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ABSTRACT

Meta-learning recovers the Bayes-optimal learner for a particular distribution over
tasks. However, meta-learning is slow and requires retraining from scratch if we
modify that distribution. We present an approach that directly learns a mapping
from a task distribution to the Bayes-optimal parameters of the learner (for a neu-
ral network, the initial weights of the network). We provide theoretical results
identifying the optimal mapping for linear-Gaussian models and then demonstrate
that hypernetworks can be used to learn this mapping from empirical data for both
linear and non-linear models. This approach reduces the computational resources
required to make adaptive Bayes-optimal learners: by leveraging the underlying
structure of task distributions, we can meta-learn once and then quickly adapt to
new settings with a single forward pass through the learned mapping.

1 INTRODUCTION

Acting adaptively in the world is a crucial prerequisite for artificial general intelligence. For exam-
ple, a home chef robot should cook differently for an infant than for an esteemed dinner guest, even
though in both cases it should obey common principles such as safe food handling. The process
of learning from experience to solve a variety of related tasks is captured by idea of meta-learning
(Schmidhuber, (1987} Bengio et al.l 1991} Naik & Mammonel 1992} |Caruanal, [1998};|Thrun & Pratt,
1998). In meta-learning, a fask distribution encodes which tasks the learning agent is likely to en-
counter at test-time. At each iteration of meta-learning, a task is sampled from the task distribution
and the learner adjusts its parameters to solve this task more effectively. Over the course of training,
the learner acquires a set of parameters that are optimal for that distribution over tasks.

Although powerful, meta-learning is computationally expensive since it typically requires iterating
over many tasks sampled from the target task distribution. It is therefore difficult to accommodate
changes to the environment, since this would require retraining the learner to target a new task
distribution. Motivated by this critical limitation, we ask the question: can we meta-learn once and
quickly adapt to new task distributions without retraining?

We present an approach in which we learn a mapping directly from the parameters of the task dis-
tribution to the parameters of the learner. We focus on a version of Model-Agnostic Meta-Learning
(MAML; [Finn et al., 2017) applied to neural networks, where the meta-learned parameters are the
initial weights of a network. In this setting, learning the mapping from distributions to weights
can be done via a kind of hypernetwork (Ha et al.l 2017). After meta-learning, transfer to new
environments is trivially achieved by passing the new task parameters through the learned mapping.

Our method achieves efficient transfer to new task distributions with minimal loss in accuracy while
taking nearly the same time to train as vanilla meta-learning. We additionally provide a theoretical
characterization of the optimal weight initialization in a linear-Gaussian model. We show empiri-
cally that our learned hypernetwork is able to accurately predict these weights as a function of task
parameters in both linear and non-linear settings. Our contributions can be summarized as follows:

* We show how the parameters of a diverse set of task distributions provide a valuable way
to relate families of meta-learners.

* We identify the Bayes-optimal meta-learner in a linear-Gaussian setting, providing a
closed-form expression for the optimal weights as a function of the task distribution.
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* We demonstrate empirically in both linear and nonlinear settings how our approach enables
efficient transfer to new task distributions with almost no loss in accuracy and with very
little extra computation relative to vanilla meta-learning.

2 BACKGROUND

2.1 GRADIENT-BASED META-LEARNING

A variety of approaches have been taken to meta-learning, including learning the parameters of op-
timization algorithms (Schmidhuber, |1987; |Bengio et al.,|1992), learning metric spaces in which to
apply learning (Bottou & Vapnikl |1992)), and learning the hyperparameters of hierarchical Bayesian
models (Baxter| 1998} [Heskes| |1998). In gradient-based meta-learning, each task is assumed to be
performed by a separate learner that is trained to perform that task via gradient-descent. The param-
eters of the learners are adjusted by optimizing their performance across the entire set of tasks.

Model-Agnostic Meta-Learning (Finn et al), [2017) is an influential gradient-based meta-learning
algorithm. In MAML, the parameters of the learners are adjusted by differentiating through the
gradient-based learning process. In a common application, we might have a set of learners that
are neural networks, each with a set of weights 8. Each task ¢ has an associated loss ¢;(6). To
capture the similarity between tasks, we assume that all learners are given initial weights 6. After
applying one step of gradient descent, the weights of the learner performing task ¢ will then be
0, = 6y — aV{(0y), where « is a learning rate. The total loss across all tasks is £ = ), £,(6;).
This total loss can be differentiated with respect to 8, pushing the derivative through the gradient
of /,, making it possible to apply gradient descent to optimize 6 across tasks.

