractionRevolvingBurdenLeqg30 E
0 0 0 [1,1,0,0]
1 0 0 [0,1,0,0]
0 1 0 [1,1,1,0]
0 1 1 [1,1,1,1]

Figure 3: Here V' denotes valid combinations of features in columns 1 - 3. For these features, we wanted to produce actions that would
reduce NetFractionRevolvingBurden for consumers. E in column 4 and shows which points can be reached. For example,
[1,1,0,0] represents point [0, 0, 0] can be reached, and point [1, 0, 0] can be reached, but no other points can be reached.



D. Demonstrations
D.1. Ensuring Recourse in Lending

Setup We work with the FICO heloc dataset [16], which covers n = 3 184 consumers and contains d = 29 features
about their credit history. Here, y; = +1 if a consumer ¢ has duly repaid a home equity loan. Our goal is to ensure
recourse over the training data — so that we can flag models that permanently deny access to credit [38, 9], and use
recourse provision methods to produce adverse action notices [1]. We work with a domain expert in the U.S. credit
industry to identify common constraints on features. Our final action set includes 24 constraints, both separable (e.g.,
RevolvingTradesWBalance is a positive integer, MostRecent TradeLastYear can only increase), and non-separable
(e.g., RevolvingDebtBurdenLeq30, RevolvingDebtBurdenGeg60).

Results We generate reachable sets for all points in the training data using Algorithm 1 and use them to perform recourse
verification for LR and XGB classifiers. We summarize the feasibility of recourse in Fig. 4. Our results reveal 733 predictions
without recourse for LR, and 453 for XGB. In this case, we find 5 fixed points that are assigned positive predictions. Thus, all
predictions without recourse stem from a generalized reachable set. The mix of individual feature constraints and constraints
on the interactions between features causes fixed points and reachable sets with no recourse.

Predictions without recourse may have serious implications for consumers attempting to acquire a loan. A specific example
is a consumer with 10 years of account history, and 15 open credit and fixed loans with a majority of them paid off. Among
their open fixed loans, there is a substantial remaining balance that needs to be paid, and they experienced a delinquent trade
within the past year. They are denied by both classifiers. This consumer has the ability to reach 7 other points by reducing
their one credit card loan with balance and increasing the number of years they have open and active loans. However, even if
with all these changes, they will still be denied approval.

Our results can guide interventions in model development to ensure recourse. At a minimum, practitioners can use the
information from this analysis for model selection. In this case, we find that both classifiers have similar performance in
terms of AUC, but XGB assigns 280 fewer predictions without recourse. More generally, we can identify immutable features
that lead to infeasibility in predictions. In this case, our analysis reveals that a key feature among individuals assigned
predictions without recourse is MaxDelgEver, which determines the maximum duration of delinquency. In this case, one
can restore recourse by replacing this feature with an alternative that is mutable MaxDelgInLast5Years.

‘ LR | | XGB
100 ]
Recourse - Incorrect
Recourse - Correct
B No Recourse - Incorrect
I No Recourse - Correct
+
©
n
o
o
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3
0] -
0 100
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8
— “H“M v it [ HHH ‘ ‘ B
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

Figure 4: Composition of reachable sets for the heloc for LR and XGB. Each plot shows the size of reachable sets for each training
example delineated by Algorithm 1. The top row displays sizes of reachable sets for samples with negative predictions and the bottom
row for samples with positive predictions. Correct/incorrect denotes where the true label does/does not equal the predicted label and
Recourse/No Recourse denotes if recourse is feasible/infeasible. We highlight predictions without recourse for both correctly classified
and incorrectly classified negative points. We can see predictions without recourse are prevalent with all reachable set sizes and can be
drastically different between classifiers.



