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Private Fine-tuning of Large Language Models with Zeroth-order Optimization
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Abstract

Differential privacy is a framework for mitigating
privacy risks by enforcing algorithmic stability.
DP-SGD allows models to be trained in a privacy-
preserving manner, but raises new obstacles in
the form of performance loss and significant engi-
neering challenges. We introduce DP-ZO, a new
method for fine-tuning large language models that
preserves the privacy of training data by priva-
tizing zeroth-order optimization. A key insight
into the design of our method is that the direction
of the gradient in the zeroth-order optimization
we use is random and the only information from
training data is the step size, i.e., a scalar. There-
fore, we only need to privatize the scalar step size,
which is memory-efficient. DP-ZO, which can be
instantiated with either Laplace or Gaussian noise,
provides a strong privacy-utility trade-off across
different tasks, and model sizes, under conserva-
tive privacy budgets.

1. INTRODUCTION
The proliferation of open-source models pretrained on web-
scale datasets (Brown et al., 2020; Zhang et al., 2022; Tou-
vron et al., 2023) has created a paradigm shift in privacy pre-
serving machine learning. Differential Privacy (DP) (Dwork
et al., 2006) is the gold standard for preserving privacy
while training models on private data, but it requires ad-
ditional data (Tramèr and Boneh, 2021) to prevent a drop
in utility (Yu et al., 2021a). Pretrained model checkpoints
have emerged as a compelling “free” source of prior infor-
mation to boost the performance of DP training (Ganesh
et al., 2023; Tang et al., 2023a; Panda et al., 2022). By
only requiring DP during the fine-tuning phase, a recent
line of work (Li et al., 2022b;a; Yu et al., 2021b; He et al.,
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Figure 1. Visualization of DP-ZO. The only information from pri-
vate data is a scalar and we only need to add noise to this scalar.
This scalar privatization enjoys the benefits of flexibility with DP
mechanisms, ease of implementation, and reduced computation.

2023; Bu et al., 2023c) is able to obtain impressive perfor-
mance with DP-SGD (Abadi et al., 2016). Despite these
advancements, DP-SGD needs additional engineering effort,
especially for large models across devices. We propose a
new direction for DP fine-tuning of large pretrained models
that achieves strong privacy-utility trade-off and is more
resource-efficient, easy to implement, and portable.

In this work, we introduce a new methodology DP-ZO for
DP fine-tuning of large pretrained models. Our method
uses zeroth-order optimization (ZO) (Spall, 1992). Our
key insight is the synergy between differentially private
fine-tuning and zeroth-order optimization. ZO provides
the gradient estimates and the only information from pri-
vate data in ZO is a scalar. We only need to privatize the
scalar update by adding noise to it. Specifically, the scalar is
the differences between losses from models with the same
random perturbation but flipped signs. DP-ZO privatizes
the zeroth-order update, by adding noise to the difference
between the losses (visualized in Figure 1). This noise is
proportional to the sensitivity of this loss difference with
respect to changing a single example in the training set,
which is controlled by clipping. We limit the ℓp sensitivity
by clipping the norm of the difference in scalar losses, be-
tween the two random perturbations. Therefore, DP-ZO is
flexible for both for ε-DP and (ε, δ)-DP. By removing the
need for per-example gradient clipping (Abadi et al., 2016),
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Figure 2. DP-ZO provides a strong privacy-
utility trade-off across different tasks under
conservative privacy budgets.
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Figure 3. DP-ZO achieves comparable per-
formance as DP-SGD with same model size
and scales seamlessly to large models like
30B/66B, that are challenging for DP-SGD.
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Figure 4. DP-ZO achieves non-trivial per-
formance for ε-DP. In contrast, DP-
SGD (laplace) suffers to improve upon ε =
0 due to high variance.

DP-ZO enables DP training of language models with just a
few lines of code and without the need for backpropagation.

Main results. We presents the main results of DP-ZO in
Figures 2 to 4. DP-ZO provides a strong privacy-utility
trade-off across different tasks, model sizes, dataset sizes,
and DP mechanisms under conservative privacy budgets.
DP-ZO only slightly degrades the performance compared to
the non-private baseline (Figure 2). DP-ZO achieves com-
parable performance as DP-SGD within the same model
size from 1.3B to 13B (Figure 3). DP-ZO scales seam-
lessly to large models without additional engineering, while
DP-SGD requires much more memory and effort to imple-
ment per-example gradient clipping across GPUs (within
a reasonable research computation limit, DP-SGD results
on OPT-30B/66B are not available and omitted in Figure 3).
As the model size increases to OPT-66B, the performance
of DP-ZO increases and the utility gap between DP-ZO and
the non-private baseline also decreases (Figure 3). Because
our method only privatizes a scalar, it is compatible with
multiple DP mechanisms. Specifically, DP-ZO is the first
method to provide pure ε-DP with nontrivial utility (73.52
for SQuAD at ε = 4) for large models by using the Laplace
mechanism (Figure 4).

2. BACKGROUND
2.1. Differential Privacy

Differential privacy (DP) is the gold standard method for
providing algorithmic privacy (Dwork et al., 2006).
Definition 2.1 ((ε, δ)− Differential Privacy (DP)). An al-
gorithmM is said to be (ε, δ)-DP if for all sets of events
S ⊆ Range(M) and neighboring datasets D,D′ ∈ Dn

(where D is the set of all possible data points) we have the
guarantee:

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S] + δ (1)

When δ = 0, we term it as pure (ε, 0)-DP or ε-DP for
simplicity.

We define a set of existing DP mechanisms that we will use
in our work.
Proposition 2.2 (Gaussian mechanism (Dwork and Roth,
2014)). For any function f : Xn → R with l2 sensitivity ∆,
the mechanism defined as

M(X) = f(X) + z,

where z ∼ N
(
0, 2 ln(1.25/δ)∆2

ε2

)
, provides (ε, δ)-DP.

Proposition 2.3 (Laplace mechanism (Dwork and Roth,
2014)). For any function f : Xn → R with l1 sensitivity ∆
the mechanism defined as

M(X) = f(X) + z,

where z ∼ Laplace
(
0, ∆

ε

)
, provides (ε, 0)-DP.

2.2. Zeroth-order Optimization

We use a method from the large body of work on zeroth-
order optimization (Flaxman et al., 2004; Shamir, 2013;
Ghadimi and Lan, 2013; Nesterov and Spokoiny, 2017) that
uses the difference in losses between two random perturba-
tions (Duchi et al., 2015; Spall, 1992) with opposite signs to
determine the magnitude of a gradient update in the direc-
tion of the random perturbations. In the non-private setting
where the adaptation between the pretrained model and the
fine-tuning dataset has low rank (Hu et al., 2022), as in fine-
tuning large language models, Malladi et al. (2023) show
this method converges at a rate that is not catastrophically
slower than SGD fine-tuning.
Definition 2.4 (Simultaneous Perturbation Stochastic Ap-
proximation (SPSA) (Spall, 1992))). Given a model with
parameters θ ∈ Rd and a loss function L, the gradient esti-
mate on a minibatch drawn from a dataset B ⊂ D is com-
puted by projecting the loss on the minibatch L(θ;B) onto
a random perturbation z ∈ Rd that is a standard Gaussian
random variable (i.e., z ∼ N (0, Id)) scaled by ϕ:

ˆ∇Lb(θ;B) =
L(θ + ϕz;B)− L(θ − ϕz;B)

2ϕ
z (2)
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Random perturbations in zeroth-order optimization (ZO)
serve as high-variance estimates of the actual gradient, en-
abling optimization without the need for explicit gradient
computations. However, these perturbations themselves
carry a privacy risk. The characteristics of the perturbations
can be inferred from the gradient updates, effectively leak-
ing information about the data. Moreover, the magnitude
of the perturbations can be estimated with high precision
in high dimensions due to the central limit theorem. There-
fore, incorporating differential privacy into ZO is essential
to safeguard against these vulnerabilities.

