
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ZIP-FIT: EMBEDDING-FREE DATA SELECTION
VIA COMPRESSION-BASED ALIGNMENT FOR CODE

Anonymous authors
Paper under double-blind review

ABSTRACT

Data selection is crucial for optimizing language model (LM) performance on
specific tasks, yet most existing methods fail to effectively consider the target
task distribution. Current approaches either ignore task-specific requirements
entirely or rely on approximations that fail to capture the nuanced patterns needed
for tasks like Autoformalization or code generation. We introduce ZIP-FIT, a
data selection framework that uses compression to directly measure the alignment
between potential training data and the target task distribution. Our key insight is
that compression-based similarity captures both syntactic and structural patterns
relevant to the target task (like code), enabling more precise selection of task-
relevant data for code. In extensive evaluations on Autoformalization and Python
code generation, ZIP-FIT significantly outperforms leading baselines like DSIR
and D4. Models trained on ZIP-FIT-selected data achieve their lowest cross-
entropy loss up to 85.1% faster than these baselines, demonstrating that better
task alignment leads to more efficient learning. In addition, ZIP-FIT performs
selection up to 65.8% faster than DSIR and two orders of magnitude faster than
D4. In addition, we achieve 18.86% Pass@1 on HumanEval compared to LESS’s
18.06% while being approximately 2000 times faster. Notably, ZIP-FIT shows
that smaller, well-aligned datasets often outperform larger but less targeted ones,
demonstrating that a small amount of higher quality data is superior to a large
amount of lower quality data.

1 INTRODUCTION

Choosing training data is crucial for the performance of language models (LMs) in both general-
purpose and domain-specific applications (Brown et al., 2020; Gururangan et al., 2020; Hoffmann
et al., 2022). To date, most research on data curation has focused on creating diverse pre-training
datasets to enhance model performance across a wide range of tasks (Sorscher et al., 2022; Xie et al.,
2023b; Tirumala et al., 2023; Abbas et al., 2023; Xie et al., 2023a; Lee et al., 2023; Wettig et al.,
2024; Penedo et al., 2024; Li et al., 2024; Sachdeva et al., 2024), and while these methods have been
demonstrated to work well for general pre-training, they fall short in domain-specific fine-tuning,
where data relevance is crucial. This raises a key question: Is there an effective methodology we can
use to effectively select fine-tuning data for domain-specific target tasks such as coding?

One approach is to train classifiers to identify relevant data. For example, DeepSeekMath (Shao
et al., 2024) used a compilation of high-quality mathematical texts (Paster et al., 2023), to train a
classifier to retrieve similar texts from the Web (Bojanowski et al., 2017). This method depends on
large, well-annotated datasets, which are often unavailable for niche tasks.

Embedding-based methods measure similarity between data points and a reference corpus (Xie et al.,
2023c), selecting relevant data, but incurring high computational costs and being highly dependent
on the choice of embedding space (Muennighoff, 2022). DSIR (Data Selection via Importance
Resampling) (Xie et al., 2023b) instead utilizes unigrams and bigrams to select data points without
the need for pre-trained embeddings, with the aim of matching the hashed n-gram distributions of
the target data. Although DSIR is effective in capturing direct word correlations, it may not capture
structured patterns of syntax that unfold across sentences or paragraphs, such as nested function calls
in code or embedded clauses in formal language translation (Moura et al., 2015). Additionally, the
hashing introduces noise due to collisions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: ZIP-FIT selects task-specific data for efficient finetuning. (0) Obtain both the source
and target datasets. (1) Calculate ZIP-FIT Alignment of each source example with the target dataset
using compression. (2) Rank all source examples based on these alignment scores. (3) Select the
top-K most aligned examples for fine-tuning. (4) Fine-tune a large language model using the selected
top-K examples to improve performance on the target task.

Figure 2: Code Generation: ZIP-FIT accelerates cross-entropy loss reduction, even in code-
specialized models like CodeGemma-2B. The plots show cross-entropy test loss versus the number
of training tokens for Gemma-2-2B (top row) and CodeGemma-2B (bottom row) across different
token selection sizes. ZIP-FIT (blue) consistently reduces loss faster than DSIR (green) and D4
(red), achieving up to 85.11% speed improvement at lower token counts. These results demonstrate
ZIP-FIT’s efficiency in data selection for fine-tuning models on code-geneation tasks.

