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Abstract

Generating event graphs from long documents001
is challenging due to the inherent complex-002
ity of multiple tasks involved such as detect-003
ing events, identifying their relationships, and004
reconciling unstructured input with structured005
graphs. Recent studies typically consider all006
events with equal importance, failing to dis-007
tinguish salient events crucial for understand-008
ing narratives. This paper presents CALLM-009
SAE, a CAscading Large Language Model010
framework for SAlient Event graph generation,011
which leverages the capabilities of LLMs and012
eliminates the need for costly human annota-013
tions. We first identify salient events by prompt-014
ing LLMs to generate summaries, from which015
salient events are identified. Next, we develop016
an iterative code refinement prompting strat-017
egy to generate event relation graphs, removing018
hallucinated relations and recovering missing019
edges. Fine-tuning contextualised graph gen-020
eration models on the LLM-generated graphs021
outperforms the models trained on CAEVO-022
generated data. Experimental results on a023
human-annotated test set show that the pro-024
posed method generates salient and more ac-025
curate graphs, outperforming competitive base-026
lines. 1027

1 Introduction028

Events are fundamental discourse units which form029

the backbone of human communication. They are030

interconnected through various event relations such031

as hierarchical, temporal, or causal relations. Event032

relation graphs are vital for representing and un-033

derstanding complex event narratives, with nodes034

representing events and edges denoting relation-035

ships between them. High-quality event relation036

graphs can enhance numerous downstream tasks,037

such as question answering (Lu et al., 2022) and038

reasoning (Melnyk et al., 2022).039

1Source code and dataset will be released upon paper ac-
ceptance.

Salient Event Relation Graph

After Lindsay Davenport defeated Venus Williams, 7-5, 6-4, in a match that was ho-hum 
until the last game, Nadia Petrova surprised top-seeded Justine Henin-Hardenne, […].
…..
Now she can take the whole week off. Henin-Hardenne, the defending Open champion, 
made 30 unforced errors, double-faulted four times and hit just 14 winners. 
……
Petrova will meet Svetlana Kuznetsova in the quarterfinals.
……
In what could be a letdown for Davenport, she will play her quarterfinal match against 
unseeded Shinobu Asagoe of Japan. Asagoe, who has never won a singles title, defeated No. 
29 Eleni Daniilidou of Greece, 7-6 (4), 4-6, 6-3. Williams, trying to recover from wrist and 
ankle injuries, said: ''I can't be hard on myself.[..]”.

NYT Article:  «Top-Seeded Henin-Hardenne Surprised by No. 14 Petrova»
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Figure 1: An example of salient event relation graph
(top) generated from the NYT article (bottom).

Recent studies on contextualised event graph 040

generation have focused on fine-tuning language 041

models to generate linearised graphs from docu- 042

ments in an end-to-end manner (Madaan and Yang, 043

2021; Tan et al., 2024a). These methods rely on 044

distant supervision, such as events and event tem- 045

poral relations detected using an approach called 046

CAEVO (McDowell et al., 2017), due to the data- 047

intensive nature of language models and heavy 048

manual efforts of annotating event graphs. How- 049

ever, CAEVO has limitations. It typically considers 050

predicates (e.g., verbs) in text as events and tends 051

to extract many insignificant events, such as “say” 052

and “think”, which add little value to narrative un- 053

derstanding and have minimal connections to other 054

events, thus introducing noise to the event graphs. 055

To improve the quality of distant supervision 056

graphs, it is essential to consider the saliency of 057

events. We found that CAEVO-extracted events 058

often have low saliency because CAEVO takes a 059

bottom-up approach to event extraction, classifying 060

each predicate as an event or not. In contrast, iden- 061

tifying salient events requires a top-down approach. 062
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Existing studies on identifying salient events or en-063

