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ABSTRACT

In this work we take the parameter r (recipprocal of optimal steplenth) as analysis
target and introduce steplength coefficient t for classical steepest descent method
for convex quadratic optimization problems, and we found the different coeffi-
cients affect the state of the entire system convergence. As the value of t varies,
the overall system, including the value of r, may converge towards a fixed value,
oscillate between two regions, or display chaotic behavior. We also conducted a
specific analysis in the two-dimensional case.

1 INTRODUCTION

In this paper, we consider the the unconstrained optimization problem with convex quadratic form

minf(x) =
1

2
xTAx− bTx (1)

where x ∈ Rn,b ∈ Rn,A ∈ Rn×n is a symmetric and positive definite matrix.

The common solution methods for solving Eq(1) are iterarive methods of the following form

xk+1 = xk − αk∇f(xk) (2)

where αk is a steplenth,gradient descent method and its variants are the most common optimization
method.for GD method,if we minimizes Eq.(3) with exact line search,then we get

αSD
k =

∇fT
k ∇fk

∇fT
k A∇fk

=
gTk gk
gTk Agk

(3)

rk =
1

2αk
=

gTk Agk
2gTk gk

(4)

this method proposed by A.Cauchy (1847) is called steepest descent method ,so αSD
k is also called

Cauchy step length. the method’s convergence rate is very sensitive to ill condition number and may
be very slow ,when the f(x) is quadratic xk will satisfy the

f(xk+1)− f(x∗)

f(xk)− f(x∗)
≤ (

λ1 − λn

λ1 + λn
)2 (5)

The convergence rate of SD method is relatively slow with a zigzag phenomena which is proved by
Akaike (1959) and Forsythe (1968)

Yuan (2006) proposed a new stepsize formula for the SD method. the method alternates as fol-
lows, on even iterations it employs the Yuan step size, while on odd iterations it performs an exact
line search. For two-dimensional convex quadratic functions, this alternating scheme guarantees
convergence to the minimum in only three iterations. Yuan steplength is as follows:
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αY
k =

2√√√√( 1

αSD
k−1

− 1

αSD
k

)2

+ 4
∥g2k∥2

(αSD
k−1∥gk−1∥)2

+
1

αSD
k−1

+
1

αSD
k

(6)

Raydan M (2002) proposed RSD which accelerates convergence by introducing a relaxation param-
eter between 0 and 2 in the standard SD method,In each iteration, the step size is randomly cho-
sen from a fixed interval in [0, 2αSD

K ],this randomization eliminates the oscillations inherent in the
SD method. RSD method convergs monotonically to optimal point x∗ Serafino;F.Riccio;G.Toraldo
(2013) observes that over-relaxation appears more suitable than under-relaxation of the Cauchy
step size,therefore, they introduces a modified version of RSD, called RSDA method, where
αk ∈ [0.8αk, 2αk].

Kalousek (2015) presents a randomized steepest descent method for minimizing smooth functions.
Instead of using exact step sizes, it randomly selects step lengths from a specific probability distri-
bution,where αk ∈ [ 1

λ1
, 1
λn

]

In this paper,we take the parameter r (Eq.(5)) as analysis target and introduce a multiplicative factor
parameter s to the SD method and analyze how different values of s affect the method. its formula
is as follows:

xk+1 = xk − sαSD
k ∇f(xk) (7)

the same conclusion can be obtained by comparing the simplest form of qudratic function and matrix
form. For the convenience of analysis and greater intuitiveness,consider a situation the objective
function is a simple n dimensions hyper-ellipsoid stimulating Eq(1)

f(x) =
n∑

i=1

a(i)x(i)2 (8)

r =

∑n
i=1 a

(i)3x(i)2∑n
i=0 a

(i)2x(i)2
=

∑n
i=1 a

(i)g(i)
2∑n

i=1 g
(i)2

(9)