Gradient-based methods like LESS (Low-rank gradiEnt Similarity Search) (Xia et al., 2024) take
a different approach, selecting data with gradients most similar to the target data. While LESS
can identify useful training examples, computing and storing gradient features adds computational
overhead. These limitations highlight the need for better domain-specific data selection strategies.

To address these challenges, we propose ZIP-FIT, a novel data selection framework that leverages
compression algorithms (e.g., gzip, lz4, etc.). Recent research suggests that language modeling and
data compression are fundamentally equivalent tasks (Delétang et al., 2024), and the intelligence
of large language models (LLMs) is closely related to their ability to compress external corpora
(Huang et al., 2024). This insight suggests that compression algorithms can encode information in
ways similar to neural networks. For example, Jiang et al. (2023c) found that the use of normalized
compression distances for text classification outperformed traditional neural embeddings. Inspired
by this, ZIP-FIT selects aligned training data with a target data set based on compression-based
alignment, providing a lightweight and embedding-free method for selecting high-quality data.

We evaluated ZIP-FIT in two domains: Autoformalization and Python code generation. ZIP-FIT
outperforms existing data selection methods, consistently improving model performance across

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 3: Higher ZIP-FIT alignment correlates with lower cross-entropy loss. The relationship
between ZIP-FIT alignment and cross-entropy (CE) loss for (a) GPT-2 trained on 22k tokens
(R2 = 0.90, p = 0.001) and (b) Mistral7B trained on 22k tokens (R2 = 0.75, p = 0.025). Each
point represents a dataset, with its position reflecting the dataset’s ZIP-FIT alignment score against
the ProofNet validation split and the resulting testnCE loss. The dashed red line indicates the linear
regression fit, while the dashed grey line shows the pretrained CE loss. Higher alignment scores
correspond to lower CE losses, demonstrating that training on better aligned data yields better
performance.

multiple metrics. Smaller, well-aligned datasets selected by ZIP-FIT lead to faster convergence
and better performance than larger, less aligned datasets, highlighting the importance of data quality.

Our contributions are as follows:

1. Methodology: The introduction of ZIP-FIT, an embedding-free data selection method
based on compression.

2. Superior Performance: ZIP-FIT achieves faster convergence (up to 85.1%) and lower test
cross-entropy loss compared to data selection baselines DSIR and D4. On downstream task
metrics, ZIP-FIT outperforms DSIR and LESS in autoformalization, measured with syntax
error compilation Pass@k, and exceeds DSIR, D4, and LESS on HumanEval, evaluated
with the unit test-based Pass@k metric.

3. Computational Efficiency: ZIP-FIT is computationally efficient, running up to 65.8%
faster than DSIR. This makes it scalable for low-resource environments without compromis-
ing performance.

2 ZIP-FIT: AN EMBEDDING-FREE DATA SELECTION ALGORITHM VIA
COMPRESSION-BASED ALIGNMENT FOR LM FINE-TUNING

Before introducing ZIP-FIT, it is essential to understand the desired attributes of effective data
selection algorithms. Ideally, such algorithms should be performant, computationally economical,
fast, scalable, and designed to improve the efficiency of model training. These characteristics ensure
that the data filtering process can be applied broadly and effectively in various machine learning
contexts, particularly when computational resources are limited. By setting these criteria, we can
better appreciate the innovations ZIP-FIT introduces in the realm of data selection.

2.1 BACKGROUND

Lossless Compression: Lossless text compression algorithms reduce data size by exploiting statistical
redundancies while ensuring perfect reconstruction of the original data. Pattern-based techniques like
LZ77 identify and replace repeated subsequences with compact references, while statistical encoding
methods such as Huffman coding assign shorter codes to frequent symbols. For more details, see
Appendix B.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Autoformalization: The task of translating natural language mathematics into formal programming
languages like Lean4 Moura et al. (2015). This process requires precise understanding and represen-
tation of mathematical formal syntax, making the selection of well-aligned training data crucial for
effective model training.

2.2 ZIP-FIT ALGORITHM

Setup: Given a set of examples {x′
1, x

′
2, . . . , x

′
n} from a target distribution p and a large source

dataset {x1, x2, . . . , xN} from an arbitrary distribution q, ZIP-FIT aims to select a subset of K
examples (where K ≪ N) from q. The selected subset is used for model training, in order to improve
performance for tasks associated with p. This approach is intended to maximize the efficacy and
efficiency of model training by focusing on the most relevant data samples.

