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Abstract

Independence is a common assumption for modeling generative processes. Independent
Mechanism Analysis (IMA) relies on the Independent Causal Mechanisms (ICM) principle
to formulate non-statistical independence by measuring the decoder Jacobian’s column-
orthogonality. This work is based on observations of the same column-orthogonality in
GPLVMs and shows how, e.g., additive and stationary kernels in GP priors give rise to
independent mechanisms in expectation. To handle the stochasticity of the decoding function
in GPLVMs, we upper bound the orthogonality measure under specific kernel conditions.
We believe that the connection between IMA and GPLVMs highlights a useful inductive
bias in GPLVMs for recovering the true latent factors, which we will study as part of future
work.

1. Introduction

Independence is a prevalent assumption in machine learning, with most works relying on
statistical independence of latent factors (Hyvärinen and Pajunen, 1999; Kingma and Welling,
2014). The ICM principle (Peters et al., 2018) conceptually formulates independence of
“modules”, corresponding to nature’s mechanisms, and was translated into a non-statistical
independence notion in Independent Mechanism Analysis (IMA) (Gresele et al., 2021). IMA
defines independent mechanisms in generative models (or decoders, i.e., the map from latent
factors to observations) by having a column-orthogonal Jacobian. The proposed regularized
log-likelihood objective provably rules out spurious solutions when learning the true latent
factors. Buchholz et al. (2022) proved identifiability for conformal maps, where the Jacobian
columns have equal norms, and showed local identifiability for the IMA function class.
Reizinger et al. (2022) connected IMA to Variational Autoencoders (VAEs) (Kingma and
Welling, 2014) in the limiting case of isotropic observation noise with diminishing variance.
Gaussian Process Latent Variable Models (GPLVMs) (Lawrence, 2005) also often possess
the same column orthogonality, which we connect to IMA. Our contributions are:
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• We describe the kernel properties necessary to satisfy the non-statistical independence
of IMA in GPLVM function priors;

• Similar to Ghosh (2022), we upper bound IMA’s orthogonality measure and show that
under specific kernel choices, the IMA principle holds approximately;

• We illustrate in toy experiments how the learned latent space in GPLVMs resembles
the true one.

2. Background

Notation We focus on generative models with decoder maps f : Z → X and their
Jacobians Jf = Jf (z) , with Z and X being the latent and observation spaces with
dimensions d and D. We denote Jf := ∂f/∂z ∈ RD×d such that (Jf )ij := ∂fk

i/∂zkj , i.e., the
ith row and jth column gives the partial derivative of the ith dimension of f for the latent
dimension j (for a given sample k, which we will omit for brevity). The observations are
denoted by matrix X ∈ Rn×D and the corresponding latent variables as Z ∈ Rn×d. The ith

dimension of the kth observation is given by xki .

2.1. Independent Mechanism Analysis (IMA)

Observed data x are often modeled as a mixture of latent factors, x = f(z). Represen-
tation learning then learns an unmixing g such that the recovered components y = g (x)
recover the true ones up to tolerable ambiguities such as permutations or scalings (Bengio
et al., 2013; Khemakhem et al., 2020)—which is impossible for nonlinear f without further
constraints (Hyvärinen and Pajunen, 1999; Locatello et al., 2019). IMA (Gresele et al.,
2021) restricts the mixing function class, postulating that latent components influence the
observations “independently” through the partial derivatives ∂f/∂zk. This is equivalent to an
orthogonality condition on the decoder Jacobian’s columns. While identifiability only holds
for a subset of this model class (Buchholz et al., 2022), IMA provably rules out the most
common counterexamples to identifiability such as the Darmois construction1 (Darmois,
1951) and helps recover the ground-truth latent factors in practice (Gresele et al., 2021;
Sliwa et al., 2022; Reizinger et al., 2022). IMA optimizes the regularized log-likelihood:
LIMA(f, z) := logpθ(x)−λ·cIMA(f, z) where the regularizer cIMA(f, z) encourages column-
orthogonality of Jf (z). cIMA(f, z) and its expectation, w.r.t. the latent distribution p (z)),
CIMA(f , p (z)) are defined as

cIMA(f, z) =
∑

k
log

∥∥∥ ∂f
∂zk

(z)
∥∥∥−log |Jf (z)|; CIMA(f , p (z))= Ep(z)[cIMA(f, z)]. (1)

cIMA(f, z) measures the deviation of the decoder Jacobian columns from being orthogonal:
the product of the column norms is the volume of the hyperrectangle spanned by the
Jacobian columns, which equals only the determinant (the volume of the parallelepiped) if
the columns are orthogonal.

