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Figure 1. Crossing domain boundaries with DGInStyle. We propose a data-centric generative pipeline for domain generalization. It is
derived from Stable Diffusion and augmented with a novel high-precision style-preserving semantic control. DGInStyle combines semantic
masks (Query) with style prompts (e.g., Night or Rain) to generate training data for semantic segmentation networks with widely varying
appearance. DGInStyle achieves state-of-the-art semantic segmentation across domains in autonomous driving.

Abstract

Large, pretrained latent diffusion models (LDMs) have
demonstrated an extraordinary ability to generate creative
content, specialize to user data through few-shot fine-
tuning, and condition their output on other modalities, such
as semantic maps. However, are they usable as large-
scale data generators, e.g., to improve tasks in the per-
ception stack, like semantic segmentation? We investigate
this question in the context of autonomous driving, and
answer it with a resounding ”yes”. We propose an effi-
cient data generation pipeline termed DGInStyle. First,
we examine the problem of specializing a pretrained LDM
to semantically-controlled generation within a narrow do-
main. Second, we propose a Style Swap technique to en-
dow the rich generative prior with the learned semantic
control. Third, we design a Multi-resolution Latent Fusion
technique to overcome the bias of LDMs towards dominant
objects. Using DGInStyle, we generate a diverse dataset of
street scenes, train a domain-agnostic semantic segmenta-
tion model on it, and evaluate the model on multiple popular
autonomous driving datasets. Our approach consistently
increases the performance of several domain generalization
methods compared to the previous state-of-the-art methods.
The source code and the generated dataset are available at
dginstyle.github.io.

1. Introduction

The rise of generative image modeling has been a game
changer for AI-assisted creativity. Moreover, it also paves
the way for improvements beyond artistic generation, par-
ticularly in computer vision. In this paper, we investigate
one such avenue and use a powerful text-to-image genera-
tive diffusion model to improve semantic segmentation.

Semantic segmentation requires large annotated datasets
for supervised training. While manual annotation is costly
and time-consuming [6, 40], synthetic datasets offer a cost-
effective solution. However, these datasets face a do-
main gap [11], leading to poor performance when networks
trained on the source domain are applied to the target do-
main. When the characteristics of the target domain are
known, the domain gap can be addressed with Domain
Adaptation techniques [11, 19]. A more challenging, ar-
guably equally important setting is Domain Generalization
(DG) [9, 21, 57], where a model is deployed in a new en-
vironment without knowing the target domain except for its
general context (such as “autonomous driving”).

In the DG semantic segmentation literature, the role of
the prior domain is often overlooked or typically remains
implicit [7, 21, 57]. Therefore, we take a closer look at the
prior domain and study how we can utilize the rich prior that
emerges in modern foundational models trained on internet-
scale datasets [42] to improve domain generalization of se-
mantic segmentation. To this end, we design DGInStyle,

https://dginstyle.github.io/


a novel data generation pipeline with a pretrained text-to-
image LDM [37] at its core, fine-tuned with source do-
main data and conditioned on dense label maps. Such a
pipeline can automatically generate images with character-
istics of the prior domain and equipped with pixel-aligned
label maps (Fig. 1). The idea is that a model trained on such
data will offer improved domain generalization, drawing on
the prior knowledge embedded in the LDM.

This comes with two new challenges: The LDM needs to
learn to produce images that match semantic masks from the
labeled source domain while avoiding overfitting to its style.
Additionally, the generated images need precise alignment
with segmentation masks, even for very small instances.
Our Contributions address these issues: First we propose
a Style Swap technique inspired by modern fine-tuning and
semantic style control mechanisms, to achieve the neces-
sary level of control and diversity over the outputs. Second,
we present a novel Multi-Resolution Latent Fusion tech-
nique, which helps us to go beyond the limited resolution
of the LDM generator and achieve conditioned generation
of small instances. Lastly, we use the resulting genera-
tive pipeline to create a diversified dataset to train seman-
tic segmentation networks. Due to its complementary de-
sign, DGInStyle achieves major performance improvements
when combined with existing DG methods. In particular, it
significantly boosts the state-of-the-art domain generaliza-
tion in autonomous driving.