Actions

Feature

AvgYearsInFileGeqg3

AvgYearsInFileGeqg5

AvgYearsInFileGeq7

AvgYearsInFileGeq9

ExternalRiskEstimate

InitialYearsOfAcctHistory

ExtraYearsOfAcctHistory

MostRecentTradeWithinLastYear

MostRecentTradeWithinLast2Years

AnyDerogatoryComment

AnyDelTradeInLastYear

AnyTradel20DaysDelqg

AnyTrade90DaysDelg

AnyTrade60DaysDelg

AnyTrade30DaysDelqg

NumInstallTrades

NumInstallTradesWBalance

NumRevolvingTrades

NumRevolvingTradesWBalance

NetFractionInstallBurdenGeg90

NetFractionInstallBurdenGeq70

NetFractionInstallBurdenGeg50

NetFractionInstallBurdenGeqg30

NetFractionInstallBurdenGeqlO

NetFractionInstallBurdenEqg0

NetFractionRevolvingBurdenGeg90

NetFractionRevolvingBurdenGeg60

NetFractionRevolvingBurdenLeg30

NumBank2Nat1lTradesWHighUtilizationGeqg2

lel=Telelel=l-|~-=lel-l~w[v]=|e][=-]e|e]=-|c|-|~[=|v]|g|c]c|=]|~]8
.

Table 4: Prototype example of a prediction without recourse under LR and XGB for the heloc dataset. Although this consumer has
feasible actions they are still unable to obtain recourse since every reachable point is negatively classified. In this demo, there are 453
examples of consumers that may have feasible actions, but they are still predictions without recourse by LR and XGB. In this table, «
represents all the feature values for this consumer. a1, ..., a7 represent all the feasible actions for this consumer.



D.2. Certifying Adversarial Robustness in Content Moderation

Our machinery can also certify adversarial robustness to manipulations that normally cannot be captured by traditional
threat models such as perturbations within an L,, ball [see, e.g., 28, 47, 34, 67, 7]. In this demonstration, we show that our
methods let us reason about the behavior of arbitrary models under semantically meaningful adversarial manipulations of
the feature vectors. Specifically, we do so by building action sets that encode constraints from Table 1. In what follows, we
showcase this by evaluating the adversarial robustness of a bot detector on a social media platform.

Feature LB UB Actionable

source_automation 1 F

source_other 1

source_branding 1

source_mobile

source_web 1

source_app 1

oo

follower_friend_ratio 3 1.16x10°

age_of_account_in_days_geqg_ 365 1

age_of_account_in_days_geq_730 1

age_of_account_in_days_le_365

user_replied_geq_10

user_replied_geq 100

user_replied_le_10

user_favourited_geq 1000

user_favourited_geqg 10000

user_favourited_le_1000

user_retweeted_geqg_ 1

user_retweeted_geq 10

user_retweeted_geq 100

-
S| lalaala|a|s||=8|o|lo|m|0n|Dn|™

user_retweeted_le_1

Table 5: Features used for the Twitter bot detector. The groups of features age_of_account_x*, user_replied_x,
user_favourited_x,and user_retweeted_« are non-separable thermometer-encoded.

Setup We use the dataset of Twitter accounts from April 2016 annotated by experts [18] as genuine (“human”) labeled as
y = +1 or those representing inauthentic behavior (“bot”) labeled as y = —1. As before, we consider a processed version
with n = 1438 accounts and d = 20 features on their account history and activity (e.g., age of account, number of tweets,
re-tweets, replies, use of apps), listed in Table 5. As in ??, we train a logistic regression and an XGBoost model. We set
aside 287 accounts (20%) as a held-out test dataset.

Our goal is to demonstrate the use of Algorithm 2 for evaluating the robustness of a detector to adversarial manipulations.
We assume that the adversary starts with a bot account that is correctly detected as bot, and aims to modify the features of
the account until it is classified as human. The capabilities of the adversary include procuring additional tweets, retweets,
and replies; waiting to increase the account age, and adding tweets from previously unused categories of apps. As this is a
complex model of adversarial capabilities which includes non-separable constraints, it cannot be captured by the commonly
considered box constraints or L,, distances.

To evaluate adversarial robustness, we perform the following procedure. We run Algorithm 2 to generate reachable sets for
all correctly classified bot accounts. We then evaluate the prediction of the detector on each of the points in the corresponding
reachable set. Second, we measure adversarial robustness through a version of the robust error metric [as per 39]: the
proportion of the bot accounts from the test set that are correctly classified as bots yet can have their predictions altered
through adversarial actions. Formally, for a set of correctly predicted bot examples {(x;, ;) }I", from the test data, i.e.,
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Size of Reachable Set

Figure 5: Composition of reachable sets for Twitter bot detection with LR and XGB models. Each plot shows the size of reachable sets
generated by Algorithm 1 for every correctly classified bot account in the test set. Robust/Non-Robust denotes if the bot example can flip
the prediction via manipulations within the action set or not.