tities use the summarisation test to guide human064

annotation, where an event or entity is considered065

salient if a human-written summary is likely to066

include it (Dunietz and Gillick, 2014; Liu et al.,067

2018). Given that instruction fine-tuned LLMs068

perform on par with human writers in news sum-069

marisation (Zhang et al., 2024), we propose gen-070

erating salient events by instructing LLMs to first071

summarise documents before identifying salient072

events.073

Moreover, we extend beyond the CAEVO’s074

temporal-only relations to encompass multiple re-075

lation types. We introduce iterative refinement076

prompting in a code prompt format to generate077

event relation graphs that include hierarchical, tem-078

poral, and causal relations (see Figure 1). The079

prompting framework is highly efficient because080

the code prompt format generates each type of rela-081

tion graph in a single pass, while the naive prompt-082

ing method needs to query each possible event pair083

individually. The iterative refinement process fur-084

ther enhances the accuracy of event relation predic-085

tions by using a hallucination grader to filter out086

unfaithful edges and iterative generation to recover087

missing edges.088

Using the LLM-generated dataset, we fine-tune089

Flan-T5 following the same method as Tan et al.090

(2024a). However, the abstractive nature of salient091

events poses challenges for evaluation, as salient092

events rarely exactly match the gold standards de-093

spite having the same semantic meaning. To ad-094

dress this, we propose an evaluation metric based095

on semantic text embeddings for assessing the096

event relation graphs. Our experimental results097

on the New York Times corpus (Sandhaus, 2008)098

show that CALLMSAE, a novel CAscading Large099

Language Model framework for SAlient Event100

graph generation, outperforms the baselines in101

terms of event saliency and edge quality. The102

fine-tuned model surpasses previous models trained103

with CAEVO-generated graphs. Our contributions104

are summarised as follows:105

• We propose CALLMSAE, a CAscading Large106

Language Model framework for SAlient107

Event graph generation, serving as a distant108

signal generator for contextualised graph gen-109

eration models. We also propose a novel con-110

textualised evaluation metric for comparing111

salient event graphs.112

• We provide a large-scale LLM-generated113

salient event graph dataset (10, 247 docu- 114

ments) with three relation types for distant 115

supervision, along with a human-annotated 116

test set (100 documents). 117

• We present an extensive experimental evalua- 118

tion on LLM-generated event relation graphs 119

in terms of event saliency and event relation 120

on the NYT corpus, demonstrating how higher 121

quality salient event graphs can improve con- 122

textualised graph generation. 123

2 Related Work 124

Event Relation Graph Construction The early 125

idea of event relation graph construction comes 126

from UzZaman et al. (2013), which introduces a 127

dataset for evaluating an end-to-end system which 128

takes raw text as input and output TimeML an- 129

notations (i.e., temporal relations). CAEVO (Mc- 130

Dowell et al., 2017) and Cogcomptime (Ning et al., 131

2018) both utilise a wide range of manually de- 132

signed features to train MaxEnt and averaged per- 133

ception for extracting events and relations. Han 134

et al. (2019b) proposed a joint event and relation 135

extraction model based on BERT (Devlin et al., 136

2019) and BiLSTM (Panchendrarajan and Amare- 137

san, 2018). Other researchers focus on develop- 138

ing specialised sub-systems to classify extracted 139

event pairs for relations (Ning et al., 2019; Han 140

et al., 2019a; Wang et al., 2020; Tan et al., 2021). 141

ATOMIC (Sap et al., 2019) is a large-scale com- 142

monsense knowledge graph containing the causes 143

and effects of events. MAVEN-ERE (Wang et al., 144

2022) is built with event coreference, temporal, 145

causal and subevent relations. However, ATOMIC 146

and MAVEN-ERE completely rely on crowdsourc- 147

ing and thus are difficult to extend. MAVEN-ERE 148

is less than half the size of our dataset and does not 149

consider the saliency of events. 150

Madaan and Yang (2021) fine-tune GPT-2 to 151

generate linearised graphs from documents in an 152

end-to-end manner. Their temporal relation graphs 153

used for training are produced by CAEVO. Follow- 154

ing this direction, Tan et al. (2024a) instead view 155

the task as set generation and propose a frame- 156

work based on set property regularisation and data 157

augmentation. In this paper, we focus on generat- 158

ing multi-relation graphs via in-context learning, 159

prompt interaction, and iterative refinement. 160

Salient Event Identification Several existing pa- 161

pers investigate the problem of identifying salient 162

events. Choubey et al. (2018) build a rule-based 163
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classifier to identify central events by exploiting164

