
Learning to Reason with Transformers via Search Inductive Biases: A Proposal

Carlos Núñez-Molina, Israel Puerta-Merino, Pablo Mesejo, Juan Fernández-Olivares
University of Granada, Spain

Andalusian Institute of Data Science and Computational Intelligence (DaSCI)
ccaarlos@ugr.es, israelpm01@ugr.es, pmesejo@go.ugr.es, faro@decsai.ugr.es

Abstract

Large Language Models have revolutionized the field of AI.
Most recently, with the advent of Large Reasoning Models
like OpenAI’s o1 (Strawberry), they are becoming increas-
ingly proficient at reasoning tasks, such as math, computer
programming and Sequential Decision Making (e.g., Auto-
mated Planning). In this preliminary work, we present an al-
ternative approach for learning to reason: instead of perform-
ing reasoning at the LLM-level, we propose to do so at the
transformer-level. To achieve this, we introduce the Search
Transformer, a novel neural architecture that enhances the
transformer model with a search inductive bias, thus allow-
ing it to perform variable test-time computation. We formu-
late search operations (e.g., node selection and successor gen-
eration) in terms of differentiable, attention-based compu-
tations, in order to learn a search process end-to-end using
back-propagation. By learning to search, we believe Search
Transformers will adquire promising System-2 capabilities,
thus surpassing the performance of standard transformers at
reasoning-related tasks.

Introduction
Large Language Models (LLMs) (Brown et al. 2020) have
revolutionized the field of AI, enabling applications in areas
as diverse as Natural Language Processing (Min et al. 2024),
Medicine (Thirunavukarasu et al. 2023), Finance (Li et al.
2023) and Education (Kasneci et al. 2023). Nonetheless,
these impressive results do not generalize well to System-
2 tasks (Kahneman 2011), i.e., tasks that require reason-
ing in order to be addressed effectively, such as generat-
ing complex code (Du et al. 2024), solving math problems
(Mirzadeh et al. 2024) and planning (Valmeekam, Stechly,
and Kambhampati 2024). In the past few years, much ef-
fort has been devoted to improving the reasoning abilities
of LLMs, i.e., to teaching LLMs to reason. As a result,
there has been a surge of new approaches such as Chain-
of-thought (Wei et al. 2022), Self-refinement (Madaan et al.
2024) and Reflection (Shinn et al. 2024), which have paved
the way for the development of Large Reasoning Models
(LRMs) like Open AI’s recent o1 (codename Strawberry)
(OpenAI 2024).

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this preliminary work, we choose a different approach
for learning to reason: instead of performing reasoning at
the LLM-level, we propose to do so at the transformer-
level. We build upon the hypothesis that any reasoning pro-
cess can be formulated as search and introduce the Search
Transformer, an enhancement of the popular transformer
architecture with a search inductive bias and adaptive test-
time computation (Snell et al. 2024). Search Transformers
learn to carry out an explicit search process in order to solve
the task provided as input. This search process is formulated
in terms of differentiable, attention-based operations, thus
enabling end-to-end training through back-propagation.

Our approach can be regarded as an extension of Univer-
sal Transformers (Dehghani et al. 2019). However, instead
of recursively processing each token, we propose to incorpo-
rate a stronger inductive bias for learning a search procedure.
Additionally, there exist other approaches for learning to
reason (Veličković and Blundell 2021) (e.g., Neural Turing
Machines (Graves, Wayne, and Danihelka 2014) and Neural
Logic Machines (Dong et al. 2019)) and, more specifically,
for learning to plan (Núñez-Molina, Mesejo, and Fernández-
Olivares 2024) (e.g., Value Iteration Networks (Tamar et al.
2016) and Action Schema Networks (Toyer et al. 2018)).
Unlike these methods, we propose to leverage transformer-
like attention operations, which are powerful enough to
tackle a wide range of tasks and can be adapted to many dif-
ferent task encodings (e.g., natural language), not requiring
formal descriptions such as PDDL (Haslum et al. 2019).