Differentiating through the gradient update can be computationally expensive, which motivated the
development of an alternative gradient-based meta-learning algorithm, Reptile (Nichol et al.|[2018).
Like MAML, Reptile considers the effect of gradient descent to obtain task-specific weights 8, from
a shared set of initial weights 8,. However, rather than updating 6 by differentiating the total loss
across tasks, Reptile uses each set of task-specific weights to compute a gradient 8; — 0 that is
supplied to a generic optimizer such as Adam. In practice, this approach can yield comparable
results to MAML at far lower computational cost.

2.2 META-LEARNING AS HIERARCHICAL BAYES

As noted above, meta-learning has deep connections to hierarchical Bayesian inference (Baxter,
1998} \Heskes, [1998)). In a hierarchical Bayesian model, each task involves inferring some unknown
parameters 6; based on observed data. This is done by Bayesian inference, with a prior distribution
with hyperparameters & shared across all tasks. Those hyperparameters can be adjusted based on
the information provided by the data aggregated across all tasks, providing a way to adapt the task-
specific Bayesian learners based on the shared statistical structure of those tasks.

This view of meta-learning can be connected directly to the gradient-based approach outlined above
(Grant et al.,2018])). Gradient descent with a limited number of iterations is equivalent to finding the
maximum a posteriori (MAP) parameter value with a specific Gaussian prior for linear models, with
the mean of that prior corresponding to the initial weights used in gradient descent. Learning those
initial weights @ can thus be viewed as estimating the hyperparameters of the prior &.

Viewed from this perspective, Reptile is also an effective algorithm for approximating hierarchi-
cal Bayesian inference in a specific class of models. In hierarchical Bayesian inference, we are
interested in maximizing the marginal likelihood, which for a given task is

p(yl00) = / P(4]0,)p(6:]8,) 6 0

p(y|0:)p(6:]60) 2
where ét is the MAP value of 6;. Taking logarithms, the term that contains 6, is log p(ét|00).
Collecting these terms across tasks and seeking to minimize the negative log probability, we ob-
tain the loss — ), log p(0:]60). If the prior p(6,|6,) is Gaussian, then this loss is proportional to
>, (6 — 6y)?, which is the implicit loss used in Reptile. Reptile thus approximately maximizes the
marginal likelihood if 6 is assumed to follow a Gaussian prior.

Q
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Table 1: Representative examples of meta-learning problems. Each meta-learning problem is ex-
pressed through a distribution over task vectors w and a distribution over model parameters 6.

Meta-learning Problem Task Vector (w) Model Parameters (6)
Regression Target function Regressor weights

Image classification Target classes Classifier weights
Meta-reinforcement learning RL environment parameters Policy network weights
LLM post-training Relative weighting of data sources  Post-trained LLM weights

2.3 HYPERNETWORKS

Given the high computational cost of training a neural network via gradient descent, it is attractive
to find other ways to estimate the weights that should be used to perform a specific task. Intuitively,
there should exist some mapping from tasks to the ideal weights of a neural network. If we could
just learn that mapping, we wouldn’t need to train networks via gradient descent.

Hypernetworks (Ha et al.} 2017) are a method for solving this problem, using neural networks to
learn the weights that should be used by other neural networks. While originally used to automati-
cally generate blocks of weights for structured architectures such as convolutional neural networks
and long short-term memory networks, hypernetworks have been used in a wide range of settings
where the weights of a network need to be generated based on context (Chauhan et al.| [2024).

3 LEARNING TO MAP TASK DISTRIBUTIONS TO INITIAL WEIGHTS

In meta-learning, task distributions are typically considered in isolation. However, by considering
the relationships between task distributions we open the door to learning the corresponding relation-
ships between meta-learners optimized under these task distributions. This way of thinking leads to
new efficient methods for fine-tuning and adaptation.

In Section [3.1] we describe our meta-learning formulation, which is grounded in the principles of
probabilistic inference. To demonstrate the validity of our approach, it is important to thoroughly
analyze its behavior on a well-behaved problem. We therefore consider a meta-learned Bayesian
linear regression model in Section[3.2]where both the task distribution and prior on model parameters
are Gaussian. We derive the optimal model hyperparameters as a function of the task distribution
in closed form (Theorem [3.1). Motivated by these insights, in Section [3.3] we present our practical
approach for learning the mapping from task distributions to initial model weights. Our approach is
a natural generalization of the hierarchical Bayesian view of meta-learning discussed in Section[2.2]

3.1 META-LEARNING FORMULATION

We begin by introducing a common formulation of the meta-learning problem. Our goal is exposit
a framework that is sufficiently abstract to capture a wide range of problems, yet detailed enough
to contextualize our novel hypernetwork-based approach in Section Please refer to Table [T for
several representative meta-learning problems that can be expressed with this formulation.