human-annotated event coreference relations. They165

find the central events either have large numbers of166

coreferential event mentions or have large stretch167

sizes. Jindal et al. (2020) propose a contextual168

model to identify salient events based on BERT169

and BiLSTM. They also mention several features,170

such as event trigger frequency, which are essen-171

tial features to identify the salient events. Liu172

et al. (2018) propose a feature-based method using173

LeToR (Liu et al., 2009) and a neural-based method174

called Kernel-based Centrality Estimation. To train175

and evaluate their methods, they build a dataset176

based on the summarisation test: an event is con-177

sidered salient if a summary written by a human178

is likely to include it. Zhang et al. (2021) com-179

bine the Kernel-based Centrality Estimation with180

the event and temporal relation extraction model of181

Han et al. (2019b) to build a salience-aware event182

chain modelling system. However, they only fo-183

cus on single-dimensional chains and only model184

temporal relations.185

3 Cascading LLMs to Generate Salient186

Event Graphs187

CALLMSAE combines various prompts in a188

pipelined manner to generate salient event graphs.189

In this section, we will first introduce the prompts190

for generating salient events. Then, we will de-191

scribe the method for generating relation graphs192

based on the salient events. Lastly, we define an193

evaluation metric for comparing event graphs: Hun-194

garian Graph Similarity.195

3.1 Generate Salient Events196

The summarisation test (as mentioned in Section197

1) is often used to guide the annotation of salient198

events or entities (Dunietz and Gillick, 2014; Liu199

et al., 2018). These studies identify events or200

entities included in human-written summaries as201

salient. Similarly, we instruct LLMs to generate a202

summary first and then extract events from it.203

3.2 Generate Graphs as Code Completion204

While LLMs can extract salient events, they of-205

ten struggle with identifying event relations (Chan206

et al., 2023; Tan et al., 2024a). Prompt engineer-207

ing for extracting event relations is complex due208

to the need to incorporate various terminologies209

and graph constraints. Moreover, prompt effi-210

ciency is crucial as generating a large-scale dataset211

with LLMs can still incur significant computational212

costs, albeit less than crowdsourcing. 213

In our method, the main prompt for generating 214

the event relation graph is formulated as a Python 215

code completion task. The graph is defined using 216

the NetworkX2 package in Python, with nodes rep- 217

resenting the salient events generated in Section 218

3.1. LLMs are instructed to complete the code by 219

adding relation edges using NetworkX’s APIs. 220

Recent research suggests that formulating 221

prompts as code can enhance LLMs’ reasoning 222

abilities (Wang et al., 2023; Zhang et al., 2023). 223

In our task, the Python code format effectively in- 224

corporates all necessary terminologies, enabling 225

LLMs to understand them without confusion. The 226

Python code format also allows for the inclusion of 227

constraints (e.g., ensuring the graph is a directed 228

acyclic graph) and additional instructions (e.g., ask 229

for explanations) as comments. LLMs can gener- 230

ate explanations as comments without disrupting 231

the main content of the graph. Moreover, the code 232

template simplifies parsing the response, as LLMs 233

are directed to use the “.add_edge()” function to 234

add the relations. 235

Since hierarchical, temporal, and causal rela- 236

tions are asymmetric, each can be represented by 237

a Directed Acyclic Graph (DAG). We formulate 238

three distinct prompts to guide LLMs in generating 239

three DAGs, each representing one of these rela- 240

tion types. This approach avoids the complexity 241

of a multi-label graph, and LLMs can focus on 242

a single relation type and carefully consider the 243

topological structure of the graph. We can also 244

use the “.find_cycle()” function from NetworkX to 245

detect constraint violations reliably. In addition, 246

if relation types are interconnected, the initially 247

generated graphs can help the generation of sub- 248

sequent graphs (as will be explained in Section 249

3.4). We provide an example of the code prompt in 250

Appendix (Table 9). 251

3.3 Iterative Refinement 252

Hallucination Grader The code prompt effi- 253

ciently guides LLMs to generate graphs, but it 254

often generates hallucinated relations. Based on 255

our preliminary experiments, these hallucinations 256

stem from the models’ overconfidence in their re- 257

lation predictions. Specifically, LLMs tend to in- 258

fer event relations without explicit linguistic cues 259

or strong evidence for logical inference. Conse- 260

quently, LLMs predict far more relations than the 261

gold standards, leading to low precision. 262

2https://networkx.org/documentation/stable/
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Top-Seeded Henin-Hardenne Surprised by 
No. 14 Petrova
The rivalry match at the United States 
Open fizzled, but the mismatch sizzled.
After Lindsay Davenport defeated Venus 
Williams, 7-5, 6-4, in a match that was 
ho-hum until the last game, Nadia 
Petrova surprised top-seeded Justine 
Henin-Hardenne, 6-3, 6-2, in a fourth-
round match at Arthur Ashe Stadium in 
Flushing Meadows last night.
Petrova, seeded 14th, had taken only one 
set from Henin-Hardenne in five previous 
matches. […]
Henin-Hardenne, the defending Open 
champion, made 30 unforced errors, 
double-faulted four times and hit just 14 
winners. 
……
Petrova will meet Svetlana Kuznetsova in 
the quarterfinals.
……
In what could be a letdown for Davenport, 
she will play her quarterfinal match 
against unseeded Shinobu Asagoe of 
Japan. 

Summary Generation

E1. Petrova faces Svetlana Kuznetsova
E2. Lindsay faces Shinobu Asagoe
E3. Lindsay defeated Venus Williams
…

At the US Open, Lindsay Davenport 
defeated Venus Williams 7-5, 6-4 in 
a match that lacked excitement 
until the final game. Meanwhile, 
Nadia Petrova pulled off an upset
…

Salient Event Identification

Remove Low-confident Edges (x5)

Find More Edges (x5)

LLM Graph Generator

Could you finish the following code?

import networkx as nx 
document={document}
event_list={event_list_str}
graph=nx.DiGraph()
graph.add_nodes_from(event_list)

LLM Hallucination Grader

Indicate whether the answer below 
is supported by the given document?

Document: {document}
Answer: {event_1} happened before 
{event_2} Generate Relation 

Graphs

Complement 
Relation Information

Salient Event 
Relation Graph

Top-Seeded Henin-Hardenne 
Surprised by No. 14 Petrova

News Article

Figure 2: The proposed CALLMSAE framework.

Recent studies show that LLMs can evaluate and263

correct their own outputs (Madaan et al., 2023; Asai264

et al., 2024). Thus, we introduce a hallucination265

grader to address hallucination. For each relation266

edge generated, we pose a question to the LLMs267

to determine whether the relation is grounded in268

the given document. If the LLMs respond with a269

“yes”, the edge is retained; otherwise, it is discarded.270

An example of the hallucination grader prompt is271

shown in Appendix (Table 10).272

Recover Missing Edges The main benefit of the273

hallucination grader is that it increases precision by274

removing low-confident edges. However, this pro-275

cess inevitably reduces recall. To mitigate this side276

effect, we introduce an iterative refinement process.277

After discarding hallucinated edges, we reinsert the278

code block containing the relation edges into the279

graph generation prompt and ask the LLMs to com-280

plete the code again. In this way, the LLMs can281

reconsider whether there are any missing relations282

in the document, thereby improving recall.283

Once the LLMs generate a new graph, the hal-284

lucination grader checks the relation edges again.285

This process is repeated for a fixed number of times.286

We set the maximum number of iterations to 5 in287

our experiments, as the LLMs stop discovering new288

edges after 2 or 3 iterations in most documents.289

3.4 Complement Relation Types290

Hierarchical, temporal, and causal relations are not291

independent of each other. We found that if one292

type of relation depends on another, providing the293

graph for the first relation can benefit the generation294

of the dependent relation’s graph. Specifically, we295

predict the hierarchical relation graph first. Then, 296

we provide this graph to the LLMs and ask them 297

to generate the temporal relation graph. Lastly, 298

with both the hierarchical and temporal relation 299

graphs available, the LLMs predict the causal rela- 300

tion graph. 301

The hierarchical relation describes two closely 302

related events at different granularity levels. It 303

focuses on the inherent semantics of the events 304

and does not depend on other relation types. For 305

example, “writing a dissertation” is a subevent of 306

“doing a PhD”. Therefore, we choose to predict the 307

hierarchical relations first. 308

Temporal relations can depend on hierarchical 309

relations. For example, knowing “doing a PhD” 310

happened before “being prompted to Professor” al- 311

lows us to deduce that “writing a thesis” also hap- 312

pened before “being prompted to Professor”. Thus, 313

we predict temporal relations after hierarchical re- 314

lations. 315

Lastly, causal relations depend on both hierarchi- 316

cal and temporal relation, as the antecedent event 317

in a causal relation must occur before the conse- 318

quence. Therefore, the causal relation is predicted 319

in the last step. For more details about the entire 320

prompting process, please refer to the descriptions 321

and pseudocode in Appendix C. 322

3.5 Hungarian Graph Similarity 323

It is challenging to compare event relation graphs 324

generated by LLMs due to the abstractive nature 325

of generation, making it difficult to align the gener- 326

ated events with the gold standard events (Li et al., 327

2023). Moreover, salient events are often high- 328

level and abstract rather than fine-grained and con- 329
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crete, which means some variations in wording is330