Alternatively, there exist many approaches for improv-
ing the reasoning capabilities of LLMs, either during the
pretraining/finetuning process (e.g., STaR (Zelikman et al.
2022), Refiner (Paul et al. 2023) and o1 (OpenAI 2024)),
or by performing in-context learning (e.g., Chain-of-thought
(Wei et al. 2022), Self-refinement (Madaan et al. 2024) and
RAP (Hao et al. 2023)). Nonetheless, most of these tech-
niques only work on LLMs beyond a certain size (Plaat et al.
2024), for which training and inference is computationally
expensive. For instance, it is often much more efficient to
solve an Automated Planning (AP) task with an ad-hoc plan-
ner instead of an LRM (Valmeekam, Stechly, and Kamb-
hampati 2024). Therefore, we propose Search Transformers
as a way of exploiting the power of attention without incur-
ring into the computational costs of LLMs.

Finally, recent works (Lehnert et al. 2024; Gandhi et al.



2024; Su et al. 2024; Saha et al. 2024) train transformers
to search by mimicking the operation of a search algorithm
like A*. Unlike our approach, these methods are trained on
search/reasoning traces containing the nodes expanded by
the teacher search algorithm to solve each training example.
Conversely, we propose to train Search Transformers solely
on input-output pairs, not requiring example search traces.
This makes our method applicable to tasks where this in-
formation is unavailable, e.g., when the world model/system
dynamics are unknown so no search algorithm can be run to
obtain example search traces.

We devote the rest of this paper to the design of Search
Transformers, explaining how attention can be used to learn
and carry out a search process. In future work, we will im-
plement our proposal and compare it with other learn-to-
reason approaches on several reasoning benchmarks, includ-
ing AP tasks.

Proposal: Search Transformers
The main goal of our work is to improve the reasoning abil-
ities of transformers. In order to achieve this, we propose
two extensions to the transformer architecture. First, the use
of adaptive test-time computation, i.e., allowing the model
to perform variable amounts of computation depending on
the input. The intuition behind this is simple: hard tasks
require more computational effort (i.e., thinking time) than
easy tasks in order to be successfully solved. Second, we
propose to incorporate a search inductive bias into trans-
formers. We hypothesize that any reasoning process can be
formulated in terms of search. Therefore, we believe that
teaching transformers to conduct a search process should be
beneficial over alternative test-time computation approaches
with weaker inductive biases (e.g., simple token-level recur-
rence as in Universal Transformers).

Search Transformers simultaneously learn an action/-
world model and how to plan/search over it. Therefore, they
are similar to learn-to-plan approaches such as TreeQN (Far-
quhar et al. 2018) and DRC (Guez et al. 2019), although
these models only tackle Sequential Decision Making prob-
lems. The meaning of this action model depends on the task
being solved. For instance, in Sequential Decision Making
(e.g., AP) tasks, it would encode the actions available to the
agent and how they affect the state of the world. When solv-
ing a math equation, it could encode a set of operators/trans-
formations (e.g., dividing both sides by the same number)
and how they affect the equation. If performing logical de-
duction, it may encode a set of logical rules to deduce new
facts from a set of true premises. In addition to the action
model, a search process requires an initial state and goal to
achieve. In the case of Search Transformers, both items are
encoded in the tokens provided as inputs.

We propose to train our approach in an end-to-end fash-
ion by back-propagating the gradients of a loss function. To
do so, we can resort to the same training procedures as stan-
dard transformers. For instance, Search Transformers could
be trained in a self-supervised fashion using teacher-forcing.
As an alternative, we could train them in a supervised man-
ner on a dataset composed of input-output pairs, e.g., com-

prising questions with their correct answers or task descrip-
tions with their solutions.

Search Transformers receive as inputs a sequence of to-
kens describing a task to solve, e.g., “Solve the following
equation: 3x + 5 = 20”. Then, they carry out a search pro-
cess (see Figure 1.a1-a3) in order to discover useful informa-
tion for solving the task. Once this search has concluded, the
expanded nodes are provided as additional inputs to a stan-
dard transformer, which we refer to as the Output Trans-
former (OT) (see Figure 1.b). The OT is used to autoregres-
sively predict the output tokens from the input tokens and
search nodes. Therefore, search nodes incorporate additional
information into the context window of the transformer, in a
similar fashion to in-context learning approaches like few-
shot prompting. In our previous example, nodes could en-
code the sequence of mathematical derivations needed to
solve the equation: 3x + 5 = 20 → 3x = 15 → x = 5.
Nonetheless, unlike information added by in-context learn-
ing methods, search nodes are not represented as tokens but
directly as latent-space embeddings, thus following the ap-
proach proposed in (Hao et al. 2024).