where 0 < a(n) ≤ a(n−1) ≤ ...... ≤ a(1),g(i) = 2a(i)x(i), the initial point X0 =

[x
(1)
0 , x

(2)
0 , ......x

(n)
0 ] we have

rk =

∑n
i=1 a

(i)g
(i)
k

2

∑n
i=1 g

(i)
k

2 (10)

rk+1 =

∑n
i=1 a

(i)g
(i)
k

2
(rk − a(i))2∑n

i=1 a
(i)g

(i)
k

2
(rk − a(i))2

(11)

now from Eq(7) then we have

xk+1 = xk − sαSD
k ∇f(xk) = xk − ∇f(xk)

trk
(12)

where s > 0, s = 1
t

rk+1 =

∑n
i=1 a

(i)g
(i)
k

2
(trk − a(i))2∑n

i=1 a
(i)g

(i)
k

2
(trk − a(i))2

(13)

rk+1 = G(rk) (14)

we will study the functional relationship of G and the effect of parameters t on the function G.
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2 TWO DIMENSION

In two dimensions case, we can analyse explicitly the positive quadratic case.

from Eq(11)

rk+1 =
a(1)g

(1)
k

2
(trk − a(1))2 + a(2)g

(2)
k

2
(trk − a(2))2

g
(1)
k

2
(trk − a(1))2 + g

(2)
k

2
(trk − a(2))2

(15)

we treat rk as a continuous variable r,we have

G(r) =
a(1)(r − a(2))(tr − a(1))2 − a(2)(r − a(1))(tr − a(2))2

(tr − a(1))2(r − a(2))− (tr − a(2))2(r − a(1))
(16)

where r ∈ (a(2), a(1)), G(r) ∈ (a(2), a(1)),differentiate the function G(r)

G(r)
′
= (tr − a(1))(tr − a(2))(a(1) − a(2))2

× (tr − a(1))(tr − a(2))− 2t(r − a(1))(r − a(2))

[(tr − a(1))2(r − a(2))− (tr − a(2))2(r − a(1))]2

(17)

if we set G(r)
′

to zero,we can obtain four solutions of G(r)
′
:

r1 =
a(1)

t
(18)

r2 =
a(2)

t
(19)

r3 =
a(1) + a(2)

2(2− t)
−
√
t2(a(1) + a(2))2 − 4t(2− t)(2t− 1)a(1)a(2)

2t(2− t)
(20)

r4 =
a(1) + a(2)

2(2− t)
+

√
t2(a(1) + a(2))2 − 4t(2− t)(2t− 1)a(1)a(2)

2t(2− t)
(21)

we can find fixed points re(re = G(re))obviously.

re =
a(1) + a(2)

2t
(22)

put the re into Eq(17)

G(re)
′
= 1 +

2t(re − a(1))(re − a(2))

(a
(1)−a(2)

2 )2

= 1−
8(ta(1)a(2) +

( a(1)+a(2)

2 )2

t − (a(1)+a(2))2

2 )

(a(1) − a(2))2

(23)

We will discuss three situations based on the different values of t.
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2.1 t > 1

because r2 < a(2),r4 > a(1),so r2 and r4 are out of range. G(re)
′

is a monotony decrease function
of t value.when t approach 1, G(re)

′
reach its maximum with −1. so G(re)

′
< −1. that means

re is repulsion point. the r value is a chaos motion.from Eq(18),if r approach a(1),G(r) will also
approach a(1) , so re = a(1) is also a fixed point

G(re)
′
=

ta(1) − a(2)

ta(1) − a(1)
≈ t

t− 1
> 1 (24)

so re = a(1) is also repulsion point. From Figure(1a), it can be seen that the function graphs are
similar for different values of t. In Figure(1b), the intersection points of the three functions G(r),The
inverse functionG(r)−1 of G(r), and Y = Y (x) are the fixed points. It is evident that the gradient
at the fixed point forms an angle less than 90 degrees with Y, indicating that it is a repulsion point.