Model Type AUC  Error  Robust Error

LR 0.697 34.1% 44.8%
XGB 0.698 34.5% 33.3%

Table 6: Robust error and performance of LR and XGB models trained for Twitter inauthentic behavior detection task. All metrics are
computed on the test data.

such that every y; = —1 (“bot”) and f(x;) = —1, we define the robust error as:

m

> 132" € Ra(x:) st f(x) = +1]. (15)

=1

1
m

Results In our test data, we have 88 (out of 287 total accounts) bot accounts that are correctly classified as bots. We
generate the 88 corresponding reachable sets for each account, and evaluate the predictions in each. Fig. 5 shows the
distribution of reachable set sizes.

To evaluate the robustness of classifiers, in Table 6, we show the performance metrics of the classifiers along with the
computed robust error. We find that for the majority of bots it is not possible to flip their prediction with any possible action
within the adversarial model, with the robust error being approximately 33.3% for XGB and 44.82% for LR. Despite both
classifiers attaining similar error and AUC, XGB is more robust to adversarial manipulations.

In summary, our method enables us to find adversarial examples, and thus evaluate adversarial robustness, in tabular domains
under a complex model of adversarial capabilities.
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E. Supplement to Section 5 — Experiments

For each dataset, the Simple action set contains only immutability features and integrality constraints. The Separable action
set contains the same actionability constraints as simple and adds monotonicity constraints. The Non-Separable action set
contains all the actionability constraints as separable and adds non-separable constraints. We provide an overview of model
performance on all three datasets in Table 7

Dataset Model Type Sample  AUC
heloc LR Train 0.738
heloc LR Test 0.730
heloc XGB Train 0.733
heloc XGB Test 0.737
givemecredit LR Training 0.653
givemecredit LR Test 0.644
givemecredit XGB Training 0.651
givemecredit XGB Test 0.640
german LR Training  0.752
german LR Test 0.690
german XGB Training  0.753
german XGB Test 0.690

Table 7: Performance of LR and XGB models for all 3 datasets. We show the performance of each model on the training dataset and a
held-out dataset. We perform a random grid search to tune the hyperparameters for each model and split the train and test by 80%/ 20%.
‘We use the entire dataset to calculate the number of predictions without recourse.

E.1. Actionability Constraints for the heloc Dataset

We use the action set shown in Table 8. TWe show a list of all features and their separable actionability constraints in Table 8.
The non-separable actionability constraints for this dataset include:

1. Logical Implications on MostRecentTradeInLastYear and MostRecentTradeInLast2Years 1S eX-
plained in section Appendix C.4. Here, if MostRecentTradeInLastYear changes from O to 1 then
MostRecentTradeInLast2Years must also change from O to 1.

2. Custom Constraints to Preserve Thresholds for features NetFractionRevolvingBurdenGeq90,
NetFractionRevolvingBurdenGeg60, NetFractionRevolvingBurdenLeqg30. An example can be found
in figure 3. Here, feasible actions must decrease the consumer’s NetFractionRevolvingBurden. Therefore, the
lowest category a consumer can reach is NetFractionRevolvingBurdenLeqg30 = 1.

E.2. Actionability Constraints for the givemecredit Dataset

We show a list of all features and their separable actionability constraints in Table 9. The non-separable actionability
constraints for this dataset include:

1. Logical Implications on AnyRealEstateLoans and MultipleRealEstateLoans. Here, if AnyRealEstateLoans
changes from 1 to 0, then MultipleRealEstateLoans must also change from 1 to 0.

2. Logical Implications on AnyOpenCreditLinesAndLoans and MultipleOpenCreditLinesAndLoans. Here, if
AnyOpenCreditLinesAndLoans changes from 1 to O, then MultipleOpenCreditLinesAndLoans must also
change from 1 to 0.