The search process conducted by Search Transformers
starts from an initial node n1 with a predefined, constant
embedding (e.g., full of zeroes). Then, at each step, the fol-
lowing three operations are applied in sequence: 1) node and
action selection, 2) node transition, and 3) next node genera-
tion. Steps 1 to 3 are applied iteratively, until the halting con-
dition is met (see subsection below). We now explain these
operations in detail:

Node and action selection. At each step, the Expansion
Transformer (ET) receives the input tokens and nodes ex-
panded so far in the search and, for each node ni, predicts
the probability pi of it being expanded next and the action
ai to apply to it (see Figure 1.a1). The ET utilizes a standard
transformer architecture and does not share weights with the
OT. We propose to use a transformer, instead of a different
neural network, so that each node can attend to the other
nodes when “deciding” if and how it should be expanded.
Therefore, the ET leverages the current global state of the
search process when computing the actions and expansion
probabilities. This is analogous to non-markovian/history-
dependent policies in Reinforcement Learning, which look
at past states and actions when deciding the action to apply
next. Just as the OT, the ET also receives the input tokens in
addition to the search nodes. These tokens serve to provide
additional context to the ET, encoding crucial information
about the task, such as its initial state and goal. Were they
not provided, this information would need to be encoded in
the search nodes, thus potentially hindering the learning pro-
cess.

Node transition. Next, the Transition Transformer (TT)
receives the input tokens along with the sequence of search
nodes and the actions predicted by the ET. For each node-
action pair (ni, ai), it predicts the next node n′

i resulting
from the application of ai at ni (see Figure 1.a2). There-
fore, the goal of the TT is to learn the action model (also
known as world model or transition function). Analogously
to the OT and ET, the TT utilizes a standard transformer ar-



Figure 1: Search Transformer architecture. Search transformers carry out two different phases when solving a task: a) search
and b) output prediction. The search phase is composed of three steps (a1 to a3), whose application results in a new search
node ni each time. By iteratively applying steps a1-a3 m times (the figure assumes m = 4), we obtain the sequence of search
nodes n1, ..., nm, which encode useful information about the task to solve. We now explain these steps in detail. a1) At each
search iteration, the Expansion Transformer (ET) receives the input tokens and search nodes expanded so far. For each node
ni, it predicts the probability pi of the node being expanded next and the action ai to apply to it. a2) Next, the Transition
Transformer (TT) receives the input tokens alongside the sequence of nodes n1, ..., nm and predicted actions a1, ..., am. For
each node ni, it predicts the next node n′

i resulting from the application of action ai. a3) Finally, the next node nm+1 of the
search is obtained from the sequence of next node candidates n′

1, ..., n
′
m. At test time, we sample a candidate node according

to probabilities p1, ..., pm whereas, at training time, nm+1 is obtained as a weighted average or with the Gumbel-softmax trick
(Jang, Gu, and Poole 2017). Once search has concluded, the output prediction phase (b) takes place. The Output Transformer
(OT) receives the input tokens t1, ..., tn and nodes n1, ..., nm expanded during the search, and predicts the output tokens
t′1, ..., t

′
n autoregressively.

chitecture and does not share weights with them. Moreover,
it also receives the input tokens as additional context. In or-
der to allow each (ni, ai) pair to attend to the input tokens
when predicting n′

i, we decided to encode the action model
as a transformer instead of as an alternative model (e.g., a
multilayer perceptron). Nonetheless, we forbid each (ni, ai)
pair from attending to other (nj , aj) pairs. This encodes the
strong inductive bias that the next node n′

i only depends on
the current node ni and action ai applied to it, being inde-
pendent from other nodes. In other words, we assume the
action model is markovian, i.e., it does not depend on the
past history of actions and states (nodes). Finally, most trans-
formers make use of position encodings to represent the po-
sition/index of each token in the input sequence. In the case
of a search process, we do not care about the index of each
node but, rather, about the topology of the search tree, i.e.,
for each node we may want to know its parent and the action
that was applied to obtain it. Instead of manually encoding
this information into each node embedding, we let the TT
learn it automatically, in analogous fashion to learnable po-
sition encodings in transformers.

