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ABSTRACT

The antimicrobial resistance (AMR) pathogens have become an increasingly
worldwide issue, posing a significant threat to global public health. To obtain
an optimized therapeutic effect, the antibiotic sensitivity is usually evaluated in
a clinical setting, whereas traditional culture-dependent antimicrobial sensitivity
tests are labor-intensive and relatively slow. Rapid methods can greatly optimize
antimicrobial therapeutic strategies and improve patient outcomes by reducing the
time it takes to test antibiotic sensitivity. The booming development of sequenc-
ing technology and machine learning techniques provide promising alternative
approaches for antimicrobial resistance prediction based on sequencing. In this
study, we used a lightweight Multitask Learning Transformer to predict the MIC
of 14 antibiotics for Salmonella strains based on the genomic information, includ-
ing point mutations, pan-genome structure, and the profile of antibiotic resistance
genes from 5,278 publicly available whole genomes of nontyphoidal Salmonella.
And we got better prediction results (improved more than 10% for raw accuracy
and 3% for accuracy within +1 2-fold dilution step) and provided better inter-
pretability than the other ML models. Besides the potential clinical application,
our models would cast light on mechanistic understanding of key genetic regions
influencing AMR.

1 INTRODUCTION

Antibiotics are chemical compounds that are used for killing or inhibiting the growth of bacteria,
playing a pivotal role in the control of infectious diseases. However, the ever-increasing antimicro-
bial resistance (AMR) threatens the clinical effectiveness of antibiotic treatments. The antibiotic
resistance of pathogens could result in treatment failure, including high morbidity or mortality, and
increase the health care cost substantially. Over 70 percent of the bacteria which promote hospital-
acquired infections are resistant to at least one common antibiotic used for treatment (Stone et al.,
2009).

In clinical settings, testing the antimicrobial resistance of pathogens is critical for the appropriate
choice of antibiotics in the treatment. Antimicrobial susceptibility/ sensitivity testing (AST) is an
approach to determine whether antibiotics can inhibit the bacteria/fungi growth, thus measure the
susceptibility, or reflect the resistance of bacteria/fungi to specific the antibiotics. Several AST
methods are widely used, including broth microdilution, antimicrobial gradient, disk diffusion test,
and rapid automated instrument methods (Barth et al., 2009). Minimum inhibitory concentration
(MIC) is one of the most frequently used AST methods, quantifying the lowest concentration of
antibiotics preventing the growth of a microorganism. Qualitative descriptions (resistant/sensitive,
etc.) of the antimicrobial sensitivity provide no accurate quantification of antimicrobial sensitivity
and limit its power in certain scientific and clinical applications. In contrast, MIC measures provide
a competent resolution while antimicrobial susceptibility of strains varies in a population, and this
is useful for many epidemiological and clinical objectives.

Since traditional antimicrobial sensitivity testing relies on culture-dependent methods, it is labor-
intensive and relatively slow. In the conventional microbiological laboratory diagnosis, the total time
for the bacteria growth, isolation, taxonomic identification, and antibacterial MIC determination for
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fast growing bacteria may exceed 36h, while the time for slowly growing bacteria may be several
days (Opota et al., 2015). From a clinical point of view, testing the antimicrobial sensitivity using
more accurate and rapid methods could greatly optimize antimicrobial therapeutic strategies and
improves patient outcomes (Llor et al., 2014).

Whole-genome sequencing (WGS) has been widely used for public health surveillance in the past
decades, guiding the clinical diagnosis and health care decisions. WGS-based data mining assesses
the phylogenetic relationships, conducts outbreak investigations, detects antimicrobial resistance,
and predicts the virulence or pathogenicity of potential pathogens (Varma et al., 2002). Several re-
cent studies have used WGS data to predict AMR phenotypes. The most common approach relies on
the homology search in a reference set of antimicrobial resistance genes and polymorphisms associ-
ated with them (Stoesser et al., 2013). This reference-guided and homology search approaches could
describe antimicrobial resistance in a rough way if the targeted organisms have been adequately stud-
ied and the mechanisms of antimicrobial resistance are known. But the demand for more accurate
and quantitative prediction of the antibiotic sensitivity or resistance necessitates novel predictive
models.

