
Separating the what and how of compositional
computation to enable reuse and continual learning

Haozhe Shan∗

Center for Theoretical Neuroscience
Department of Computer Science

Columbia University
hs3594@columbia.edu

Sun Minni∗
Center for Theoretical Neuroscience

Department of Neuroscience
Columbia University

ms5724@columbia.edu

Lea Duncker
Center for Theoretical Neuroscience

Department of Neuroscience
Columbia University

ld3149@columbia.edu

Abstract

The ability to continually learn, retain and deploy skills to accomplish goals is a
key feature of intelligent and efficient behavior. However, the neural mechanisms
facilitating the continual learning and flexible (re-)composition of skills remain
elusive. Here, we study continual learning and the compositional reuse of learned
computations in recurrent neural network (RNN) models using a novel two-system
approach: one system that infers what computation to perform, and one that
implements how to perform it. We focus on a set of compositional cognitive tasks
commonly studied in neuroscience. To construct the what system, we first show that
a large family of tasks can be systematically described by a probabilistic generative
model, where compositionality stems from a shared underlying vocabulary of
discrete task epochs. We develop an unsupervised online learning approach that
can learn this model on a single-trial basis, building its vocabulary incrementally
as it is exposed to new tasks, and inferring the latent epoch structure as a time-
varying computational context within a trial. We implement the how system as an
RNN whose low-rank components are composed according to the context inferred
by the what system. Contextual inference facilitates the creation, learning, and
reuse of low-rank RNN components as new tasks are introduced sequentially,
enabling continual learning without catastrophic forgetting. Using an example task
set, we demonstrate the efficacy and competitive performance of this two-system
learning framework, its potential for forward and backward transfer, as well as fast
compositional generalization to unseen tasks.

1 Introduction

Humans and animals exhibit a remarkable ability to learn and retain new skills, and flexibly deploy
them to accomplish goals in an ever-changing environment. A growing literature from neuroscience
and human behavior suggests that mechanisms for contextual inference and task abstraction may play
a crucial role for behavioral flexibility and learning [1–9]. An abstract, task-relevant context could
guide the selection and composition of different skills, while the maintenance of context-specific
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memories could counteract forgetting and aid continual learning [1]. Yet, the neural mechanisms
facilitating the continual learning and flexible reuse of skills are not well understood. How do
neural systems manage to expand their repertoire of skills without interference or forgetting, while
maintaining the ability to access and compose them in new environmental contexts? We hypothesize
that multiple interacting learning systems with different objectives may contribute to overall learning
and computation. Specifically, can inferences about the higher-level compositional structure of tasks
be exploited for more robust and efficient learning?

We investigate the interplay of compositionality, contextual inference, and continual learning in
recurrent neural networks (RNNs) using a two-systems approach: one that infers an abstract computa-
tional context within a task family by parsing the compositional structure with probabilistic inference,
and one that implements and retains the relevant computation for each context. This framework
naturally maps onto a what and how architecture, previously explored in meta-learning [10]. The
explicit separation into contexts (what) and computations (how) allows for flexible learning and
compositional reuse. We focus our analyses on a family of cognitive and motor tasks commonly used
in neuroscience [11]. Here, we expand upon previous work in RNNs, where continual learning is
still a major challenge [12], and compositional reuse of computational building blocks has only been
shown to emerge implicitly over simultaneous training on multiple related tasks [13–16], rather than
being explicitly implemented as a solution that facilitates sequential learning of tasks.

The paper is organized as follows: We review related work and our contributions in section 2. In
section 3, we formalize task compositionality through the development of a generative model for
cognitive tasks. This allows us to define a computational context within a task family. We develop an
unsupervised online learning and inference approach to directly infer context from the inputs and
target responses that constitute a task, one trial at a time across a number of different but related
tasks. In section 4 we combine inference and learning in the task model with a contextually gated
low-rank RNN. Training this architecture on a number of cognitive tasks, we demonstrate that our
approach counteracts catastrophic forgetting and aids continual learning with signatures of both
forward and backward transfer. We demonstrate competitive performance in comparison to continual
learning approaches previously used in RNNs. We show that our architecture can rapidly learn to
deploy known skills to solve novel tasks using only a few examples – a property called compositional
generalization [17–19]. Finally, we discuss limitations and future directions in section 5.

Our work contributes to a more precise quantification of task compositionality, how it may shape
computation, and how interactions across different learning systems can benefit continual learning and
generalization. Ultimately, addressing these questions will help to elucidate flexibility and learning in
biological systems.

2 Related work and our contributions

Statistical theories of contextual inference. We follow an influential line of work on contextual
inference in cognitive sciences [1, 20–22]. Contextual inference has been proposed as a model
explaining many learning-related phenomena in classical conditioning [20] and motor control [1].
Here, a latent discrete-valued random variable is used to describe distributional changes in task-
relevant, continuous observations. Given a set of observations, this variable can be inferred as a
familiar or novel context to determine whether a learner may express and refine existing behaviors, or
expand their repertoire using a new context. We extend this idea to the problem of learning to solve
multiple common neuroscience tasks [11, 14]. To do this, we develop a formal description of these
tasks in terms of a context variable: Each task transitions through several contexts, each relevant for a
different computation on a particular task epoch. A key aspect of our model is that these contexts
can reappear in a compositional manner across different tasks, and may additionally share complex
temporal dependencies within a given trial. In section 3 we show how this is crucial for capturing the
distributional structure of neuroscience tasks, where, for example, the animal needs to compute a
response based on information presented at an earlier time in the trial [11, 14].

Task-dependent modulation of neural networks. The general notion of a separate system modulat-
ing computation in a neural network in a task-dependent manner has been previously studied. An
example of this is the Task-Conditioned Hypernetwork [23], where the weights of a neural network
are generated by a second, separate network based on modifiable task embeddings. Other approaches
often assume the network has its own learnable weights but that their involvement in computation
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Figure 1: A generative model of a family of cognitive tasks used in neuroscience. a: Schematic
illustration of a set of cognitive tasks and their compositional nature. b: Directed Acyclic Graphical
model (DAG) description of the generative model capturing the distribution over cognitive tasks we
consider. The time-varying inputs and target responses of each task can be modeled as a mixture,
where the observations for each task are composed of a set of discrete epochs, as illustrated in (a).

is modulated, for instance via a gating mechanism [16, 24, 25]. These works typically study tasks
that can be solved by a single subcomponent (e.g., [25–27]) or the simple linear addition of outputs
from multiple subcomponents (e.g., [24, 28]). In our case, we study tasks that can only be solved via
a composition of computations carried out by different subcomponents. Our choice of architecture
is similar to that of Costacurta et al. [16], where an RNN receives a low-dimensional, time-varying
‘neuromodulatory’ signal from a second RNN that adjusts how different low-rank components of
its recurrent weights are combined. While Costacurta et al. [16] train this architecture end-to-end
with backpropagation, we use the interpretable output of a contextual inference algorithm as the
modulatory signal. In doing so, we make the compositional reuse of RNN components across contexts
explicit, thereby facilitating continual learning and compositional generalization. Beyond RNNs,
the ‘local module composition’ scheme for feedforward networks [29] is similar to our work in
spirit, except that theirs requires passing each datum to all modules in order to determine the right
composition to use and does not make use of an probabilistic inference procedure.

Continual learning in RNNs. Continual learning is relatively understudied in RNNs and sequence-
to-sequence problems more generally [12, 30]. In our comparisons, we focus on two previous
continual learning approaches for networks with fixed dimensionality: Elastic weight consolidation
(EWC) [31], which penalizes weight changes during future learning according to an estimate of how
important each individual weight is for the performance of previous tasks. EWC is representative of a
family of weight-regularization-based approaches [32]. Another approach, Orthogonal Weight-Space
Projection (OWP), was developed in [13], which pushes the network to solve different computations
with activity in orthogonal subspaces. This method is representative of a family of approaches that
modify weight updates during learning [33–35]. We found that our approach mitigates forgetting
better than these methods, exhibits forward and backward transfer learning, and can rapidly learn
new tasks by re-composing learned computations.