Task distribution. In meta-learning, the task distribution specifies the relative importance of tasks
within the environment. We assume that each task is represented by a vector w. The task distribution
therefore corresponds to some distribution p(w) over task vectors. A task vector w can be used to
construct a distribution over data (x,y) as follows. Let p(x) be a distribution over inputs. Targets y
are then sampled from a conditional distribution given the input x and the task vector:

XNp(X)? pr(y|X7W) €))

Meta-learned model. The per-task adapted parameters of the meta-learned model are denoted by
6. The model then learns a vector £ such that the distribution over task-specific parameters p(0 | &)
yields high marginal likelihood for data sampled from the task distribution. The functional form of
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the learned prior distribution p(€ | &) depends on the method. For MAML, £ is simply a weight
initialization 8 and the distribution over weights is defined implicitly centered at 8 = 8.

Meta-learning objective. The objective of the meta-learning is to minimize the negative log
marginal likelihood using data sampled from the task distribution:

CEy) 2p(y | &) = / Py | 0)p(6 | €)d6 4

J(&y) = —log L(&:y). 5)
Meta-learning with a marginal likelihood objective is a promising approach since it recovers Bayes-
optimal learners relative to the task distribution (Aitchison, 1975} Mikulik et al., 2020; Binz et al.,
2024). Other learning objectives are possible, including the predictive likelihood computed over
held-out data within each task. These two objectives differ in their emphasis on modeling per-task
data: marginal likelihood focuses on all data within the task whereas predictive likelihood focuses
on the held-out data alone. The relative merits has been discussed in previous work by Snell &
Zemel|(2021). For the sake of conceptual simplicity, we focus here on marginal likelihood.

3.2 OPTIMAL META-LEARNING IN A TRACTABLE SETTING: BAYESIAN LINEAR REGRESSION

In this section, we consider a worked example where the learner is a Bayesian linear regression
model. Both the task vectors and model parameters are generated from a Gaussian distribution.
Each task vector represents a target function which is potentially nonlinear. The model predictions
are taken to be linear. These assumptions allow us to derive the optimal model hyperparameters
as a function of the task hyperparameters. This relationship between the task hyperparameters and
optimal model hyperparameters will be useful to motivate our method in Section[3.3]

Task distribution. The task distribution is specified as follows:
W~ N (s Bw ), X ~ N (s, 021) fori = 1,2,... . n, y ~ N(®w,0%I), (6)

where 7 2 {1y, Xy} are the task hyperparameters, x; is an input example, and & € R"*?
is a feature matrix where each row is obtained by applying an arbitrary (possibly nonlinear) feature
function ¢ to to the corresponding input x;. Note that the target function for a task may be expressed

explicitly as fw(x) = (¢(x), W)

Meta-learning model. We assume the model is standard Bayesian linear regression. The predic-
tive distribution over a vector of regression targets y € R"” is a Gaussian with the predictive mean
being a linear function of the inputs:

p(y | 8) = N(y | X6, 030), (7)
where X € R"*? is the design matrix obtained by taking each row to be an input example x;. Let
the model hyperparameters £ = {mg, P} consist of a prior mean my € R and a prior covariance
Py € R4%4_ Similar to the predictive distribution, the model distribution over 6 is also assumed to
be Gaussian:

This conjugacy between the predictive distribution the and prior allows the marginal likelihood
objective to be computed in closed-form, as we shall soon see.

Marginal Likelihood. The marginal likelihood given observed task data is obtained by marginal-
izing over the model parameters 0:

L(mg,Po;y) = p(y | mo,Py) = /N(Y | X6, 53T1)N (6 | my, Py) dO &)

= N(y | Xmg, XPoX " + o21).

We can further marginalize over y (Equation [6)) to compute the expected marginal likelihood given
the task vector w:

L(my, Pg;w) = /N(y | ®w, 0’1)L(mg, Po;y) dy

= N(Xmy | @w,XPX ' + (02 + 0?)I).
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Moreover, using the fact that w ~ A (Hw, 2w ), the task vectors can be marginalized over as well:

L(mg, Py) = /p(w | bw, ZXw)L(mg, Po; w) dw (10)
= N(Xmyg | @py, XPX ' + &, + (02 + o2)I).