With the increase of publicly available full-genome sequences, machine learning modelling have
been developed to predict the antimicrobial sensitivity based on WGS data in recent studies. Some
advanced statistical or machine learning (ML) models, including logistic regression (LR), gradient
boosted decision trees (GBoost), Random Forests (RF) and deep neural networks (DNN), have been
applied in predicting the antimicrobial sensitivity (Bélint., 2016). Based on the whole genome se-
quences of different strains and the corresponding MIC information, the predictive models could
identify critical genes or regions associated with antimicrobial resistance without a priori informa-
tion (Zankari, 2012). One study adopted 4 machine learning methods, including Random Forest,
Gradient boosted decision trees, Deep neural networks, and Rule-based baseline to analyze whole-
genome sequencing data of E. coli and predict antibiotic resistance. Using the presence or absence
of genes, population structure, and year of isolation as predictors. Without prior knowledge of the
causal mechanism, the Gradient boosted decision trees model achieved an average accuracy of 0.92
and a recall rate of 0.83 (Moradigaravand , 2018). Another study analyzed 704 E. coli genomes by
using MIC measurements for ciprofloxacin. The models identified that 3 mutations in gyrA, 1 muta-
tion in parC and presence of any qnrS gene, collectively associate with the MIC strongly (Kouchaki
, 2018). Although such predictive approaches require many genomes and experimentally validated
MIC for modelling, they are unbiased, accurate and able to discover genomic features associated
with the AMR.

Salmonella is one of the most common causes of foodborne diseases, including stomach flu (gas-
troenteritis) and diarrhea, in the world, causing about 80 million illnesses all over the word an-
nually (World Health Organization, 2015). Among Salmonella isolates, antimicrobial resistance
is widespread, and infections caused by antibiotic-resistant strains are worse than those caused by
antibiotic-susceptible strains (Varma, 2005). As a result of surveillance efforts by public health
agencies, many whole-genome sequences and antimicrobial susceptibility data of Salmonella strains
have been obtained (Hunt et al., 2017). One recent study adopted machine learning model called
extreme gradient boosting (XGBoost) to predict MICs of 15 antibiotics based on over five thousand
nontyphoidal Salmonella genomes (Marcus et al., 2017). The overall average accuracy of this MIC
prediction models is 95% within +1 2-fold dilution. Despite the excellent predictive performance
of the model, the k-mers (features used) identified with highest contribution to the model offer
weak biological interpretability. To understand how different genomic features, contribute to the
antimicrobial resistance, machine models with the more interpretable features, including the copy
number of antibiotic resistance genes and particular polymorphisms, etc., instead of k-mers, should
be developed. The transformer model (based on the paper Attention is All You Need) follows the
same general pattern as a standard sequence to sequence with attention model. The input sentence
is passed through N encoder layers that generates an output for each token in the sequence. The
decoder attends on the encoder’s output and its own input (self-attention) to predict the next word.
The transformer model has been proved to be superior in quality for many sequence-to-sequence
problems while being more parallelizable. Here, we are going to do genome analysis and MIC pre-
diction that is not sequence-to-sequence problem. So, only use transformer encoder. Self-attention
network (SANSs) can capture long-distance dependencies by explicitly attending to all the elements,
regardless of distance. However, multiple relatively distant parts of a long genome sequence can
work together, which may be overlooked by single attention. To solve this problem, we use the
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multi-head attention mechanism. Enable its many aspects to process a sequence element at the same
time to depict global characteristics. In addition, using multiple heads of attention plus a full connec-
tion layer can make training inexpensive and effective. Multi-task learning is an inductive transfer
method that uses domain information contained in relevant task training signals as inductive bias
to improve generalization ability. Multitask learning is prevalent in several applications, including
computer vision, natural language processing (Augenstein et al., 2018), speech processing (Wu et
al., 2018), and reinforcement learning (Rusu et al., 2016). It is achieved by using shared represen-
tation for parallel learning tasks; What we learn from each task can help us learn the other tasks
better. This method can be well used in MIC prediction problems of various antibiotics to improve
the generalization ability of the model and save training time. We tried some methods to optimize
the weight in the multi-task learning. We adjust task-level loss coefficients dynamically by calcu-
lating task prioritization at both example-level and task-level. We also used Curriculum learning
mode to facilitate the specific sub-tasks with poor performance by initializing the training process
with easy tasks. All these measures improve the prediction accuracy of the model. In this study, we
will adopt the pan-genome information, profile of antimicrobial resistance genes, single nucleotide
variants (SN'Vs) in the resistance genes based on 5,278 publicly available whole genomes of nonty-
phoidal Salmonella with MIC information for 14 antibiotics. We first adopt a lightweight Multitask
Learning Transformer to identify important features according to their statistical association with
the MIC and generate a set of more interpretable features. Our model could be potentially used to
guide antibiotic stewardship decisions for the nontyphoidal Salmonella.