Next node generation. In the previous step, the TT ob-
tained for each node ni its corresponding next node n′

i, ac-
cording to the action ai selected by the ET. However, we
should only expand a single node at each iteration of the
search process to prevent exponential growth in the num-
ber of nodes. For this reason, we need to aggregate all
the next node candidates n′

1, ..., n
′
m into a single next node

nm+1, which then will be appended to the sequence of ex-
panded nodes n1, ..., nm (see Figure 1.a3). At test time,

this is straightforward to do: we can simply sample a node
from n′

1, ..., n
′
m according to the expansion probabilities

p1, ..., pm predicted by the ET. At training time, however,
a different approach is needed, as this sampling process is
not differentiable. The simplest approach would be to ob-
tain nm+1 as the weighted average of n′

1, ..., n
′
m, where

the aggregation weights would be given by the probabilities
p1, ..., pm. Nonetheless, we believe a better approach would
be to utilize the Gumbel-sofmax trick (Jang, Gu, and Poole
2017) to approximate sampling a node from n′

1, ..., n
′
m in

such a way gradients can flow through.

Halting the Search
As explained above, Search Transformers carry out a search
process in order to obtain a sequence of nodes n1, ..., nm

that are provided to the OT as additional information for
solving the task. An integral part of this process is decid-
ing when to halt the search. Intuitively, the more nodes
are expanded, the better the accuracy/quality of the solu-
tion predicted by the OT should be, as more useful infor-
mation about the task can be discovered during the search.
For instance, when solving a mathematical equation, Search
Transformers could explore all possible sequences of math-
ematical transformations until one that solves the equation
is found, in a process analogous to brute-force search. How-
ever, expanding more nodes means incurring in higher com-
putational costs. For this reason, it is of utmost importance to
expand just the right number of nodes required to solve the
task, thus achieving a balance between accuracy and com-
putational efficiency. The optimal number of nodes to ex-
pand should vary from task to task, as harder tasks generally



require more nodes (i.e., more computation) in order to be
solved successfully. Therefore, Search Transformers should
learn to adapt their computational budget (i.e., number of
expanded nodes) to the task provided as input, in what is
known as adaptive test-time computation.

In order to achieve this, we propose an approach inspired
by the method in (Graves 2016). We define the utility ui of a
node ni as a measure of how useful it is for the OT to solve
the task. Utility can be seen as a continuous approximation
of the concept of a goal: whereas a node is either a goal or
not, its utility is a real value between 0 and 1, where 0 means
the node contains no useful information at all and 1 corre-
sponds to maximum utility. Although goal nodes should be
assigned high utility, this measure is not limited to them. For
example, nodes contained in the path from the initial node
to the goal may also exhibit high utility (e.g., in case we
need to explain how the goal was reached), or nodes corre-
sponding to dead-ends, which could be useful for providing
contrastive explanations (Stepin et al. 2021). Based on this
notion of utility, we define the utility threshold U as the total
utility that must be attained in order to solve the input task
successfully. During search, we expand nodes n1, ..., nm un-
til the sum of their utilities

∑m
i=1 ui reaches U , at which

point we halt the search and provide the sequence of nodes
to the OT. Therefore, this parameter U controls the compu-
tational budget of the search: the higher its value is, the more
nodes are expanded on average.