3 Formalizing task compositionality via a probabilistic formulation

3.1 A generative model of compositional cognitive tasks

Our goal is to study how the inference of a task-relevant computational context could guide the
selection and composition of different skills in an RNN and aid continual learning. To address this
question, we initially need to define what a task-relevant computational context is, and how it may be
inferred as part of RNN training. We do this for a family of compositionally related cognitive tasks
which have been popular both in experimental and computational neuroscience [11, 13, 14, 16, 36].

In these tasks, the learner receives a sequence of time-varying inputs ssst=1,...,T and needs to produce
a target response sequence yyyt=1,...,T , following different distributions p(sss1:T , yyy1:T |c) depending on
the task identity c ∈ {1, . . . , Nc}. These sequences are structured according to particular segments
(often informally referred to as ‘epochs’) such as a fixation period, a stimulus presentation period, or
a response period. Each of these epochs defines particular distributions of inputs and target responses
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presented to the learner. What makes a family of tasks compositionally related is that they are
composed from the same underlying set of epochs, albeit with task-dependent transitions from one
epoch to the next. Fig. 1a illustrates this schematically for the set of tasks we will consider throughout
the paper. We first sought to formalize the notion of shared epochs (Fig. 1b). We can describe
complex dependencies in the distribution of inputs and target responses p(sss1:T , yyy1:T |c) for a task by
introducing a discrete latent variable zt ∈ Z+ denoting the task epoch at time t. We model epochs as
evolving over time with task-dependent Markovian transitions p(zt = i|zt−1 = j, c) = Λc

ij . Inputs
and target responses qqqt ≡ [ssst, yyyt] ∈ RDq are drawn from an epoch-dependent distribution. Each
epoch may involve a number of different input values, reflecting e.g. different experimental conditions
like reach direction or stimulus contrast. We therefore introduce dependence on an additional latent
variable, the trial variable x, which can capture this trial-specific structure, with qqqt ∼ p(qqqt|zt, x) (Fig
1a). For example, x may index a stimulus, which differs from one trial to the next and determines
the distribution of inputs and target responses (see Figure 2c for examples). Importantly, sharing
the same x across the entire trial allows the model to capture dependencies between, e.g., the target
responses in a later epoch and inputs from an earlier epoch.

Using this description of compositional cognitive tasks, a task-relevant context is naturally defined
as the time-varying sequence of task epochs zt. Thus, performing contextual inference requires
learning the statistical structure and dependencies of the underlying generative model, and inferring
the latent task epoch from observations qqqt. In the continual learning setting, this is essentially a
problem of online learning and inference, which we address in section 3.3. We next give an overview
of the specific tasks we consider throughout the rest of the paper. More detailed descriptions of the
generative model and the specific task design are provided in Appendix A.1.

3.2 Overview of our task set

We initially focus on six commonly studied neuroscience tasks [11, 13, 14, 16] that can be imple-
mented in our generative framework. The tasks are schematized in Fig. 1a and we will henceforth
refer to them as DelayPro, DelayAnti, MemoryPro, MemoryAnti, DMPro, and DMAnti. All of
these tasks require learning simple stimulus-response relationships, albeit with more complex tempo-
ral structure involving e.g. delayed responses. We summarize the different tasks in terms of their
general goal and epoch structure in Table 1. In practice, there is substantial inter-trial variability
within a task due to variability in the amount of time spent in a given epoch, variability in the trial
variable x, and additional variability in qqqt = [ssst, yyyt]. All tasks involve a 5-dimensional time series of
inputs ssst and a 3-dimensional time series of target responses yyyt, which take on noisy values around a
piecewise constant mean. The value of the mean is dependent on the task epoch z and trial variable x,
chosen to reflect the underlying task goals. We refer to Appendix A.2 for a more detailed description
of the tasks, their epoch structures, and distributional choices.

Note that inclusion of the trial variable x has important consequences for how tasks are segmented
into epochs. Considering the MemoryPro/Anti tasks: During the stimulus epoch (S), the inputs
reflect the trial variable x, which indexes the stimulus direction for each trial. During the ‘response
period’ (RM,P/A), the target response is along/opposite the stimulus direction, thus making their
dependencies on x different. This necessitates treating them as two different epochs, RM,P and RM,A

(see Table 1). While this segmentation arises from our model of the complex statistical dependencies
of cognitive tasks, different compositions may be possible using alternative formulations. For instance,
one might imagine that all response-epochs could utilize the same context irrespective of how it
relates to earlier stimuli, e.g. to move an effector in a particular direction. Indeed, empirical results
suggest that this solution arises in RNN models trained on multiple tasks [14].

3.3 What system: online learning and inference of the compositional task structure

We next consider how the compositional structure across tasks can be learned online (one trial at
a time) and continually (one task at a time). The training data contains the sequences of inputs
and target responses, as well as the task identity for each trial, {(qqqr1:Tr

, cr)}r=1,...,NcNtrials
, where

Ntrials is the number of trials per task. We sometimes drop the trial index r from notations for
brevity. Given the training data, the goal of the what system is to obtain estimates of the parameters
that describe the distribution p(qqqt|c) and transitions between epochs. It then infers the unobserved
latent variables zt and x on each trial.
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Task name Description Epoch sequence
DelayPro Respond towards stimulus direction θ after a delay. F → S → RP

DelayAnti Same as DelayPro but respond towards θ + π. F → S → RA

MemoryPro Memorize stimulus direction θ and respond towards it. F → S →M → RM,P

MemoryAnti Same as MemoryPro but respond towards θ + π. F → S →M → RM,A

DMPro Compare amplitudes of two stimuli in directions θ and θ′

and respond towards the direction of the higher amplitude.
F → SDM → RDM,P

DMAnti Same as DMPro but respond towards lower amplitude stim-
ulus direction.

F → SDM → RDM,A

Table 1: Our framework captures an ensemble of commonly used cognitive tasks with a shared
compositional structure. The epochs are F : fixation; S: stimulus; RP/A: response towards/opposite
from the stimulus angle; M : memory; RM,P/A: response towards/opposite from the memorized
stimulus; SDM : decision stimuli; RDM,P/A: response towards/opposite the stronger stimulus.
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Figure 2: Online continual learning of the compositional structure of tasks. a: Schematics of online
continual learning of a set of compositional tasks. b: Colored lines: log likelihood (LL) of tasks
(averaged over trials) from the learned model over the course of learning. Background colors: the
task being trained at each trial. Dashed horizontal lines represent LLs computed using ground-truth
parameters. c Single-trial epoch inference by the learned model. Top row: inputs and target responses
of example trials. Dashed vertical lines indicate boundaries between epochs. Trial indices are dropped
for brevity. Center row: output of training-time inference (p(zt|qqq1:T , c)). Bottom row: output of
test-time inference (p(zt|sss1:t, c)), which does not require access to the target responses or information
from the future. Note that, since the F and M epochs in memory-guided tasks have indistinguishable
observation models, they are merged by the learner.

When training trials are available as batches across all trials and tasks, inference and learning can be
solved using the classic Expectation-Maximization (EM) algorithm. EM performs a coordinate ascent
on the complete data log-likelihood via alternating updates to the model parameters and to expected
sufficient statistics of the latent variables [37]. To learn online from incoming streams of trials, we
maintain estimates of the full-dataset sufficient statistics and update them incrementally after each
trial. A pseudocode of the algorithm and details on the inference and parameter update equations are
available in Appendix B.1. To overcome convergence to bad local optima in the log-likelihood, we
develop a structured incremental initialization procedure described in detail in Appendix B.2.