not only acceptable but also expected. Instead of331

using exact matching (Zhao et al., 2024) or rule-332

based token matching (Tan et al., 2024b) on events333

and relations to calculate F1, adopting semantic-334

based evaluation metrics is more reasonable and335

fair. As more tasks adopt text generation frame-336

works, many researchers are also turning to metrics337

based on language models rather than traditional338

token matching metrics like ROUGE and BLUE339

(Goyal et al., 2022; Pratapa et al., 2023).340

In this study, we propose a novel metric for evalu-341

ating LLM-generated event graphs, called Hungar-342

ian Graph Similarity (HGS). The metric is based343

on the Hungarian assignment algorithm (Kuhn,344

1955), which is widely used in the object detec-345

tion to match generated objects and target objects346

(Carion et al., 2020). It can find the optimal assign-347

ment given a cost matrix containing the distance348

between elements in two lists of objects. We adapt349

this algorithm to match predicted edges with edges350

in the gold standard graphs as follows:351

1. Encode the events using SFR-Embedding-352

Mistral (Meng et al., 2024), which was353

ranked 1st on the Massive Text Embedding354

Benchemark leaderboard (Muennighoff et al.,355

2022) at the time of our experiments.356

2. Given two edges of the same relation357

type, let ēh1 , ē
t
1 be the embeddings of the358

head event and the tail event in the first359

edge. Let ēh2 , ē
t
2 be the embeddings of the360

head and tail events in the second edges.361

We define the distance between the edges362

as max
(
Dcos(ē

h
1 , ē

h
2), Dcos(ē

t
1, ē

t
2)
)
, where363

Dcos(·, ·) is the cosine distance.364

3. Build a cost matrix by computing the distance365

between every edge pair in the gold and pre-366

dicted edge sets. Pad the matrix to a square367

matrix with the maximum cost value of 1.368

4. Apply the Hungarian algorithm to the cost369

matrix to get the minimal cost value. The370

final score is 1− cost value, making the value371

more intuitive (higher is better). To compute372

the HGS over all the documents, we weight373

the scores by the number of gold edges to374

obtain an average value.375

In step 2, we take the maximum value of the376

distances between head and tail events because377

relation edges are considered matched only if both378

the head and tail events match.379

For more detailed analysis, we define precision- 380

oriented HGS and recall-oriented HGS. We match 381

edges without padding the cost matrix in step 3 382

to obtain the total cost values of all matched edge 383

pairs. Then, the total matched similarity is the 384

number of matched edges minus the total cost. 385

Precision-oriented HGS is computed by divid- 386

ing the total matched similarity by the total number 387

of predicted edges. Recall-oriented HGS is com- 388

puted by dividing the total matched similarity by 389

the total number of edges in the target graph. 390

4 Dataset 391

In this section, we describe how we construct the 392

distant supervision dataset and a human-annotated 393

dataset from the New York Times (NYT) corpus. 394

4.1 Document Selection 395

We follow the same procedures as in (Tan et al., 396

2024a) to select documents from the NYT corpus, 397

one of the largest news datasets, with additional fil- 398

tering based on document length. We select 10, 347 399

documents based on their descriptors indicating 400

they are related to event narratives instead of opin- 401

ions and discussions, such as sports and interna- 402

tional politics. Among them, 100 documents are 403

randomly sampled as the test set to be annotated 404

by humans. More details about data selection are 405

shown in Appendix A.1. 406

4.2 Annotation Settings 407

We recruited annotators from Prolific3. There are 408

two subtasks: salient event identification and event 409

relation identification. In the first subtask, the 410

participants are asked to identify the salient event 411

triplets: actor, trigger, and object (optional). We 412

provide the definition of an event and several ex- 413

amples in the guidelines. They are instructed to do 414

the summarisation test: the salient events should 415

be the events they would include in the summary 416

of the given article. Moreover, we provide some 417

prominent features for helping annotators to iden- 418

tify salient events (Choubey et al., 2018; Jindal 419

et al., 2020): 420

• Frequency: salient events are frequently men- 421

tioned in the articles. 422

• First appearance: salient events are often men- 423

tioned at the beginning of the article. 424

3http://www.prolific.com
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• Stretch size: salient events are often men-425

tioned throughout the articles. Stretch size426

is the distance between the location where the427

event is first mentioned and last mentioned. A428

salient event usually has a large stretch size.429

In the second stage, we ask participants to iden-430

tify relation triplets: a source event, a relation type,431

and a target event. Both the source and target432

events should be among the salient events identified433

in the first stage. In the guideline, we define three434

relation types: happened_before, caused_by, and435

is_subevent_of. happened_before indicates that436

the source event happened earlier than the target437

event. caused_by means the source event would438

not have happened if the target event did not hap-439

pen. is_subevent_of signifies that the source event440

is a subevent of the target event. Annotators were441

informed that relations would be either explicitly442

mentioned in the article or inferred based on evi-443

dence within the article. Further details about the444

guidelines and user interface can be found in Ap-445

pendix A.4.446

4.3 Inter Annotator Agreement447

Identifying salient events and event relations is448

complicated and time-consuming. We found it449

challenging to educate participants about these con-450

cepts because, in daily life, the meanings of events451

and relations differ from their definitions in the field452

of information extraction. Moreover, the technical453

definitions are much less intuitive to those outside454

the academic field. As a result, thorough training455

of participants is important to obtain high-quality456

annotations.457

In total, we recruited 3 annotators to annotate458

100 documents. Due to their varying availability,459

annotator 1 and 2 each annotated 45 documents,460

while annotator 3 annotated 20 documents. Among461

these, 5 documents were annotated by all three an-462

notators. Following prior research in information463

extraction (Gurulingappa et al., 2012; Zhao et al.,464

2024), we used F1 to measure the inter-annotator465

agreement on these 5 documents. To compute inter-466

annotator agreement, events or relations identified467

by one annotator are represented as set S1. An-468

other annotator’s annotation S2 serves as a pseudo-469

reference to compute precision = |S1∩S2|
|S1| , recall470

= |S1∩S2|
|S2| , and the F1 score = 2|S1∩S2|

|S1|+|S2| .471

Table 1 shows the agreement scores for stages472

1 and 2. Identifying salient events is subjective,473

which makes it difficult to reach a complete agree-474

ment. Moreover, event relation identification is475

even more subjective and dependent on the previ- 476

ous stage, leading to less unanimous agreement. 477

Annotator Stage 1 Stage 2

1 & 2 0.838 0.676
1 & 3 0.771 0.645
2 & 3 0.847 0.710

Average 0.819 0.677

Table 1: Inter-annotator agreement measured by F1.

4.4 Dataset Statistics 478

Table 2 shows the distributions of the relation types 479

after applying the transitive closure to the anno- 480

tated graphs. happened_before emerges as the most 481

frequent relation type, reflecting the predominant 482

focus on temporal sequences in news articles, and 483

they are relatively straightforward to identify. Con- 484

versely, caused_by is the least frequent as it is the 485

most challenging to identify. 486

Relation Type Number

happened_before 310
caused_by 202
is_subevent_of 245
Total 757

Table 2: The distributions of the relation types.

