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Abstract

Visual reasoning is supported by a causal understanding of the physical world, and
theories of human cognition suppose that a necessary step to causal understanding
is the discovery and representation of high-level entities like objects. Slot Attention
is a popular method aimed at object-centric learning, and its popularity has resulted
in dozens of variants and extensions. To help understand the core assumptions
that lead to successful object-centric learning, we take a step back and identify the
minimal set of changes to a standard Transformer architecture to obtain the same
performance as the specialized Slot Attention models. We systematically evaluate
the performance and scaling behaviour of several “intermediate” architectures on
seven image and video datasets from prior work. Our analysis reveals that by
simply inverting the attention mechanism of Transformers, we obtain performance
competitive with state-of-the-art Slot Attention in several domains.

1 Introduction

Figure 1

Human understanding of the natural world is rooted in the perception of enti-
ties like objects, which form the basic building blocks for causal prediction and
reasoning in everyday situations [1, 2]. In contrast, standard neural network
architectures like Transformers only partially succeed at learning representa-
tions that separately encode information about individual objects, especially
in the absence of instance-level supervision [3, 4, 5]. To overcome this issue,
a vast literature has emerged on more specialized object-centric neural net-
works, capable of discovering and representing information about objects in a
self-supervised manner [6, 7, 8, 9, 10, 11, 12, 13]. (For an overview, see Greff
et al. [3].)

Though there are notable exceptions [e.g., 14, 15], many recent approaches
follow a fairly standard recipe derived from Slot Attention [16]. In Slot At-
tention, an image—encoded as a set of input tokens—is soft partitioned into
K object slots. (The term queries is also used in related literature [17, 18].)
Partitioning is a recurrent mechanism in which slots are initialized to values
sampled from a distribution (with learnable parameters) and are then iteratively
updated via scaled dot-product attention to the input tokens [19]. Neural net-
work components that apply the updates, typically GRUs [20], share parameters between iterations.
Notably, attention maps are computed via a kind of inverted attention [21], which induces competition
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Algorithm 1: Slot Attention

1 inputs = LayerNorm(inputs)
2 for _ in range(N):
3 updates = ScaledDotProductAttention(
4 q=LayerNorm(slots),
5 kv=inputs,
6 axis="queries",
7 renormalization=True
8 )
9 slots = GRU∗(slots, updates)

10 slots += MLP∗(LayerNorm(slots))
11

Algorithm 2: Transformer (cross-attention)

1
2 for _ in range(N):
3 updates = MultiHeadDotProductAttention(
4 q=LayerNorm(slots),
5 kv=inputs,
6 axis="keys"
7
8 )
9 slots += Dropout(updates)

10 slots += Dropout(MLP(LayerNorm(slots)))
11 slots = LayerNorm(slots)

Figure 2: Comparing the Slot Attention and Transformer algorithms. * is used to indicate weight-
sharing between iterations in Slot Attention. Other notable differences include the normalization axis
used in the cross-attention operation (and subsequent renormalization), and the gated update using a
GRU in place of a residual update.

between the slots to explain the input tokens. A prominent account for why this may lead to slot
representations that capture individual objects stems from its connection to Soft K-Means or Neural
EM [7, 22], relatedly a more general theory of the feasibility of learning object representations
was recently proposed [23]. In combining Slot Attention with different encoders and decoders, its
capabilities for learning representations of abstract entities have been extended to video [24, 25], 3D
scenes [26, 27, 28], action sequences [29], and morphemes in language [30].

Although many variants and extensions of Slot Attention have been proposed [31, 32, 33, 34], the core
assumptions that lead to successful object-centric learning remain elusive. Here we take a step back
and ask what aspects of Slot Attention are actually critical for object discovery. We tackle this question
by drawing a connection between Slot Attention and Transformers (Figure 2) which allows us to
identify a minimal set of changes to a standard Transformer decoder architecture [19, 35] that unlock
the capacity for object discovery. In particular, we perform an extensive analysis of architectural
variants of Slot Attention and Transformers on a range of commonly-used synthetic and real-world
datasets. Our study reveals that by simply ‘inverting’ the attention mechanism of Transformers,
we obtain competitive performance for object-representation learning (see Figure 1). We further
demonstrate that it is possible to substitute this Inverted-Attention Transformer for Slot Attention in
SAVi [24] and OSRT [26] while obtaining comparable and sometimes improved performance.