3. OUR METHOD: DP-ZO
We introduce our framework for differentially private zeroth
order optimization (DP-ZO) by integrating DP into Defini-
tion 2.4. In our framework, the information obtained from
training data can be represented as a scalar. This scalar has
a bounded sensitivity (when applying clipping) and can be
privatized by adding noise. If we compare the noise added
in DP-ZO to a single dimension to the noise added in DP-
SGD to the entire gradient, we expect the univariate noise
to be less detrimental to the utility (due to the curse dimen-
sionality in differential privacy (Dwork and Roth, 2014)). In
other words, we would expect the gap between non-private
and private utility to be smaller than that of DP-SGD.

Algorithm 1 Differentially Private-ZO
1: Model parameters θ, dataset D, learning rate η, pertur-

bation scale ϕ, privacy parameter σ, noising mechanism
Z , clipping threshold C, expected batch size B, sub-
sampling rate p = B/|D|).

2: g = 0
3: for t ∈ 1, . . . T do
4: Poisson sample B from D with sub-sampling rate p
5: z⃗ ∼ N (⃗0|θ|, I|θ|×|θ|)
6: θ+ ← θ + ϕz⃗
7: θ− ← θ − ϕz⃗
8: for (xi, yi) ∈ B do
9: l+i ← L(θ+, (xi, yi))

10: l−i ← L(θ−, (xi, yi))
11: li = clip(l+i − l−i , C)
12: end for
13: s =

∑
i∈B li+Z(C,σ)

B·2ϕ
14: θ = θ − ηsz⃗
15: end for

DP-ZO. We explain the steps of our algorithm while em-
phasizing the key differences from Definition 2.4 required
to guarantee (ε, δ)-DP. We first sample a batch from the
dataset with Poisson sampling (Balle et al., 2018) which
allows us to use privacy amplification by subsampling. For
each model parameter θi we want to update, we indepen-
dently sample a perturbation zi from a standard Gaussian

distribution and scale it by a predetermined constant ϕ; we
denote the full perturbation vector as ϕz⃗. Now we com-
pute an approximation of the gradient by projecting it onto
the random perturbation z⃗. That is, for a training sam-
ple xi we compute the difference in scalar losses between
θ + ϕz⃗, θ − ϕz⃗. Intuitively, this scalar tells us how much
better one random step is than the other. We clip this scalar
to limit the sensitivity . We add noise to the aggregation
over samples in our training batch. Finally, we take a step in
the direction of z⃗ by scaling our private step size by the ex-
pected batch size, perturbation constant ϕ, and the learning
rate η.

Given a private scalar with bounded sensitivity, we can ap-
ply the classical Gaussian mechanism to release a privatized
scalar with (ε, δ)-DP. The Gaussian mechanism is widely
studied in privacy-preserving machine learning techniques
like DP-SGD, in part because the best accounting techniques
for the Gaussian mechanism (Dong et al., 2019; Gopi et al.,
2021) are tight. However, the Gaussian mechanism can only
provide (ε, δ)-DP. To avoid such a failure case in extremely
sensitive applications, researchers often recommend using
cryptographically small values of δ (Vadhan, 2017). Un-
fortunately, due to limitations of accounting methods, we
currently cannot calculate the tight privacy of composition
of sub-sampled Gaussian mechanism for values of δ smaller
than 10−10. Alternatively, we can resort to mechanisms that
can obtain pure ε-DP. These mechanisms, such as Laplace
mechanism, come with a guarantee that the mechanism will
never fail catastrophically. However, due to large tails of the
Laplace mechanism, it has never been a contender for high
dimensional optimization.

Although it is possible to obtain pure DP with DP-SGD
by adding Laplace noise scaled to the ℓ1 sensitivity of the
gradient, this is challenging for large models because the
ℓ1 sensitivity can be

√
d times larger than the ℓ2 sensitivity

(and often is; see Appendix A.3), especially for billion-
parameter LLMs. In contrast, DP-ZO only requires privatiz-
ing the loss. The one-dimensional private estimation of the
step size is amenable to the Laplace mechanism, because
the ℓp norms are equivalent. Specifically, DP-ZO with the
Laplace mechanism is the first method to achieve a reason-
able privacy-utility trade-off under pure ϵ-DP for private
fine-tuning of LLMs. DP-ZO framework is flexible enough
to be extended to other differential privacy mechanisms,
broadening its applicability.

Privacy Analysis. As we consider multiple accounting
methods with multiple previously proposed mechanisms,
we give the overview of the analysis below and defer the
full privacy analysis to Appendix C.

Theorem 3.1. Algorithm 1 is (ε, δ)-DP.

Proposition 3.2. DP-ZO attains a convergence rate
O(
√
r/εn), where r is the effective rank of the problem.
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Malladi et al. (2023) proves the convergence rate of fine-
tuning of language models with zeroth-order optimization
is proportional to r instead of the model dimension. A con-
current work (Zhang et al., 2023) independently proposes
DP-ZO and provides the convergence analysis for DP-ZO,
that is independent of the model dimension in private train-
ing (Song et al., 2021; Li et al., 2022a). We discuss our
work and Zhang et al. (2023) in Section 4.

Main results. We presents the main results of DP-ZO in
Figures 2 to 4. We defer the full evaluations in Appendix A.

4. RELATED WORK
In this section we give an overview of the broader body of
work privacy preserving large language models and private
zeroth-order optimization method.

Privacy Preserving Large Language Models. Recent
studies have leveraged DP-SGD to fine-tune large language
models. Li et al. (2022b) provide methods for fine-tuning
large language models with DP-SGD by ghost clipping to
mitigate the memory burden of per-sample gradient clipping.
Yu et al. (2022) report compelling results by only updating
a sparse subset of the LLMs with parameter efficient fine-
tuning (PEFT) methods such as LoRA (Hu et al., 2022).
He et al. (2023) leverage group-wise clipping with adaptive
clipping threshold and privately fine-tune the 175 billion-
parameter GPT-3. Duan et al. (2023); Li et al. (2022b)
also consider private prompt tuning by adding noise to the
soft prompt (Li and Liang, 2021; Lester et al., 2021). Du
et al. (2023) add non-i.i.d. noise from a matrix Gaussian
distribution to directly perturb embedding in the forward
pass of language models. With the emergence in-context
learning of large language models (Brown et al., 2020),
recent works (Duan et al., 2023; Wu et al., 2024; Tang et al.,
2023b) study private in-context learning of large language
models without fine-tuning.