5 Experiments 487

5.1 Model Settings 488

We compare our proposed approach with the fol- 489

lowing baselines: 490

• CAEVO (McDowell et al., 2017) is a pipeline 491

system based on a Maximum Entropy (Max- 492

Ent) classifier and manually designed features 493

for extracting events and temporal relations. 494

• Madaan and Yang (2021) trained language 495

models on CAEVO-generated linearised 496

graphs with the language modelling objective. 497

We implemented their method to train a Flan- 498

T5 model. 499

• Tan et al. (2024a) also trained language mod- 500

els on CAEVO-generated graphs, but applied 501

data augmentations and regularisations to mit- 502

igate the set element misalignment issue. We 503

applied their method to train a Flan-T5. 504

• Han et al. (2019b) proposed a joint event 505

and temporal relation extraction model. We 506
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adapted the model to predict hierarchical and507

causal relations by training it on the MAVEN-508

ERE dataset (Wang et al., 2022). We also re-509

placed BERT with Longformer (Beltagy et al.,510

2020) to enable it to process long documents.511

• GPT-3.5 is an LLM based on the genera-512

tive pre-train framework4. We used “gpt-3.5-513

turbo”.514

• GPT-4 is also an LLM based on the genera-515

tive pre-train framework (OpenAI et al., 2024).516

We used “gpt-4-1106-preview”.517

• MIXTRAL is an LLM based on the Mistral518

model and the mixture of expert framework.519

We used the Mixtral 8x7B instruct version520

(Jiang et al., 2024).521

• LLAMA3 is an LLM based on the Llama522

framework5. We used the Llama3-70B-523

instruct 8-bit version provided by ollama6.524

The 8-bit quantization is shown to be525

degradation-free (Dettmers et al., 2022).526

We fine-tuned a Flan-T5-base (250M) with the527

relation graphs generated by CALLMSAE, follow-528

ing the same method as in Tan et al. (2024a). The529

baseline prompt evaluates whether each event pair530

is supported by the document, akin to the hallucina-531

tion grader described in Section 3.3. Thus, it serves532

as an ablation of our method without incorporating533

the code prompt.534

CALLMSAE is designed to be model-agnostic.535

Due to budget constraints and the preliminary test536

results, we chose Llama3 as the backbone of all the537

prompt-based methods detailed in Table 5.538

5.2 Event Saliency Evaluation539

Table 3 shows the salient features (defined in540

Section 4.2, computation formulas in Appendix541

B) extracted from various backbone LLMs us-542

ing summarisation prompts, alongside compari-543

son with CAEVO and human annotations. The544

LLM-generated events are much more salient than545

CAEVO-generated events and exhibit similarity to546

human annotations.547

We also use human annotations to evaluate the548

saliency. In the salient event identification annota-549

tion, we provide the events generated by CAEVO550

4https://platform.openai.com/docs/models/
gpt-3-5-turbo

5https://ai.meta.com/blog/meta-llama-3/
6https://ollama.com/library/llama3:

70b-instruct-q8_0

Mean event Event First Stretch
number frequency ↑ appearance ↓ Size ↑

CAEVO 34.71 0.05 0.46 0.07
Human 8.26 0.11 0.31 0.20
GPT-4 6.49 0.09 0.37 0.18
Llama3 5.17 0.09 0.30 0.19
Mixtral 10.60 0.10 0.33 0.20

Table 3: The average number of extracted events and
the saliency features (in percentage values).

P R F1 HGS

CAEVO 3.29 3.72 3.49 18.18
Mixtral 48.97 56.77 52.59 67.15

Table 4: Precision, recall, and F1 based on the choices
of the annotators. Hungarian graph similarity (HGS) is
defined in Section 3.5. The values are in percentage.

and Mixtral as candidate salient events. Note that 551

only the top CAEVO events ranked in saliency fea- 552

tures are shown. Half of the candidates are from 553

CAEVO and the other half are from Mixtral. They 554

are randomly shuffled and then shown to the an- 555

notators. We compute the precision, recall, and 556

F1 based on how the annotators select them. We 557

also compute HGS using human-annotated salient 558

events as references (Table 4). It is clear that al- 559

though CAEVO extracted more events than Mixtral, 560

many of them are not salient. Mixtral outperforms 561

CAEVO significantly across all evaluation metrics. 562

5.3 Salient Event Relation Graph Evaluation 563

The salient event relation graph evaluation results 564

are shown in Table 5. Even with the most basic 565

prompting (Baseline Prompt), which queries the 566

relation of each event pair, Llama3 outperforms all 567

the baseline methods on all relation types. How- 568

ever, Baseline Prompt is slow and costly because 569

the number of prompts it needs for building one 570

graph is O(n2), where n is the number of events 571

in the document. On the other hand, Code Prompt 572

only needs O(1). Moreover, Code Prompt’s overall 573

HGS is significantly higher than Baseline Prompt 574

on all relation types. Baseline Prompt check the 575

event pairs more thoroughly and thus have higher 576

recall but its precision is much lower. The complete 577

CALLMSAE combines the code prompt and hallu- 578

cination grader for iterative refinement, checking 579

missing relations and verifying them to prevent hal- 580

lucination. It significantly increases the precision 581

and strikes a balance with recall. 582
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Hierarchical Temporal Causal

PHGS RHGS HGS PHGS RHGS HGS PHGS RHGS HGS

Han et al. (2019b) 0.158 0.247 0.098 0.092 0.352 0.148 0.084 0.316 0.116
CAEVO - - - 0.030 0.558 0.092 - - -
Madaan and Yang (2021) - - - 0.061 0.439 0.116 - - -
Tan et al. (2024a) - - - 0.126 0.335 0.187 - - -
Baseline Prompt 0.076 0.651 0.248 0.085 0.627 0.195 0.062 0.657 0.207
Code Prompt 0.174 0.559 0.315 0.153 0.678 0.283 0.121 0.632 0.272
Code Prompt (dependent rels) 0.196 0.544 0.334 0.211 0.601 0.341 0.135 0.599 0.272
CALLMSAE (ours) 0.196 0.544 0.334 0.294 0.509 0.327 0.198 0.529 0.295
Fine-tuned T5 (CALLMSAE) 0.314 0.434 0.339 0.244 0.544 0.362 0.366 0.397 0.343

Table 5: The Hungarian graph similarity (HGS) of the LLM-generated graphs on the human-annotated NYT dataset.
PHGS is precision-oriented HGS. RHGS is recall-oriented HGS. Code Prompt (dependent rels) means adding
hierarchical graphs in the prompts for temporal graphs; and adding hierarchical and temporal for causal graphs.
Fine-tuned T5 (CALLMSAE) means fine-tuning a flan-T5 using the graphs generated by CALLMSAE.