2. Related Work
Generative Models for Dataset Generation. Diffusion
Models (DMs) [3, 8, 18, 29, 43, 44] have demonstrated
state-of-the-art image generation quality, primarily due to
a simplified training objective. Latent diffusion models
(LDMs) [37] reduce computational demands by operat-
ing in latent space, thus enabling absorption of internet-
scale data [42]. A variety of diffusion models [2, 12,
14, 17, 23, 30, 54, 56] integrate additional condition sig-
nals to provide more granular control for image genera-
tion. Recent techniques have utilized DMs to create train-
ing data for downstream tasks such as image classification
[1, 10, 16, 27, 41, 45], object detection [4, 48, 55], seman-
tic segmentation [13, 26, 35, 46, 47, 51]. Paired image-
mask dataset generation has been a focal point of research,
with methodologies primarily falling into grounded gener-
ation [13, 26, 28, 46, 50], image-to-image translation and
Semantic guidance [30, 51, 54]. DGInStyle falls into the
last category. We use source domain masks to guide the im-
age generation and enforce the generation fidelity using the
proposed Multi-Resolution Latent Fusion technique.
Domain Generalization (DG) aims to enhance the robust-
ness of models trained on source domains and enable them
to perform well on unseen domains belonging to the same
task group. To improve domain generalization in semantic

segmentation, prior methods utilize transformations such as
instance normalization [32] or whitening [5] to align vari-
ous source domain data with a standardized feature space.
Another line of research [24, 25, 33, 53, 57, 58] focuses on
domain randomization, which augments the source domain
with diverse styles. Recent works [13, 46] have explored
the use of DMs for DG in semantic segmentation. These
methods implement grounded generation by training a seg-
mentation decoder to achieve image-mask alignment. Our
approach takes a different semantic guidance route, exhibit-
ing higher controllability and generating consistent image-
label pairs that qualify as training datasets.

3. Methods

Given the labeled source domain data represented as DS ={(
xS
i , y

S
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)}Ns

i=1
, the goal is to generalize the semantic

segmentation model fθ to the unseen target domain data
DT , by utilizing the generated labeled dataset DG ={(
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. x and y stand for the images and their cor-

responding labels, respectively, whereas Ns and Ng are the
total number of images in each dataset. {yGi }

Ng

i=1 is a subset
of {ySi }

Ns
i=1 in our case, although other labels are possible.

Label Conditioned Image Generation. We use exist-
ing semantic masks and conditional text-to-image LDMs to
obtain pairs of pixel-aligned images and masks. Specifi-
cally, we employ the recent work ControlNet [54] due to
its efficient guidance and accessible computational require-
ments. During training, we convert segmentation masks
into one-hot encodings, pass them as inputs to ControlNet,
and supervise it with the corresponding images from the
source domain. We also pass the unique class names ex-
tracted from the segmentation mask as a text prompt. Once
trained, we condition the generation process on source do-
main masks and thus construct the new training data.
Preserving Style Prior with Style Swap. Training Con-
trolNet from the base LDM pretrained on the prior domain
leads to overfitting to the style of the domain it is fine-tuned
on (as shown in Fig. 2 (c)), which limits style diversity in
the generated images. To mitigate this, we develop a Style
Swap technique to remove the domain-specific style in three
steps, shown in Fig. 3.

(a) Source Mask (b) Source Image (c) Gen. w/o Swap (d) Gen. w/ Swap

Figure 2. ControlNet learns the source domain style. This
effect hinders varied data generation for domain generalization.
Our Style Swap mitigates the effect and preserves the style prior.



Figure 3. Overview of our proposed Style Swap technique. ControlNet learns segmentation-conditioned image generation on the source
domain. To avoid that ControlNet also steers the generated style, it is trained on top of a source domain fine-tuned LDM. So, the source
domain LDM can be replaced with the original LDM to restore its rich style prior.

As a first step of our Style Swap technique, we fine-tune
the base LDM’s U-Net UP encapsulating the prior domain
with the Dreambooth protocol [38] using source domain
images, resulting in US. Second, we use US as the base
model instead of UP to initialize ControlNet, allowing US

to absorb the domain style while ControlNet focuses on the
task-specific yet style-agnostic layout control. Finally, we
perform inference with the trained ControlNet, except that
we switch the base LDM generator to UP while keeping
the ControlNet trained for US. This overall procedure en-
dows the original LDM with task-specific semantic control,
allowing us to generate diverse images adhering to the se-
mantic segmentation masks (Fig. 2 (d)).

Style Prompting. We concatenate unique class names
present in the semantic mask into a list and pass it to the text
encoder to guide the generation. To further diversify gener-
ated data, we add randomized task-specific qualifiers to the
text conditioning, including a range of adverse weather con-
ditions (e.g., foggy, snowy, rainy, overcast, and night sce-
narios). An example text prompt can be: A city street scene
photo with car, road, sky, rider, bicycle, vegetation, build-
ing, in foggy weather. This approach, especially when inte-
grated with the Style Swap technique, allows us to produce
images with precise semantic layouts and varied styles.