Method: ZIP-FIT uses compression as a metric to measure the alignment of each example in q
with the target p, focusing on capturing patterns and redundancies.

To address the challenge of selecting highly aligned data, we propose the ZIP-FIT algorithm:

[H] [1] Input: A source dataset D = {x1, x2, . . . , xN} from distribution q, target examples
{x′

1, x
′
2, . . . , x

′
n} from distribution p. Output: A subset of K examples from D that improve

performance for p. i = 1 to N Compute alignment for each sample xi ∈ D with each target example
x′
j ∈ {x′

1, x
′
2, . . . , x

′
n} using Normalized Compression Distance:

NCD(xi, x
′
j) =

C(xi ⊕ x′
j)−min(C(xi), C(x′

j))

max(C(xi), C(x′
j))

where C(x) represents the compressed size of sequence x and ⊕ denotes concatenation. Compute
the average ZIP-FIT alignment for each xi:

ZIP-FIT-Alignment(xi) = 1− 1

n

n∑
j=1

NCD(xi, x
′
j)

Select the top-K examples from D based on the highest alignment scores.

3 HIGHER ZIP-FIT ALIGNMENT CORRELATES WITH BETTER MODEL
PERFORMANCE

Experiment: To validate the effectiveness of compression-based alignment, we evaluate the re-
lationship between ZIP-FIT alignment scores and model performance on the target task. Using
ProofNet’s validation split as the target distribution and test split for evaluation, we fine-tune GPT-
2 Radford et al. (2019) and Mistral7B Jiang et al. (2023b) on datasets with varying ZIP-FIT
alignment scores. To ensure fair comparison, we standardize each dataset to 100k tokens, except
where datasets are inherently smaller (e.g., ProofNet validation set).

Results Figure 3 demonstrates a strong negative correlation between ZIP-FIT alignment scores
and cross-entropy (CE) loss, with R2 values of 0.90 and 0.75 for GPT-2 and Mistral7B respectively.
Highly-aligned datasets like LeanDojo Yang et al. (2023) and the ProofNet validation split yield
substantially lower CE loss compared to less-aligned datasets like C4 Raffel et al. (2020) and
WikiText Merity et al. (2016). This suggests that ZIP-FIT effectively identifies training data that
improves model performance on the target task.

4 COMPARATIVE EVALUATION OF ZIP-FIT FOR EFFICIENT FINE-TUNING

We evaluate ZIP-FIT on two domain-specific tasks: Autoformalization and Python Code Generation.
Our goal is to show ZIP-FIT’s data selection leads to superior fine-tuning performance for coding
tasks compared to baselines.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 4: AutoFormalization: ZIP-FIT consistently achieves lower test loss more quickly than
D4 and DSIR, demonstrating its efficiency in data selection. The plots show cross-entropy test
loss versus the number of training tokens for three models (InterLM-Math-Plus-1.8B, Gemma-2-2B,
and Mistral7B) across different token selection sizes. ZIP-FIT (blue line) consistently outperforms
both DSIR (green line) and D4 (red line) across all model and token size configurations, highlighting
its ability to process data more efficiently. The percentage labels in each plot indicate the relative
speedup of ZIP-FIT over DSIR in reaching the lowest cross-entropy loss, reinforcing the method’s
scalability and adaptability for domain-specific fine-tuning.

4.1 CODE GENERATION

Experiment: We evaluated data selection methods for Python code generation using ZIP-FIT,
DSIR, and D4 on datasets combining MBPP Austin et al. (2021), Python docstrings, Proof-Pile 2,
C4, and WikiText (composition details: Appendix B.3). Alignment scores were computed using
HumanEval’s validation split, with top-n sequences selected (800K, 930K, 1.6M tokens) without
modifying baseline ranking mechanisms. Cross-entropy (CE) loss was evaluated on CodeGemma-2B
and Gemma-2-2B, while HumanEval Pass@1 results focus on Gemma-2-2B with added comparisons
to LESS. We use a separate hold-out portion for final testing.

Results: ZIP-FIT accelerates convergence and improves code generation quality. For CE loss,
ZIP-FIT achieves 85.1% faster convergence than DSIR on CodeGemma-2B and 67.5% faster
convergence on Gemma-2-2B. D4, again, demonstrates poor performance.