2 Comparing Slot Attention to Transformers

Figure 2 presents a side-by-side comparison of Slot Attention [16] and Transformer Decoders [19].
Because Slot Attention only performs cross-attention, we consider pre-LayerNorm Transformer
Decoders without self-attention [35]. Given an encoding of the input as a set of tokens and a set of
initialized slots (or queries), the two algorithms proceed in a similar manner:

Multiple Iterations. Slots are updated over N iterations. In case of Slot Attention these iterations
use shared weights, which lend the interpretation of them being state updates that converge on
fixed-point attractors [31, 36], while in Transformers each iteration corresponds to a layer having
potentially different weights.
Scaled Dot-Product Attention. Slots are updated by individually attending to the input tokens
using a form of scaled dot-product attention [19], typically using multiple heads in case of
Transformers. Here an important distinction is the normalization of the attention map, which
in Slot Attention proceeds by transposing the axis over which the softmax is taken followed
by a renormalization step to ensure the attention weights into each slot sum to one (see also
Appendix B.1). This operation can also be understood as a kind of “Inverted Dot-Product Attention
Routing” (without the extra LayerNorm) [21] followed by an additional renormalization step.
Update and Transformation. After attending, the slots are updated by a learned transformation
of the resulting attention vectors. In Transformers, a residual update is applied followed by
transformation by an MLP. Here Slot Attention leverages a gated update implemented as a
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Figure 3: FG-ARI of Slot Attention and Transformer variants on six image datasets.

GRU [20] that includes a transformation. Slot Attention also includes an additional optional
transformation with an MLP.

We note that various smaller differences exist as well, though these are not expected to significantly
affect the behavior of the model. For example, Slot Attention starts by applying Layer Normalization
(LN) [37] to the inputs, while pre-LN Transformers add LN at the very end. Further, Transformers
sometimes include Dropout [38] in the update and transformation steps, though no consistent
improvement was found in applications to images [39].

3 Experiments

Complete details of our experiments can be found in Appendix B.

3.1 Object Discovery in Images

Experimental Setup. We focus on the task of unsupervised object discovery, which is commonly
used to evaluate the capacity for object-centric representation learning [7, 16, 22]. We adopt the
object discovery architecture from Locatello et al. [16] and conduct experiments on a wide range of
image datasets: CLEVR [40, 41], CLEVRTex [42], COCO [43], and individual frames from MOVi-A,
MOVi-C, and MOVi-E [44]. For CLEVRTex, we use a ResNet34 encoder which was previously
found to work well on this dataset [45]. For the COCO and MOVi datasets, we adopt the DINOSAUR
[13] architecture whereby features from a pre-trained DINO-ViT [4, 39] are used as inputs to Slot
Attention and as the reconstruction target. In other cases we train models to reconstruct pixels directly.
To initialize slots/queries, we sample from a Gaussian distribution with learned mean and variance as
in Locatello et al. [16]. We report 3 seeds for all our experiments and train for 300K steps. Unless
otherwise stated we use N = 3 iterations for (variations of) Slot Attention and Transformers. We
include experimental results varying N in Appendix A.2.

Benchmarking Variations of Slot Attention and Transformers. To determine what aspects in
Slot Attention are essential for successful object-centric learning, we lay out a space of models that
includes Slot Attention and Transformers and evaluate variations that are positioned in between.
For these experiments we substitute a particular variant for Slot Attention, while keeping other
components of the architecture, such as the encoder or decoder, fixed for each dataset (details are
presented in Appendix B.1). To summarize, the variations include:

TF: a standard pre-LayerNorm Transformer decoder without self-attention.

TF-Inv: same as TF, except for using inverted attention and renormalization.

TF-Inv w/ GRU: TF-Inv with a GRU in each layer to perform the slot update (line 9 in Figure 2)3.

SA w/o GRU: Slot Attention, but with the GRU replaced with a residual update.

SA: standard Slot Attention.
3We also explored GRU weight sharing across layers of TF-Inv w/ GRU, but we saw no significant effect.
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Figure 4: FG-ARI of Slot Attention, TF-Inv, and
TF-Inv w/ GRU per Layer on the video version
of the MOVi datasets.

OSRT Model PSNR (dB) FG-ARI (%)

w/ SA (N = 1) 22.07± 0.20 75.66± 2.09
w/ SA (N = 5) 21.73± 0.14 68.19± 1.04
w/ TF-Inv (N = 1) 21.20± 0.57 73.58± 2.06
w/ TF-Inv (N = 5) 22.21± 0.07 75.39± 0.28

Table 1: PSNR and FG-ARI when substituting SA in
OSRT [26] with TF-Inv.