We applied our algorithm to the problem of online continual learning of the 6 compositional tasks
introduced in section 3.2. To evaluate its performance, we computed the average single-trial log
likelihood (LL) of different tasks, using the estimated parameters over the course of learning. We
found that the model can recover LL on par with that from ground-truth parameters (Fig. 2b), and
learning the structure of later tasks does not cause forgetting of previous tasks, even though the
observation models of some epochs are shared across tasks. We note that this performance is robust
to changes in task ordering (see examples in Appendix B), and the algorithm does not need to know
the total number of tasks or epochs in advance, recognizing unfamiliar epochs on the fly.

The learned parameters can be used to infer the epoch identity zt during each trial, and we considered
two types of inference. The more accurate inference (used to produce Fig. 2b) is p(zt|qqq1:T , c). This
uses both the inputs sss1:T and targets yyy1:T for inference and produces a smoothing distribution in that

5



how?

q = {s , y }ttt

task id: c

task model
contextual
inference

task model
contextual
inference

what?
inputs: s t

targets: y t

comp.
context

p (z)t

a
effective

network weights

= + +

low-rank
context 1

low-rank
context 2

low-rank
context 3

weighted by context
belief from task model

b

x2

xN

x1

. . .

network
space

con
tex

t 1

context 3

context 2
c
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dynamics. a: The task model (what) processes incoming input and target pairs qqqt = {ssst, yyyt} and
infers the time-varying computational context of the current task. A downstream RNN (how) learns
the relevant input-to-target transformation and is modulated by the task model’s belief pt(z) over the
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of low-rank components, weighted by belief over each corresponding context. c: The gating by
the task model causes the network to express different low-dimensional dynamics across different
computational contexts, each of which can be re-expressed and reused to execute different tasks.

the inference of zzzt depends on data from t′ > t. Since this requires access to the target responses, we
call this ‘training time inference.’ (Fig. 2c, center row). We also utilize a ‘test time inference’ setting,
where the learner has only access to the inputs up to the current time point, sss1:t. This produces
a filtering distribution, p(zt|sss1:t, c), which turns out to be highly accurate after learning (Fig. 2c,
bottom row). In particular, it is able to disambiguate situations (e.g., RM,P , RM,A at the end of
memory-guided response tasks have identical ssst statistics) by using the ground truth task label and
the learned epoch transition structure for each task (e.g., knowing that MemoryPro and MemoryAnti
tasks respectively end with RM,P , RM,A). Hereafter, we will refer to this module that learns and
infers underlying task structures as the ‘task model’, and to the inferred epochs as ‘contexts’.

4 Composing recurrent computation across multiple tasks via shared contexts

The results presented so far were concerned with using information available based on the input
and response pairs of the task to infer what to do. This was achieved through the construction of a
probabilistic model capturing the distribution across a family of compositionally related tasks, and
the development of an algorithm that can infer a computational context within that task family. We
now turn to the problem of using this context to guide the selection and composition of different
computations in an RNN that learns how to implement the relevant stimulus/response transformations.
The general framework for how the two systems interact is illustrated in Fig. 3.

4.1 Recurrent neural network architecture

We chose a simple RNN architecture, where the hidden-state activity hhht evolves in time according to

hhht = (1− α)hhht−1 + α
[
W recϕ(hhht−1) +W inssst + bbbin +

√
2α−1σ2

r ξξξt

]
(1)

with decay rate α, activation function ϕ, external input ssst, input bias bbbin and uncorrelated Gaussian
noise ξξξt. The network activity is read out via

ŷyyt = W outϕ(hhht) + bbbout, (2)

with output bias bbbout. Given the external input and initial state, the network is trained to produce a
target response time series yyyt by minimizing the weighted mean squared error between yyyt and ŷyyt
(Appendix C.3).

Inspired by related works on motif execution [16, 38], the connectivity weights in our RNN are
dynamically modulated by the posterior belief over computational contexts pt(z) inferred by the task
model (Fig. 3a). More specifically, each computational context in our design corresponds to a set
of weights: a low-rank component of recurrent weights UzV

T
z , input weights W in

z , input bias bbbinz ,
output weights W out

z , and output bias bbboutz . The effective network weights at time t are a weighted
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sum of these components (Fig. 3b):

W rec =
∑
z

pt(z) UzV
T
z (3)

W in =
∑
z

pt(z)W
in
z , bbbin =

∑
z

pt(z) bbb
in
z (4)

W out =
∑
z

pt(z)W
out
z , bbbout =

∑
z

pt(z) bbb
out
z (5)

This architecture allows the network to express distinct dynamics for different computational contexts.
(illustrated in Fig. 3c). And computations performed by this downstream how system are selectively
gated by the what system. Contrary to previous work, e.g. Duncker et al. [13], we do not constrain
the RNN dynamics associated with one context to be non-interfering with those of another.
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4.2 Contextual modulation enables continual learning

Given the model architecture above, we now turn to the problem of training both systems in parallel
on the set of tasks introduced in section 3.2. As before, all training was performed sequentially,
where {ssst, yyyt} pairs from only one task were shown to the network for a number of trials until the
task identity switched and the previous tasks were never revisited (illustrated in Fig. 2a). During
sequential training of each task, we first ran the incremental EM algorithm (Algorithm 1) for the task
model over a whole batch, then computed contextual inference pt(z) := p(zt|sss1:t, yyy1:t, c) for the
batch to instruct the downstream RNN. During testing, the RNN instead received test time inference
pt(z) := p(zt|sss1:t, c) from the task model, which did not make reference to the target response yyyt.

We compared the performance of our approach to five baselines and summarized the results in Fig. 4,
which shows the log loss and performance (definition see Appendix C.3) on test trials.

There of the baselines operating on general RNNs governed by update equations (1) and (2), where
W rec,W in, bbbin,W out, bbbout are unconstrained and shared across tasks. The general RNNs addition-
ally receive a task identity input W cccc, where ccc is a one-hot encoding of the current task. Under our
default choices of hyperparameters (Appendix C.1), these unconstrained RNNs have approximately
twice as many trainable parameters as our context-modulated RNN. The first baseline is to naively
train general RNNs using the Adam optimizer [39] without any additional measures for continual
learning. In this case, interference across tasks led to catastrophic forgetting, as is readily visible from
the log-loss and the task performance, which quickly degraded after a change in task identity (Fig. 4a).
The second baseline is Elastic Weight Consolidation (EWC) from Kirkpatrick et al. [31], a continual
learning approach which selectively slows down learning rates of single network weights deemed
important on previous tasks. Due to the challenging nature of continual learning in RNNs, the simple
importance-weighted approach failed to mitigate catastrophic forgetting (Fig. 4b). For a baseline
that specifically addressed continual learning in RNNs, we included the approach from Duncker et al.
[13], which selectively slows learning rates in subspaces the network explored on previously learned
tasks by projecting away these dimensions from the weight update throughout learning. We refer
to this method as Orthogonal Weight-Space Projection (OWP). While this approach outperformed
Adam and EWC, the network suffered from capacity limitation where tasks progressively got harder
to optimize. As a result, it became harder for OWP to achieve proficient task performance across all
tasks (Fig. 4c).