Now, an important question arises: how can we estimate
these utility values? Our proposal is to approximate the util-
ity ui of a node ni as its (normalized) attention score by
the OT. This attention score measures how much the OT at-
tends to (i.e., relies on) ni when predicting the output tokens
so, the higher this value is, the more useful ni should be
for solving the task (since the OT would not attend to ni

otherwise). An important limitation of this utility definition,
however, is that it can only be computed after the search has
concluded and all nodes n1, ..., nm have been expanded. In
contrast, we would need to have access to the node utility
values u1, ..., um during the search, in order to decide when
to halt it. We propose to overcome this limitation by training
the TT to also predict the utility u′

i of next node candidates
n′
i as they are generated, so this information is available dur-

ing search.
At training time, we propose to set the utility threshold

U to a high value so a large number of nodes are expanded
(this would be analogous to performing exploration in Re-
inforcement Learning). For instance, if we set U = 2, then
the Search Transformer would expand twice the number of
nodes it deems necessary for solving the task. Given the se-
quence n1, ..., nm of expanded nodes, we can then retro-
spectively determine the subsequence n1, ..., nk (k ≤ m)
of nodes that should have been expanded, in order to attain a
better balance between accuracy and efficiency. Let us pro-
vide a concrete example. Assume the model expands five
nodes n1, n2, n3, n4, n5, whose ground-truth utility values
(i.e., OT attention scores, different from predicted utilities)
are 0.4, 0.05, 0.3, 0.15, 0.1 (note how these values add up to
1, since they are normalized). It can be observed that nodes
n1 and n3 concentrate most of the utility, with values of 0.4

and 0.3, respectively. Therefore, it makes sense to halt the
search after expanding node n3, since nodes n4 and n5 have
low utility values and, thus, provide little useful information
to the OT. There exist many different alternatives for decid-
ing at which node to stop the search. We propose a simple
approach where we halt the search at the first node nk whose
ground-truth cumulative utility

∑k
i=1 ui, analogous to the

cumulative distribution function cdf in statistics, surpasses
some predefined value τ ∈ (0, 1). In our previous example,
if we set τ = 0.5, then nk = n3.

Once we have obtained the subsequence n1, ..., nk of
nodes that should have been expanded, we re-normalize their
ground-truth utilities so that they add up to 1 again, obtain-
ing a new sequence of utility values u∗

1, ..., u
∗
k. Then, the TT

is trained to predict u∗
i as the utility of each node ni, e.g.,

by minimizing the Mean Squared Error (MSE) loss. This is
equivalent to training the TT to halt the search after node
nk, assuming U = 1. At test-time, U acts as a hyperparam-
eter for dynamically controlling the (expected) number of
expanded nodes, thus balancing accuracy and efficiency.

Conclusion
In this preliminary work, we have proposed Search Trans-
formers, an extension of the popular transformer architec-
ture for learning to reason. Search Transformers learn to
carry out a search process in order to discover useful infor-
mation about the task, which is then provided as additional
context when predicting the output tokens. Search operators
(e.g., node selection and successor generation) are formu-
lated in terms of attention-based operations, thus allowing
end-to-end training via back-propagation. Furthermore, we
devised a differentiable method for learning when to halt the
search, which allows Search Transformers to perform adap-
tive test-time computation (Snell et al. 2024).

In future work, we plan to implement our method and
compare it with alternative approaches, e.g., standard trans-
formers, Universal Transformers and other learn-to-reason
models, evaluating their performance on several reasoning
benchmarks such as Sequential Decision Making, math and
logical deduction. We will also explore how the ideas intro-
duced in this work can be extended to incorporate additional
prior knowledge and stronger, symbolic inductive biases into
our model. One possibility is to constrain Search Transform-
ers to follow a particular search strategy. For instance, by al-
ways expanding the last node, they would learn to carry out
a depth-first search. A different, but compatible, approach is
to impose some kind of structure on latent representations.
For example, we could constrain node embeddings to utilize
discrete variables (Van Den Oord, Vinyals et al. 2017), in a
manner reminiscent of symbolic representations like PDDL.

To conclude, we hope that the ideas presented in this work
will pave the way towards the development of better learn-
to-reason approaches. We envision such methods becoming
the backbone of LLMs and other foundational models in the
future, allowing them to adquire both System-1 and System-
2 capabilities during their extensive pretraining process, in-
stead of having to resort to post-hoc reasoning techniques
such as Chain-of-Thought or Self-refinement.



Acknowledgements
This work has been partially funded by the Grant
PID2022-142976OB-I00, funded by MICIU/AEI/
10.13039/501100011033 and by “ERDF/EU”, as well
as the Andalusian Regional predoctoral grant no. 21-111-
PREDOC-0039 and by “ESF Investing in your future”.