In the temporal category, the results of Code583

Prompt (dependent rels) are obtained when provided584

with hierarchical graphs generated by CALLMSAE585

to LLMs. It has much higher overall HGS and586

precision than Code Prompt without hierarchical587

information, showing that hierarchical information588

can mitigate hallucinations during the temporal589

graph generation. In the casual category, the results590

of Code Prompt (dependent rels) are obtained when591

given both hierarchical and temporal graphs gener-592

ated by CALLMSAE. The additional information593

also increases precision.594

Fine-tuned T5 outperform all the methods based595

on CAEVO (McDowell et al., 2017; Madaan and596

Yang, 2021; Tan et al., 2024a), showing that the597

high-quality graphs generated by CALLMSAE can598

boost the contextualised graph generation. Interest-599

ingly, the performance of the Fine-tuned T5, fine-600

tuned on CALLMSAE-generated data, exceeds that601

of CALLMSAE itself, implying that the fine-tuned602

model can effectively adapt the reasoning patterns603

provided by Llama3 and generalise them.604

5.4 Format Error and Cycles in the Graphs605

A format error occurs when the generated code606

blocks fail to pass the Python interpreter. We de-607

tected these errors by executing the generated code.608

If the Python interpreter returns an error, it is clas-609

sified as a format error. We specified the relation610

graphs as directed acyclic graphs in the prompt. If611

there is a cycle in the generated graph, it means612

that the LLM failed to follow the instructions. A613

cycle also indicates a violation of logic constraints614

because all the relations in the event relation graphs615

are asymmetric. We detected the cycles using the616

find_cycle() from the NetworkX after obtaining the617

transitive closure of the graphs.618

Format Error Cycle

GPT-3.5 0 10.67
GPT-4 3.67 1.67
Mixtral 3.33 2.33
Llama3 0 0

Table 6: The average number of CALLMSAE-generated
graphs out of 100 with format errors or cycles.

We prompt each LLM three times on the anno- 619

tated test set. Table 6 shows the average number 620

of documents encountering format errors or cycles. 621

All LLMs have low rates of format errors which 622

shows that state-of-the-art LLMs can understand 623

the instruction well and generate executable Python 624

code. Among them, GPT-3.5 and Llama3 achieve 625

zero errors. The occurrence of cycles can serve as 626

an indicator of the reasoning ability of the LLMs. 627

About 10% of graphs generated by GPT-3.5 have 628

cycles, suggesting that GPT-3.5 may have limited 629

reasoning ability compared to other LLMs. GPT-4 630

and Mixtral both have low rates of cycle occur- 631

rence, but they are beaten by Llama3 which has 632

no cycle in all generations, showing its remarkable 633

understanding of the transitive and asymmetric con- 634

straints in the complex event relation graphs. 635

6 Conclusion 636

This study explored utilising LLMs to generate 637

salient event relation graphs from news docu- 638

ments without relying on human annotations. We 639

studied how the events generated by LLMs are 640

compared to the traditional methods in terms of 641

event saliency. We further demonstrated that 642

CALLMSAE-generated graphs can serve as distant 643

signals to fine-tune smaller models and outperform 644

those based on CAEVO. 645
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Limitations646

Although we have tested many prompting methods647

and included several of the most effective ones in648

this paper, we have not explored all possible com-649

binations due to the extensive volume of recent650

literature on prompt engineering. There might still651

exist combinations of prompts that could further652

improve performance. However, we are almost cer-653

tain that any potential combinations, if they exist,654

are likely to be more complex and thus less effi-655

cient for building large-scale datasets. For example,656

we did not add demonstrations in graph generation657

because the code template is already quite lengthy.658

Adding more documents could potentially exceed659

the context windows of some LLMs, making it660

challenging for them to interpret the instructions661

effectively.662

Ethics Statement663

Event relation graph generation is a powerful tool664

for understanding text. A potential misuse of the665

proposed method is mining user behaviours on their666

private data. For example, salient event relation667

graphs can be extracted from users’ tweets to anal-668

yse their potential reactions to advertisements and669

scams. That could be a huge risk to social media670

users.671

Another potential risk is that the saliency may672

introduce bias. LLMs may have their preferences673

in selecting a specific group of events as important674

events due to the data they were trained on. This is675

a question which requires further large-scale inves-676

tigation. However, we think this risk is negligible677

in this study because we work on document-level678

information. There is little room for selection given679

that the news articles are already the products of680

choice and distillation. If the system is used to ex-681

tract information from a border information source,682

such as social media, the risk must be carefully683

assessed.684
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A Additional Details of Dataset 1030

Construction 1031

A.1 Document Selection 1032

We select news documents from the NYT corpus 1033

based on the descriptors available. With regards to 1034

the generation of salient even graphs, the most rel- 1035

evant documents tend to be centered around event 1036

narratives, so that they could be rich in event re- 1037

lations. Tan et al. (2024a) investigated which de- 1038

scriptors are rich in event narrative using event fre- 1039

quency × inverse-descriptor frequency. We chose 1040

the documents using the same descriptors as them 1041

(e.g., “airlines and airplanes”, “united states inter- 1042

national relations”, “civil war and guerrilla war- 1043

fare”, “track and field”, “soccer”, etc.). 1044

We applied additional filtering based on the num- 1045

ber of words in the documents. Documents with 1046

more than 8500 words or less than 100 words are 1047

excluded. Based on our preliminary observations, 1048

the extremely long documents are not typically 1049

news articles (only takes 0.02% in the entire NYT). 1050

They tend to be collections of articles over longer 1051

time spans, making them not suitable as focus of 1052

this study. Additionally, very long articles may af- 1053

fect the performance of open-source LLMs only 1054

due to limitations in the context length rather than 1055

their reasoning abilities. On the other hand, ar- 1056

ticles that are too short are less likely to contain 1057

complex event relation graphs, so we also exclude 1058

them. The final average word count of the selected 1059

10347 documents is 780. 1060

A.2 Frequent words and descriptors in the 1061

annotated dataset 1062

Test Train

Rank Word Count Word Count

1 win 41 win 2, 964
2 express 15 make 1, 591
3 play 14 face 1, 564
4 make 13 express 1, 411
5 defeat 12 include 1, 307

Table 7: The top 5 most frequent trigger words in the
human-annotated test set and the distant train set.