Now we are ready to solve for the model hyperparameters £* that minimize the negative log marginal
likelihood J(myg, Pg) £ — log £(mg, Py X).

Theorem 3.1 (Optimal model hyperparameters for meta-learned Bayesian linear regression). Let
the task distribution and model distribution be defined as in Section[3.2] Then the model hyperpa-
rameters that minimize the negative log marginal likelihood J(mq, Pq) are given by:

m) = (X' X)"'X"®pu,, (11)
Pi=X"X)"'XT [rr" — (2Zw® " + (0§ + o)I)] X(X'X) 1, (12)

where r = (Xm{ — ®py,).
Proof. Proofs for all theoretical results may be found in Appendix O

Theorem shows how the optimal hyperparameters £€* = {mg, P§j} can be expressed in terms of
the task distribution parameters 17 = { 4w, Sw }- We exploit this observation in the next section to
derive our hypernetwork-based approach.

3.3 APPROXIMATELY OPTIMAL META-LEARNING VIA HYPERNETWORKS

Recall in the previous section how we showed that the optimal model hyperparameters £&* can be
expressed as a function of the task distribution parameters 7 in the case of meta-learned Bayesian
linear regression. In more general meta-learning problems, we may not be able to derive a closed-
form expression for the optimal hyperparameters, as we did in Theorem [3.1] Therefore, in this
section we discuss our proposed approach to learn the mapping n — £ from the task distribution
parameters to model hyperparameters.

In the general meta-learning problem, we assume that the underlying model is a deep neural net-
work. The model generates a predictive distribution over targets by passing the input data through a
deep neural network with parameters 6. This setup captures modeling in many prominent domains,
including classification, regression, autoregressive language modeling, and reinforcement learning.

A naive approach to modeling p(0 | £) would be computationally costly due to the need to perform
probabilistic inference over the weights of a neural network. To derive a more practically feasible
algorithm, we let the model hyperparameters be simply the initialization 6y of the neural network
weights. These weights are adapted to each task by a few steps of gradient descent, as in MAML.

Since the output of the learned mapping 17 — £ is therefore a set of neural network weights 6, we
propose to let the mapping be represented by a hypernetwork with parameters ¢:

6o < he(n) 13)
The parameters of the hypernetwork are meta-learned in a manner analogous to Reptile:
L(¢) = lIha(n) — 6], (14)

where @ = 8y —a'Vy.J are the model parameters after adaptation to the task. This objective is simple
and computationally expedient, yet remains connected to the original goal of maximizing marginal
likelihood since Reptile can be viewed as approximately maximizing marginal likelihood assuming
an isotropic distribution in weight space. Other meta-learning objectives are possible here but we
focus on the learning rule from Equation [I4]due to its effectiveness and conceptual simplicity.

Over the course of meta-learning, the hypernetwork learns how to predict good parameter initial-
izations for solving tasks sampled from the task distribution. Note that here, unlike the previous
section, we do not assume knowledge of the task distribution’s functional form. We only need to be
able to sample task data in order to be able to minimize Equation
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The key benefit of our approach is the ability to seamlessly adapt to new task distributions. Since
each task distribution is represented by parameters 77, we can easily adapt to a new task distribution
(corresponding to a new task environment) with parameters 77 by a single forward pass through the
hypernetwork to get a new predicted weight initialization 8y = he (7). This highlights the benefits
of meta-learning once with a diverse set of task distributions: we no longer need to undergo the
expensive meta-learning process again upon change of the environment.

4 EXPERIMENTS

In this section we examine the experimental performance of our proposed method. In Section 41]
we confirm the validity of our theoretical result for the optimal model hyperparameters in the meta-
learned Bayesian linear regression setting. Then we conduct experiments that show the benefits
of our hypernetwork-based approach relative to standard meta-learning baselines in both linear-
Gaussian (Section[4.2)) and nonlinear MLP (Section [f.3)) domains.

4.1 VERIFICATION OF OPTIMAL META-LEARNED HYPERPARAMETERS

In this section we empirically validate our analytical solution for the optimal mean hyperparameter
my; from Equation [TT] We ran two experiments to verify that our analytically derived expression
coincides with the empiricially derived minimizer of the negative log marginal likelihood. We ran
two experiments in d = 2 dimensions with n = 50 samples each. In both cases the input examples
were drawn i.i.d. from a standard normal x; ~ A(0, 1) and we fixed w = py = [2.0, —1.0]T. We

compared two sets of features: ¢(x) = x and ¢(x) = Ax for fixed A = [(1)? ﬂ .