On HumanEval Pass@1 (Table ??), ZIP-FIT achieves 18.86% accuracy, outperforming DSIR
(17.98%) and LESS (18.06%) while requiring 3× less time than DSIR and no GPUs. LESS’s
computational cost (19h on 4 GPUs) limits its practicality.

4.2 AUTOFORMALIZATION

Experiment: Our source dataset comprised approximately 185,000 sequences from LeanDojo,
Proof-Pile 2, C4, and WikiText Yang et al. (2023); Azerbayev et al. (2024). For details on dataset
composition, refer to Appendix B.2. Training datasets were curated using ZIP-FIT, DSIR, and
D4, with ProofNet’s validation split as the target distribution. For fairness, we preserved the native
ranking mechanism of each method and selected top-n sequences (e.g., 353K, 695K tokens). We
fine-tuned three models—InternLM-Math-Plus-1.8B Ying et al. (2024), Gemma-2-2B Team et al.
(2024), and Mistral-7B—on each subset, evaluating cross-entropy (CE) loss on ProofNet’s test split.

Results: Figure 4 shows that ZIP-FIT significantly outperforms DSIR and D4 in reducing cross-
entropy (CE) loss across all token selection sizes (353k, 695k). The steep decline in the blue
curves (ZIP-FIT) highlights its ability to achieve faster convergence, resulting in up to 62.79%

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Method Pass@1 (%) Time Hardware
Gemma-2-2B 15.24 – –
ZIP-FIT 18.86 32s CPU
DSIR 17.98 97s CPU
LESS 18.06 19h 4 A100-80GB
D4 14.37 7h 40m 1 A100-80GB

Table 1: Python Code Generation: Comparison of data selection methods for code generation
using Gemma-2-2B. Pass@1 accuracy on HumanEval, selection time, and hardware requirements are
shown. ZIP-FIT achieves the highest Pass@1 score with the fastest selection time using only CPU
resources. All models where fine-tunes of Gemma-2-2B. For all methods, the top 1M tokens were
selected

improvements in convergence speeds compared to DSIR. Notably, ZIP-FIT demonstrates up to a
65.8% faster data selection process than DSIR. Similar results were observed at other token counts,
as detailed in Appendix E.

Additionally, we use a syntax error compilation Pass@k metric. Given k samples, we consider a trial
successful if at least one sample compiles without syntax errors. This method ensures that generated
formal statements are at least syntactically valid in Lean4, even if they are not fully correct. (Aniva
et al., 2024) Table ?? shows the results for Pass@5 across 183 tasks. The exact prompt format used
is detailed in Appendix K.

Method Pass@5 (%) Time Hardware
Gemma-2-2B 6.5 – –
ZIP-FIT 14.0 79s CPU
DSIR 0.0 135s CPU
LESS 0.1 20h 45m 4 A100-80GB

Table 2: AutoFormalization: ZIP-FIT achieves higher Lean4 compilation pass @ 5 than competing
methods on ProofNet’s test split. We computed the number of Lean4 compilation passes with k=5
samples. All models where fine-tunes of Gemma-2-2B. For all methods, the top 1M tokens were
selected

Notably, ZIP-FIT achieves a Pass@5 score of 14.0%, more than double that of the base Gemma-2-
2b model (6.5%) and orders of magnitude higher than prior data selection methods—DSIR (0.0%) and
LESS (0.1%). These results indicate that ZIP-FIT is particularly effective at enhancing the model’s
ability to generate syntactically valid and semantically meaningful Lean4 code for autoformalization
tasks. The fact that DSIR and LESS yield virtually no valid completions suggests that they may
be selecting data poorly suited to the rigid formal syntax of Lean, thereby failing to support model
learning in this highly structured domain. Crucially, ZIP-FIT achieves this performance without any
GPU acceleration, running entirely on CPUs—whereas LESS, despite requiring 4× A100-80GB
GPUs, fails to produce usable improvements. This highlights not only the effectiveness but also the
efficiency and practicality of ZIP-FIT as a fine-tuning data selection method for code.

5 IMPACT OF DATA MISALIGNMENT ON MODEL PERFORMANCE

Existing research showed that data alignment plays a critical role in improving model performance
and learning efficiency for downstream tasks. In this section, we explore how misalignment in data
can affect model performance and how ZIP-FIT addresses this issue with data selection.