We evaluate these variants in terms of emergent instance segmentation. Figure 3 reports the foreground
ARI [22, 46, 47] scores (hereafter, FG-ARI) for each of these variations, which are obtained by
comparing ground-truth instance segmentations to those that were inferred after decoding the slots
using a spatial broadcast decoder [22, 48] (e.g., as in Figure 1). It can be seen that TF generally
performs the worst, though surprisingly, other variants are able to achieve an FG-ARI comparable to
that of SA. Crucially, we note that simply inverting the attention operation is sufficient to facilitate
object discovery with Transformers as TF-Inv generally performs as well as other variants closer to
Slot Attention (e.g., those that share weights between iterations or incorporate the GRU). Foreground
mIoU [49] reveals a similar trend, as shown in Figure 5.

3.2 Application of Inverted-Attention Transformers to Other Domains

Slot Attention for Video (SAVi). We consider SAVi [24, 25], which relies on Slot Attention as a
key component to enable the discovery and tracking of objects in videos. We plug TF-Inv into SAVi
as a replacement and evaluate it on videos of the MOVi datasets. We plot the FG-ARI in Figure 4. It
can be observed that SAVi with TF-Inv performs comparably on MOVi-A and MOVi-E, though it is
unstable on MOVi-C. Interestingly, adding back the GRU helps TF-Inv to match SAVi performance,
suggesting it is of some importance in this setting.

Object Scene Representation Transformer (OSRT). OSRT [26] is an object-centric model that
uses Slot Attention for novel view synthesis of 3D scenes. Here, in addition to FG-ARI, we also
report Peak Signal-to-Noise Ratio (PSNR), which captures the ability of the model to reconstruct
novel views. We run a set of experiments on the MultiShapeNet-Hard (MSN-Hard) [50] dataset
where we use TF-Inv instead of SA and report results in Table 1. We see that while SA performs better
than TF-Inv when N = 1 (the standard setting in Sajjadi et al. [26]), increasing to N = 5 harms
performance for Slot Attention, both in terms of PSNR and FG-ARI. In contrast, TF-Inv scales well
with additional layers, yielding a higher FG-ARI and improved PSNR.

4 Discussion

In this work, we investigated the core assumptions underlying successful object-centric learning
in attention-based architectures derived from Slot Attention. Through a comprehensive study, we
discovered that inverted dot-product attention is a crucial component, which can readily be integrated
in Transformers by changing the axis along which the attention normalization takes place (i.e., the
‘query’ axis instead of the ‘key’ axis) and subsequently renormalizing as in Locatello et al. [16]. In
particular, a modified pre-LayerNorm transformer (cross-attention only, i.e., TF-Inv), was shown
to perform on par with Slot Attention on a variety of datasets, to scale well with model depth, and
to be broadly applicable to other domains where Slot Attention is used such as SAVi and OSRT.
In the medium term, there is an exciting opportunity to apply these insights to applications of
Transformers more broadly, i.e., outside the context of unsupservised object-centric representation
learning, including related architectures for object detection [17, 51, 52].
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Although Inverted-Attention Transformers make considerable progress toward simplifying Slot
Attention (and extending its applicability), our investigations revealed several additional factors that
influence the performance of both TF-Inv and SA. These observations (see Appendix A.3) require
more thorough study and we hope that they spur further insights from the research community.

Acknowledgments and Disclosure of Funding

We thank Aravindh Mahendran for general advice and detailed feedback on an early version of this
paper.

References
[1] Elizabeth S Spelke and Katherine D Kinzler. Core knowledge. Developmental science, 10(1):89–

96, 2007.

[2] Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. Proceedings of the
IEEE, 109(5):612–634, 2021.

[3] Klaus Greff, Sjoerd Van Steenkiste, and Jürgen Schmidhuber. On the binding problem in
artificial neural networks. arXiv preprint arXiv:2012.05208, 2020.

[4] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 9650–9660, 2021.

[5] Luke Melas-Kyriazi, Christian Rupprecht, Iro Laina, and Andrea Vedaldi. Deep spectral meth-
ods: A surprisingly strong baseline for unsupervised semantic segmentation and localization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
8364–8375, 2022.

[6] SM Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Geoffrey E
Hinton, et al. Attend, infer, repeat: Fast scene understanding with generative models. Advances
in neural information processing systems, 29, 2016.

[7] Klaus Greff, Sjoerd Van Steenkiste, and Jürgen Schmidhuber. Neural expectation maximization.
Advances in Neural Information Processing Systems, 30, 2017.