References
Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan,
T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter,
C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.;
Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford,
A.; Sutskever, I.; and Amodei, D. 2020. Language Models
are Few-Shot Learners. In Advances in neural information
processing systems.
Dehghani, M.; Gouws, S.; Vinyals, O.; Uszkoreit, J.; and
Kaiser, L. 2019. Universal Transformers. In 7th Interna-
tional Conference on Learning Representations.
Dong, H.; Mao, J.; Lin, T.; Wang, C.; Li, L.; and Zhou, D.
2019. Neural Logic Machines. In 7th International Confer-
ence on Learning Representations.
Du, X.; Liu, M.; Wang, K.; Wang, H.; Liu, J.; Chen, Y.;
Feng, J.; Sha, C.; Peng, X.; and Lou, Y. 2024. Evaluating
large language models in class-level code generation. In
Proceedings of the IEEE/ACM 46th International Confer-
ence on Software Engineering, 1–13.
Farquhar, G.; Rocktäschel, T.; Igl, M.; and Whiteson, S.
2018. TreeQN and ATreeC: Differentiable Tree-Structured
Models for Deep Reinforcement Learning. In 6th Interna-
tional Conference on Learning Representations.
Gandhi, K.; Lee, D.; Grand, G.; Liu, M.; Cheng, W.;
Sharma, A.; and Goodman, N. D. 2024. Stream of Search
(SoS): Learning to Search in Language. arXiv.
Graves, A. 2016. Adaptive computation time for recurrent
neural networks. arXiv.
Graves, A.; Wayne, G.; and Danihelka, I. 2014. Neural Tur-
ing Machines. arXiv.
Guez, A.; Mirza, M.; Gregor, K.; Kabra, R.; Racanière, S.;
Weber, T.; Raposo, D.; Santoro, A.; Orseau, L.; Eccles, T.;
et al. 2019. An investigation of model-free planning. In In-
ternational Conference on Machine Learning, 2464–2473.
Hao, S.; Gu, Y.; Ma, H.; Hong, J. J.; Wang, Z.; Wang, D. Z.;
and Hu, Z. 2023. Reasoning with Language Model is Plan-
ning with World Model. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Process-
ing, 8154–8173.
Hao, S.; Sukhbaatar, S.; Su, D.; Li, X.; Hu, Z.; Weston, J.;
and Tian, Y. 2024. Training Large Language Models to Rea-
son in a Continuous Latent Space. arXiv.
Haslum, P.; Lipovetzky, N.; Magazzeni, D.; Muise, C.;
Brachman, R.; Rossi, F.; and Stone, P. 2019. An introduc-
tion to the planning domain definition language, volume 13.
Springer.