Experiment: We fine-tuned the Mistral7B model on the same source dataset we used for the Auto-
Formalization experiment (see Appendix 4.2), filtering data with ZIP-FIT at different alignment
thresholds (>0.1, >0.2, >0.3). Each threshold creates a progressively more aligned dataset, where
the >0.3 dataset is the most aligned, and the >0.2 dataset is a superset of the >0.3 dataset, including

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 5: Selective data filtering with ZIP-FIT allows us to achieve better cross-entropy test
loss faster than training on all the data, resulting in improved performance and efficiency. The
x-axis represents the number of training tokens, while the y-axis shows the cross-entropy test loss.
The curves represent models fine-tuned (FT) on datasets filtered by varying alignment thresholds (>
0.1, > 0.2, > 0.3). The dashed line indicates the baseline performance of the pretrained Mistral7B
model. Training on data filtered with higher alignment thresholds leads to superior performance,
demonstrating the effectiveness of removing misaligned data in fine-tuning.

less aligned data. Similarly, the >0.1 dataset is a superset of both >0.2 and >0.3. Figure 5 shows CE
test loss (y-axis) versus the number of training tokens (x-axis).

Results: ZIP-FIT selected data achieves lower CE loss faster than training on all data (Figure 5),
showing improved performance and efficiency. Higher alignment thresholds result in a steeper
loss reduction, confirming that filtering out misaligned data enhances fine-tuning. Misalignment
can introduce noise and irrelevant patterns, which we hypothesize require more training data and
computational resources to overcome. Applying higher alignment thresholds, ZIP-FIT ensures that
only the most relevant examples are used for training. This targeted selection leads to a more efficient
learning process as evidenced by the sharper decline in CE loss for higher alignment thresholds. Such
efficiency is crucial in scenarios where computational resources are limited or costly.

Practical Considerations: For practitioners, these results suggest that investing in better data
curation and alignment tools can significantly cut down the cost and time of model training without
compromising performance. It also highlights the potential pitfalls of using large, uncurated datasets
that might slow down the learning process or lead to poorer generalization on specific tasks.

Future Directions: Could explore adaptive alignment thresholds based on real-time validation CE,
potentially automating the selection process to optimize both speed and accuracy during training.

Filtering out misaligned data accelerates fine-tuning and reduces computational overhead, confirming
its performance gains and computational efficiency as outlined in our contributions.

6 RELATED WORKS

Curating pre-training data often involves using classifiers to filter high-quality data from large
corpora like Common Crawl, as done for models like GPT-3 and PaLM2 (Brown et al., 2020; Google,
2023; Shao et al., 2024). While effective, this process requires significant computational resources
and large volumes of curated data. In contrast, ZIP-FIT efficiently selects relevant data without
relying on external models, making it especially useful in data-scarce environments.

Deduplication techniques, such as SemDeDup (Abbas et al., 2023) and D4 (Tirumala et al., 2023),
improve data efficiency by removing duplicate or semantically similar examples using embedding-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

based clustering. However, these methods are computationally expensive and not tuned to the target
task. ZIP-FIT is embedding-free and task-aware, making it both scalable and more effective at
selecting relevant data.

Mixture weights are essential when drawing from multiple domains, as they influence the perfor-
mance of language models (Du et al., 2022; Xie et al., 2023b). DoReMi (Domain Reweighting
with Minimax Optimization) (Xie et al., 2023a) proposes a reweighting strategy suitable for han-
dling diverse target distributions, but it primarily focuses on adjusting weights at the domain level.
Adapting it to select individual data points for specific target distributions would require substantial
modifications to its foundational algorithm. One potential approach would be to effectively transform
each data point into a ’mini-domain,’ a process that would stray significantly from DoReMi’s original
purpose and scope. Therefore, we did not use DoReMi in our comparisons because it does not directly
address the fine-grained selection needs that ZIP-FIT fulfills.

Autoformalization refers to the process of translating natural language mathematics into formal
language (Wang et al., 2020; Wu et al., 2022), which is advantageous because formal proofs can be
verified for correctness. However, the ability of current models to autoformalize text is limited by
the scarcity of human-curated formal data. ZIP-FIT provides a framework for selecting the most
relevant data, ensuring that models are trained on aligned datasets that enhance their performance.]