(a) G(r) function (t = 1.1, 1.5, 1.9, 2.5, 3.5)

(b) G(r) is orange line ,G(r)−1 is green line,Y (x) = x
(t=1.5) is blue line

Figure 1: G(r)function(a(1) = 50, a(2) = 1)

2.2 t = 1

Obviously,when t = 1,it is the most commonly used steepest descent method.

4
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the initial point X0 = [x
(1)
0 , x

(2)
0 ],

r0 =
a(1)

3
x
(1)
0

2
+ a(2)

3
x
(2)
0

2

a(1)
2
x
(1)
0

2
+ a(2)

2
x
(2)
0

2 =
a(1)g

(1)
0

2
+ a(2)g

(2)
0

2

g
(1)
0

2
+ g

(2)
0

2 (25)

r1 =
a(1)g

(1)
0

2
(r0 − a(1))2 + a(2)g

(2)
0

2
(r0 − a(2))2

g
(1)
0

2
(r0 − a(1))2 + g

(2)
0

2
(r0 − a(2))2

=
a(2)g

(1)
0

2
+ a(1)g

(2)
0

2

g
(1)
0

2
+ g

(2)
0

2
(26)

r2 =
a(1)g

(1)
1

2
(r1 − a(1))2 + a(2)g

(2)
1

2
(r1 − a(2))2

g
(1)
1

2
(r1 − a(1))2 + g

(2)
1

2
(r1 − a(2))2

=
a(2)g

(1)
1

2
+ a(1)g

(2)
1

2

g
(1)
1

2
+ g

(2)
1

2
(27)

so
r0 = r2k, r1 = r2k+1 (28)

r0 + r1 = rk + rk+1 = a(1) + a(2) (29)

in two dimensions, r will immediately achieve stable state, and then alternate between two val-
ues,one large and one small.

from the previous chapter,we know re = a(1)+a(2)

2 , G(r)
′

= −1.Therefore, re is a critical
state,meaning it is neither attractive nor repulsive. As analyzed earlier, it alternates between the
two states.

2.3 t < 1

It may be concluded that t > a(1)+a(2)

2a(1) , If the t value is limited in the interval of (0.5 +

0.5a(2)

a(1) , 1),|G(re)
′ | < 1 ,the point re is a strange attractor, so the r value will tend to the point

of re when r approach a(1) then

G(re)
′
=

ta(1) − a(2)

ta(1) − a(1)
≈ t

t− 1
< −1 (30)

so re = a(1) is also repulsion point. when t value has been smaller which means a(1)+a(2)

2t > a(1),

that means t < 0.5 + 0.5a(2)

a(1) so in the field only includes one equilibrium point which r ≈ a(1),

−1 < G(re)
′
< 0 (31)

,the point a(1) is a strange attractor, so the r value will tend to the point of a(1) So if t is within a
certain range, the value of r is proportional to t. However, if t exceeds this range, then t approaches
the maximum value of the eigenvector a(1).

3 N DIMENSION

Similarly to the previous chapter, for the N-dimensional case, we also conduct an analysis based on
different values of t.

3.1 t = 1

when the case t value equal to 1. that means SD methods.Akaike (1959) and Forsythe (1968) have
conducted an in-depth analysis, and we have analyzed it from the perspective of r. from Eqs(10)
and (11)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

rk + rk+1 =

n∑
i=1

n∑
j=1

g
(i)
k

2
g
(j)
k

2
A(a(i), a(j))

n∑
i=1

n∑
j=1

g
(i)
k

2
g
(j)
k

2
B(a(i), a(j))

(32)

where
A(x, y) = (x− y)2(x+ y) (33)

B(x, y) = (x− y)2 (34)

(a) A(x, y) = (x− y)2(x+ y) (b) B(x, y) = (x− y)2

Figure 2: A(x,y) and B(x,y) 0.1 ≤ x ≤ 20, 0.1 ≤ y ≤ 20

then we can see A(a(i), a(j)) and B(a(i), a(j)) as the different weight of the numerator and denom-
inator of Eq(32).