2 RESEARCH METHODS AND PRELIMINARY DATA

2.1 DATA USED

A total of 5,278 genome sequences of nontyphoidal Salmonella were achieved from NCBI. All data
was collected and sequenced as part of the NARMS program (Tay et al., 2019). We collected another
89 Nontyphoidal Salmonella reference genomes (Tay et al., 2019) to construct the Salmonella pan-
genome database with MIDAS.

2.2 IDENTIFICATION OF ANTIMICROBIAL RESISTANCE GENES, PAN-GENOME INFORMATION,
AND SINGLE NUCLEOTIDE VARIANTS (SNVS)

Protein sequences of 89 reference genomes were annotated with Resfams (Heaton et al., 2017) to
generate reference antibiotic resistance genes for Salmonella. Based on the pan-genome database
built with MIDAS and the antibiotic resistance genes annotated, we estimate the copy number of
each gene and single nucleotide variants (SNV) for each strain using MIDAS. The copy number of
each gene, including the antibiotic resistance genes, and the SNV information will be used as raw
features for downstream analysis. The number of single nucleotide alleles for one strain is 180000+.

2.3 PREDICTIVE MODELLING
2.3.1 FEATURE SELECTIONS

To reduce the dimensionality and complexity of the model, we used XGBoost Model filter to se-
lect features preliminarily. This model can rank the input features based on how deterministic they
are for the laboratory-derived MICs in our data set. We currently evaluated features of the SNVs
of antibiotic resistance geneto find out the important features before feed the data into the predic-
tion model. (Fig. 1) XGboost, however, achieved an average prediction accuracy within 1 2-fold
dilution step of 90%. This is a reliable result, but not very accurate.

2.3.2 TRANSFORMER PREDICTIVE MODEL

With the significant success of deep neural networks in the computer version, speech recognition
and natural language processing (NLP), many deep learning-based models were proposed to solve
biomedical problems. In this work, we will focus on sequence representation learning approaches.
We propose a lightweight transformer model to explore the correspondence between the genome
sequence and MIC of each antibiotic for each strain. The Fig. 2 is the architecture of our model.
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The original sequences were put into XGboost filter module at first, after filter, the input sequences
have been shrunken to 2000(1000, 500, 200, 100). Then they are feed to Encoder layers. Our
transformer has 3 Encoder Blocks. We used 2 heads of attention in each Encoder Blocks. Full
connection layers are used for MIC prediction task of 14 antibiotics. Each full connection layer
corresponds to a task.

Classification model 14 tasks
x3

Input Embedding T [Tl Ta]  [Mal

Positional Embedding Ew

Token Embedding

[SIAGCGCACAC

Input Sequence AGCACTGCTATCATGCTTGCAG

Figure 1: Architecture of our Transformer model

2.3.3 MULTI-TASK LEARNING

Multi-task learning is an inductive transfer method that uses domain information contained in rele-
vant task training signals as inductive bias to improve generalization ability. It does this by learning
tasks in parallel while using a shared representation. The purpose of sharing representation is to
improve generalization. There are two ways for sharing representation of multiple tasks in shallow
sharing parameter MTL: Parameter based sharing, such as neural network based MTL and Gaussian
processing. Regularization based sharing, such as mean, Joint Feature learning (create a common
feature set) Multi-task is usually believed to improve network performance as multiple related tasks
help regularize each other and a more robust representation can be learned. In addition, combining
all tasks into the same model also helps reduce computation. In our project, we have 14 tasks, after
XGboost feature filter, we build a common feature set for these tasks. These tasks share the model
parameters and the attention weight matrix.

2.3.4 DYNAMIC TASK PRIORITIZATION

Multitask learning models are sensitive to task weights (Augenstein et al., 2018). A task weight
is commonly defined as the mixing or scaling coefficient used to combine multiple loss objectives.
Task weights are typically selected through extensive hyperparameter tuning. However, there are
already some methods attempt to dynamically adjust or normalize the task weights according to
prescribed criteria or normalization requirements, such GradNorm (Fernando et al., 2016). These
dynamic techniques are referred to as self-paced learning methods. In our project, we used learning
progress signals to automatically compute a time-varying distribution of task weights. We dynami-
cally adjust task-level loss coefficients to continually prioritize difficult tasks. Our loss uses learning
progress signals to automatically calculate sample level and task level priorities. Our loss is:

IT|
Lroar() =Y WL, * L,(")
=1

The first loss is the Example-level cross entropy loss with classes weight, the second loss is the Task-
level cross entropy loss. Our experience shows that using Dynamic Task Prioritization can achieve
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Table 1: Results of our models compared with the baseline

Antibiotic Raw Accuracy baseline Accuracy within +1 2-fold dilution step baseline strains