Table 7 reports the most frequent trigger words 1063

among the human-identified salient events and 1064

LLM-generated salient events after filtering out the 1065

light words (words that have no semantic meaning). 1066

We could see that “win”, “play”, and “defeat” are 1067
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Test Train

Rank Descriptor Count Descriptor Count

1 U.S. International Relations 27 Terrorism 2, 885
2 Terrorism 21 U.S. International Relations 2, 574
3 Bombs and Explosives 17 Bombs and Explosives 1, 727
4 U.S. Armament and Defense 15 U.S. Armament and Defense 1, 717
5 Politics and Government 15 Politics and Government 1, 649

Table 8: The top 5 most frequent descriptors in the human-annotated test set and the distant train set.

prominent triggers due to the sports topics within1068

the dataset. These articles usually mention multiple1069

events with these triggers. Triggers like “express”,1070

“include”, and “make” are instead common across1071

different scenarios.1072

Table 8 shows the most frequent descriptors in1073

the human-annotated test set and the distant train1074

set. These are the typical event-rich topics and are1075

full of narratives.1076

A.3 Disclaimers of Risks1077

Consider that a large portion of the new articles1078

in the New York Times corpus are about violent1079

incidences, such as terrorist attacks and war. To1080

prevent inflicting harm to traumatised victims, we1081

show the information clearly in the recruitment1082

description on the Prolific platform (Figure 3).1083

Figure 3: The recruitment descriptions.

A.4 Guidelines and User Interface1084

A well-designed user interface is essential for col-1085

lecting high-quality data efficiently. We fully coop-1086

erate with participants to improve the user interface1087

iteratively based on their feedback.1088

In the salient event identification stage (Figure 4),1089

we show the title, abstract, and content of the article1090

on the right side. We show candidate events, which1091

are extracted through CAEVO and Mixtral, on the1092

left sidebar. The shown CAEVO events are the top1093

events ranked based on the saliency feature score.1094

The participants can choose the candidate events1095

which they think are accurate and salient. The1096

guideline also informs them that if multiple options1097

refer to the same event, they can only choose the1098

most accurate and informative one. If a salient1099

event is not present among the candidates, they 1100

could write it in the text input box and add it. 1101

In the event relation identification stage (Figure 1102

5), they could choose a source event, a relation 1103

type, and a target event to add a relation triplet. 1104

The source event and the target event need to be 1105

chosen from the salient event list from the first 1106

stage. We automatically detect and prevent any new 1107

event that will lead to duplication and contradiction. 1108

The participants can also deselect the added event 1109

if they change their minds. The participants were 1110

asked to finish the first stage first, and then annotate 1111

the second stage based on their own annotations in 1112

the first stage. 1113

In the following are reported the screenshots of 1114

the guideline pages (Figure 6). 1115

A.5 More details about the annotation 1116

We started the annotation process by releasing sev- 1117

eral trial rounds, during which we chose partici- 1118

pants based on their dedication and understanding 1119

of the terminologies. It required considerable com- 1120

munication efforts to ensure they had an accurate 1121

understanding of the task definition. 1122

During training, we found a common mistake 1123

among the annotators was that they tended to over- 1124

estimate the is_subevent_of relation. They often 1125

confused it with the caused_by relation or temporal 1126

inclusion. 1127

We advised them that is_subevent_of pertains 1128

to two events on different granularity levels but 1129

referring to the same subject. To distinguish 1130

is_subevent_of from temporal overlap, they could 1131

check whether the actor in the subevent is the same 1132

as or a part of the actor or object in the parent event. 1133

For example, if a parent event is “a team did some- 1134

thing” the subevent can be “a member of the team 1135

did something”. 1136

A.6 Information about the Annotators 1137

The annotators were paid at the rate of 8£/h. We 1138

screened native English speakers from all over the 1139

world to ensure they could read English articles 1140

13



Figure 4: The user interface of salient event identification.

Figure 5: The user interface of event relation identification.
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fluently. We also selected participants based on1141