Multi-Resolution Latent Fusion. ControlNet struggles
with small objects due to its low-resolution latent space.
To improve adherence to semantic masks, we propose a
two-stage Multi-Resolution Latent Fusion pipeline. The
first stage involves regular ControlNet generation at origi-
nal resolution, serving as a reference for the second high-
resolution generation pass. In the second stage, we re-
fine the image in an upsampled latent space, focusing on
smaller details, followed by downsizing to original size.
This process includes Controlled Tiled MultiDiffusion,
where high-resolution latent codes are generated and di-

vided into overlapping tiles for diffusion, conditioned on
the corresponding semantic maps and prompts. The de-
noised overlapping tiles are fused subsequently to maintain
consistency. Nevertheless, this can degrade large objects,
which we address with Latent Inpainting Diffusion by re-
taining large objects from the first pass. This combined ap-
proach enables higher-quality generation of small objects
while preserving large ones, overcoming the LDM’s resolu-
tion limitations.
Rare Class Generation. We tackle imbalanced datasets by
considering class distribution at both the ControlNet train-
ing and dataset generation phases. Specifically, for each
class c with frequency fc in the source domain, its sampling
probability is P (c) = e(1−fc)/T /

∑C
c′=1 e

(1−fc′ )/T , where
C is the total number of classes, and T controls the smooth-
ness of the class distribution. This approach helps the model
better recognize these challenging classes and also plays a
role in creating a more balanced dataset.

4. Experiments
Datasets. Following [19, 21], we use GTA [36] as the syn-
thetic source dataset and employ five real-world datasets [6,
31, 39, 40, 52] for evaluation.
Comparison with State-of-the-Art DG. In Tab. 1, we
benchmark several DG methods trained using either the
GTA dataset alone or augmented with our DGInStyle and
subsequently evaluated across five real-world datasets to
measure their generalization capability. Specifically, we in-
tegrate DGInStyle into IBN-Net [32], RobustNet [5], Color-
Aug (random brightness, contrast, saturation, and hue),
DAFormer [19, 21], and HRDA [20, 21] covering ResNet-
101 [15] and MiT-B5 [49] network architectures. The re-
sults in Tab. 1 indicate that DGInStyle significantly en-
hances the DG performance across various DG methods and
architectures, with improvements ranging from +2.5 to +7.2



DG Method DGInStyle CS
[6]

BDD
[52]

MV
[31]

Avg3 ACDC
[40]

DZ
[39]

Avg5 ∆Avg5

ResNet-101 [15]

IBN-Net [32]
✘ 37.37 34.21 36.81 36.13 25.85 6.12 28.07 ↑ 5.1
✔ 40.80 38.98 43.20 40.99 31.68 11.19 33.17

RobustNet [5]
✘ 37.20 33.36 35.57 35.38 24.80 5.49 27.28 ↑ 6.8
✔ 41.03 39.62 44.85 41.83 32.30 12.73 34.11

DRPC [53] ✘ 42.53 38.72 38.05 39.77 – – –
FSDR [22] ✘ 44.80 41.20 43.40 43.13 24.77 9.66 32.77
GTR [33] ✘ 43.70 39.60 39.10 40.80 – – –
SAN-SAW [34] ✘ 45.33 41.18 40.77 42.23 – – –
AdvStyle [58] ✘ 44.51 39.27 43.48 42.42 – – –
SHADE [57] ✘ 46.66 43.66 45.50 45.27 29.06 8.01 34.58

HRDA [20, 21]
✘ 39.63 38.69 42.21 40.18 26.08 7.80 30.88 ↑ 7.2
✔ 46.89 42.81 50.19 46.63 34.19 16.16 38.05

MiT-B5 [49]

Color-Aug
✘ 46.64 45.45 49.04 47.04 36.10 16.37 38.72 ↑ 3.3
✔ 50.76 47.21 52.33 50.10 38.92 20.94 42.03

DAFormer [19, 21]
✘ 52.65 47.89 54.66 51.73 38.25 17.45 42.18 ↑ 4.3
✔ 55.31 50.82 56.62 54.25 44.04 25.58 46.47

HRDA [20, 21]
✘ 57.41 49.11 61.16 55.90 44.04 20.97 46.54 ↑ 2.5
✔ 58.63 52.25 62.47 57.78 46.07 25.53 48.99

Table 1. DG with GTA source domain and ResNet-101/MiT-B5
backbone. Comparison of DG methods for semantic segmenta-
tion in autonomous driving scenes w/ and w/o integrating our gen-
erated dataset (mIoU ↑ in %) .