Jang, E.; Gu, S.; and Poole, B. 2017. Categorical Repa-
rameterization with Gumbel-Softmax. In 5th International
Conference on Learning Representations.
Kahneman, D. 2011. Thinking, fast and slow. Farrar, Straus
and Giroux.
Kasneci, E.; Seßler, K.; Küchemann, S.; Bannert, M.; De-
mentieva, D.; Fischer, F.; Gasser, U.; Groh, G.; Günnemann,
S.; Hüllermeier, E.; et al. 2023. ChatGPT for good? On op-
portunities and challenges of large language models for ed-
ucation. Learning and individual differences, 103: 102274.
Lehnert, L.; Sukhbaatar, S.; Su, D.; Zheng, Q.; Mcvay, P.;
Rabbat, M.; and Tian, Y. 2024. Beyond A*: Better planning
with transformers via search dynamics bootstrapping. arXiv.
Li, Y.; Wang, S.; Ding, H.; and Chen, H. 2023. Large lan-
guage models in finance: A survey. In Proceedings of the
fourth ACM international conference on AI in finance, 374–
382.
Madaan, A.; Tandon, N.; Gupta, P.; Hallinan, S.; Gao, L.;
Wiegreffe, S.; Alon, U.; Dziri, N.; Prabhumoye, S.; Yang,
Y.; et al. 2024. Self-refine: Iterative refinement with self-
feedback. Advances in Neural Information Processing Sys-
tems, 36.
Min, B.; Ross, H.; Sulem, E.; Veyseh, A. P. B.; Nguyen,
T. H.; Sainz, O.; Agirre, E.; Heintz, I.; and Roth, D. 2024.
Recent Advances in Natural Language Processing via Large
Pre-trained Language Models: A Survey. ACM Computing
Surveys, 56(2): 30:1–30:40.
Mirzadeh, I.; Alizadeh, K.; Shahrokhi, H.; Tuzel, O.; Ben-
gio, S.; and Farajtabar, M. 2024. Gsm-symbolic: Under-
standing the limitations of mathematical reasoning in large
language models. arXiv.
Núñez-Molina, C.; Mesejo, P.; and Fernández-Olivares, J.
2024. A review of symbolic, subsymbolic and hybrid meth-
ods for sequential decision making. ACM Computing Sur-
veys, 56(11): 1–36.
OpenAI. 2024. Learning to reason with LLMs.
Paul, D.; Ismayilzada, M.; Peyrard, M.; Borges, B.; Bosse-
lut, A.; West, R.; and Faltings, B. 2023. Refiner: Reasoning
feedback on intermediate representations. arXiv.
Plaat, A.; Wong, A.; Verberne, S.; Broekens, J.; van Stein,
N.; and Back, T. 2024. Reasoning with large language mod-
els, a survey. arXiv.
Saha, S.; Prasad, A.; Chen, J. C.-Y.; Hase, P.; Stengel-Eskin,
E.; and Bansal, M. 2024. System-1. x: Learning to balance
fast and slow planning with language models. arXiv.
Shinn, N.; Cassano, F.; Gopinath, A.; Narasimhan, K.; and
Yao, S. 2024. Reflexion: Language agents with verbal re-
inforcement learning. Advances in Neural Information Pro-
cessing Systems, 36.
Snell, C.; Lee, J.; Xu, K.; and Kumar, A. 2024. Scaling
llm test-time compute optimally can be more effective than
scaling model parameters. arXiv.
Stepin, I.; Alonso, J. M.; Catala, A.; and Pereira-Fariña, M.
2021. A survey of contrastive and counterfactual expla-
nation generation methods for explainable artificial intelli-
gence. IEEE Access, 9: 11974–12001.



Su, D.; Sukhbaatar, S.; Rabbat, M.; Tian, Y.; and Zheng, Q.
2024. Dualformer: Controllable fast and slow thinking by
learning with randomized reasoning traces. arXiv.
Tamar, A.; Wu, Y.; Thomas, G.; Levine, S.; and Abbeel, P.
2016. Value iteration networks. Advances in neural infor-
mation processing systems, 29.
Thirunavukarasu, A. J.; Ting, D. S. J.; Elangovan, K.;
Gutierrez, L.; Tan, T. F.; and Ting, D. S. W. 2023. Large lan-
guage models in medicine. Nature medicine, 29(8): 1930–
1940.
Toyer, S.; Trevizan, F.; Thiébaux, S.; and Xie, L. 2018. Ac-
tion schema networks: Generalised policies with deep learn-
ing. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32.
Valmeekam, K.; Stechly, K.; and Kambhampati, S. 2024.
LLMs Still Can’t Plan; Can LRMs? A Preliminary Evalu-
ation of OpenAI’s o1 on PlanBench. arXiv.
Van Den Oord, A.; Vinyals, O.; et al. 2017. Neural dis-
crete representation learning. Advances in neural informa-
tion processing systems, 30.
Veličković, P.; and Blundell, C. 2021. Neural algorithmic
reasoning. Patterns, 2(7).
Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Xia, F.;
Chi, E.; Le, Q. V.; Zhou, D.; et al. 2022. Chain-of-
thought prompting elicits reasoning in large language mod-
els. Advances in neural information processing systems, 35:
24824–24837.
Zelikman, E.; Wu, Y.; Mu, J.; and Goodman, N. 2022. Star:
Bootstrapping reasoning with reasoning. Advances in Neu-
ral Information Processing Systems, 35: 15476–15488.