The other two baselines are more similar to our two-system approach in that they have a dedicated
component that receives the task identity input and controls the weights used by an RNN that only
receives the task input st. One of them is neuromodulated RNNs from Costacurta et al. [16], in
which a neuromodulatory subnetwork RNN receives task identity input and outputs a signal that
dynamically scales the low-rank recurrent weights of an output-generating RNN. Both subnetwork
RNNs are jointly optimized end-to-end. While this design is similar to our two-system approach,
it did not automatically solve continual learning and quickly forgot previously learned tasks when
trained on new tasks (Fig. 4d). The fifth baseline uses hypernetworks for continual learning [23, 32].
A hypernetwork receives distinct learnable embeddings for each task and outputs the task-dependent
weights for a target network (an output-generating RNN in our case). Changes to the weights
for previously learned tasks are penalized when learning new tasks. This method showed limited
improvement over EWC and forgot some earlier tasks at the end of training (Fig. 4e). By contrast,
Fig. 4f shows results from our algorithm, which combines the task model with the context-modulated
RNN. Selectively modulating the RNN based on the inferred context mitigated catastrophic forgetting
and allowed the network to maintain high performance on all previously learned tasks throughout
sequential training. This result was robust to different task training orders (Fig. 4g, h).

4.3 Contextual inference facilitates forward & backward transfer

We next asked whether, given the compositional structure of the task design, a shared computational
context across tasks could facilitate transfer learning. Positive forward transfer refers to the phe-
nomenon where the test loss for a given task decreases more rapidly when it is trained after another
task, compared to when it is trained from scratch. We observed positive forward transfer between
nearly all pairs of tasks (Fig. 5a and Appendix D). An exception was MemoryPro/Anti tasks, which
exhibited reliable forward transfer primarily when paired with another Memory task. When instead
training after Delay or DM tasks, which share fewer overlapping epochs with Memory tasks, the
model’s test loss on Memory occasionally converged to a slightly higher final value after a rapid initial
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Figure 5: Transfer learning. a: The log test loss during training of a task (specified in y-axis label),
either as the first task (black) or after training another task (coded by color). We observe faster
training after pre-training on tasks that share similar epochs, illustrating forward transfer. b: The log
test loss during sequential training of two tasks, when each tasks is trained for fewer numbers of trials
than our default choice. The loss of the previous tasks continues to decrease after switching to a new
task, illustrating backward transfer. We plot results from three random seeds for each task order.

decrease relative to training from scratch. This phenomenon was also observed in Duncker et al.
[13]. When each task was trained for fewer trials (switching to a new task before proficiency was
reached), we found that its test loss continued to decrease during training on the subsequent task (Fig.
5b and Appendix D), as long as overlapping computational contexts were revisited. This indicates
positive backward transfer. Existing continual learning approaches rarely exhibit backward transfer
[40]. Indeed, repeating the same experiments using OWP failed to produce improvements on old
tasks when learning new ones (see Appendix D).

4.4 Contextual selection facilitates compositional generalization on new tasks

As a final experiment, we evaluated the ability of our model to reuse previously learned contexts
when encountering new tasks. The ability to do so is called compositional generalization, and has
been of major interest in neuroscience [14, 15, 36] and machine learning more generally [17–19].
Specifically, we introduced a variant of the memory-guided response task in which the memory
epoch (M ) is omitted. These variants are denoted as M’Pro (F → S → RM,P ) and M’Anti
(F → S → RM,A) (Figure 6a; note that they are different from DelayPro/DelayAnti tasks in that
the stimulus is not shown during response epochs). We initially trained the model sequentially on
M’Pro, M’Anti, and MemoryPro (F → S →M → RM,P ), and then assessed whether it can rapidly
learn a new task, MemoryAnti (F → S →M → RM,A), within only a few trials. During this final
stage, we froze the downstream RNN and updated only the task model, thereby testing whether the
model could compose previously learned contexts to solve the novel task. Note that in principle, the
freezing of RNN weights was not necessary and that the number of trials needed for learning the task
model was generally much smaller than a typical batch size used for training the RNN. Our method
reached approximately 83% accuracy within as little as 40 trials on average. In contrast, baselines
(also pretrained on the M’Pro/Anti and MemoryPro tasks) using Adam, OWP and Hypernetworks
respectively achieved only 56%, 53%, 64% accuracy after 512 trials of full model training (Figure
6b, c). These results demonstrate that our model can rapidly generalize to new tasks by recombining
previously learned components.

5 Discussion

How does the brain learn to solve tasks through compositional computation? We approached this
question by first developing a formalism of compositional tasks that is sufficiently expressive to cap-
ture a suite of common neuroscience tasks as compositions from a shared vocabulary of task epochs.
We then showed how it is possible to learn and solve these tasks continually using a dual-system
approach: First, a what system performs online probabilistic inference of the relevant compositional
structure of tasks – a time-varying, low-dimensional computational context corresponding to the
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Figure 6: Compositional generalization. a: Schematic of pre-training on a set of tasks and learning via
contextual inference on a new task. b-c: The log loss (b) and task performance (c) on test trials of the
new task as a function of trials used to train the task model (ContextRNN) compared to sequentially
training the full models using OWP, Adam and Hypernetwork.

task epoch. This signal is then used to create or (re-)select computational components (one for each
context) in a second how system. Numerical experiments suggest that incorporating compositionality
and contextual inference in this way allows the network to solve the challenging problem of continual
learning of compositional tasks. Our approach can utilize knowledge transfer to future and previously
encountered tasks, and exhibits potential for compositional generalization.

Studying interactions across different systems and how this may benefit learning, computation, and
compositional generalization is also of substantial interest in neuroscience [9, 36, 41] . While we
don’t directly map our approach to particular candidate brain areas, our work relates to an extensive
neuroscience literature in this space. Previous theoretical work has proposed that contextual gating
of pattern-generating dynamics for motor sequences can aid flexible recomposition and learning,
and be implemented via thalamocortical loops modulated via selective inhibition from basal ganglia
[38]. A similar architecture would be possible for our model to extend these ideas from the motor
domain to flexible cognitive tasks (see also [27]), and determine how the inhibitory signal from
basal ganglia may arise according to contextual information from the what system. More generally,
there is a large literature on action selection, implicating basal ganglia circuits in the selection and
composition of motor sequences [42, 43]. Other lines of work have studied interactions between
hippocampus and prefrontal circuits for learning and generalization [3, 44, 45], and how abstract
task states in prefrontal- [5, 8] or orbitofrontal cortex [2, 4, 7] may be used to guide goal-directed
behavior, computation, and learning.

Limitations and future work. A limitation of our work is that we can only infer computational
context correctly when this is observable from the observed input and target response pairs of a task.
When different epochs map onto the same observations for all x (as is the case in our setting for e.g.
fixation and memory epochs), the task model cannot infer that they are different. A possible future
extension to overcome this would be to incorporate feedback from the RNN to the task model. A
large error produced by the RNN for a familiar context could provide valuable information when
different contexts are difficult to distinguish based on external observations alone. Similarly, the
segmentation of tasks into epochs is not necessarily unique and depends on our modeling approach.
A different notion of shared compositional structure resulting in a different task model may result in a
different segmentation and opportunities for reuse. In addition, we have assumed the trial variable x
to be a discrete variable, which simplifies the analysis by allowing us to express observation models
for different z, x as a look-up table of means. Assuming continuous x may allow the model to capture
richer tasks and improve scalability under complex stimulus distributions. Finally, it may be of
value to model the inference of unfamiliar epochs in a more principled way by using non-parametric
methods (e.g., [1, 20]). A key challenge is to extend existing algorithms to our case where epoch
emissions are controlled by a latent factor x that needs to be consistent across epochs, and context
variables are shared across multiple tasks.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We believe that the claims are well supported by the conceptual developments
and numerical evaluations we made.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A discussion of limitation is supplied at the end of the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our results do not contain proof-based theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Algorithms are stated in the appendix and we also make the code available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Code is provided in a repository.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify important parameters and settings in the text as well as provide the
code for reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: We do not include experimental results that required significance testing.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In general, our experiments have very little compute requirement. The configu-
rations used are stated in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the code of ethics and can confirm that our work conforms
with it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our research aims to better understand task compositionality and how the brain
may handle it. These do not have immediate relations to ML applications in the real world.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: See previous question.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide citations whenever necessary.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide code used for our experiments but at the current moment do not
expect them to be used as packages.
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• The answer NA means that the paper does not release new assets.
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submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing nor research with human subjects was involved.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: See previous question.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were only used for writing and editing.
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• The answer NA means that the core method development in this research does not
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for what should or should not be described.
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Separating the what and how of compositional computation
to enable reuse and continual learning
Appendix
All our codes are available on the public repository.