1. The Darmois construction recursively applies the conditional cumulative distribution function transform
to yield independent and uniform latent factors, but these latents will be, in general, a nonlinear mixture
of the true latent factors
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2.2. Gaussian Process Latent Variable Models (GPLVMs)

Gaussian Processes (GPs) are stochastic processes over real-valued functions (Rasmussen
and Williams, 2006), which provide a Bayesian non-parametric framework for inference.
GPLVMs (Lawrence, 2005) model the mapping between latent variables z and observed
data x with GP priors. Independent GPs model each of the D observed dimensions as
xki = f i(z

k) + εki , where ε
k
i ∼ N

(
0;β−1Id

)
. When a GP prior is placed over X and when

f = {f i}Di=1 : f i := f i(z) + εi is marginalized, the likelihood for X is given by:

p(X|Z) =
D∏
i=1

p(xi|Z); p(xi|Z) = N (xi|0,K + β−1In), (2)

where K ∈ Rn×n is the GP’s covariance matrix, given by the kernel [K]ij := k
(
zi; zj

)
.

GP derivatives. By the linearity of differentiation, the derivative of a GP is, in a
mean-squared sense, a GP (Rasmussen and Williams, 2006, Sec. 9.4); i.e., GP (0;K)′ =
GP (0;K′′) , provided that the kernel function is at least twice differentiable (Papoulis
and Unnikrishna Pillai, 2002) (therefore, the covariance function must not have a noise
component). For a given z (dropping k and using only f without subscript), the derivative
GP’s covariance function K′′, is given by a d× d–dimensional matrix[

Ep(f |z)

[
J⊤
f Jf

∣∣z]]
ij
= Cov

[
∂f

∂zi
,
∂f

∂zj

]
=
∂2k (z; z)

∂zi∂zj
. (3)

This derivative process corresponds to the partial derivative ∂f/∂z. This also holds for
differentiable mean functions; however, w.l.o.g., we assume zero mean, which implies
Ep(f |z) [Jf |z] = 0D×d over the function priors.

3. Theoretical Results

Our observation is that the generative model in GPLVMs often has a Jacobian with orthogonal
columns. IMA shows that this inductive bias is useful for learning the true latents. Thus,
we use IMA to study the implications of kernel choice in GPLVMs and describe when the
prior decoder will have column-orthogonal Jacobian in expectation. Our work also provides
a causal perspective, since IMA was inspired by the ICM principle of the causality literature.
A key insight for our analysis is that cIMA(f, z) is the left KL-measure of diagonality (Alyani
et al., 2017) of the matrix J⊤

f Jf , which depends on z. J⊤
f Jf |z has a Wishart distribution with

D degrees of freedom, J⊤
f Jf |z ∼ Wd (A;D) , where the scale matrix A needs to be diagonal

for IMA to hold over the function priors. I.e.,
[
Ep(z)

[
J⊤
f Jf

]]
i ̸=j

= 0. These off-diagonal

entries correspond to the expectation of the cross-derivatives from (3), connecting IMA to
the kernel—note that our claim is about the marginal variance, i.e., when z = z′ : k (z; z′) .

Since Ep(z)

[
J⊤
f Jf

]
= Ep(z)

[
Ep(f |z)

[
J⊤
f Jf

∣∣∣∣z]] , the inner expectation for element ij yields

[
Ep(f |z)

[
J⊤
f Jf

∣∣∣∣z]]
ij

=
D∑

k=1

Ep(f |z)

[
(Jf )ki (Jf )kj

∣∣∣∣z] =

D∑
k=1

Cov

[
∂fk
∂zi

,
∂fk
∂zj

]
= D

∂2k (z; z)

∂zi∂zj

(4)
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Thus,
[
Ep(z)

[
J⊤
f Jf

]]
i ̸=j

= 0 when the expectation of the cross-derivative of k (z; z) is zero.