Private Zeroth-order Optimization. Most recently, a con-
current work (Zhang et al., 2023) also considers the same
DP-SPSA algorithm for zeroth-order optimization. Our
method and Zhang et al. (2023) are functionally the same
up to constants, and our work focuses on an empirical eval-
uation of the method, whereas Zhang et al. (2023) extends
the convergence analysis of Malladi et al. (2023) to DP as
shown in Appendix B of Zhang et al. (2023). There is a
slight difference for the generation of random perturbation
of Zhang et al. (2023) and our Algorithm 1. Zhang et al.
(2023) uses the random unit vector for the perturbation and
the convergence analysis is based on such set-up, whereas
our perturbation is a normally distributed vector. Note that
Algorithm 1 and 2 in Zhang et al. (2023) also scales the unit
vector by the square root of the model dimension, so the two
approaches are functionally the same. We reimplemented

our perturbation method based on the algorithms in Zhang
et al. (2023), and we obtain the comparable performance
of with (1, 10−5)-DP for OPT-13B by LoRA finetuning on
SQuAD as our main result in Table 1.

Zhang et al. (2024) study private zeroth-order nonsmooth
nonconvex optimization. Their work incorporates two
zeroth-order estimators to reduce variance and samples
d (model dimension) i.i.d. estimators for each data point to
achieve optimal dimension dependence. Zhang et al. (2024)
leverage the tree mechanism (Dwork et al., 2010; Chan et al.,
2011) on disjoint data to ensure the privacy cost of the al-
gorithm. The main focus of our work is private fine-tuning
of large language models and one estimator for each batch
could successfully converge in this set-up. Therefore, we
only need to privatize such scalar. We leave the investiga-
tion on the private zeroth-order for more than one estimators
such as the variance reduction method proposed in Zhang
et al. (2024) as future work.

Gratton et al. (2022) analyze the intrinsic privacy of the
zeroth-order optimization for DP-ADMM (Huang et al.,
2020) in distributed learning. Their work states that if the
output of the zeroth-order method itself follows Gaussian
distribution, the noise can be analyzed as the Gaussian mech-
anism and provide intrinsic privacy. However, this is merely
stated as an assumption for lemma 1. To the best of our
knowledge there is no work that proves that the zeroth-order
gradient estimator can actually be analyzed as the sum of an
unbiased gradient estimator and some Gaussian error term.

5. CONCLUSION
DP-SGD has been the de-facto private training method of the
last decade. In this work we propose DP-ZO, a novel method
for private fine-tuning that privatizes the zeroth-order update
by adding noise to the difference in loss between two per-
turbations. DP-ZO’s unique univariate privatization unlocks
training larger models with better parallelism than DP-SGD.
DP-ZO provides a strong privacy-utility trade-off across dif-
ferent tasks, model sizes, dataset sizes, and DP mechanisms.
We anticipate that future work can further study these design
choices, integrate more DP mechanisms into DP-ZO, and
apply it to the vision domain.
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I. Mironov. Rényi differential privacy. In 2017 IEEE 30th
Computer Security foundations Symposium (CSF), pages
263–275, 2017.

Y. Nesterov and V. G. Spokoiny. Random gradient-free
minimization of convex functions. Foundations of Com-
putational Mathematics, 17:527–566, 2017.

A. Panda, X. Tang, V. Sehwag, S. Mahloujifar, and P. Mittal.
Dp-raft: A differentially private recipe for accelerated
fine-tuning. arXiv preprint arXiv:2212.04486, 2022.

N. Ponomareva, H. Hazimeh, A. Kurakin, Z. Xu, C. Deni-
son, H. B. McMahan, S. Vassilvitskii, S. Chien, and A. G.
Thakurta. How to DP-fy ML: A practical guide to ma-
chine learning with differential privacy. Journal of Artifi-
cial Intelligence Research, 77:1113–1201, jul 2023. doi:
10.1613/jair.1.14649.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. SQuAD:
100,000+ questions for machine comprehension of text.
In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 2383–
2392, 2016.

O. Shamir. On the complexity of bandit and derivative-free
stochastic convex optimization. In Proceedings of the
26th Annual Conference on Learning Theory, pages 3–24.
PMLR, 2013.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Member-
ship inference attacks against machine learning models.
In 2017 IEEE Symposium on Security and Privacy (SP),
pages 3–18. IEEE, 2017.

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning,
A. Ng, and C. Potts. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceed-
ings of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 1631–1642, 2013.

S. Song, K. Chaudhuri, and A. D. Sarwate. Stochastic
gradient descent with differentially private updates. In
2013 IEEE Global Conference on Signal and Information
Processing, pages 245–248, 2013.

S. Song, T. Steinke, O. Thakkar, and A. Thakurta. Evading
the curse of dimensionality in unconstrained private glms.
In International Conference on Artificial Intelligence and
Statistics, pages 2638–2646. PMLR, 2021.

J. C. Spall. Multivariate stochastic approximation using a
simultaneous perturbation gradient approximation. IEEE
Transactions on Automatic Control, 37:332–341, 1992.

6

https://github.com/lxuechen/ private-transformers/issues/12
https://github.com/lxuechen/ private-transformers/issues/12


330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Private Fine-tuning of Large Language Models with Zeroth-order Optimization

X. Tang, A. Panda, V. Sehwag, and P. Mittal. Differen-
tially private image classification by learning priors from
random processes. In Advances in Neural Information
Processing Systems, 2023a.

X. Tang, R. Shin, H. A. Inan, A. Manoel, F. Mireshghal-
lah, Z. Lin, S. Gopi, J. Kulkarni, and R. Sim. Privacy-
preserving in-context learning with differentially private
few-shot generation. arXiv preprint arXiv:2309.11765,
2023b.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A.
Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro,
F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lam-
ple. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.
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A. EVALUATION
We first overview our experimental setup in Section A.1 and
then evaluate the performance of DP-ZO in Section A.2. We
find that DP-ZO provides a competitive privacy-utility trade-
off for conservative privacy budgets across multiple datasets,
model architectures and model sizes under conservative pri-
vacy budgets. We also compare DP-ZO to DP-SGD in
Section A.2 and show that DP-ZO achieves comparable per-
formance to DP-SGD for the same model size. Furthermore,
DP-ZO can seamlessly scale to large models such as OPT-
66B, and the performance of DP-ZO increases with model
size. In Section A.3 we first characterize DP-ZO under dif-
ferent few-shot settings. We then show that DP-ZO is robust
to different mechanisms for noise addition. Specifically,
DP-ZO with the Laplace mechanism is the first method
to achieve a non-trivial privacy-utility trade-off under pure
ε-DP.

A.1. Experimental Setup

When we report results, we report the metric of interest (F1
score or accuracy) and standard deviation averaged across
5 independent runs with different random seeds. We detail
the full hyperparameter searches in Appendix F.