[8] Sjoerd van Steenkiste, Michael Chang, Klaus Greff, and Jürgen Schmidhuber. Relational
neural expectation maximization: Unsupervised discovery of objects and their interactions. In
International Conference on Learning Representations, 2018.

[9] Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt
Botvinick, and Alexander Lerchner. Monet: Unsupervised scene decomposition and representa-
tion. arXiv preprint arXiv:1901.11390, 2019.

[10] Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong
Jiang, and Sungjin Ahn. SPACE: unsupervised object-oriented scene representation via spatial
attention and decomposition. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[11] Jindong Jiang, Sepehr Janghorbani, Gerard De Melo, and Sungjin Ahn. Scalor: Generative
world models with scalable object representations. In International Conference on Learning
Representations, 2019.

[12] Gautam Singh, Yeongbin Kim, and Sungjin Ahn. Neural systematic binder. In The Eleventh
International Conference on Learning Representations, 2022.

[13] Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, Dominik Zietlow, Tianjun Xiao, Carl-
Johann Simon-Gabriel, Tong He, Zheng Zhang, Bernhard Schölkopf, Thomas Brox, and
Francesco Locatello. Bridging the gap to real-world object-centric learning. In The Eleventh
International Conference on Learning Representations, 2023.

5



[14] Sindy Löwe, Phillip Lippe, Maja Rudolph, and Max Welling. Complex-valued autoencoders
for object discovery. Transactions on Machine Learning Research, 2022.

[15] Martin Engelcke, Oiwi Parker Jones, and Ingmar Posner. Genesis-v2: Inferring unordered
object representations without iterative refinement. Advances in Neural Information Processing
Systems, 34:8085–8094, 2021.

[16] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg
Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with
slot attention. In Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020.

[17] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pages 213–229. Springer, 2020.

[18] Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu,
David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver
io: A general architecture for structured inputs & outputs. In International Conference on
Learning Representations, 2021.

[19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[20] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On
the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

[21] Yao-Hung Hubert Tsai, Nitish Srivastava, Hanlin Goh, and Ruslan Salakhutdinov. Capsules with
inverted dot-product attention routing. In International Conference on Learning Representations,
2019.

[22] Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess,
Daniel Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object repre-
sentation learning with iterative variational inference. In International Conference on Machine
Learning, pages 2424–2433. PMLR, 2019.

[23] Jack Brady, Roland S. Zimmermann, Yash Sharma, Bernhard Schölkopf, Julius Von Kügelgen,
and Wieland Brendel. Provably learning object-centric representations. In Proceedings of the
40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pages 3038–3062. PMLR, 23–29 Jul 2023.

[24] Thomas Kipf, Gamaleldin Fathy Elsayed, Aravindh Mahendran, Austin Stone, Sara Sabour,
Georg Heigold, Rico Jonschkowski, Alexey Dosovitskiy, and Klaus Greff. Conditional object-
centric learning from video. In International Conference on Learning Representations, 2021.

[25] Gamaleldin Fathy Elsayed, Aravindh Mahendran, Sjoerd van Steenkiste, Klaus Greff,
Michael Curtis Mozer, and Thomas Kipf. Savi++: Towards end-to-end object-centric learning
from real-world videos. In Advances in Neural Information Processing Systems, 2022.

[26] Mehdi SM Sajjadi, Daniel Duckworth, Aravindh Mahendran, Sjoerd van Steenkiste, Filip
Pavetic, Mario Lucic, Leonidas J Guibas, Klaus Greff, and Thomas Kipf. Object scene
representation transformer. Advances in Neural Information Processing Systems, 35:9512–9524,
2022.

[27] Karl Stelzner, Kristian Kersting, and Adam R Kosiorek. Decomposing 3d scenes into objects
via unsupervised volume segmentation. arXiv preprint arXiv:2104.01148, 2021.

[28] Allan Jabri, Sjoerd van Steenkiste, Emiel Hoogeboom, Mehdi SM Sajjadi, and Thomas
Kipf. Dorsal: Diffusion for object-centric representations of scenes et al.. arXiv preprint
arXiv:2306.08068, 2023.

6



[29] Anand Gopalakrishnan, Kazuki Irie, Jürgen Schmidhuber, and Sjoerd van Steenkiste. Unsu-
pervised learning of temporal abstractions with slot-based transformers. Neural Computation,
35(4):593–626, 2023.

[30] Melika Behjati and James Henderson. Inducing meaningful units from character sequences
with slot attention. arXiv preprint arXiv:2102.01223, 2021.