We leverage this insight in two steps: first, we show how to design GPLVMs such that
the above expectation is diagonal: by choosing first-order additive or stationary kernels
(Prop. 1). Then, we bound CIMA(f , p (z)) to show that it is possible to (approximately)
satisfy the IMA principle (Prop. 2).

Proposition 1 [∂2ijk (z; z) = 0 ⇐⇒ k (z; z) ≡
∑

i gi(zi; zi) ] The cross-derivatives of (4)
are zero if and only if the marginal variance can be decomposed into a sum of terms that
depend at most on one latent coordinate zi. Covariance functions that are stationary also
admit zero cross-derivatives as the marginal variance is a constant w.r.t. the latent position.

Prop. 1 characterizes the kernel family that fulfills the necessary requirement for the IMA
principle (if the kernel is also twice-differentiable). See App. B for proof details. However,
our result only implies that the expected value of J⊤

f Jf is diagonal. Since a GPLVM defines

a distribution over f and Jf , this might imply that though Ep(z)

[
J⊤
f Jf

]
is diagonal, IMA

is not satisfied for each f drawn from the GP.

Proposition 2 (D → ∞ =⇒ CIMA(f , p (z)) → 0) If a GPLVM has a kernel that is twice-
differentiable and has zero cross-derivatives, then D → ∞ =⇒ CIMA(f , p (z)) → 0 for
a given d2. Note that this statement assumes the prior distribution over f (i.e. before
conditioning on any data points or inducing points).

Proof We formulate CIMA(f ,p (z)) as the expected left KL-measure of diagonality of
J⊤
f Jf (Alyani et al., 2017):

CIMA(f , p (z)) =
1

2
Ep(z)

[
log

∣∣∣diag (J⊤
f Jf

)∣∣∣− log
∣∣∣J⊤

f Jf

∣∣∣] (5)

=
1

2
Ep(z)

[
Ep(f |z)

[
log

∣∣∣diag (J⊤
f Jf

)∣∣∣− log
∣∣∣J⊤

f Jf

∣∣∣ ∣∣∣∣z]] , (6)

where J⊤
f Jf has a Wishart distribution when conditioned on the latents, Wd (A;D), where

A is the matrix with elements aij = ∂2ijk (z; z). Together with the expression for the
expectation of the log-determinant of a Wishart distribution (Bishop and Nasrabadi, 2006,
App. B, p. 693), the observation that the diagonals of J⊤

f Jf are aii · χ2
D–distributed (Rao

et al., 1973, 8b.2, p. 535), and that of the expectation of a log(χ2
D) distribution (Pav, 2015);

CIMA(f , p (z)) becomes

=
1

2
Ep(z)

[
d∑

i=1

[
ψ

(
D

2

)
−ψ

(
D + 1− i

2

)]
+Ep(f |z)

[
log

|diag (A)|
|A|

∣∣z]] , (7)

where digamma ψ(k) is ψ(k) = d
dk log(Γ(k)) =

Γ′(k)
Γ(k) .

2. Note that d does not have to be fixed, as long as it is restricted to a function of D such that the upper
bound collapses
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A is diagonal, when ∂2ijk (z; z) = 0 for i ≠ j, which means that the last two terms cancel,
the expectation is of a constant, and we can bound the expression with

CIMA(f , p (z)) ≤
d

2

[
ψ

(
D

2

)
− ψ

(
D + 1− d

2

)]
, (8)

since ψ(k) is strictly increasing. This upper bound goes to zero for a fixed d as D → ∞ due
to the continuity of ψ. This can also be seen through the limiting behaviour of the digamma
function for large real arguments, i.e., ψ(k) ≈ log(k)− 1/2k, yielding

≈ d

2

[
log

(
D

D + 1− d

)
+

1− d

D(D + 1− d)

]
. (9)

Notably, Prop. 2 aligns with the result of Ghosh (2022), which shows that as D grows for
a given d, CIMA(f , p (z)) can be upper bounded—Ghosh (2022) assumes that the columns
of Jf are drawn i.i.d. from a spherically invariant distribution. Since the prerequisite for
Prop. 2 is to have a kernel with zero cross-derivatives, our result might suggest an unexpected
consequence of kernel choice: since IMA is beneficial for recovering the true latent factors,
GPLVMs might also have such properties, at least for high-dimensional observations. Lastly,
given the kernel choice, the upper bound does not depend on any kernel hyper-parameters.