Datasets. We mainly consider three different benchmark
NLP tasks: SQuAD (Rajpurkar et al., 2016) and DROP (Dua
et al., 2019) for text generation, and SST2 (Socher et al.,
2013) for text classification. Although all these datasets
have very different dataset sizes, we consider the few-shot
setting for all these datasets where we sample 1000 points
for each dataset. Fine-tuning LLMs with O(n = 1000)
samples is a standard setting in the NLP community (Gao
et al., 2021; Malladi et al., 2023) because we are generally
interested in the few-shot abilities of LLMs (Brown et al.,
2020). This represents a departure from prior works that
privately finetune LLMs; Yu et al. (2022); Li et al. (2022b);
Yu et al. (2021b) use the entire training dataset of SST2 that
has about 65,000 examples. It is well known that the privacy-
utility tradeoff improves greatly with more data (Tramèr
and Boneh, 2021). It is straightforward to see that our
setting with datasets of the size n = 1000 with δ = 10−5

is simultaneously more challenging and more aligned with
real-world usecases than previous works in DP finetuning
of LLMs. Despite the increased difficulty of our few-shot
setting as compared to prior work, our results validate that
DP-ZO realizes a strong privacy-utility trade-off. We also
ablates the training sample size from the few-shot to the full
training set on the QNLI (Wang et al., 2019) dataset.

Models. We use models including the OPT (Zhang et al.,
2022), Mistral (Jiang et al., 2023), and roberta-base (Liu
et al., 2019). We present our main results (Table 1) using a
pretrained OPT-13B model that is finetuned with LoRA (Hu
et al., 2022); that is, we update < 1% of the total parameters.

We include a range of ablation studies, including varying the
model size, model architectures and amount of parameters
to be updated, after we present the main results.

Privacy Budgets. We consider various privacy levels with
ε = [0.5, 1, 4] and fix δ = 10−5 for (ε, δ)-DP. We include
the zero-shot ε = 0 baseline that does not incur any pri-
vacy loss because we evaluate the pretrained model directly
without finetuning on private data. We also include the
non-private ε = ∞ baseline that is trained without any
DP guarantee. That is, we iterate over the shuffled dataset
instead of doing Poisson sampling (replacing line 4), do
not clip the step size (skipping line 11) and set σ = 0 (in
line 13). We make these modifications because Poisson
sampling and clipping are known to degrade performance,
and we want to compare to the strongest possible nonprivate
baseline.

A.2. Main Results

DP-ZO Provides a Strong Privacy-utility Tradeoff for
Conservative Privacy Budgets. As shown in Table 1,
across all three tasks and all εs, DP-ZO significantly im-
proves upon the ε = 0 baseline, and only slightly degrades
the performance compared to the non-private baseline. For
SQuAD, even at ε = 0.5, DP-ZO can still achieve 80.10%,
that significantly outperforms ε = 0 baseline (46.23%). The
gap between ε = 0.5 and ε = ∞ is about 6.75%. By in-
creasing ε from 0.5 to 4, this gap can be further reduced to
3%. For DROP and SST2, DP-ZO (Gaussian) achieves com-
parable performance as the non-private baseline at ε = 4.

DP-ZO Scales to Large Models. In Table 2 we show that
DP-ZO continues improving as the model size increases
from 1.3B to 66B. Due to space constraints, we provide the
non-private (ϵ =∞) performance of all models and meth-
ods in Appendix G. Table 2 shows an promising insight: as
the model size and nonprivate performance increase, the
gap in performance between private and nonprivate mod-
els shrinks. Specifically, the gap for OPT-1.3B is 5.68%
(80.97% at ε = ∞ reduced to 75.29% under ε = 1). But
this gap shrinks to just 2.11% for OPT-66B, where the pri-
vate performance at ϵ = 1 is 85.38% compared to 87.49%
non-privately. Our findings suggest that DP-ZO scales to
large models not only because it is compatible with exist-
ing pipeline without much additional engineering effort but
also because the utility drop due to privacy is smaller as the
model size increases.

Comparison with DP-SGD. We compare DP-ZO
to differentially private stochastic gradient descent (DP-
SGD) (Abadi et al., 2016) which has been applied to fine-
tune LLMs with full parameter fine-tuning (Li et al., 2022b)
and with LoRA (Yu et al., 2022; He et al., 2023). Recall that
DP-ZO is compatible out-of-the-box with mixed precision
training and GPU parallelism, enabling us to fine-tune OPT-
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Table 1. Main results with 1000 training samples for each dataset. OPT-13B model with LoRA fine-tuning. DP-ZO (G) is DP-ZO
instantiated with the Gaussian mechanism. δ = 10−5. The ε = ∞ by ZO is 86.85 for SQuAD, 33.22 for DROP, and 93.69 for SST2.
The ε = 0 baseline, i.e., directly doing model evaluation without training, is 46.23 for SQuAD, 14.64 for DROP, and 58.83 for SST2.

Task SQuAD DROP SST2

Task type generation (metric: F1) classification (metric: accuracy)

Method ε = 0.5 ε = 1 ε = 4 ε = 0.5 ε = 1 ε = 4 ε = 0.5 ε = 1 ε = 4

DP-ZO(G) 80.100.63 82.280.84 83.870.50 28.390.82 30.300.51 31.990.51 85.412.91 91.190.90 92.590.30

Table 2. DP-ZO (Gaussian) and DP-SGD with full parameter and LoRA fine-tuning on SQuAD with 1000 training samples across
different model sizes. (1, 10−5)-DP. ‘-’ means the approach did not scale with straightforward implementation; Appendix B details
the additional engineering required to scale DP-SGD to larger models. ‘- -’ for DP-ZO means the results are omitted due to limited
computational resources. Due to limited computing resources, this table does not include the standard deviation for OPT-66B model.

Method OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B OPT-30B OPT-66B

DP-ZO-LoRA (Gaussian) 75.290.90 80.341.14 81.341.04 82.280.84 82.480.83 84.121.01
DP-SGD-LoRA 75.390.33 79.420.57 79.530.52 82.140.18 - -

DP-ZO-Full (Gaussian) 72.841.03 77.250.27 79.060.67 82.160.41 - - - -
DP-SGD-Full 75.500.89 79.810.64 - - - -

66B. As we show in Appendix B, it is significantly more
challenging to integrate DP-SGD with these techniques, and
furthermore, DP-SGD requires more memory than DP-ZO
to store activations and compute per-sample gradients. As a
direct result, DP-SGD cannot directly scale past 2.7B with
full fine-tuning or 13B with LoRA without additional im-
plementation effort for multi-GPU training, while DP-ZO
can scale seamlessly to larger models. In Table 2 we present
comparisons between DP-ZO and DP-SGD with full pa-
rameter finetuning and LoRA. With the same model size,
DP-ZO achevies comparable performance as DP-SGD as by
LoRA finetuning, i.e., both DP-ZO and DP-SGD achieves
82% on OPT-13B models. The best performance by DP-ZO
is 85.38% by OPT-66B finetuned with LoRA. This is ≈ 3%
better than the best performance of DP-SGD in Table 2 that
is 82.14% by OPT-13B with LoRA.