[31] Michael Chang, Tom Griffiths, and Sergey Levine. Object representations as fixed points:
Training iterative refinement algorithms with implicit differentiation. Advances in Neural
Information Processing Systems, 35:32694–32708, 2022.

[32] Baoxiong Jia, Yu Liu, and Siyuan Huang. Improving object-centric learning with query
optimization. In The Eleventh International Conference on Learning Representations, 2022.

[33] Gautam Singh, Fei Deng, and Sungjin Ahn. Illiterate dall-e learns to compose. In International
Conference on Learning Representations, 2021.

[34] Yan Zhang, David W. Zhang, Simon Lacoste-Julien, Gertjan J. Burghouts, and Cees G. M.
Snoek. Unlocking slot attention by changing optimal transport costs. In Proceedings of the
40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pages 41931–41951. PMLR, 23–29 Jul 2023.

[35] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In International Conference on Machine Learning, pages 10524–10533. PMLR, 2020.

[36] Richard S Zemel and Michael C Mozer. Localist attractor networks. Neural Computation,
13(5):1045–1064, 2001.

[37] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR,
abs/1607.06450, 2016.

[38] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

[39] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. In International
Conference on Learning Representations, 2020.

[40] Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick,
and Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary
visual reasoning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2901–2910, 2017.

[41] Rishabh Kabra, Chris Burgess, Loic Matthey, Raphael Lopez Kaufman, Klaus Greff, Malcolm
Reynolds, and Alexander Lerchner. Multi-object datasets, 2019.

[42] Laurynas Karazija, Iro Laina, and Christian Rupprecht. Clevrtex: A texture-rich benchmark
for unsupervised multi-object segmentation. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

[43] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In
Computer Vision - ECCV 2014 - 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part V, volume 8693 of Lecture Notes in Computer Science, pages
740–755. Springer, 2014.

[44] Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J
Fleet, Dan Gnanapragasam, Florian Golemo, Charles Herrmann, Thomas Kipf, Abhijit Kundu,
Dmitry Lagun, Issam Laradji, Hsueh-Ti (Derek) Liu, Henning Meyer, Yishu Miao, Derek
Nowrouzezahrai, Cengiz Oztireli, Etienne Pot, Noha Radwan, Daniel Rebain, Sara Sabour,

7



Mehdi S. M. Sajjadi, Matan Sela, Vincent Sitzmann, Austin Stone, Deqing Sun, Suhani Vora,
Ziyu Wang, Tianhao Wu, Kwang Moo Yi, Fangcheng Zhong, and Andrea Tagliasacchi. Kubric:
a scalable dataset generator. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2022.

[45] Ondrej Biza, Sjoerd van Steenkiste, Mehdi S. M. Sajjadi, Gamaleldin Fathy Elsayed, Aravindh
Mahendran, and Thomas Kipf. Invariant slot attention: Object discovery with slot-centric
reference frames. In International Conference on Machine Learning, ICML 2023, 23-29 July
2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Research,
pages 2507–2527. PMLR, 2023.

[46] William M Rand. Objective criteria for the evaluation of clustering methods. Journal of the
American Statistical association, 66(336):846–850, 1971.

[47] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of classification, 2:193–218,
1985.

[48] Nicholas Watters, Loïc Matthey, Christopher P. Burgess, and Alexander Lerchner. Spatial
broadcast decoder: A simple architecture for learning disentangled representations in vaes.
CoRR, abs/1901.07017, 2019.

[49] Paul Jaccard. Distribution de la flore alpine dans le bassin des dranses et dans quelques régions
voisines. Bull Soc Vaudoise Sci Nat, 37:241–272, 1901.

[50] Mehdi S. M. Sajjadi, Henning Meyer, Etienne Pot, Urs Bergmann, Klaus Greff, Noha Radwan,
Suhani Vora, Mario Lucic, Daniel Duckworth, Alexey Dosovitskiy, Jakob Uszkoreit, Thomas
Funkhouser, and Andrea Tagliasacchi. Scene Representation Transformer: Geometry-Free
Novel View Synthesis Through Set-Latent Scene Representations. CVPR, 2022.

[51] Georg Heigold, Matthias Minderer, Alexey Gritsenko, Alex Bewley, Daniel Keysers, Mario
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A Additional Results

A.1 Foreground mIoU
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Figure 5: Foreground mIoU of Slot Attention and Transformer variants on the image datasets

A.2 Scaling by increasing N .
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Figure 6: FG-ARI and Relative Validation Loss as we increase N for (a) SA and (b) TF-Inv. We
report the validation loss relative to SA using N = 3 to be able to compare between datasets.