3. Custom Constraints to Preserve Thresholds for features MonthlyIncomeInl000sGeg2,
MonthlyIncomeInl000sGeq5, MonthlyIncomeGeqg7K. An example can be found in Fig. 3. Here the feasible actions
increase the consumer’s MonthlyIncome and the maximum value a user can have is where MonthlyIncomeGeq2K =
1, MonthlyIncomeGeq5K = 1, and MonthlyIncomeInl000sGeq7 =1

12



Feature LB UB Actionable Monotonicity
AvgYearsInFileGeqg3 0 1 T 0

AvgYearsInFileGeg5 0 1

AvgYearsInFileGeq?7 0 1

0
0
AvgYearsInFileGeq9 0 1 0

ExternalRiskEstimate 36 89

InitialYearsOfAcctHistory

ExtraYearsOfAcctHistory

MostRecentTradeWithinLastYear

MostRecentTradeWithinLast2Years

AnyDerogatoryComment

AnyDelTradeInLastYear

AnyTradel20DaysDelq

AnyTrade90DaysDelqg

AnyTrade60DaysDelq

AnyTrade30DaysDelqg

S|lo|lo|o|o|o|loc|oc|lo|o| O
—

55
23

NumInstallTrades

—

NumInstallTradesWBalance

NumRevolvingTrades 1 85

32

NumRevolvingTradesWBalance

NetFractionInstallBurdenGeg90

NetFractionInstallBurdenGeqg70

NetFractionInstallBurdenGeg50

NetFractionInstallBurdenGeg30

NetFractionInstallBurdenEgO

NetFractionRevolvingBurdenGeqg90

NetFractionRevolvingBurdenGeqg60

NetFractionRevolvingBurdenLeq30

—
e B e e B e B e o I e o N o B e o I e o I o B B I e o I s B e s I e o I e o B s B e s B e s B s B R R L R s B B e I L R e R

0
0
0
0
0
NetFractionInstallBurdenGeglO 0 1
0
0
0
0
0

NumBank2NatlTradesWHighUtilizationGeqg2

Table 8: Overview of Separable Actionability Constraints for the heloc dataset.

4. Custom Constraints to Preserve Thresholds for features TotalCreditBalanceGeqlK, TotalCreditBalanceGeq2K,
TotalCreditBalanceGeg5K. An example can be found in figure 3. Here the feasible actions decrease the consumer’s
TotalCreditBalance and the minimum value a consumer can have is where TotalCreditBalanceGeqlK = 0,
TotalCreditBalanceGeqg2K =0, and TotalCreditBalanceGeg5K =0
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Feature Name

LB UB

Actionable

Monotonicity

Age

21 90

F

NumberOfDependents

10

DebtRatioGeql

1

MonthlyIncomeGeg2K

MonthlyIncomeGeg5K

MonthlyIncomeGeg7K

TotalCreditBalanceGeqlK

TotalCreditBalanceGeqg2K

TotalCreditBalanceGeg5bK

AnyRealEstatelLoans

MultipleRealEstateLoans

AnyOpenCreditLinesAndLoans

—_— | = =] =

MultipleOpenCreditLinesAndLoans

0
0
0
0
0
0
0
0
0
0
0
0

I

(=3 Nl Noll NHol E=2 N ok Nl ol )

Table 9: Overview of Separable Actionability Constraints for the givemecredit dataset.
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E.3. Actionability Constraints for the german Dataset

We show a list of all features and their separable actionability constraints in Table 10. The non-separable actionability
constraints for this dataset include:

1. One

Hot

Encoding for features savings_acct_le_100,
savings_acct_bt_500_999, savings_acct_ge_1000 An example of this can be found in Appendix C.4.
Here, actions must restrict only one category to be selected.

Feature

LB UB

Actionable

savings_acct_bt_100_499,

Monotonicity

age

19

75

F

is_male

0

1

is_foreign_worker

=]

1

has_liable_persons

—_

max_approved_loan_duration_geqg_10_m

max_approved_loan_amt_geqg_10k

max_approved_loan_rate_geq 2

credit_history_no_credits_taken

credit_history_all credits_paid_till_now

credit_history_delay_or_critical_in_payment

loan_required_for_car

loan_required_for_home

loan_required_for_education

loan_required_for_business

loan_required_for_other

max_val_checking_acct_ge_0

max_val_savings_acct_ge_0

years_at_current_home_ge_2

employed_ge_4_yr

savings_acct_le_100

savings_acct_bt_100_499

savings_acct_bt_500_999

savings_acct_ge_1000

has_history_of_installments

oSlo|o|lo|o|o|o|lo|lo|o|lo|lo|lo|oc|lo|o|lo|o|lo|CO

G I I I IG I G R R - R e R e R N R R A R e R e R ey

+|o|lo|lo|o|+ |+ |+ |+

Table 10: Overview of Separable Actionability Constraints for the german dataset.
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