DP-ZO Provides a Strong Privacy-utility Tradeoff across
Different Model Architectures. Table 1 and Table 2 show
that DP-ZO achieves the comparable performance as DP-
SGD on OPT models. We also run experiments on SQuAD
with Mistral-7B model. DP-ZO and DP-SGD achieves com-
parable performance at ε = 1.

DP-ZO with Pure ε-DP. To the best of our knowledge, DP-
ZO (Laplace) is the first method that achieves a non-trivial
privacy-utility tradeoff under pure ε-DP under a conserva-
tive privacy budget like ε = 4 on large language models.

Table 3. Pure ε-DP by DP-ZO (Laplace), SQuAD with 1000 train-
ing samples. OPT-13B with LoRA fine-tuning. The ε = ∞ per-
formance with ZO is 86.85% and the ε = 0 baseline is 46.23%.

ε ε = 4 ε = 10 ε = 15

DP-ZO (Laplace) 73.521.04 76.751.39 78.821.57

In Table 3, DP-ZO (Laplace) can significantly improve upon

Table 4. Pure ε-DP by DP-ZO (Laplace) and DP-SGD (Laplace) at
ε = 4, SQuAD with 1000 training samples. OPT-13B with LoRA
fine-tuning.

Method DP-ZO DP-SGD

F1 73.521.03 47.250.79

ε = 0. Given a budget ε = 4, which some prior work
has considered reasonable (Ponomareva et al., 2023), DP-
ZO (Laplace) can obtain 73.52% on SQuAD. When increas-
ing ε = 4 to ε = 15, DP-ZO (Laplace) can obtain 78.82%
on SQuAD. Note that the l1 sensitivity required for Laplace
mechanism makes it hard to DP-SGD to achieve comparable
performance as DP-ZO because the gradients in DP-SGD
have high dimension. In contrast, DP-ZO only requires pri-
vatizing a scalar value. Table 4 shows that DP-SGD with l1
norm clipping and Laplace noise does not converge and only
achieves 47.25%, that is only marginal improvement upon
the zero-shot performance. Besides, the few-shot setting
poses a unique challenge for obtaining strong performance
under conservative privacy budgets. Acquiring more data
enhances privacy amplification and reduces the amount of
noise we need to add to achieve a target ε-DP guarantee.In
particular, in Table 5 we find that increasing the number of
training examples from 1000 to 5000 improves performance
at ε = 4 from 73.52% to 79.89%, although the improve-
ment of non-private performance at ϵ = ∞ by increasing
training samples from 1000 to 5000 is insignificant. DP-
ZO (Laplace) presents a new direction for obtaining pure
ε-DP guarantees.

Empirical privacy evaluation. We conducted membership
inference attacks Shokri et al. (2017) on DP-ZO on SQuAD
using OPT-13B model. We show that such MIAs can only
achieve attack AUC around 0.50, that is closed to random
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Table 5. Pure ε-DP by DP-ZO (Laplace) at ε = 4, SQuAD with
different training samples. OPT-13B with LoRA fine-tuning. The
ε = ∞ by ZO is 86.85% and 86.92% for 1000 and 5000 samples
respectively. The ε = 0 baseline is 46.2%.

n-shot n = 1000 n = 5000

DP-ZO (Laplace) 73.521.04 79.890.49

guess. This empirical privacy evaluation shows that DP-
ZO can effectively protect models from privacy attacks like
MIAs.

A.3. Analysis

In this section, we vary the amount of training data that we
sample and the choice of DP mechanism in DP-ZO.

Characterizing Differentially Private Few-Shot Learn-
ing. Although it is known that private learning requires
more data than non-private learning (Bassily et al., 2014),
prior work has not characterized this improvement for fine-
tuning language models. In Figure 5 and Table 6 we vary the
number of training samples n around the n = 1000 setting
in the main results while keeping δ = 10−5 fixed for all
choices of n. Table 6 shows that DP-ZO can achieve non-
trivial performance in few-shot settings under conservative
privacy guarantees. Furthermore, we find that while increas-
ing the amount of training data by 10× barely increases
non-private performance, it increases private performance
by ≈ 6% (n = 500 vs. n = 5000). While non-private few-
shot learning can succeed by just memorizing the training
data, Figure 5 indicates that the convergence rate for differ-
ent shots for private few-shot learning is different. With the
proliferation of pretrained models, we anticipate that pri-
vately fine-tuning downstream tasks in the few-shot setting
will be more aligned with real-world use cases.

Table 6. Ablation of DP-ZO (Gaussian) for different n training
samples on SQuAD dataset. (1, 10−5)-DP. OPT-13B with LoRA
finetuning.

n-shot n = 250 n = 500 n = 1000 n = 5000

ε = 1 74.860.74 78.252.38 82.280.84 84.290.92
ε =∞ 86.40 86.53 86.85 86.92

Characterizing the effect of data size. So far we have
studied DP-ZO under the few-shot setting, that is a chal-
lenging than accessing the full dataset size from the privacy-
perspective. We now analyze the effect of data size on
DP-ZO and DP-SGD by varying data size from 250 shot to
the full show size. Specifically, we conduct experiments on
QNLI dataset, that has about 100,000 data point in the full
training set, by training Roberta-base models. We observe
the trend when DP-ZO incurs a utility drop compares to
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Figure 5. (Smoothed) training loss. n = 5000 has better conver-
gence rate compared to n = 250.

DP-SGD within the increase of dataset size. Our analysis
for this is that the convergence slowness in zeroth-order
method is more significantly within more data due to the
inefficiency use of data. Potential studies on improving the
convergence rate in zeroth-order method could potentially
benefit DP-ZO by improving the efficiency use of data.

Different Noise Mechanisms for (ε, δ)-DP. We now relax
the privacy guarantee provided by the Laplace mechanism
to approximate (ε, δ)-DP. In Table 7, we compare DP-ZO
instantiated with the Laplace and Gaussian mechanisms.
DP-ZO (Gaussian) outperforms DP-ZO (Laplace) for strict
privacy budgets such as ε = 0.5 because it enjoys tighter
accounting (Gopi et al., 2021) and lower variance (Dwork
and Roth, 2014). These advantages are less significant for
larger privacy budgets; for ε = 4, the gap between DP-
ZO (Gaussian) and DP-ZO (Laplace) is within 1%.

Table 7. DP-ZO with different DP mechanism. SQuAD with 1000
training samples. δ = 10−5. G is for Gaussian and L is for
Laplace.

ε ε = 0.5 ε = 1 ε = 4

DP-ZO (G) 80.100.63 82.280.84 83.870.50
DP-ZO (L) 77.580.81 80.490.63 82.940.69

Our ablation study on the DP-ZO with laplace for ε-DP
and the comparisons of Laplace and Gaussian mechanisms
for (ε, δ)-DP shows that DP-ZO provides a strong privacy-
utility trade-off under different DP mechanisms while DP-
SGD suffers from Laplace mechanisms for (ε, δ)-DP, which
opens the new opportunity for the synergy between DP
mechanisms and large language models.