Compression: (Pandey, 2024) demonstrates that gzip-compressibility predicts how language model
scaling laws shift with data complexity, challenging the data-agnostic assumptions of Chinchilla-style
scaling laws. (Jiang et al., 2022) use gzip-based compression distance with kNN for zero-shot text
classification, outperforming BERT on some datasets. (Delétang et al., 2024) show that language
modeling is equivalent to compression, where even gzip can define predictive distributions via
coding length. (Yoran et al., 2025) propose the KoLMogorov Test, showing that gzip remains a
strong baseline for code-based compression, outperforming pretrained LLMs on real data. show that
gzip compression ratio is a fast, effective proxy for text diversity, capturing key repetition patterns
in LLM outputs and aligning with slower lexical metrics e.g., self-BLEU.

7 LIMITATIONS

While ZIP-FIT provides a computationally efficient method for data selection, it has several
limitations. First, compression-based alignment may not fully capture nuanced semantic relationships
that dense representations can, potentially affecting its effectiveness for complex domains like
natural language understanding, where paraphrasing is important. Second, ZIP-FIT’s reliance on
compression means that its performance could vary depending on the nature of the textual data,
particularly in highly diverse datasets where compression gains are less apparent.

8 DISCUSSION AND FUTURE WORK

ZIP-FIT introduces an efficient, embedding-free approach for data selection in language model
fine-tuning. By leveraging compression algorithms to capture redundancies in data, ZIP-FIT
enables the alignment of large-scale datasets with a target domain without the computational burden
of neural embeddings. Our experiments with different compression algorithms (Figure 8) reveal that
lighter compression (e.g., LZ4 at level 0) leads to better performance, achieving a 12.19% Pass@1
on HumanEval compared to 11.58% with gzip. This suggests that while compression effectively
captures alignment signals, aggressive compression can remove subtle but important patterns. These
insights highlight the importance of careful selection of compression parameters in optimizing the
quality of data selection. Our results show that using compression-based alignment leads to faster
convergence and lower cross-entropy loss compared to existing methods like DSIR and D4 (Tirumala
et al., 2023; Xie et al., 2023b).

However, this approach highlights the trade-off between simplicity and the ability to capture complex
semantic relationships. While compression-based methods offer a lightweight alternative, they might
not fully replace embedding-based techniques for highly intricate domains, such as natural language
understanding or paraphrases. Nonetheless, ZIP-FIT’s promising results suggest that leveraging
compression as a data selection tool can be highly effective, especially in resource-constrained

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

scenarios and economically crucial tasks like code generation, compression can leverage the syntactic
structure of the data.

Future work could explore hybrid models that combine the strengths of compression-based techniques
with neural embeddings to further enhance data selection. Additionally, extending ZIP-FIT to
support more diverse data modalities and investigating its robustness across various domains would
provide a more comprehensive understanding of its capabilities and limitations. We plan for future
work to study its application to complex tasks based on natural language alone and mathematics,
where paraphrasing and semantics are important.

We also plan to explore the use of ZIP-FIT for synthetic data generation. While generating synthetic
data is straightforward, selecting high-value samples for training presents challenges, especially when
managing limited token budgets Villalobos et al. (2024). Autoformalization is a fantastic task for this
exploration, as it inherently has a limited number of tokens, thus simulating the critical challenge of
token scarcity. Additionally, studying synthetic data selection is crucial for developing self-improving
agents that can avoid model collapse (Gerstgrasser et al., 2024; Kazdan et al., 2024) by ensuring
high-quality data accumulation.

Furthermore, diversity was identified as an important meta-data property that can influence model
performance (Miranda et al., 2024). Therefore, we aim to address this in future work by either: (1)
developing an algorithm that balances diversity with alignment in data selection, or (2) creating a
metric that incorporates diversity as part of its evaluation process.

[backgroundcolor=blue!10, linecolor=blue!50!black, linewidth=2pt, innertopmar-
gin=nerbottommargin=nerrightmargin=20pt, innerleftmargin=20pt, roundcorner=10pt] Key
Takeaways:

• Efficiency in Data Selection: ZIP-FIT utilizes compression for alignment, demonstrating
significant efficiency in selecting domain-specific data, enhancing model fine-tuning.

• Resource Optimization: It outperforms traditional methods like DSIR, D4, and LESS by
speeding up training and reducing computational demands, beneficial in resource-limited
settings.