4. Experiments

Setup. We generate 500 samples via the Möbius transform using (Stimper et al., 2021),
where z is uniformly distributed in [0; 1]d. For visualization, we set d = D = 2 (the Möbius
transform is a bijective map). We use (GPy, 2012), Radial Basis Function (RBF) kernel,
the L-BFGS (Liu and Nocedal, 1989) optimizer with 5 seeds, 5 restarts, and monitor CIMA.
Results. Figure 1 replicates (Gresele et al., 2021, Fig. 4 (Top)) to visualize the relation of
the inferred and true latent factors (the estimated latents are transformed by the cumulative
distribution function of the uniform distribution for the figure). From left to right, we
plot the true latent factors, the observations, and the reconstructed latents3, respectively
(we plot the representations of the models with the lowest CIMA). We evaluate our bound
quantitatively in Appx. A.

5. Discussion

Limitations. To visualize the latent space structure, our experiments are restricted to
d = D = 2, which is a practically less relevant, though theoretically widely-employed scenario
when studying the recovery of the true latent factors (Hyvärinen and Pajunen, 1999; Gresele
et al., 2021). However, our results suggest that when the IMA condition (approximately)
holds in GPLVM, then they elicit beneficial properties for recovering the true latent factors,
though this requires further investigation.
Conclusion. Our work connects kernel choice in GPLVMs to Independent Mechanism

3. We used a sparse GPLVMs for Fig. 1, as that resulted in better reconstruction
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Figure 1: From left to right: true latent factors; observations generated by the Möbius
transform; reconstructed latents reconstructed latents (we used a sparse GPLVM)

Analysis (IMA) (Gresele et al., 2021) by stating that zero cross-derivatives—such as in
first-order additive and stationary kernels—are necessary for the IMA condition to hold in the
prior over the functions of the GPLVM. Furthermore, we upper bound IMA’s (non-statistical)
independence measure based on the observation and latent dimensions and show that for a
given latent dimensionality, increasing the observation dimension makes the bound go to zero.
The connection between IMA and GPLVMs possibly explains the observation of practitioners
that the decoder Jacobian in GPLVMs can have orthogonal columns. Our experimental
results on synthetic data suggest that the orthogonality of the Jacobian columns is beneficial
for learning the true latent factors in GPLVMs.
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Schölkopf, Georg Martius, Wieland Brendel, and Michel Besserve. Embrace the Gap: VAEs
Perform Independent Mechanism Analysis. October 2022. URL https://openreview.

net/forum?id=G4GpqX4bKAH.

Joanna Sliwa, Shubhangi Ghosh, Vincent Stimper, Luigi Gresele, and Bernhard Schölkopf.
Probing the Robustness of Independent Mechanism Analysis for Representation Learning,
July 2022. URL http://arxiv.org/abs/2207.06137. arXiv:2207.06137 [cs, stat].

Vincent Stimper, Luigi Gresele, Joanna Sliwa, and Adrián Javaloy. Inde-
pendent Mechanism Analysis repository. https://github.com/lgresele/

independent-mechanism-analysis, 2021.

8

http://proceedings.mlr.press/v97/locatello19a.html
http://proceedings.mlr.press/v97/locatello19a.html
https://www.tandfonline.com/doi/full/10.1080/00949655.2018.1505197
https://www.tandfonline.com/doi/full/10.1080/00949655.2018.1505197
https://openreview.net/forum?id=G4GpqX4bKAH
https://openreview.net/forum?id=G4GpqX4bKAH
http://arxiv.org/abs/2207.06137
https://github.com/lgresele/independent-mechanism-analysis
https://github.com/lgresele/independent-mechanism-analysis


Independent Mechanism Analysis in GPLVMs

Appendix A. Additional Experiments

To show quantitatively that our bound (8) holds, we generate data with the Möbius
transformation (d = D), for {2; 3; 5; 8; 10} and plot the IMA contrast before fitting the
data and after fitting the data—here we use a vanilla GPLVM, not a sparse one; all other
parameters are the same as in § 4. As the left plot in Fig. 2 shows, both quantities are
below the bound4. Interestingly, cIMA is much lower for the posterior than the prior. We
will investigate in the future whether the bound can be tightened for the posterior. The
trained GPLVMs reconstruct the true latent factors reasonably well (Fig. 2, right).