For each case we computed the closed-form expression mj; = (X TX)™1X T ®p,, and compared

this to 50 steps of gradient descent initialized at mgo) = [~2, —2]T with learning rate o = 0.01:
m{ « m{™Y = aVp, J(m{?) fort =1,2,...,50. (15)

Figure shows the contour plots of the loss J(mg) = %(|Xmg — ¢(X) w||, the gradient-descent
trajectory, and the optimal analytic solution mg. These results demonstrate that our closed-form
solution does indeed minimize J(my).

Q=X Q=X

—e— GD trajectory | ’ —e— GD trajectory
X analytic mo* _| 5 > X analytic mo*

-4 -3 -2 -1 1 2 3 4 —4 -3 -2 -1

moulol
(a) 9p(x) =x (b) p(x) = Ax
Figure 1: Contour of J(mg) and gradient descent path for two choices of ¢(x). In both cases, the

gradient descent trajectory converges to the analytic expression for my.

4.2 LINEAR-GAUSSIAN EXPERIMENTS
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Table 2: Comparison of meta-learning approaches on Gaussian linear regression. Higher R? and
lower nMSE are better. Pooled MAML shares an initialization 8 across all task distributions while
Oracle MAML is able to retrain a separate 8y for each.

Method R? (1) nMSE (|)
Oracle MAML (per-prior re-trained)  0.8111 0.7062

Pooled MAML (shared initialization)  0.1259 0.8557
Meta-learned Hypernetwork (Ours) 0.8111 0.7045

Setup. We now empirically validate our proposed hypernetwork approach in a linear-Gaussian
setting. As in previous sections, we consider a regression task where each task vector represents a
target function fy (x) = x'w. Input points x; € R? are drawn i.i.d. from a standard Gaussian
x; ~ N(0,I) and the targets are sampled as y; ~ N (fw(x;), 05). Task vectors are sampled as
w; ~ N(pw,021), where py, € R2. Each task consists of a support set of labeled data for
task-specific adaptation and a query set on which predictive performance is computed.

Hypernetwork learning. The goal of standard meta-learning in this context is to learn an initial-
ization @y € R? such that one gradient descent step on the new task yields model parameters with
low mean-squared error on the targets. In contrast, our hypernetwork-based meta-learning algorithm
learns to directly predict a good initialization through the mapping h.:

00 = hop (o) (16)

In order to meta-learn with a diversity of task distributions, i, is sampled uniformly at random
from [—3,3]2 over the course of meta-learning. Given p,, we sample many tasks w; and for
each task perform one-step adaptation on the support set, initialized at 8. After adaptation, loss is
computed on the query set. Then the hypernetwork parameters are updated by backpropagation in
order to minimize this query loss by taking a gradient descent step with respect to the hypernetwork
parameters ¢. This procedure enables generalization to new task distributions without re-training.

Baselines. We compare the results of the meta-learned hypernetwork to two baselines. The first,
Pooled MAML, is equivalent to our method but has no hypernetwork. Instead, a single setting of
6y is learned that is shared across all samples of p,. This baseline measures the increase in per-
formance due to the hypernetwork. We also compare to a separate oracle baseline, Oracle MAML,
which has oracle access to the test-time priors and meta-learns a separate setting of 8, for each
prior by sampling task vectors directly. This baseline represents an upper bound on how well we
can reasonably expect our hypernetwork-based method to perform. However, this level of perfor-
mance is typically unachievable in practice because we rarely have privileged access to test-time
task distributions beforehand. Details of the settings for all algorithms are in Appendix

Results. For all methods, we evaluate performance after one inner gradient update on each task’s
support set, and report the coefficient of determination (R?) and normalized mean squared error
(nMSE) on a held-out test prior using a larger evaluation set. Results are shown in Table[2] Our meta-
learned hypernetwork achieved the same performance as Oracle MAML, recovering the optimal
solution, and significantly outperformed Pooled MAML.

4.3 META-LEARNED MULTILAYER PERCEPTRONS

Setup. Our results so far have confirmed the Bayes-optimal mapping in the linear case and demon-
strated that this mapping can be learned from data. We now show that the same approach can be
applied in a non-linear setting, demonstrating that it is possible to learn a hypernetwork that identi-
fies the optimal initial weights for multilayer perceptrons (MLPs).

Let f5 : R? — R be a two-layer MLP with parameter vector § € R”. We represent each task
distribution by a 2-vector p.,, € R2. For each task distribution ,,, we define a mean in parameter
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Table 3: Neural network case: performance on a held-out test prior after /=3 inner updates. Higher
R? and lower nMSE are better.