DG Method DGInStyle BDD
[52]

MV
[31]

ACDC
[40]

DZ
[39]

Average ∆Average

Color-Aug ✘ 53.33 60.06 52.38 23.00 47.19 ↑ 2.1
✔ 55.18 59.95 55.19 26.83 49.29

DAFormer [19, 21] ✘ 54.19 61.67 55.15 28.28 49.82 ↑ 1.5
✔ 56.26 62.67 57.74 28.55 51.31

HRDA [20, 21] ✘ 58.49 68.32 59.70 31.07 54.40 ↑ 0.7
✔ 58.84 67.99 61.00 32.60 55.11

Table 2. DG with Cityscapes source domain and MiT-B5 [49]
backbone. Cityscapes to other datasets domain generalization w/
and w/o integrating our generated dataset (mIoU ↑ in %).

mIoU on average across datasets. These results confirms the
efficacy of our method in generating diverse, style-varied
and accurate image-label pairs.

To broaden the scope of our evaluation, we set an ex-
periment with Cityscapes [6] as a source domain, general-
izing to other real-world domains in Tab. 2. The results in
this real-to-real adaptation scenario again confirm that our
generated dataset consistently boosts the performance of se-
mantic segmentation models across all configurations.
Ablation Studies. We conduct ablation studies to evalu-
ate each component of our method using the DAFormer
framework, with results in Tab. 3. Adding Multi-Resolution
Latent Fusion (MRLF) improved small object generation,
boosting average performance by +0.96 across five datasets.
The Style Swap technique, key to style diversification, fur-
ther increased performance by +1.57, showcasing the value
of leveraging prior domain knowledge for diverse sample
generation. Contributions from Style Prompts and Rare

Modules mIoU↑
MRLF Swap Prompts RCG Avg3 Avg5

✘ ✘ ✘ ✘ 51.46 43.31
✔ ✘ ✘ ✘ 52.84 44.27
✔ ✔ ✘ ✘ 53.85 45.84
✔ ✔ ✔ ✘ 53.95 46.16
✔ ✔ ✔ ✔ 54.25 46.67

Table 3. Ablation studies on
different components for our
data generation pipeline. All
models use DAFormer [19].

MRLF Modules mIoU↑
CTMD LID Avg3 Avg5

✘ ✘ 53.07 45.19

✔ ✘ 54.05 45.60

✔ ✔ 54.25 46.67

Table 4. MRLF Ablation
with Controlled Tiled MultiDif-
fusion (CTMD) and Latent In-
painting Diffusion (LID).

Semantic Mask (a) w/o MRLF (b) w/ CTMD (c) w/ CTMD+LID

Figure 4. Qualitative examples of MRLF. (a) When zooming in
on the mask crop, the initial generation fails to create recognizable
content for small instances like cars and traffic poles. (b) This is
addressed by conducting Controlled Tiled MultiDiffusion, which
enhances the generation quality of fine details. However, it can
lead to artifacts of large objects. (c) When adding Latent Inpaint-
ing Diffusion, the generated image not only improves the local
details but also reduces artifacts in large objects.

Class Generation (RCG) also led to performance gains.
To gain further insights on MRLF, we ablate its two

passes while incorporating all other components during
dataset generation. As shown in Tab. 4, both the Controlled
Tiled MultiDiffusion (CTMD) and the Latent Inpainting
Diffusion (LID) contribute to the overall performance of our
method. This is also exemplified in Fig. 4, where it becomes
evident that the MRLF module not only refines local details
but also minimizes artifacts in larger objects.

5. Conclusion
We have explored the potential of generative data augmen-
tation using pretrained LDMs in the challenging context
of domain generalization for semantic segmentation. We
propose DGInStyle, a novel and efficient data generation
pipeline that crafts diverse task-specific images by sampling
the rich prior of a pretrained LDM, while ensuring precise
adherence of the generation to semantic layout condition.
DGInStyle consistently improves the performance of sev-
eral domain generalization methods across CNN and Trans-
former architectures, notably enhancing the state of the art.
We hope that it can lay the foundation for future work on
how to best utilize generative models to advance domain
generalization of dense scene understanding.
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