Memory Analysis. We compare the GPU cost of DP-ZO,
to DP-SGD, for both full parameters trainable, as well as
parameter-efficient fine-tuning (PEFT) methods including
DP-LoRA, DP-BiTFiT on SQuAD using OPT-13B models.
We show our DP-ZO costs less GPU memory consumption
as a result that DP-ZO will not generate the vectors for
gradients.
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B. DISCUSSION
In Appendix A.2 we showed that DP-ZO obtains competi-
tive privacy-utility tradeoff. Now we examine the amount of
engineering effort necessary to scale DP-SGD to larger mod-
els, a topic on which many papers have been written (Bu
et al., 2023a;b; Yousefpour et al., 2021; Li et al., 2022b;
He et al., 2023). We find that DP-ZO seamlessly scales
to larger models and believe its simplicity presents a com-
pelling alternative to DP-SGD for practitioners.

DP-SGD. Differentially Private Stochastic Gradient De-
scent (DP-SGD) (Song et al., 2013; Abadi et al., 2016) is
the standard privacy-preserving algorithm to train models
on private data, with an update rule given by w(t+1) =
w(t) − ηt

|B|
(∑

i∈B
1
cclipc(∇ℓ(xi, w

(t))) + σξ
)

where
the changes to SGD are the per-sample gradient clipping
clipc(∇ℓ(xi, w

(t))) = c×∇ℓ(xi,w
(t))

max(c,||∇ℓ(xi,w(t))||2)
and addition

of noise sampled from a d-dimensional Gaussian distribu-
tion ξ ∼ N (0, 1) with standard deviation σ. DP-SGD is the
marquee algorithm for privacy-preserving machine learning,
but it requires implementing per-example gradient clipping.
This creates a slew of challenges for deploying DP-SGD.

Computational and Memory Challenges in DP-SGD. DP-
SGD requires the computation of per-example gradients,
which can be naively implemented by storing each gradient
in the batch separately. This approach inflates the memory
overhead by a factor of B, where B is the batch size. Ten-
sorflow Privacy avoids this issue by clipping microbatches
rather minibatches, which does not slow down training but
increases the noise added and therefore hurts utility. Jax can
automatically vectorize the per-sample gradient computa-
tion, but training is still slowed down. Recently, specialized
libraries have been developed that instead analytically com-
pute the norm of the gradients for different layers (Li et al.,
2022b; Bu et al., 2023c). This requires actually implement-
ing the computation, which is challenging for new layers. If
a practitioner wants to train LLaMA2 and efficiently com-
pute the per-example gradient norms, they would first have
to derive the analytical formula for the norm of Grouped-
QueryAttention (Touvron et al., 2023), which can represent
a nontrivial amount of engineering. This complexity is fur-
ther compounded when considering models with parameter
sharing, such as the OPT networks we use in our experi-
ments, as this is generally not compatible with analytical
norm clipping methods (lxuechen, 2022). Although network
architectures exist that do not require parameter sharing, the
best pretrained models (Zhang et al., 2022; Touvron et al.,
2023) use parameter sharing because it makes the model
use the same representation for predicting tokens at the next
step as well as for decoding.

B.1. DP-ZO Scales Seamlessly

In order to train models as large as OPT-66B, whose pa-
rameters cannot be loaded into memory on a single A100
GPU, we need to implement some form of parallelism across
GPUs. We now discuss how easy this is for DP-ZO (in the
simplest form, just running DP-ZO on a machine with 2
GPUs will prompt HuggingFace to implement naive model
parallelism) and how challenging it can be for approaches
that require per-example gradient clipping such as DP-SGD.

Data Parallelism in DP-ZO. To synchronize model state
between GPUs in data-parallel-DP-ZO, we just transfer the
random seed and its corresponding fp16 scalar step size; this
is just a few bytes. However, first-order approaches such as
DP-SGD require the transfer of gradients across devices to
update all the models, necessitating expensive allgather and
reduce operations. This communication overhead is 1.5d in
PyTorch FSDP, where d is the size of the model.

DP-ZO Does Not Store Gradients. DP-ZO does not store
activations or gradients in the forward pass, thus conserving
memory. DP-SGD needs to store the activations at each
GPU under pipeline parallelism to clip the per-example gra-
dient (He et al., 2023), which will fill up the GPU memory
and limit new microbatches from being processed.

DP-ZO Easily Integrates With Mixed Precision Training.
All DP-ZO experiments use mixed precision; we load the
model and compute the loss in half precision. Mixed preci-
sion training is much faster than full precision and also has
a smaller memory footprint; these factors contribute to DP-
ZO’s ability to train much larger models. By contrast, im-
plementing DP-SGD with half precision is challenging. Yu
et al. (2022) do not modify their implementation of DP-SGD
to support half precision and report worse performance as a
result. Li et al. (2022b) detail an algorithm that interleaves
loss scaling with gradient clipping to avoid underflow while
maintaining utility. This implementation is nontrivial and
as of today is not available in Opacus (ffuuugor, 2022).

DP-ZO is Storage and Communication-Efficient Even
After Training Has Completed. DP-ZO offers signif-
icant advantages in terms of storage and communication
efficiency, especially beneficial for bandwidth-constrained
environments like edge devices. Unlike traditional meth-
ods where the difference in model parameters θ0 − θf is
shared—which could amount to multiple gigabytes for large
models—DP-ZO allows for the storage and transmission
of a sequence of updates. This sequence is represented
as an array of tuples [(SEED0, 0.54), · · · , (SEEDf ,−0.14)],
where each tuple contains a seed and a step size, taking up
only 4 bytes. Even for 1 × 104 fine-tuning iterations, this
array would require less than 1MB of storage, representing
a substantial reduction in both storage and communication
overhead. We can apply these weight differences to a model
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by simply iterating over the array, sampling from the PRNG
using the given seed, scaling that random vector, and ap-
plying it to the current model parameters. This procedure
is highly efficient, as it involves only sequential memory
accesses and scalar floating-point operations.

C. Privacy Analysis
Proposition C.1 (Basic Composition theorem (Dwork and
Roth, 2014)). If M1 is (ε1, δ1)-DP and M2 is (ε2, δ2), then
the adaptive composition of M1 and M2 is (ε1+ε2, δ1+δ2)-
DP.

Proposition C.2 (Privacy Amplification via Subsam-
pling (Balle et al., 2018)). If M is (ε, δ)-DP, then the subsam-
pled mechanism with sampling rate p obeys (ε′, δ′)-DP with
privacy parameters ε′ = log(1 + p(eε − 1)) and δ′ = pδ.

DP-ZO can be instantiated with different noise mechanisms.
In this subsection we provide privacy analysis for the Gaus-
sian mechanism and Laplace mechanism.

Gaussian Mechanism As outlined in Line 11, the ℓ2 sen-
sitivity of Algorithm 1 is C and we are adding N (0,C2σ2)
noise to the estimated loss. We analyze the composition
of subsampled Gaussians with the privacy loss variable ac-
counting approach of Gopi et al. (2021).

Laplace Mechanism Laplace mechanism can gives a pure
DP guarantee of δ = 0 which can be of interest in some
scenarios. Here we first analyze the pure ε-DP guarantee
provided by laplace mechanism and then provide the analy-
sis for approximate (ε, δ)-DP analysis.