• Domain-Specific Improvements: Exhibits superior performance in tasks like AutoFormal-
ization and Python code generation, where precise data alignment is crucial.

• Practical Application: Effective in identifying and using the most relevant data from mixed
datasets, proving critical for achieving better domain-specific results.

9 CONCLUSION

In this work, we introduced ZIP-FIT, an efficient and scalable data selection method that leverages
compression to enhance the downstream performance of language models for domain-specific tasks.
Our experiments demonstrate that ZIP-FIT not only accelerates the fine-tuning process but also
significantly improves downstream performance by aligning training data more closely with target
tasks. By comparing against established methods like DSIR, D4 and LESS, ZIP-FIT proved
superior in selecting highly-aligned data, especially in complex tasks such as Autoformalization
and code generation. This methodology provides a resource-efficient and effective approach to data
selection for model training, contributing to a better understanding of how training data impacts
downstream transfer in LMs.

IMPACT STATEMENT

ZIP-FIT improves task-aware data selection efficiency, reducing compute costs and enabling faster,
more targeted fine-tuning. By eliminating embeddings, it enhances accessibility for low-resource
settings while maintaining strong performance. Its compression-based approach offers a scalable,
efficient alternative to traditional methods, with implications for sustainable AI training and fairer
dataset curation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Amro Abbas, Kushal Tirumala, Dániel Simig, Surya Ganguli, and Ari S. Morcos. Semdedup: Data-
efficient learning at web-scale through semantic deduplication, 2023. URL https://arxiv.
org/abs/2303.09540.

Leni Aniva, Chuyue Sun, Brando Miranda, Clark Barrett, and Sanmi Koyejo. Pantograph: A machine-
to-machine interaction interface for advanced theorem proving, high level reasoning, and data
extraction in lean 4, 2024. URL https://arxiv.org/abs/2410.16429.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Albert Q.
Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model for
mathematics, 2024. URL https://arxiv.org/abs/2310.10631.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors with
subword information, 2017. URL https://arxiv.org/abs/1607.04606.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL https:
//arxiv.org/abs/2005.14165.

Grégoire Delétang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christopher
Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent Orseau, Marcus
Hutter, and Joel Veness. Language modeling is compression, 2024. URL https://arxiv.
org/abs/2309.10668.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten Bosma,
Zongwei Zhou, Tao Wang, Yu Emma Wang, Kellie Webster, Marie Pellat, Kevin Robinson,
Kathleen Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc V Le, Yonghui Wu, Zhifeng
Chen, and Claire Cui. Glam: Efficient scaling of language models with mixture-of-experts, 2022.
URL https://arxiv.org/abs/2112.06905.

Matthias Gerstgrasser, Rylan Schaeffer, Apratim Dey, Rafael Rafailov, Henry Sleight, John Hughes,
Tomasz Korbak, Rajashree Agrawal, Dhruv Pai, Andrey Gromov, Daniel A. Roberts, Diyi Yang,
David L. Donoho, and Sanmi Koyejo. Is model collapse inevitable? breaking the curse of
recursion by accumulating real and synthetic data, 2024. URL https://arxiv.org/abs/
2404.01413.

Google. Palm 2 technical report, 2023. URL https://arxiv.org/abs/2305.10403.

Aryan Gulati, Brando Miranda, Eric Chen, Emily Xia, Kai Fronsdal, Bruno de Moraes Dumont, and
Sanmi Koyejo. Putnam-AXIOM: A functional and static benchmark for measuring higher level
mathematical reasoning. In The 4th Workshop on Mathematical Reasoning and AI at NeurIPS’24,
2024. URL https://openreview.net/forum?id=YXnwlZe0yf.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey, and
Noah A. Smith. Don’t stop pretraining: Adapt language models to domains and tasks, 2020. URL
https://arxiv.org/abs/2004.10964.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/
2203.15556.

10

https://arxiv.org/abs/2303.09540
https://arxiv.org/abs/2303.09540
https://arxiv.org/abs/2410.16429
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2310.10631
https://arxiv.org/abs/1607.04606
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2309.10668
https://arxiv.org/abs/2309.10668
https://arxiv.org/abs/2112.06905
https://arxiv.org/abs/2404.01413
https://arxiv.org/abs/2404.01413
https://arxiv.org/abs/2305.10403
https://openreview.net/forum?id=YXnwlZe0yf
https://arxiv.org/abs/2004.10964
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Yuzhen Huang, Jinghan Zhang, Zifei Shan, and Junxian He. Compression represents intelligence
linearly, 2024. URL https://arxiv.org/abs/2404.09937.