their previous submissions and approval rates to1142

ensure they were familiar with the platform and1143

were high-quality annotators.1144

Two of the final annotators are identified as male,1145

and they both come from the UK. One of the final1146

annotators is identified as female, and she comes1147

from Canada. They all identified as white.1148

A.7 Dataset Licensing1149

The original NYT corpus is available for noncom-1150

mercial research license. One of our authors has1151

obtained the license. Based on the license, we1152

could not include the original text in our dataset.1153

Thus, we will only release the generated/annotated1154

graphs. Our dataset will also be in noncommercial1155

research license.1156

B Saliency Features1157

Inspired by (Choubey et al., 2018), we calculate1158

the saliency features to show how our proposed1159

method differs from previous methods in terms of1160

event saliency. Unlike conventional computation1161

methods, these saliency features are calculated on1162

the sentence level to be comparable across docu-1163

ments of various lengths. These saliency features1164

are:1165

Event frequency: A salient event tends to ap-1166

pear frequently in the document. Let D =1167

{s0, s1, ..., sn−1, sn} be the document and the list1168

of sentences in the document. Let e be the event.1169

Let M(e) = {si, sj , ..., sk}, 0 ⩽ i < j < k ⩽ n1170

be the list of sentences which mention the event e.1171

The event frequency is calculated as:1172

frequency(D, e) =
|M(e)|
n+ 1

. (1)1173

First appearance: News writers usually mention1174

the salient event as early as possible to attract read-1175

ers’ attention. The first appearance of the event e1176

is computed as:1177

first_appearance(D, e) =
i

n
. (2)1178

Stretch size: Salient events tend to be mentioned1179

all across the document. The stretch size of event e1180

is calculated as:1181

stretch_size(D, e) =
k − i

n
. (3)1182

To detect which sentences mention the event e,1183

we first lemmatise the words in the document and1184

the given event. Then, detect whether there is a 1185

matched substring the same as the given event in 1186

each sentence. However, the abstractive nature of 1187

LLM-based salient event generation makes exact 1188

matching not viable. To detect the event mention 1189

of LLM-generated events, we formulate a series of 1190

prompts. We first ask: “Which sentence in the doc- 1191

ument below mentions the event "{event}"? Please 1192

enclose that sentence in () and show it. Docu- 1193

ment: """{doc_content}"""”. Then, we employ 1194

iterative refinement in case the LLM misses any 1195

other sentences: “Is there any other sentence in the 1196

document directly mentioning the event "{event}"? 1197

Please enclose that sentence in () and show it.” 1198

Lastly, we collect the sentences from the responses. 1199

We run the methods on the human-annotated 1200

dataset (100 documents). We compute the saliency 1201

features of the events in each document and take 1202

the average across the events. Lastly, all the values 1203

are averaged across all the documents. 1204

C Prompting Details 1205

The total time cost for prompting Llama3 to con- 1206

struct the training data (10247 documents) is about 1207

2200 hours (total wall-clock time of all the ma- 1208

chines). We run the models on multiple machines 1209

with different specifications, including one with 1210

6× RTX 3090, one with an A100, and one with 1211

2× A40. 1212

Table 9 shows an example of the code prompt 1213

for hierarchical graph generation and the response 1214

from Llama3. Table 10 shows an example of the 1215

hallucination prompt and the response. 1216

Algorithm 1 is the pseudo-code of the entire 1217

salient event graph generation process. 1218

In the summarization prompt, we use a temper- 1219

ature of 0.8 and a top_p of 0.9. For the salient 1220

event generation prompt, we use a temperature of 1221

0.5 and a top_p of 0.9. The relation graph gener- 1222

ation prompt also uses a temperature of 0.5 and a 1223

top_p of 0.9. The hallucination grader prompt uses 1224

a temperature of 0. 1225
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Input to the LLMs Response from the LLMs
Could you please finish the following code?
import networkx as nx
document = {document}
event_list = {event_list_str}
# This is a graph representing the hierarchical
relation between the events in the document
# Each edge in the graph represents a subevent
relation between the head and tail nodes which
are events
# An edge means the head event is a subevent
of the tail event. They are closely related but on
different granularity levels.
hierarchical_graph = nx.DiGraph() # This is a
directed acyclic graph. There should not be any
cycle in the graph.
# Add events as nodes
for event in event_list:

hierarchical_graph.add_node(event)
# Add hierarchical relations as edges to the graph
using .add_edge() function. The function takes
two strings as inputs. Each string represents an
event.
# There should not be any cycle in the graph. Ex-
plain the reason for each added edge as a comment
after each function call

Here is the completed code:
import networkx as nx
hierarchical_graph = nx.DiGraph()
# Add events as nodes
for event in event_list:

hierarchical_graph.add_node(event)
# Add hierarchical relations as edges to the graph
hierarchical_graph.add_edge(“the government re-
sponded by reducing the provincial civil service
by 28%”, “liberals cut spending”)
# The event “the government responded by re-
ducing the provincial civil service by 28%” is a
subevent of “liberals cut spending” because it is
one way the Liberals cut spending.

Table 9: An example of the relation graph generation prompt input and the response from Llama3.

Input to the LLMs Response from the LLMs
You are a grader assessing whether an answer is
grounded in / supported by a set of facts. Give a bi-
nary score ‘yes’ or ‘no’ score to indicate whether
the answer is grounded in or supported by a set of
facts. Then, provide a short explanation.
Here are the facts: {document}
Here is the answer: Event “the government re-
sponded by reducing the provincial civil service
by 28%” is a subevent of event “liberals cut spend-
ing”.

Score: Yes
Explanation: The answer is grounded in the facts
because it accurately identifies a specific action
taken by the government (reducing the provincial
civil service by 28%) as a subevent of the broader
event of cutting spending, which is mentioned in
the text.

Table 10: An example of the hallucination prompt input and the response from Llama3.
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Algorithm 1 CALLMSAE: CAscading Large Language Models for SAlient Event graph generation
Input: Document d, Max Refinement Round k
Output: An Event Relation Graph g

1: summary ← Summary_Generation(d)
2: salient_events← Event_Generation(summary)
3: hierarchical_graph← null
4: current_round← 0
5: while current_round < n do
6: hierarchical_graph← Hierarchical_Graph_Generation(d, salient_events,

hierarchical_graph)
7: hierarchical_edges← Get_Edges(hierarchical_graph)
8: for edgei in hierarchical_edges do
9: remove_edge← Hallucination_Grader(d, edgei)

10: if remove_edge then
11: hierarchical_graph← Remove_edge(hierarchical_graph, edgei)
12: end if
13: end for
14: current_round← current_round+ 1
15: end while
16: temporal_graph← null
17: current_round← 0
18: while current_round < n do
19: temporal_graph← Temporal_Graph_Generation(d, salient_events, temporal_graph,

hierarchical_graph)
20: temporal_edges← Get_Edges(temporal_graph)
21: for edgei in temporal_edges do
22: remove_edge← Hallucination_Grader(d, edgei)
23: if remove_edge then
24: temporal_graph← Remove_edge(temporal_graph, edgei)
25: end if
26: end for
27: current_round← current_round+ 1
28: end while
29: causal_graph← null
30: current_round← 0
31: while current_round < n do
32: causal_graph← Causal_Graph_Generation(d, salient_events, causal_graph,

temporal_graph, hierarchical_graph)
33: causal_edges← Get_Edges(causal_graph)
34: for edgei in causal_edges do
35: remove_edge← Hallucination_Grader(d, edgei)
36: if remove_edge then
37: causal_graph← Remove_edge(causal_graph, edgei)
38: end if
39: end for
40: current_round← current_round+ 1
41: end while
42: g ← {hierarchical_graph, temporal_graph, causal_graph}
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Figure 6: Annotation guidelines of salient event identification shown to the annotators.
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Figure 7: Annotation guidelines of relation identification shown to the annotators.
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