Figure 2: Quantitative evaluation for Moebius transformation data (d = D). Left: logarithm
of cIMA for the GP prior (before training) and posterior (after training) compared to
our bound from (8). Right: Mean Correlation Coefficient (MCC) for quantifying the
reconstruction quality of the true latent factors (higher is better, range is [0; 1])

Though the prior, for which our bound holds, is data-agnostic, we need samples at which
we evaluate the Jacobian. We observe that the calculated cIMA is highly influenced by the
number of data points used. We demonstrate this data-dependence in Fig. 3 for multiple
dimensions (color-coded) and number of samples (marker-coded). For 8 and 10 dimensions,
the bound is only satisfied for sufficiently high data points. A possible explanation is
that since CIMA in (1) takes the expectation w.r.t. p (z), we need more samples for higher
dimensions to “cover” the space.

Appendix B. Proofs

B.1. Proof of Prop. 1

Proposition 3 [∂2ijk (z; z) = 0 ⇐⇒ k (z; z) ≡
∑

i gi(zi; zi) ] The cross-derivatives of (4)
are zero if and only if the marginal variance can be decomposed into a sum of terms that
depend at most on one latent coordinate zi. Covariance functions that are stationary also
admit zero cross-derivatives as the marginal variance is a constant w.r.t. the latent position.

4. The bound is increasing, since we increase both d and D
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Figure 3: Data-dependence of calculating cIMA for the prior for Möbius transformation
data (d = D). The dimension is color-coded, different marker stand for different number of
samples for calculating the Jacobian

Proof ∂2ijk (z; z) denotes the cross derivative of k (z; z) w.r.t. zi, zj , and A,B some func-
tionals.
=⇒ : By assumption, the cross-derivative ∂2ijk (z; z) is zero. We integrate twice: by zi, then
by zj , which gives rise to the additive functionals A,B. Integration by zi would mean that
the resulting additive functional can depend on any zj ̸=i. Since i ≠ j are arbitrary, zi, zj
cannot be in the same functional, so only one latent component remains:

∂jk (z; z) = A′(zj) (10)

k (z; z) =

∫
A′(zj)dzj = A(zj) +B(zi), (11)

which shows that k (z; z) factorizes into functions of single latent coordinates (or constant
terms), i.e., when the kernel is the sum of base kernels depending on at most one coordinate.
⇐= : By assumption, the kernel decomposes into base kernels depending on at most one
latent coordinate, i.e., k (z; z) =

∑d
i=1 ki(z; z). Differentiating by zi and then by zj yields

∂ik (z; z) =

d∑
i=1

∂i ki(z; z) = ∂i ki(z; z) (12)

∂2ijk (z; z) = ∂ij ki(z; z) = 0, (13)

which is zero since each ki depends only on zi.
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Independent Mechanism Analysis in GPLVMs

Acronyms

IMA Independent Mechanism Analysis

GP Gaussian Process
GPLVM Gaussian Process Latent Variable

Model

i.i.d. independent and identically distributed
ICM Independent Causal Mechanisms

KL Kullback-Leibler Divergence

MCC Mean Correlation Coefficient

RBF Radial Basis Function

VAE Variational Autoencoder

Nomenclature

Independent Mechanism Analysis

CIMA global IMA contrast

y reconstructed sources

LIMA IMA loss function

cIMA local IMA contrast

Gaussian Processes

GP Gaussian Process

K n× n covariance matrix of a GP

k kernel function

Variational Autoencoders

θ parameters of the decoder pθ(x|z)
g inverse decoder

pθ(x) marginal likelihood

pθ(x|z) conditional distribution of the de-
coded samples of the VAE, mapping
z 7→ x, parametrized by θ

f decoder map Z → X
f decoder map component

n number of samples

Algebra

0 a vector of zeros
I identity matrix
J Jacobian matrix

Latents
z latent vector
Z latent matrix of Rn×d

Z latents
d dimensionality of the latent space Z
z latent single component

Observations
D dimensionality of the observation space

X
x observation vector
X observation matrix of Rn×D

X observation space
x observation single component

Probability theory
N normal distribution
W Wishart distribution
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