A Formalization of compositional tasks and task designs

We propose a formalization of shared compositional structures in sequence-to-sequence (seq2seq)
tasks and show that the formulation is expressive enough to capture many commonly used tasks in
the literature. In each trial of a seq2seq task, the learner receives an input time sequence ssst=1,...,T

and needs to produce a target output sequence yyyt=1,...,T . Different tasks (indexed by c ∈ Z+) are
distinguished from each other by their input distributions as well as the underlying input-to-target
rules, together encoded in p(sss1:T , yyy1:T |c). For notational convenience let qqqt ≡ [ssst, yyyt] ∈ RDq .

We model this distribution over task-observables by introducing a set of latent variables resulting in
the joint distribution

p(qqq1:T , z1:T , x, c) = p(x|c)p(z1|c)
T−1∏
t=1

p(zt+1|zt, c)
T∏

t=1

p(qqqt|zt, x) p(c). (6)

We initially provide intuition about our modeling choices, before formally specifying the distributions
for the tasks of the main paper in section A.1 and A.2 below.

To model different tasks with a shared compositional structure, we first observe that in many tasks
used in neuroscience experiments, each trial can be temporally segmented into discrete epochs, which
we denote as zt ∈ Z+. Each epoch has its distinctive input and target statistics, though they may
exhibit complex temporal dependencies across epochs throughout the trial. To illustrate this, we can
consider a simple task testing the learner’s ability to memorize: During a stimulus epoch, inputs
provide information about a trial-specific latent variable (e.g., a dot on the screen indicating an angle
θ). The inputs eventually turn off, and the learner needs to maintain the relevant information in
memory until a cue solicits a θ-dependent response (e.g., a saccade in the direction of the angle).
This example corresponds to the MemoryPro task from the main paper.

One might initially attempt to model this epoch dependence as a simple Hidden Markov Model
(HMM), where each epoch has its own observation model p(qqqt|zt). However, this approach would
fail to capture that the yyyt during the response epoch is coupled to the ssst from the stimulus epoch via
the shared trial-specific latent variable. In our example above, the statistics of the stimulus epoch and
response epoch are coupled since they are both dependent on θ. To take this cross-epoch dependency
into account, we explicitly model the “stimulus condition”, indexed by the trial variable x. In the
specific example above, there may be a list of possible directions and x selects one to use as θ. Thus,
in our model of cognitive tasks, the observed inputs and target responses depend not only on the
latent epoch zt but also a second latent variable x, which additionally parameterizes the observation
models of all epochs.

We model tasks as being compositionally related if we can use the same underlying set of task
epochs and conditional distributions over qqqt|zt, x to describe them. For a simple example of different
tasks sharing compositional structure, we can consider the MemoryPro task described above, and
construct a second task, MemoryAnti, which shares the same stimulus epoch but requires a response
in the opposite direction of θ. Here, the dependence of the response epoch on θ is different (and
MemoryAnti will therefore have a different response epoch relative to MemoryPro), but the statistics
of the stimulus epoch are identical across the two tasks. The differences in what epochs contribute
to each task and how one epoch transitions to the next is captured via task-dependent Markovian
transitions over epochs p(zt+1|zt, c).

A.1 Generative model

To make our model of neuroscience tasks tractable and applicable to training RNNs, we make some
simplifying choices for its components. For all tasks, p(x|c) is assumed to be a uniform distribution
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over some finite set of size Nx. p(z1:T |c) is assumed to be a Markov process with the initial state
distribution and transition probabilities determined by c. Finally, the observation model p(qqqt|zt, x) is
assumed to be a multivariate Gaussian with a (zt, x)-dependent mean. Under these assumptions, our
model can be seen as an HMM with c-dependent latent-state dynamics and x-dependent emission
models for all latent states. If there is only one task and one possible x value in all trials, the model
reduces to a standard HMM. In the more general case, it can be viewed as a mixture (across tasks
identities) of HMMs with Gaussian Mixture emissions (across trial variables x) .

In summary, for trials r = 1, . . . , Ntrials we generate tasks as
cr ∼ p(c) task identity cr ∈ {1, . . . , Nc}

zr1 |cr ∼ Discrete(ΠΠΠc) epoch identity zrt ∈ {1, . . . , Nz}
zrt |zrt−1 = z′, cr = c ∼ Discrete(ΛΛΛc

:,z′)

xr|cr ∼ Discrete(
1

Nx
111) trial variable xr ∈ {1, . . . , Nx}

qqqrt |zrt = z, xr = x ∼ N
(
q̄qqz,x, σ

2I
)

inputs and targets qqqrt ∈ Rd

This model thus allows us to specify a set of Nc tasks sharing a compositional structure as follows.
Let Nz denote the number of epochs shared among these tasks. The composition of the c-th
task is specified by its epoch-transition parameters: the transition probabilities ΛΛΛc ∈ RNz×Nz :
Λc
z,z′ = p(zt = z|zt−1 = z′, c) and initial probabilities ΠΠΠc ∈ RNz : Πc

z = p(z1 = z|c). The
observation model of each epoch is specified by the means corresponding to different x values,
{q̄qqz,x ∈ RDq}x=1,...,Nx , where q̄qqz,x is the mean of the multivariate Gaussian p(qqqt|zt = z, x).
Thus, altogether an ensemble of Nc tasks composed from Nz epochs is specified by the tuple
({q̄qqz,x}z=1,...,Nz ;x=1,...,Nx

, {(ΛΛΛc,ΠΠΠc)}c=1,...,Nc
), where the first component specifies the epochs and

the second specifies how they are used to compose the tasks.

A.2 Expressing common cognitive and motor tasks in our framework

Below, we provide explicit details of the distributions and parameters used to generate our task set.
We follow the same epoch notation introduced in Table 1 of the main paper. We initially describe the
temporal structure in terms of epochs of each task, and then define epoch-specific distributions.

All tasks start with the fixation epoch (F ), which presents no stimulus and an active fixation
cue. The required output is to maintain fixation without response. In all the non-response
epochs (stimulus S, memory M and decision stimuli SDM ), the fixation cue is on and the re-
quired output is to maintain fixation without producing a response. During the response epochs
(RP , RA, RM,P , RM,A, RDM,P , RDM,A), the fixation cue turns off and the learner needs to stop
fixation and produce a response ϕ according to some rule, as described below. Without loss of
generality, we considered 8 possible stimulus conditions per task (Nx = 8) and generate x i.i.d. from
a uniform distribution for the 8 possible values.

Delayed response tasks (DelayPro, DelayAnti). After F , the stimulus epoch (S) presents an angle
θ, chosen from {0, π/4, ..., 7π/4} depending on x. The stimulus presentation stays on during the
ensuing response epoch (RP for DelayPro or RA for DelayAnti), where the target output becomes
ϕ = θ (RP ) or ϕ = θ + π (RA).

Memory-guided response tasks (MemoryPro, MemoryAnti). After S, stimulus presentation disap-
pears in the memory epoch (M ). During the ensuing response epoch (RM,P for MemoryPro, RM,A

for MemoryAnti), there is still no stimulus presentation and the learner must produce a response
based on the memorized θ: ϕ = θ (RM,P ) or ϕ = θ + π (RM,A).