Method R% (1) nMSE (})
Oracle MAML (per-prior re-trained) 0.6801 0.3183
Pooled MAML (shared init) 0.6523 0.3460

Meta-learned Hypernetwork (Ours)  0.6662 0.3321

space via a fixed mapping m : R? — R”: m(u,,) € RF. Task-level parameters w; € R” are then
drawn from a Gaussian around that mean:

w; ~ N(m(pw), afqu).
In our experiment we take i, to be uniformly distributed over [—3, 3]2.
For each task, the inputs € R? are i.i.d. standard Gaussian,
z ~ N(0,1I).
and the target outputs are produced by a MLP with the task’s weights, plus observation noise,

Y= fu,(x)+e, e~ N(O,az).

We then generate a support set: {(z,, ys)}f;"‘l and a query set: {(xz,, yq)}];‘*:ry1 for that task.

Hypernetwork learning We seek a set of initial weights 6, € R¥ such that one gradient step
on a new task’s support set yields parameters 6; that have low mean-squared error on that task’s
query set. Rather than running MAML’s outer loop each time we see a new prior p,,, we train a
hyper-network:

hg : R? - RP
to predict an initialization directly from fi,,:
Oinit = ho ()

that yields low post-adaptation loss. As in the previous section, this hypernetwork is trained by
backpropagating through the task loss.

At test time, for a brand-new prior fi,,,, we only need a single forward pass through h to obtain ;i
— no task sampling or inner meta-loops.

Baselines We compare to two approaches. First, MAML (per-prior re-trained) learns a separate
initialization for each test prior. Second, Pooled MAML uses a single shared initialization (and
shared step-size parameters) across all priors.

For all methods we evaluate after K = 3 inner gradient updates on each task’s support set and
report coefficient of determination (R?) and normalized mean squared error (nMSE) on a held-out
test prior using a larger evaluation set. Details of the settings for all algorithms are in Appendix[B.3]

Results The results are given in Table 3} Our hypernetwork approach achieves performance that
is close to Oracle MAML, despite significantly less computational cost since it does not need to
re-train for each prior. It also gets closer to the oracle results than Pooled MAML, demonstrating
that it is able to adapt the solution it finds to the different priors appropriately.

5 RELATED WORK

The idea of predicting the weights of a neural network as a function of context has been used in a
variety of settings (Ha et al.,[2017;|Chauhan et al.,|2024). We focus here on its use in meta-learning
and reinforcement learning, as these are two prime cases where the behavior of the network should
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change across episodes. This is due to the inherent stochasticity in these settings — over tasks for
meta-learning or over the environment for reinforcement learning.

Meta-learning can be applied to a wide range of problems. One of the most relevant problems is zero-
shot learning in which a task description vector or other side information such as text is provided to
the base learner. Early approaches to this task uses textual descriptions of novel classes to predict
the weights of the classification layer of a convolutional neural network (Ba et al.,[2015). Similar
techniques have been applied in meta-learning solutions to the zero-shot problem, for example by
learning to predict class prototypes from side information (Snell et al.,[2017).

The hierarchical Bayesian perspective on meta-learning (Grant et al.| |2018) offers a different way
of thinking about this problem, in which the goal is not simply to learn a single weight initialization
but rather a distribution over weights that assigns high probability to the optimal weights across
different tasks. This can be viewed as learning a generative model for the learner’s weights. In the
spirit of variational autoencoders (Kingma & Welling, 2019), this suggests an amortized inference
approach in which the approximate posterior over weights can be predicted as a function of the la-
beled examples. Such an approach was explored by |Gordon et al|(2019). Interestingly, learning
the conditional mean alone (i.e., ignoring the variance) can itself be viewed as a form of hypernet-
work learning. |Qiao et al.| (2018)) develop an approach along these lines and apply it to few-shot
classification. Hypernetworks have also been used to make meta-learning more efficient by reduc-
ing the dimensionality of the learning problem (Zhao et al, |2020). More recently, similar methods
have been used to learn a distribution over the parameters of LoRA adapters (Hu et al., 2021) to
support fast LLM adaptation (Zhang et al.|[2025). Unlike previous methods, which apply amortized
inference inside the inner adaptation loop, ours uses hypernetworks at a higher level: from the task
distribution parameters to the meta-level parameters directly.