We hypothesize that because the number of free parameters—and hence capacity—of TF-Inv increases
linearly with N but it does not for SA, TF-Inv may have a performance advantage. We ran experiments
for various values of N , using the same N during training and evaluation, across several datasets and
present the results in Figure 6. We observe that for CLEVR and MOVi-A, the performance of SA
does degrade as N > 3, both in terms of validation loss and in terms of FG-ARI. TF-Inv, on the other
hand, generally maintains or slightly improves performance as its number of layers increases. This
provides some evidence supporting our hypothesis that TF-Inv scales better to larger N , which opens
up an interesting avenue for future work.

A.3 Open Questions

Slot Initialization. To initialize the slots, our previous experiments sample from a shared Gaussian
distribution with learnable parameters. Alternatively, it is possible to learn the set of slot initializations
directly [17, 24, 25, 32]. We demonstrate the effect of this change in Figure 7 on the CLEVR,
CLEVRTex, and MOVi-A datasets. It can be seen that when learning the set of slot initializations,
TF-Inv generally achieves slightly lower FG-ARI on CLEVR and MOVi-A and considerably lower
FG-ARI on CLEVRTex. Moreover, the GRU gating improves performance of TF-Inv in this setting,
especially on the CLEVRTex dataset. TF can also be seen to perform considerably better in this
setting, though a consistent ordering among the model variants across datasets can not be established.
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Figure 7: FG-ARI of the different model variants when using learned initializations per slot or learned
Gaussian initializations shared between slots.
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Figure 8: FG-ARI of Slot Attention and Trans-
former variants using a Transformer Decoder on
CLEVR.

Sensitivity to Decoder. In our previous exper-
iments we adopted the Spatial Broadcast De-
coder [48] to reconstruct the image from the
slots following Locatello et al. [16]. Though
this is arguably the standard approach, it is a rel-
atively weak decoder that incorporates a strong
inductive bias for modeling images as a compo-
sition of parts. Recently, Singh et al. [33] pro-
posed using a more powerful Transformer De-
coder that cross-attends into the slots in place of
the Spatial Broadcast Decoder and subsequent
work [53] has shown this type of decoder facili-
tates object discovery in more visually complex
scenes.

To investigate the sensitivity to this choice, we evaluated each model variant using a Transformer
Decoder instead of the Spatial Broadcast Decoder on the CLEVR dataset. From Figure 8, we observe
that while TF-Inv still outperforms TF in this setting, it performs considerably worse than SA overall.
Interestingly, the GRU gating appears to have a significant effect in this case. Finally, we note that
all models perform worse with the Transformer Decoder than with the Spatial Broadcast Decoder
(see Figure 3), suggesting that the more complex Transformer Decoder is not helpful for this dataset
containing images of simple geometric shapes.
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Figure 9: Comparing SA, SA-ID and TF-Inv in terms of FG-ARI as N increases.

Slot Attention with ‘Implicit Differentiation’ Chang et al. [31] recently proposed using ‘implicit
differentiation’ to improve upon Slot Attention, which effectively comes down to propagating the
gradient through only the last iteration when training the model (i.e., it uses 1-step truncated backprop-
agation through time [54]). Further, Jia et al. [32] propose a straight-through estimator [55] to extend
this approach to learned slot initializations. In Figure 9 we compare to SA w/ Implicit Differentiation
(SA-ID) for varying N and confirm that it often improves over vanilla SA. Although we observe that
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TF-Inv outperforms or matches SA-ID when scaling to a larger number of layers for CLEVR and
MOVi-A, it fails to do so on the CLEVRTex dataset, where SA-ID achieves over 90% FG-ARI.

Surprisingly, in preliminary experiments applying SA-ID to the OSRT setting, we observed that using
N = 5 iterations yields 23.64 dB PSNR and 78.13% FG-ARI, which is a substantial improvement
over both SA and TF-Inv. At the moment is not entirely clear why SA-ID can yield significant
improvements in some conditions, but not consistently. Hence, it would be interesting to better
understand the conditions under which improvements are obtained and to apply any insights to TF-Inv.

B Implementation Details

B.1 Architectures

In the following we provide an overview of the architecture details for our main results.

Slot Initialization. For all object discovery experiments (except the Slot Initialization experiments),
we initialize the slots by sampling from a shared Gaussian distribution with learnable mean and
standard deviation as in Locatello et al. [16]. We use a slot size of 128 for CLEVR and MOVi, 64 for
CLEVRTex, and 256 for COCO.