All 0.70 0.59 0.98 0.95 69112
AMP 0.71 0.33 1.00 0.92 5278
AUG 0.69 0.48 0.99 0.93 5278
AXO 0.87 0.8 0.96 0.95 5278
CHL 0.75 0.72 1.00 0.99 5278
CIP 0.64 0.42 0.99 0.97 5278
COoT 0.78 0.87 0.99 0.98 5278
FOX 0.66 0.58 0.95 0.96 5278
GEN 0.52 0.46 0.90 0.91 5278
NAL 0.77 0.62 1.00 0.96 5278
TET 0.85 0.47 1.00 0.9 5278
TIO 0.67 0.73 1.00 0.99 5278
AZI 0.67 0.58 1.00 0.97 2415
FIS 0.54 0.57 0.97 0.95 4926
STR 0.61 0.51 0.97 0.93 2790

competitive performance. Using learning progress signals to automatically adjust the weight of tasks
is useful for muti-task learning.

3 EXPERIENCE RESULTS

The goal is to dynamically prioritize difficult tasks during multitask learning. The main objective
of this project is to predict MIC of 14 antibiotics for Salmonella with Transformer models based on
whole genomic features and the corresponding MIC information of 5,278 nontyphoidal Salmonella
genomes and identify key MIC-associated genomic features, including copy number and polymor-
phism of genes or motifs, etc., which contribute predominantly to our predictive model.

3.1 RAW ACCURACY AND ACCURACY WITHIN +1 2-FOLD DILUTION STEP FOR MIC
PREDICTION

Our prediction models had an overall average accuracy of 98% within =1 2-fold dilution step, which
improved 3% than baseline. For raw accuracy, we improved 10.1% than baseline. The result is
showed in Table 1

3.2 VISUALIZATION FOR TRANSFORMER

More recently, Transformers have become a leading tool in deep learning application. The im-
portance of Transformer networks necessitates tools for the visualization of their decision process.
Visualizer is a small tool to assist the visualization of Attention module in the deep learning model.
The main function is to help retrieve the Attention Map nested in the depth of the model. It is fast
and convenient, and simultaneously pulls out all the Attention Maps in the Transformer class model.
We use this tool to visualize the attention weight in our transformer. The Figure 2 is all attention
weight result of one layer. There are 2 heads in each of our Encoder Block.

Then we can calculate the attention values for the features, and Figure 3 is the visualization of
attention values for 500 features. We can see from the figure that the first head didn’t catch valid
information from the input features, but for the second head, the effective information is obtained
from the sequence, and finally leads to a good prediction of the model. This is an intuitive and
simple example of the effectiveness of the multi-head attention mechanism.
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Figure 2: Visualization for Attention Map

Average Attention values of 2 Heads in the third layer for 200 loci

ARG: ,
SERRATIA_MARCESCENS_OMP1

Figure 3: Visualization of attention values

3.3 GENOMICS INTERPRETATION

We used Attention Map based on attention mechanism to provide the interpretation of the model.
We want to use this method to select a more interpretable set of features, and we will use biological
knowledge to test its validity. To better assess the interpretability of the model, we performed
statistics using known ARGs and loci. The table 2 shows the explanatory results of Attention Map
which is in the style of Layers_Heads. The results show our methods could be in line with the
knowledge of Genomics.

4 CONCLUSIONS

In this study, we used a very lightweight Transformer-based model (3 Encoder Block and 2 attention
heads), and we got better prediction results than baseline. Our experiences shows that multi-task
learning improved the generalization ability of the model, greatly reduced the training time of mod-
els for 14 tasks. Taking course learning as the training strategy of the model improves the accuracy
and maybe reduces the influence of wrong labels. Our experience also shows that using Dynamic
Task Prioritization can achieve competitive performance. Using learning progress signals to auto-
matically adjust the weight of tasks is useful for muti-task learning. Our methods provide better
biological interpretability than other methods (like k-mers). Our model got a more interpretable set
of biological features.
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Table 2: Results of explanatory results of Attention Map

Antibiotic  Attention Map ARG

AMP Layer3_head2 OMPF OmpF is the main route of membrane pene
AUG Layer3_head2 ACRB Acrb is associated with crossresistance of ¢
AXO Layer3_head2 OMPF OmpF is the main route of membrane pene
CHL Layer2_headl SERRATIA_MARCESCENS_OMP1 Loss or inhibition of OMP1 can prevent the
CIP Layer3_head2 MDSA mdsA is associated with crossresistance of
FOX Layer3_head2 SERRATIA_MARCESCENS_OMP1, OMP36 Loss or inhibition of OMPI can prevent the
TIO Layer3_head2 OMPF OmpF is the main route of membrane pene
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