Decision making tasks (DMPro, DMAnti). After F , a decision stimuli epoch (SDM ) presents two
stimuli simultaneously. θ = 0 with strength γ in input dims 1, 2 and θ = π with strength γ′ in input
dims 3, 4. The strengths (γ, γ′) are determined from a set of pairs by x and scale the input channels.
During the ensuing response epoch (RDM,P for DMPro, RDM,A for DMAnti), the stimuli persist and
the required output ϕ is the direction of the stimulus with a higher strength (RDM,P ) or the one with
a lower strength (RDM,A).

The epoch structure of the different tasks is encoded viaΛΛΛc. Altogether, the 6 tasks can be described as
compositions using a shared pool of 10 epochs. Given the epoch identity, the conditional distributions
of the inputs and responses are generated as follows:
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epoch s̄ssz,x ȳyyz,x
F , M [0, 0, 0, 0, 0] [0, 0, 0]
S [cos θ, sin θ, 0, 0, 0] [0, 0, 0]
RP [cos θ, sin θ, 0, 0, 1] [cos θ, sin θ, 1]
RA [cos θ, sin θ, 0, 0, 1] [cos(θ + π), sin(θ + π), 1]
RM,P [0, 0, 0, 0, 1] [cos θ, sin θ, 1]
RM,A [0, 0, 0, 0, 1] [cos(θ + π), sin(θ + π), 1]
SDM [γ cos θ, γ sin θ, γ′ cos θ′, γ′ sin θ′, 1] [1, 0, 0]
RDM,P [γ cos θ, γ sin θ, γ′ cos θ′, γ′ sin θ′, 1] [cosϕ, sinϕ, 1], where ϕ = 111γ>γ′θ +111γ′>γθ

′

RDM,A [γ cos θ, γ sin θ, γ′ cos θ′, γ′ sin θ′, 1] [cosϕ, sinϕ, 1], where ϕ = 111γ<γ′θ +111γ′<γθ
′

Where 111 is an indicator that takes on value 1 if the subscript is true and 0 otherwise. This fully
specifies the conditional distributions p(qqqt|zt, x) for each task epoch with q̄qqz,x = [s̄ssz,x, ȳyyz,x]. For
the DM tasks, we restrict the stimulus values to two locations θ = 0, θ′ = π, but pick Nx = 8
different combinations of possible (γ, γ′) pairs. Note that while we generate the input and response
distributions using stimulus values θ to follow convention from the literature [11, 14], each value of θ
(or (γ, γ′) in the DM tasks) maps onto a different x value. For σ we used 0.05; for (γ, γ′), x selects
from [0.5, 1], [1, 2], [0.5, 2], [0.2, 1.5], [1, 0.5], [2, 1], [2, 0.5], [1.5, 0.2].

Note that while we have followed many conventions from previous work in the task design, these
previous approaches tend to implement each task individually but with related distributional assump-
tions [11, 13, 14, 16]. Modeling shared structure across tasks through an explicit, shared generative
framework for an entire task family is novel. While this was not the focus of the main paper, it is
worth noting that access to a description of shared statistical structure in the input and target response
pairs of each task forms an important baseline for expectations of shared statistical structure across
tasks in the solution emerging after RNN training [11, 13–15].

B Online learning and inference of compositional task structures

B.1 Online learning and inference

In this section, we provide additional details on the algorithms developed for performing posterior
inference over the latent variables of the task model, and online (one-trial-at-a-time) learning of the
task model.

Inference. We can perform exact inference by utilizing a message passing scheme similar to that
used for performing inference in classic HMM models.

Let αr
t (z, x, c) = p(qqqr1:t, z

r
t = z|xr = x, cr = c) denote the forward (filtering) message for a given

task. During a filtering pass, we compute

αr
1(z, x, c) = p(zr1 = z|cr = c)p(qqqr1|zr1 = z, xr = x) (7)

αr
t+1(z, x, c) =

(
Nz∑
z′=1

αr
t (z

′, x, c)p(zrt+1 = z|zrt = z′, cr = c)

)
p(qqqrt+1|zrt+1 = z, xr = x) (8)

Marginalizing the forward message at the final time-step allows us to compute the marginal likelihood
over observations

p(qqqr1:T |xr = x, cr = c) =

Nz∑
z=1

αr
T (z, x, c) (9)

(10)

Let βr
t (z, x, c) = p(qqqr(t+1):T |z

r
t = z, xr = x, cr = c) denote the backwards (smoothing) message.

During the smoothing pass, we compute

βr
T (z, x, c) = 1 (11)

βr
t (z, x, c) =

Nz∑
z′=1

p(zrt+1 = z′|zrt = z, cr = c)p(qqqrt+1|zrt+1 = z′, xr = x)βr
t+1(z

′, x, c) (12)
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Given these quantifies, we can compute the joint posterior over zrt , xr and cr as
γr
t (z, x, c) = p(zrt = z, xr = x, cr = c|qqqr1:T ) (13)

=
p(qqqr1:t, z

r
t = z|xr = x, cr = c)p(qqqr(t+1):T |z

r
t = z, xr = x, cr = c)p(xr = x, cr = c)∑

x,c p(qqq
r
1:T |xr = x, cr = c)p(xr = x, cr = c)

(14)

=
αr
t (z, x, c)β

r
t (z, x, c)p(xr = x, cr = c)∑

x,c

∑Nz

z′=1 α
r
T (z

′, x, c)p(xr = x, cr = c)
(15)

Note that the filtering and smoothing passes can be done for each value of x and c in parallel. Finally,
for later use in the online learning algorithm we also compute the joint posterior over zrt−1, zrt , xr

and cr as
ξrt (z, z

′, x, c) = p(zrt−1 = z, zrt = z′, xr = x, cr = c|qqqr1:T ) (16)

=
αr
t−1(z, x, c)p(z

r
t = z′|zrt−1 = z, cr = c)p(qqqrt |zrt = z′, xr = x)βr

t (z
′, x, c)p(xr = x, cr = c)∑

x,c p(qqq
r
1:T |xr = x, cr = c)p(xr = x, cr = c)

(17)

Online learning. Learning aims to recover parameters of the generative model,
({q̄qqz,x}z=1,...,Nz ;x=1,...,Nx

, {(ΛΛΛc,ΠΠΠc)}c=1,...,Nc
), up to a permutation over z and x. Perform-

ing parameter learning with EM requires computing the expected counts of visiting particular epochs
or transitioning across epochs across all trials. When all trials are available as a batch, this involves
sums over the quantities computed during inference for each trial. To make notation more compact,
we denote X as the set of sufficient statistics needed to update the set of model parameters Θ. Let
Θ(i,k) denote the learned parameters after seeing the i-th trial and running k EM iterations. Let
Xr,(i,k) denote the single-trial statistics on trial r, computed using parameters Θ(i,k). When the
learning algorithm has access to all trials throughout learning (batch EM), the updates take the form

Θ(i,k+1) = f(S(i,k)(X)) S(i,k)(X) =

i∑
r=1

Xr,(i,k). (18)

For example, for the parameter estimates for the transition matrix, this takes the form

Λi,k+1
czz′ =

∑T
t=1

∑Nx

x=1 Ξ
i,k
cxzz′(t)∑T

t=1

∑Nx

x=1

∑Nz

z′′=1 Ξ
i,k
cxz′′z′(t)

. (19)

with

Ξi,k
cxzz′(t) =

i∑
r=1

p
(
cr = c, xr = x, zrt−1 = z, zrt = z′|qqqr1:T ; Θk

)
. (20)

In general, the batch EM parameter updates take well-known forms for HMMs and GMM-HMMs,
which is why we only give an example here in the interest of brevity.