Encoder. For CLEVR, we use the 4-layer CNN from Locatello et al. [16]. Each layer has a 5× 5
kernel size with 64 channels. The first layer has a stride of 2 and the remaining layers have a stride
of 1. A learned positional embedding is added to the resulting spatial feature grid, followed by a
LayerNorm and a single layer MLP with hidden dimension of 64.

For CLEVRTex, we use a ResNet34 [56] as the encoder, as suggested by Biza et al. [45]. We then
add a learned positional embedding and apply LayerNorm, followed by an MLP with hidden size
128.

For COCO and the MOVi datasets, we use a ViT [39] pre-trained with DINO [4] as the image
encoder, as proposed in DINOSAUR [13]. We follow the setup in the original DINOSAUR paper and
do not add an additional positional embedding to the output of the ViT. We use the recommended
architecture and hyperparameters from the original paper, using a ViT-B/16 for COCO and a ViT-B/8
for the MOVi datasets.

Slot Attention (and Variants). TF uses a pre-LayerNorm cross-attention-only Transformer. In
the cross-attention, the slots are used as queries and the encoder features are used as the keys and the
values. We additionally apply LayerNorm on the inputs and do not apply the final LayerNorm on the
queries, similar to what is done in standard Slot Attention. In our experiments, we use a single head
and do not use dropout.

TF-Inv uses the same architecture as TF, except we apply the ‘inverted’ version of attention that
is used in Slot Attention. Specifically, during the scaled dot-product attention operation, when we
normalize the attention map, we perform the softmax over the queries (ie. the slots) instead of the keys
as is normally done [19]. This is followed by a renormalization step to ensure the attention weights
for each slot sum to one, essentially taking a weighted average of the values instead of a weighted
sum. This technique was proposed in Locatello et al. [16] to help stabilize the inverted attention
operation. Alternatively, we experimented with using LayerNorm in place of renormalization as
in Tsai et al. [21] and using key, query normalization as in Dehghani et al. [57] though we did
not observe meaningful differences in performance throughout our investigation. Only the results
reported for OSRT using TF-Inv included those changes.

TF-Inv w/ GRU uses a GRU to update the slots after the cross-attention instead of the normal residual
connection. This weights of the GRU are not shared across layers of the Transformer, essentially
acting as a gating mechanism for the slot updates. We had also experimented with using a shared
GRU across layers, but empirically did not observe a meaningful difference.

SA is the standard Slot Attention algorithm with the MLP update.

SA w/o GRU replaces the GRU that is normally used to update the weights with a residual update.

12



Decoder. For CLEVR and CLEVRTex, we use the Spatial Broadcast Decoder [48] proposed in
Locatello et al. [16]. For CLEVR, we use a grid of size 8 × 8, followed by a 4-layer Transposed
Convolutional network, each with kernel size 5 × 5, hidden dimension 64, and a stride of 2. For
CLEVRTex, we use a grid of size 16× 16, followed by a 5-layer Transposed Convolutional network,
each with kernel size 5× 5, and hidden dimension 64. The first three layers have a stride of 3 and the
last two have a stride of 2. For the COCO and the MOVi datasets, we use the MLP decoder with the
same hyperparameters as proposed in the original DINOSAUR paper [13].

SAVi. For the SAVi experiments, we follow the setup from the enhanced SAVi++ [25]. Specifically,
we initialize the slots using the ground truth bounding box information of the objects. We use a single
layer MLP with hidden dimension 256 to encode the bounding box into the set of initial slots. We
use the modified ResNet34 encoder as described in SAVi++ [25]. For both the Slot Attention and
Transformer variants used for the ‘corrector’, we use a slot size of 128 and MLP hidden dimension
of 256. Similarly, the Transformer used for the ‘predictor’ uses a slot size of 128 and MLP hidden
dimension of 256. We use the same 4-layer Spatial Broadcast Decoder as we use in the CLEVR
object discovery experiments. Instead of pixel reconstruction, we predict the optical flow and depth,
as described in the original SAVi++ paper.

Transformer Decoder. For our experiments with the Transformer Decoder, we follow the archi-
tecture and hyperparameters from Singh et al. [33, 53], except instead of using the DVAE encoder
for the input features, we use the same CNN encoder as we use on the CLEVR dataset in our other
experiments. The DVAE architecture is unchanged from the original paper and we use a Transformer
Decoder with 8 layers, 4 heads, model size of 192, MLP hidden size of 768, and 0.1 Dropout
probability.