Pure ε-DP by Laplace mechanism. We use data in a
single batch instead of all training data to compute the gra-
dients in each updates. For the privacy analysis for Laplace
mechanism in Algorithm 1, when we sample each batch
in the poisson manner, we could leverage Proposition C.2
to compute the private amplification by subsampling. We
first analyze the privacy cost for one step by the Laplace
mechanism. At each step, we sample a new batch of data
with the sample rate of p = B/|D|. As outlined in Line 11,
the ℓ1 sensitivity of Algorithm 1 is C. By Section 2.1,
the privacy cost at one step would cost (1/σ, 0)-DP on
this batch. By Proposition C.2, the privacy cost at one
step would cost (log(1 + p · (e1/σ − 1)), 0)-DP on the
full dataset D. By Proposition C.1, the privacy cost of Al-
gorithm 1 instantiated with Laplace mechanism satisfies
(T · log(1 + p · (e1/σ − 1)), 0)-DP.

We provide the privacy parameters we used for pure ε-DP
by the Laplace mechanism in Table 8.

Approximate ε-DP by Laplace mechanism. We can also
get tighter composition of ε with relaxation to δ > 0. The

most straight forward way is to instantiate the PRV of ran-
dom response with (log(1 + p · (e1/σ − 1)), 0) because the
dominating pair for random response is a dominating pair
for the pure DP mechanism. Then, we can use the numerical
composition of Pure DP PRV by Gopi et al. (2021). Note
that this method is agnostic to the DP mechanisms used for
pure ε-DP. We now provide a more fine-grained privacy
analysis for the laplace mechanism. Specifically, we could
compute the privacy cost of composition for the Laplace
mechanism by Monte Carlo based DP accountant (Wang
et al., 2023). Note that since we are dealing with scalar
values, our mechanism in each iteration will be a one dimen-
sional Laplace mechanism. Let b be the scale of Laplace
noise, p the sub-sampling rate, and assume the sensitivity
is 1, and assume we are doing composition for T iterations,
each iteration with sampling rate p. By Zhu et al. (2022) we
know that the pair of distribution (P,Q) dominating pair
for a single dimensional Laplace mechanism, where P and
Q are distributed according to the following pdfs,

fP =
1

2b
exp(−|x|/b) and fQ =

1

2b
exp(−|x− 1|/b).

Therefore, (P, (1 − p) · P + p · Q) is the dominating pair
for the sub-sampled Laplace. We plug this into the stan-
dard Monte-Carlo accountant of Wang et al. (2023) (without
importance sampling, see Algorithm 2 and Theorem 10 in
Wang et al. (2023)) while using 1010 samples to calculate
the δ at a given value of ϵ. Also, using the analytical accoun-
tant explained above, we always make sure that E[δ̂2MC ] is
bounded by 10−8 (We use the fact that E[δ̂2MC ] is bounded
by E[PRV 2] and the fact the PRV is always bounded for
Laplace mechanism.). This ensures that the error of our
estimation of δ is at most 10−8 with probability at least
1− 10−5. Putting all together, for all reported values of ϵ,
our δ is bounded by 10−5, with probability at least 0.99999.
This privacy analysis is tighter with ε is high compared to
the former analysis which uses the pure DP PRV accountant.
This is consistent with the intuition. As we increase the
distance between the Laplace dominating pairs, the proba-
bility of sampling points from the area between the centers
increases. And that is where the Laplace Mechanism is
different from the Randomized Response. We present the
accounting results for the Laplace method to achieve (ε, δ)-
DP by these two accounting methods in Table 9. Table 9
shows that the Monte Carlo based DP accountant can give
tighter analysis for the Laplace mechanism for (ε, δ)-DP
than the pure ε-DP PRV method.
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Table 8. ε-DP by Laplace. BSZ=20, Steps=2000.

σ |D| ε

10.5 1000 4
4.5 1000 10
3.2 1000 15

2.5 5000 4

Table 9. (ε, δ)-DP guarantee for Laplace. δ = 10−5. |D| =
1000. BSZ=16, Steps=75000.

σ ε (by Monte-Carlo) ε (by pure-DP PRV)

30.8 0.5 0.51
16.3 1 1.04
4.6 4 4.70

D. Implementation Details
We follow Malladi et al. (2023) and provide the memory-
efficient version of DP-ZO in Algorithm 2. Algorithm 2
enjoys the benefit that it does not incur additional GPU
memory cost compared to inference.

E. Design Choices
Algorithm 1 outlines our DP-ZO that estimates the gradi-
ents via privatized loss value without backpropagation. In
this subsection, we provide several design choices for Algo-
rithm 1.

Definition 2 (n-SPSA Gradient Estimator) The n-SPSA
gradient estimate averages∇Lb(θ;B) over n randomly sam-
pled z. We can write this in vector notation, dropping the
normalizing constants for succinctness.

gi = L(θ + ϵzi;B)− L(θ − ϵzi;B)(projected gradient for each i)

Z = [z1, z2, ..., zn](matrix whose columns are the z vectors)
g = [g1, g2, ..., gn](vector of projected gradients)

Then the n-SPSA gradient estimate can be written as:

∇Ln(θ;B) = g · Z (2)

How Many Gradients to be Estimated in a Model Update.
Algorithm 1 estimates the gradients once. As outlined above,
SPSA can be extended to n-SPSA gradient estimator and
n-SPSA can improve the performance in the non-private
setting (Malladi et al., 2023). Here we discuss our design
choice of why we choose n = 1 in Algorithm 1.

• Estimate the average. Previous work (Malladi et al.,
2023) shows that averaged estimation helps the non-
private setting. In a private setting, we have to privatize

Algorithm 2 Differentially Private-ZO (GPU memory effi-
cient version. Adapted from Malladi et al. (2023))

1: Model parameters θ, dataset D, learning rate α, pertur-
bation scale ϕ, random seed s, weight decay λ, noise
scale σ, noising mechanism Z , clipping threshold C,
expected batch size B and sampling rate p = B/|D|.
Lines with * are DP modifications.

2: procedure DP-ZO((θ, D, ϵ, σ, T , s, ϕ, C, α))
3: for t ∈ 1, . . . T do
4: Poisson samples B from dataset D with sam-

pling rate p *
5: θ ← PerturbParameters(θ, ϕ, s)
6: Compute per-sample loss L1(θ,B)*
7: θ ← PerturbParameters(θ,−2ϕ, s)
8: Compute per-sample loss L2(θ,B)*
9: θ ← PerturbParameters(θ, ϕ, s)

10: Compute difference in loss L = L1 − L2

11: Clamp L between −C and C*
12: g =

∑
i∈B L+Z(C,σ)

B∗2ϕ *
13: Reset random number generator with seed s
14: for θi ∈ θ do
15: z ∼ N (0, 1)
16: θi ← θi − α ∗ g ∗ z
17: end for
18: end for
19: end procedure
20: procedure PERTURBPARAMETERS((θ, ϕ, s))
21: Reset random number generator with seed s
22: for θi ∈ θ do
23: z ∼ N (0, 1)
24: θi ← θi + ϕz
25: end for
26: end procedure

the gradient estimation. Here we discuss our initial de-
sign of the privatized n-SPSA gradient estimation. For
the sampled batch, assuming we are adding the Gaus-
sian noise N (0,C2σ2) for 1-SPSA. Then for n-SPSA,
to ensure we have the same privacy cost as 1-SPSA,
we need to addN (0, n ·C2σ2) to each gradient estima-
tion and finally average the n gradients. Our privacy
analysis follows the n-fold composition of Gaussian
mechanism (Corollary 3.3 in Gaussian differential pri-
vacy (Dong et al., 2019)). Our initial experiment result
shows that our current analysis for n-SPSA noise ad-
dition does not make n-SPSA improve in the private
setting compared to 1-SPSA. We leave the improve-
ment in tighter analysis for private n-SPSA as future
work and use 1-SPSA to conduct experiments.