When trials are only available one-trial-at-a-time and cannot be revisited (online EM), the sums of
expected sufficient statistics across trials have to be approximated and updated after each trial instead,
leading to an approximation to the batch updates. We propose the following update rule to perform
parameter learning online

Θ(i,k+1) = (1− ηparams)Θ
(i−1,K) + ηparamsf(S

(i,k)
online(X)). (21)

S
(i,k+1)
online (X) = (1− ηstats)S

(i−1,K)
online (X) +Xi,(i,k). (22)

where K denotes the number of iterations per trial. After learning the i-th trial, we only need to store
Θ(i,K) and S

(i,K)
online(X), taking the form

Θ(i,K) =

i∑
r

(1− ηparams)
i−rηparamsf(S

(r,K)
online(X)) + (1− ηparams)

i+1Θinit. (23)

S
(i,K)
online(X) =

i∑
r

(1− ηstats)
i−rXr,(r,K). (24)

We summarize this online learning approach in Algorithm 1 and show performance for different
training orders (supplementing Figure 2 in the main paper) in Figure S.1.
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trial index trial index

Figure S.1: Online continual learning of task structures with some example task orderings. See Fig.2
for legends.

Algorithm 1 High-level Overview of the Incremental EM algorithm.
Θ← init. ▷ Initialize parameter estimates.
S(X)← 0 ▷ These are the estimated sums of sufficient statistics across trials
for r = 1, ..., Ntrials do

Θ← incremental_initialize(Θ, qr1:Tr
, cr) ▷ See B.2.

Θ̂← Θ ▷ Create a temporary copy of the parameters
Ŝ(X)← None
for k = 1, ...,K do

X ← getstats(qqqr1:Tr
, cr, Θ̂) ▷ Compute sufficient statistics of this trial with current

params.
Ŝ(X)← (1− ηstats)S(X) +X ▷ Decay the sums from the previous trial and add new

stats
Θ̂← Θ⊙ (1− ηparamsMgate) + ηparamsf(Ŝ(X))⊙Mgate ▷ Incremental

update of params. using the modified sums. Mgate is a binary mask controlling which parameters
are updated (see B.3).

end for
Θ← Θ̂
S(X)← Ŝ(X)

end for

B.2 Incremental initialization of model parameters

Even for simple models such as the Gaussian Mixture Model, EM is susceptible to local optima [46].
To avoid convergence to bad local optima, it is important to obtain good initializations for the model
parameters. For simple time-series models such as the HMM, this is typically achieved by collapsing
the sequences across time, performing clustering (e.g. with K-means [47]), and using the resulting
cluster centers as the initial observation-model parameters, given each latent discrete state.

In our model, we need to initialize the underlying cluster centers of the observation model,
{q̂qqz,x}z=1,...,N̂z,x=1,...,Nx

. Here, N̂z reflects the fact that the total number of epochs in the en-
tire dataset is unknown a priori. We overcome this by setting up a large number of ‘slots’ (N̂z ≥ Nz),
exceeding the likely total number of epochs in the task family. Our setting adds two significant
challenges relative to simple HMMs: First, each trial contains only a few epochs and a specific
stimulus condition (x value). Therefore, clustering each trial can only initialize a small subset of the
NxNz mixture components of the observation model. Second, since there is one stimulus condition
x per trial, the mixture components q̄qqz,x explaining a given trial must be allocated to the same x,
but different epoch states z. Initialization schemes based on simple clustering approaches on the
entire trial (such as that outlined for HMMs above) would be agnostic to this structure and fail to
provide a feasible initial set of parameters. To overcome these issues, we introduce an ‘incremental
initialization’ scheme, which is applied to all the estimated means {q̂qqz,x} before learning each trial.

To introduce the scheme, we first introduce the notion of the putative z, x, denoted z̃, x̃. This is to
highlight that learning the correct {q̄z,x} does not require inferring the real z, x in the generative
process but only requires them to be correct up to a permutation. Let Ñz, Ñc denote the number of
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epochs and task slots in the learning algorithm, respectively. Note that these do not need to be set
as the correct Nz, Nc – they can simply be large integers. We do assume that the system knows the
correct number of x values, Nx. The learner keeps track of {q̂qqz̃,x̃}z̃=1,...,Ñz,x̃=1,...,Ñx

as well as two
Boolean-valued tables, Fc,x of size Ñc ×Nx and Fx,z of size Ñx × Ñz . The two tables keep track
of which combinations of c, x̃ and x̃, z̃ have been encountered.

When the rth trial is observed and the learner has access to (qqqr1:Tr
, cr), the scheme is threefold:

1. We perform K-means clustering on the entire sequence qqqr1:Tr
. This gives us a set of cluster

means. Since we assume the epochs to have piecewise constant inputs and mild noise, the
means correspond to the different epochs that appeared in this trial. The challenge now is to
assign z̃, x̃ to these means, and to use them to initialize q̂qqz̃,x̃ accordingly.

2. All cluster means from step (1) should be assigned the same x̃r. We check the means against
{q̂qqz̃,x̃} and decide on x̃r according to a set of rules and Fc,x. The cr, x̃r pair is marked
‘encountered’ in Fc,x.

3. Given x̃r from step (2), we treat the cluster means not found in {q̂qqz̃,x̃}x̃=x̃r as unfamiliar
z̃, x̃, meaning that they represent previously unseen z̃, x̃ combinations and should be used
to initialize. Each center is assigned a different z̃ that has not been encountered (according
to Fx,z). The z̃, x̃r pairs are marked as ‘encountered’ in Fx,z .

B.3 Gated updates to parameters

Since each trial contains information about only one task and the few epochs it is associated with, it
does not make sense to update parameters related to other tasks and epochs. For ΛΛΛc, we simply gate
it such that only the transition matrix corresponding to the current task (the label of which is given) is
updated. For {q̂qqz,x}, we infer which epochs appeared in this trial using the posterior p(zr1:T |qqqr1:T ).
Only epochs with a sufficiently high chance of appearance have their {q̂qqz,x} updated.

B.4 Epoch identifiability in our set of tasks

For the particular set of tasks we considered, since F,M epochs have identical q̄qqz,x for all x, they
are indistinguishable. Thus, our learning algorithm will combine them into a single epoch, which
we denote as F/M . Instead of learning the 10 epochs in the generative process for our set of tasks,
the task-model will end up learning 9 epochs, including the combined F/M epoch. In terms of the
transition matrices, this creates a complication for MemoryPro, MemoryAnti tasks where both F
and M epochs appear in each trial. The learned transitions will not be deterministic in the sense that
the F/M epoch may transition to either the stimulus epoch or the response epoch. The ‘ground-truth’
parameters used for plotting in Fig. 2 and Fig. S.1 refer to the optimal parameters with a merged F/M
epoch. In future work, it will be interesting to investigate how epochs that are computationally distinct
(e.g. holding still in F vs. holding still while maintaining a memory in M ) but map onto the same
observations may be distinguished, e.g. via feedback from the downstream network implementing
the different computations for each epoch.
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C RNN architecture and hyperparameter settings

C.1 Default RNN architecture and task parameters

Parameter Value

α 0.1

σr 0.05

ϕ ReLU

number of hidden units 256

rank of Uz, Vz 3

input noise std
√
2/α σin, where σin = 0.01

minimum duration of a epoch 5 time steps

p(zt+1 = zt|c) 0.9

C.2 Default training protocol

We used a batch size of 256 and trained each task for 1000 batches unless otherwise specified.

For the context-modulated RNN, the learning rate for the weights associated with each context z was
initially set to ηz = 0.001. After training each task c, ηz was multiplied by a decay factor γ = 0.5 for
any context with p(z | c) > 0.001. During training on task c, L2 weight regularization was applied
with a coefficient of 10−5 for contexts with p(z | c) > 0.001, and set to 0 for all other contexts.

For baseline algorithms using general ("vanilla") RNN architectures, the learning rate was set to 0.01,
and the L2 weight regularization coefficient was set to 10−5. Parameter choices were determined by
a coarse grid search.