OSRT. For OSRT, we adopt the default configuration on the MSN-H dataset outlined in Sajjadi et
al. [26]. Given a set of input views of a scene rendered from different camera angles, the model is
trained to predict novel views of the scene.

B.2 Experimental Details

B.2.1 Datasets

For CLEVR, we use the version of the dataset with masks [41], splitting it into 70,000 images for
training and 10,000 for testing. For CLEVRTex, we use a training set of 40,000 images and test set of
5,000 images. For COCO, we use the official splits of 118,287 images for training and 5,000 images
for testing. Following DINOSAUR [13], we ignore pixels belonging to overlapping ground truth
segments during evaluation. For MOVi-Image, we split each 24-frame MOVi video into individual
frames, resulting in a training set of 232,872 images and a test set of 6,000 images. Note that we
use the official “validation” set for testing since the official “test” set is out-of-distribution, which is
a setting that we not concerned with in our experiments. For the SAVi experiments, we randomly
sample a subsequence of 6 frames from each video during training. We run evaluation on the entire
24-frame videos.

B.2.2 Training Details

Learning Rates. For all object discovery experiments, except the Transformer Decoder experi-
ments, we train to 300,000 steps. We use a batch size of 64 and the Adam optimizer [58] for all
datasets. For CLEVR and the MOVi video datasets, we linearly warm up the learning rate from 0
to 2e-4 over 2,500 steps and then anneal the learning rate with a Cosine schedule for the rest of the
training steps. We additionally clip the gradient norm to 0.05. For CLEVRTex, we instead use a base
learning rate of 4e-4 and 10,000 warmup steps, but keep the rest of the training configurations the
same. For COCO and the MOVi image datasets, we also use a base learning rate of 4e-4 and 10,000
warmup steps, but exponentially decay the learning rate with a half-life of 100,000 steps. We clip the
gradient norm at 1.0. For the Transformer Decoder experiments, we train to 200,000 steps and clip
the gradient norm at 0.05. We train the DVAE with a constant learning rate of 3e-4. We train the Slot
Attention / Transformer module with a base learning rate of 1e-4 and 30,000 warmup steps, followed
by exponential decay wth a half-life of 250,000 steps. We train the Decoder with the same schedule,
but with a base learning rate of 3e-4.
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For OSRT, we train to 1 million steps and otherwise follow the training procedure of the original
paper, which is based off of SRT [59].

Number of Slots. Table 2 shows the number of slots we used for each dataset in the object discovery
experiments. We make sure to set the number of slots to be large enough to cover the maximum
number of objects in the dataset.

Dataset Number of Slots
CLEVR 11
CLEVRTex 11
COCO 7
MOVi-A 11
MOVi-C 11
MOVi-E 24

Table 2: Number of slots used in the object discovery experiments.

Data Preprocessing and Augmentations. For the CLEVR and CLEVRTex datasets, we take a
192×192 center crop of each image before resizing it to 128×128. For COCO, we randomly flip
the image horizontally during training before resizing the image such that the smaller side is 224
pixels while maintaining the aspect ratio. We then take a 224×224 center crop. For the MOVi
image datasets, we resize the images to 224×224. For the MOVi video datasets, we follow the data
augmentation strategy provided in SAVi++ [25].

B.2.3 Evaluation Metrics

To evaluate the quality of the segmentations in the object discovery task, we use the foreground
adjusted rand index (FG-ARI) [22, 46, 47]. ARI measures the similarity of clusters and assigns a
high score if pixels belonging to the same ground truth cluster are also in the same predicted clusters.
As is common practice in the literature, we compute ARI only on the foreground ground-truth masks,
ignoring the background pixels.

For the SAVi experiments, we use the video version of FG-ARI, which considers pixels corresponding
to one object along the entire video as a single cluster. This requires each slot to predict the same
object consistently throughout the video. Following SAVi [24], we do not include the first frame of
the video during evaluation since we provide conditional bounding box information in the first frame.
For OSRT, pixels corresponding to one object across different views are considered as a single cluster,
requiring consistent predictions across views.

For our object discovery experiments, we additionally report foreground mean intersection over union
(mIoU) in Table 5. To calculate this metric, we first use Hungarian matching [60] between the ground
truth masks and the predicted masks to obtain a ground truth assignment for each predicted mask. We
then calculate the IoU between the predicted and ground truth masks using this assignment. Unlike
FG-ARI, this metric penalizes predictions that over-segment the objects.

For our OSRT experiments, we additionally report Peak Signal-to-Noise Ration (PSNR), which
measures how well the model can reconstruct novel views.
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