Similar concerns arise in other problem domains. Zero-shot transfer is a key challenge in reinforce-
ment learning. Hypernetworks have been applied to this problem in previous work (HyperZero;
Rezaei-Shoshtari et al., 2023). In HyperZero, policies are first independently learned for parameter-
ized Markov Decision Processes across different parameter settings. Then a hypernetwork is learned
in a supervised manner to predict the weights of the policy network as a function of MDP param-
eters. In contrast to ours, this approach is not end-to-end but decouples the hypernetwork learning
into two stages: learning many different policy networks, one for each MDP, and then consolidating
them by learning a supervised hypernetwork.

Another related approach comes from the literature on physics-informed neural networks (PINNs).
One primary application of PINNs is to solve differential equations using neural networks. Here
it is often advantageous to be solve different problems with the same functional form where the
parameters may change. To attack this setting, an approach called solution bundles (Flamant et al.|
2020; Flores et al., [ 2025) have been proposed, where the weights of the neural networks are learned
as a function of the differential equation parameters.

To our knowledge, ours is the first to unify these related approaches within the meta-learning
paradigm while maintaining a focus on learning a mapping from task distributions to initial model
weights. This approach improves adaptability to new task environments by removing the need to
retrain the meta-learner from scratch.

6 CONCLUSION

Creating artificial general intelligence systems that are able to rapidly adapt their behavior to a wide
range of settings requires instilling effective inductive biases in those systems. Meta-learning is a
promising approach for doing so, creating systems that have initial weights that instantiate a specific
prior distribution over tasks and can be easily adapted with additional learning. However, traditional
meta-learning methods rely on explicitly performing learning on tasks drawn from each task dis-
tribution they need to adapt to — a costly proposition. By directly learning the mapping between
task distributions and initial weights, we can immediately construct artificial neural networks that
correspond to particular prior distributions. Our results here show that this approach is possible,
characterize the optimal solution in the linear case, and demonstrate that this idea is viable in more
complex models. We see this as an important first step towards being able to automate meta-learning
to allow us to more efficiently create learners with specific inductive biases.
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consequences, but we do not see this work as having greater risk than other fundamental research
in this area. We note that care should be taken when the task distribution parameters go outside the
range used for training, as the hypernetwork output may not be reliable in this case.

REPRODUCIBILITY STATEMENT

Assumptions for our theoretical result (Theorem [3.1)) are explained in Section The correspond-
ing proof is presented in Appendix [Al An overview of our experimental setup is presented in the
corresponding sections: Sections [d.1{4.3] Further experimental details may be found in Section
Code to reproduce our experiments may be found in the supplementary material.
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A PROOF OF THEOREM [3.1]

In this section we provide proofs for all theoretical claims from the main paper.

Theorem 3.1 (Optimal model hyperparameters for meta-learned Bayesian linear regression). Let
the task distribution and model distribution be defined as in Section[3.2] Then the model hyperpa-
rameters that minimize the negative log marginal likelihood J(mq, Pq) are given by:

m) = (X"X)" ' X ®u, an
Py =(X"X)'X" [rr| — (82 ® ' + (0f + o)) X(XTX) 7Y, (12)
where r = (Xm{ — Py ).
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Proof. We begin by simplifying J(mg, P) using the form of a multivariate Gaussian density.
J(mg, Py) = —log N (Xmyg | @y, XPoX ' + &, @ + (02 + 02)I) (17

1 _
5t (XPoXT + @2, @7 + (o7 + o)1) Yp

1
+ 5 log [XPoXT + @2, @7 + (o +0?)1| + glog(%r),
where r = (Xmg — ®py).

Solving for mj. In order to find the optimal myg, we take the gradient with respect to .JJ(mg, X) and
set it to zero.

Vingd =X (XPoX| 4+ &%y @ + (02 + 02)I) " (Xmyg — ®ptey) = 0. (18)

For this condition to hold in general, we need
Xmy — Puy =0= (19)
m) = (X"X)' X" ®p,,. (20)

Solving for P;. For notational convenience, let 3 = XPoX " + &%, ® ' + (02 + ¢2)I. Then
J(mg, Pg) may be written concisely as:

J(m()7 Po) = — log/\/(XmO ‘ ‘I’va 2) (21)

The partial derivative with respect to by may be computed using known formulas (Petersen & Ped-
ersen, [2012, Eq. 396):

oJ 172 = =

9= [2*1 _ zflrrTzfl} ‘ (22)

s 2

Using the definition of 3, we can compute the partial derivative of J with respect to Py by using
the matrix-valued chain rule:

;—P{O - XT% - %XT [2*1 _ i:*lrrTirl} X. (23)

Therefore, for the partial derivative to be zero in general, we need
Sl=1i'E L (24)
Left-multiplying by 3 implies that & = rr . Substituting into the definition of 3 and rearranging,
XPoX' =1r" — (BTW®' + (0§ + o)) (25)

Solving for Py, we find that

Py=X"X)"'X" [rr" — (8T @' + (0§ + o)) X(X X)) (26)
O

B ADDITIONAL EXPERIMENTAL DETAILS
In this section we provide additional experimental details.