The Type of Noise for DP. As discussed in Section 3, Al-
gorithm 1 can be incorporated in different noise mecha-
nisms. We focus on the Gaussian noise mechanism and
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the Laplace mechanism in this work. The Gaussian noise
mechanism has been widely studied in previous literature
both for privacy analysis and empirical performance in DP-
SGD (Abadi et al., 2016; Mironov, 2017; Dong et al., 2019).
The Laplace mechanism, though less studied for privacy-
preserving machine learning, can provide pure DP while the
Gaussian mechanism can only provide approximate DP. We
have provided the privacy analysis in Section C.

F. Hyperparameter Search
Our experiments are based on the open-source code1 of Mal-
ladi et al. (2023). We provide the prompts we use in Ta-
ble Table 10. In this section, we first provide several initial
results for hyperparameter search on clipping threshold and
finally present the hyperparameter tables. We also provide
an initial study to systematically evaluate the interplay be-
tween batch size and training iterations for DP-ZO.

Table 10. The prompts of the datasets we used for DP-ZO.

Dataset Type Prompt

SQuAD QA Title: <title>
Context: <context>
Question: <question>
Answer:

DROP QA Passage: <context>
Question: <question>
Answer:

SST-2 classification <text> It was terrible/great

Different Clipping Threshold. Li et al. (2022b); De et al.
(2022) recommend small clipping C threshold for DP-SGD
training. For example, Li et al. (2022b) use C = 0.1 for
training language models. We therefore study the effect of
different clipping threshold and present the results in Ta-
ble 11. We find that while C = 1 performs significantly
worse, setting C as 0.1, 0.05, 0.01 are within the 2% perfor-
mance gap. We therefore choose C = 0.05.

Table 11. Different clipping C. σ = 15.9. batch size=16, 10,000
steps. ε = 0.35.

Clip=1 Clip=0.1 Clip=0.05 Clip=0.01

F1 66.04 74.26 76.81 75.39

Hyperparameter for DP-ZO (Gaussian) in Main Results.
We present the hyperparameter for DP-ZO (Gaussian) in Ta-
ble 12 and Table 13.

1https://github.com/princeton-nlp/MeZO.

Table 12. Hyperparameter search for DP-ZO in main results Ta-
ble 1.

|D| 1000
Steps T 75000

Clipping C 0.05
Batch size 16

σ 30.9 for ε = 0.5, 16.4 for ε = 1, 4.8 for ε = 4
learning rate [5e-6, 1e-5, 2e-5, 5e-5, 1e-4]
LoRA rank 8

Table 13. Hyperparameter search for DP-ZO with full parameter
fine-tuning in Table 2.

|D| 1000
Steps T 10000

Clipping C 0.05
Batch size 16

σ 11.47 for ε = 0.5, 6.08 for ε = 1, 1.88 for ε = 4
learning rate [2e-7, 5e-7, 1e-6, 2e-6, 5e-6]

Hyperparameter for DP-SGD. We present the hyperpa-
rameter search for DP-SGD in Table 14.

Table 14. Hyperparameter search for DP-SGD in Table 2.

|D| 1000
Steps T 200

Clipping C 0.1
Batch size 64

σ 6.60 for ε = 0.5, 3.59 for ε = 1, 1.28 for ε = 4

learning rate [1e-4, 2e-4, 5e-4, 1e-3, 2e-3] for LoRA fine-tuning.
[1e-5, 2e-5, 5e-5, 1e-4, 2e-4, 5e-4] for Full fine-tuning.

LoRA rank 8

Hyperparamter for DP-ZO (Laplace). The hyperparam-
eter search for DP-ZO (Laplace) is similar to DP-ZO (Gaus-
sian).

Ablation on Batch Size and Steps. In Table 15 and Ta-
ble 16, we did an initial study to systematically evaluate
the interplay between batch size and training iterations by
varying batch size in [16,32,64,128] and steps in [10000,
2000, 40000, 80000]. Similar to main results, we run 5
independent runs for each setting and compute the average
of 5 runs. This ablation is by OPT-13B on SQuAD dataset
with LoRA fine-tuning. Table 15 and Table 16 show that
increasing steps T improves the performance more than
increasing the batch size. We also did ablation study on
T in [200, 400, 800, 1600] for DP-SGD (and did not ob-
serve significant improvements in DP-SGD) to ensure the

14
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fair comparison of DP-SGD and DP-ZO. Taking the com-
putation limitation into consideration, we set T = 75000
and BSZ=16 for main results in Table 1. We leave more
investigation on the batch size and steps for DP-ZO, such as
variance reduction method, as future work.

Table 15. T = 10000, Varying batch size.

BSZ=16 BSZ=32 BSZ=64 BSZ=128

F1 81.35 81.63 81.47 81.72

Table 16. Batch size=16. Varying steps T .

T 10000 20000 40000 80000

F1 81.35 81.65 81.42 82.52

Computation Cost. DP-ZO for OPT-13B models on
SQuAD datasets takes around 4hrs for 10000 steps. DP-
SGD for OPT-13B models on SQuAD datasets takes around
4hrs for 200 steps. When increasing T or B in DP-ZO,
the training time scales proportionally to the scaling factor.
Future work includes how to reduce the computation time
of DP-ZO, e.g., by variance reduction method to improve
the convergence rate.

G. Ablation on Model Size
Section A.2 shows that DP-ZO scales to larger models and
provides the results of DP-ZO for model size varying from
1.3B to 66B parameters in Table 2. Here we provide the
full results of DP-ZO finetuned with LoRA at ε = 1, with
model size ranging from 1.3B to 66B. We also include the
ε = 0 and ε =∞ baseline as a reference in Table 17.

Table 17 shows the full trend of DP-ZO with model size
scaling from 1.3B to 66B, that is DP-ZO scales to larger
models.

For OPT-1.3B, the gap between private and non-private
baseline is 5.67. For OPT-66B, the non-private baseline
is 87.49 and the gap between the private and non-private
results is 2.11.

Table 17. Ablation of DP-ZO across different model sizes.
(1, 10−5)-DP.

Model OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B OPT-30B OPT-66B

ε = 0 27.20 29.89 36.48 46.23 46.53 48.13
ε = 1 75.290.90 80.341.14 81.341.04 82.280.84 82.480.83 85.38∗
ε =∞ 80.97 84.14 86.44 86.85 86.98 87.49
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