so the bigger the difference between the a(i)and a(j), the greater the weight in a(i)and a(j), from
Figure 2, the x and y more center at the top left corner area and the bottom right corner area. the
x and y in other areas lead to critical value of A and B,so only the a(i) and a(j) locate in the
maximum eigenvector direction area apporximate a(1) and the minimum eigenvector direciton area
apporximate a(n) have the biggest weight. Based on the analysis above, Eq(32) is mainly affected
by the value at maximum eigenvalue ares and minimum eigenvalue area. after a few step, the system
will fall into a state of balance situation,

rk + rk+1 ≈ rk+1 + rk+2 ≈ a(1) + a(n) (35)

3.2 t ̸= 1

When t not equal to 1. In a situation similar to two dimensions, the r value will converge to a single
value relatively quickly.

for the case where t < 1,The system quickly reaches a balanced state after a number of iterations,
and the r value will stabilize near a fixed value re and slowly change.we have re = a(1)+a(n)

2t ,re ∈
(a

(1)+a(n)

2 , a(1))

for the case where t > 1,according to the analysis above, the r value is no longer stable and still
appear to be chaotic. However, unlike in 2 dimensions where there is only one definite single
stable orbit, in higher dimensions there are several different orbits are actually narrow bands. At the
beginning, the system may be in one state, and with increasing iterations, other orbital states will
emerges until finally it stabilizes.there is a small amount of data outside these main orbits.As shown
in Figure(3), The blue points are generated by the function G(r), the orange points are generated by
the function G(r)−1, and the green points are generated by the function Y (x) = x.
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Figure 3: G(r)(a(1) = 2000, a(10000) = 0.01, t = 1.5)

(a) The r values in the 200 iterations (b) The distribution of r values

Figure 4: r value when t = 0.9

4 EXPRIMENT

Now, considering an example as follow

f(x) =
10000∑
i=1

a(i)x(i)2 (36)

, where the sequence a(i) is arithmetic progression and 0.001 ≤ a(i) ≤ 10000,x(i)
0 is a random

number between 0 and 10000. We take the t value of three different situations and iterate 200 times.
for t=0.9, as shown in Figure(4), the value of r stabilizes near a single value.

for t=1, as shown in Figure(5), the value of r quickly stabilizes near two values.

for t=1.1, as shown in Figure(6), the value of r no longer remains stable and may appear at any
position. Since the value of r gradually changes near the stable point, the ratio of values near the
stable point is relatively larger.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) The r values in the 200 iterations (b) The distribution of r values

Figure 5: r value when t = 1

(a) The r values in the 200 iterations (b) The distribution of r values

Figure 6: r value when t = 1.1

(a) BB method (b) SD method with t = 1.5

Figure 7: G(r) function
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we further compared the G(r) of the BB method and the SD method(t=1.5). as shown in Figure(7),It
can be observed that the G(r) of the SD method has a relatively clear trajectory, and as the number
of iterations increases, the trajectory becomes more definite. On the other hand, the BB method does
not have a trajectory and may fill up all the points in the space.

5 CONCLUSION

We analyzed the SD method by taking the reciprocal of the optimal step size r and introducing a
multiplicative factor t = 1

s . We found that the values of r before and after each iteration follow
a certain pattern, which we represented using a function G(r).Interestingly, this function actually
describes a chaotic system. We calculated the fixed points of this system and found that, depending
on the value of the multiplicative factor t, these fixed points correspond to different types of behavior:
one type is stable with a single fixed value, another type is in a critical state with two fixed values,
and the third type is unstable, causing r to jump along the main trajectory. Since the first two states
correspond to fixed r values and descent rates, they do not offer any advantage for the components
in the direction of small eigenvalues or for overall convergence. In contrast, the unstable state allows
r to take on arbitrary values. Therefore, in the future, we can explore the unstable state to potentially
accelerate convergence.
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