B.1 HYPERNETWORK TRAINING PROCEDURE

The detailed training procedure for the hypernetworks used in Sections .2 and [.3]is as follows:

e Input: a sampled prior mean i,
e QOutput: a predicted initialization 6y, € R¥ for the learner
* Training:

1. draw task weights w; ~ N (m(juy),021p),

r T w
2. sample support/query sets from f,,,,
3. perform one-step adaptation from 6iyic = hy (1) on the support set to obtain 6;,
4. measure the loss on that task’s query set.
We average those query losses into a scalar hyper-loss, and backpropagate through the
inner update to update the hyper-network parameters ¢.

12
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B.2 SETTINGS FOR LINEAR EXPERIMENT

The settings for the algorithms evaluated in Section .2 were as follows:

Common settings across all cases

Noise: o = 0.1

Task weight variance: o, = 1.0

Inner learning rate (adaptation): o« = 0.01 (one step)
Support/query sizes: kgp = 10, kgry = 10
Evaluation tasks per prior: 50

Patience: 10 validation intervals

Validation interval: every 50 steps

(1) Hyper-network A, (1) — Ginit

Initialization: predicted 0 from a 2 — 64 — 64 — P MLP (ReLU)
Outer optimizer: AdamW (weight decay 1 x 10~%)

Hyper learning rate: 1.3 x 1072

Hyper steps: 2000

Batching: 4 priors per batch, 8 tasks per prior

Regularization: 8 x 1074 - ||Gipic|?

Objective: minimize average query loss after one inner update (with 3 inner steps, per-parameter o)

(2) Pooled MAML (shared initialization across priors)
Initialization: one shared 6;,;; across all training priors

Outer optimizer: Adam

Meta learning rate: 1 x 102

Outer steps: 1000

Meta-batch size: 100 tasks per step, sampled from random priors
Objective: minimize query loss averaged over tasks from all priors

(3) Per-prior MAML

Initialization: one 6y, retrained separately for each test prior
Outer optimizer: Adam

Meta learning rate: 1 x 102

Outer steps: 1000

Meta-batch size: 100 tasks per step, sampled from that prior
Objective: minimize query loss tailored to the given test prior

B.3 SETTINGS FOR MLP EXPERIMENT

The settings for the algorithms evaluated in Section 4.3 were as follows.

Common settings across all cases

Learner model: two-layer MLP (2 — 32 — 1, LeakyReLU activation with slope 0.1)

Task weight variance: o, = 0.3

Observation noise: o, = 0.1

Inner adaptation: K = 3 steps with per-parameter step sizes «
[1x1075,5 x 1072

Support/query sizes (train): kg = 10, kgry = 20

Support/query sizes (eval): kgy = 20, kqry = 200

Evaluation tasks: 16

Task weight prior means: m(y) given by frozen linear map R? — R
Optimizer: gradients clipped to norm 0.5

Validation interval: 10 steps; Patience: 15 intervals

13
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(1) Hyper-network h (1) — Oinit

Architecture: 2 — 64 — 64 — P MLP (ReLLU)

Outer optimizer: AdamW (weight decay 1 x 10™%)

Hyper learning rate: 1.3 x 1072

Hyper steps: 2000

Batching: 4 priors per batch, 8 tasks per prior

Regularization: 8 x 1074 - ||Gypic|?

Objective: minimize query loss after adaptation with shared per-parameter step sizes

(2) Pooled MAML (shared initialization across priors)
Initialization: one shared 6;,; across all training priors

Outer optimizer: Adam

Meta learning rate: 1 x 102

Meta steps: 400

Meta-batch size: 32 tasks per step, sampled across random priors
Objective: minimize query loss averaged over all priors

(3) Per-prior MAML oracle

Initialization: one 6;,; retrained separately for each test prior

Outer optimizer: Adam

Meta learning rate: 1 x 102

Meta steps: 400

Meta-batch size: 32 tasks per step, sampled from that prior

Objective: minimize query loss specific to the test prior (oracle baseline)
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