C.3 Loss function and performance measure

The loss function is a weighted mean square error similar to [11, 14]. L := ⟨mi,t(yi,t − ŷi,t)
2⟩i,t,

where i is the index of the output units, mi,t = 1 for response epochs and mi,t = 0.2 for all other
epochs.

A trial is considered correct if the network maintained fixation for all time steps before the fixation
cue turns off, and responded to the correct direction for time steps in the response epoch. If the
activity of the fixation output exceeds 0.5, the network is considered to have broken fixation. The
network’s response direction is considered correct if its angular difference from the target direction is
less than π/10. Average performance and test loss were calculated on 200 test trials for each task.

D Supplementary results

D.1 Additional results on transfer learning

We provide additional results on transfer learning. Figure S.2 and Figure S.3 supplement Figure 5a
and b, respectively, by showing results for all task pairs. Figure S.4 shows the lack of backward
transfer when training with the OWP algorithm [13], where the test loss of previously learned tasks
did not decrease when training on subsequent tasks with overlapping epochs.

D.2 Results with other hyperparameter choices

We observed improved performance of our continual learning algorithm as we increased the rank
of Uz and Vz (denoted by r) (Figure S.5a,b, compared with Figure 4f). Using r = 3, 5, and 10 in
ContextRNN results in 34587, 43803, and 66843 trainable parameters, respectively — all fewer
than the 69379 parameters of a general RNN with the same number of hidden units. With r = 3,
ContextRNN performed worse with tanh than with ReLU activation, but this gap was closed at r = 10
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Figure S.2: Additional results on forward transfer. Colored curves show the log test loss of task B
(indicated by the row label) when trained after task A (column label). For comparison, black curves
in each row show the log test loss of task B when trained from scratch. We plot results across three
random seeds for each task order.

(Figure S.5c, d). Similarly, performance with r = 3 and α = 0.2 was worse than with α = 0.1, but
this gap was also closed at r = 10 (Figure S.5e, f).

E Details of baseline implementations

E.1 Elastic Weight Consolidation

Elastic Weight Consolidation (EWC) [31], slows down learning rates for network weights deemed
important for previous tasks. This is achieved by adding a regularization term to the training loss
function. For a loss L(Θ), the EWC objective is given as

LEWC(Θ) = L(Θ) +
λ

2

∑
i

Fi(Θi −Θ∗
i )

2 (25)

Here Fi is an importance weight that ties the ith parameter value Θi to it’s value Θ∗
i at the end of

training on the previous task. The important weights are computed as the diagonal of the Fisher
Information matrix F evaluated at the parameter values Θ∗

i . We set λ to 105 after a coarse grid
search.

E.2 Orthogonal Weight Projection

The original learning rule in Duncker et al. [13] was derived for a parameterization of network
dynamics of the form

ẋxx = −xxx+ ϕ
(
WWW recxxx+WWW insss

)
(26)

given an element-wise activation function ϕ(·). The learning rule was intended to maintain the
stimulus/response relationship of previous task by applying a set of projection matrices to the gradient
used to update the network weights over learning. The projection matrices were intended to remove
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Figure S.3: Additional results on backward transfer. The log test loss of the previously trained task
A (indicated by the row label) continue to decrease during subsequent training on another task B
(column label). Each task is trained with 2560 trials and we plot results across three random seeds for
each task order.
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Figure S.4: No backward transfer with OWP. a: The log test loss during sequential training of two
tasks with the OWP algorithm, each tasks is trained for 2560 trials. The loss of the previous tasks
does not decrease after switching to a new task, indicating no backward transfer. Results are shown
for three random seeds per task order. b: same as a but with each task trained for 3840 trials.
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Figure S.5: Continual learning performance with different hyperparameter choices. a: Color-coded
test performance during sequential training of four different task orders. Each row color-codes the
average test performance across five random seeds of a specific task over training. RNNs used for this
panel have α = 0.1, r = 5, ϕ = ReLU. b-f: same as a but with a different hyperparameter choice
labeled by the title.

directions from the weight update that would interfere with previous tasks and were defined as follows.

Letting zzzc,rt =

[
xxxc,r
t

sssc,rt

]
denote the concatenated network state and input state at time t of trial r on

task c, ZZZ1:c = [zzz1,11 , . . . zzzc,rT ] the collection of all time points and trials on tasks 1 through c, and
WWW = [WWW rec WWW in] the concatenated weight matrices, we define the projection matrices

PPP 1:c
1 =

(
1

λ
ZZZ1:cZZZ

T
1:c + I

)−1

(27)

PPP 1:c
2 =

(
1

λ
WWWZZZ1:cZZZ

T
1:cWWW

T + I

)−1

(28)

and the modified learning update as

∆WCL ∝ PPP 1:c
2 ∇WWWL PPP 1:c

1 (29)
where ∇WWWL is the derivative of the loss on the new task with respect to the network weights. An
analogous set of projection matrices and modified learning update is used for the readout weights.

To facilitate direct comparisons with our approach, we adapted the learning rule to a modified setting,
where the RNN dynamics are expressed as

ḣhh = −hhh+WWW recϕ(hhh) +WWW insss (30)
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given the same element-wise activation function ϕ(·). While the two parameterizations in (26) and
(30) are generally considered equivalent [48], the linear intuition used to motivate the approach of
[13] should be exact in (30). With xxxt = ϕ(hhht), ZZZ1:c is unchanged, but we instead use

PPP 1:c
2 =

(
1

λ
HHH1:cHHH

T
1:c + I

)−1

(31)

where HHH1:c = [hhh1,1
1 , . . .hhhc,r

T ]. While this is very similar to the version in Duncker et al. [13], the
projections matrix now only depends implicitly on the WWW of previous tasks. We performed all
comparisons using this modified learning rule.

E.3 Neuromodulated RNN

Costacurta et al. [16] designed a neuromodulated RNN (NM-RNN), in which a neuromodulatory
subnetwork (RNN1) outputs a low-dimensional signal that dynamically scales the low-rank recurrent
weights of an output-generating RNN (RNN2). RNN1 and RNN2 are jointly optimized through
gradient descent. In our implementation, RNN2 has 256 neurons and with rank(Wrec) = 27, equal
to the default choice for our ContextRNN. Number of neurons in RNN1 is set to 125 such that the
whole network has 36658 parameters, comparable to the 34587 parameters of our contextRNN. α
is set to 0.1 for RNN2 and 0.01 for RNN1 following the original paper. We used Adam optimizer,
with learning rate set to 0.001 and L2 weight regularization coefficient set to 10−5 after a coarse grid
search.

E.4 Hypernetwork

Von Oswald et al. [23] designed task-conditioned hypernetworks to tackle continual learning. A
hypernetwork receives distinct learnable embeddings for each task, and outputs the weights for the
target network (an output-generating RNN in our case). For the output-generating RNN, we set
the number of neurons to 256. A full-rank recurrent weight matrix, an input weight matrix and an
output weight matrix together require a 67843-d output from the hypernetwork. We used a chunked
hypernetwork introduced in the original paper, where a set of learnable chunk embeddings serve as
additional input to the hypernetwork. Concatenating the hypernetwork output from distinct chunks
gives all parameters for the target network. We set the output dimension of the hypernetwork to 2000
and number of chunks to 34. Dimension of task embeddings and chunk embeddings is set to 32.
The hypernetwork is a multi-layer perceptron with two 32-d hidden layers. Together, the number of
trainable parameters of the hypernetwork equals 70416, comparable to other baselines in our paper
using a full-rank RNN. After a coarse grid search, we set continual learning regularization strength
to 1, orthogonal regularization strength to 0.001 and clip gradient norm to 1 (see Ehret et al. [32]
for details). We used Adam optimizer, with learning rate set to 0.001 and L2 weight regularization
coefficient set to 10−5.
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