Albert Q. Jiang, Wenda Li, and Mateja Jamnik. Multilingual mathematical autoformalization, 2023a.
URL https://arxiv.org/abs/2311.03755.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023b. URL https://arxiv.
org/abs/2310.06825.

Zhiying Jiang, Matthew Y. R. Yang, Mikhail Tsirlin, Raphael Tang, and Jimmy Lin. Less is more:
Parameter-free text classification with gzip, 2022. URL https://arxiv.org/abs/2212.
09410.

Zhiying Jiang, Matthew Yang, Mikhail Tsirlin, Raphael Tang, Yiqin Dai, and Jimmy Lin. “low-
resource” text classification: A parameter-free classification method with compressors. In
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Association
for Computational Linguistics: ACL 2023, pp. 6810–6828, Toronto, Canada, July 2023c.
Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.426. URL
https://aclanthology.org/2023.findings-acl.426.

Joshua Kazdan, Rylan Schaeffer, Apratim Dey, Matthias Gerstgrasser, Rafael Rafailov, David L.
Donoho, and Sanmi Koyejo. Collapse or thrive? perils and promises of synthetic data in a
self-generating world, 2024. URL https://arxiv.org/abs/2410.16713.

Alycia Lee, Brando Miranda, Sudharsan Sundar, and Sanmi Koyejo. Beyond scale: the diversity
coefficient as a data quality metric demonstrates llms are pre-trained on formally diverse data.
arXiv preprint arXiv:2306.13840, 2023.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash
Guha, Sedrick Keh, Kushal Arora, et al. Datacomp-lm: In search of the next generation of training
sets for language models. arXiv preprint arXiv:2406.11794, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Brando Miranda, Alycia Lee, Sudharsan Sundar, Allison Casasola, and Sanmi Koyejo. Beyond scale:
The diversity coefficient as a data quality metric for variability in natural language data, 2024.
URL https://arxiv.org/abs/2306.13840.

Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
lean theorem prover (system description). In Automated Deduction - CADE-25: 25th International
Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings, pp. 378–
388. Springer International Publishing, 2015. doi: 10.1007/978-3-319-21401-6_26.

Niklas Muennighoff. Sgpt: Gpt sentence embeddings for semantic search, 2022. URL https:
//arxiv.org/abs/2202.08904.

Rohan Pandey. gzip predicts data-dependent scaling laws, 2024. URL https://arxiv.org/
abs/2405.16684.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open
dataset of high-quality mathematical web text, 2023. URL https://arxiv.org/abs/2310.
06786.

Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
finest text data at scale, 2024. URL https://arxiv.org/abs/2406.17557.

Steven T. Piantadosi. Zipf’s word frequency law in natural language: a critical review and future direc-
tions. Psychonomic Bulletin & Review, 21(5):1112–1130, 2014. doi: 10.3758/s13423-014-0585-6.

11

https://arxiv.org/abs/2404.09937
https://arxiv.org/abs/2311.03755
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2212.09410
https://arxiv.org/abs/2212.09410
https://aclanthology.org/2023.findings-acl.426
https://arxiv.org/abs/2410.16713
https://arxiv.org/abs/2306.13840
https://arxiv.org/abs/2202.08904
https://arxiv.org/abs/2202.08904
https://arxiv.org/abs/2405.16684
https://arxiv.org/abs/2405.16684
https://arxiv.org/abs/2310.06786
https://arxiv.org/abs/2310.06786
https://arxiv.org/abs/2406.17557

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Noveen Sachdeva, Benjamin Coleman, Wang-Cheng Kang, Jianmo Ni, Lichan Hong, Ed H Chi,
James Caverlee, Julian McAuley, and Derek Zhiyuan Cheng. How to train data-efficient llms.
arXiv preprint arXiv:2402.09668, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neural
scaling laws: beating power law scaling via data pruning. Advances in Neural Information
Processing Systems, 35:19523–19536, 2022.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Kushal Tirumala, Daniel Simig, Armen Aghajanyan, and Ari S. Morcos. D4: Improving llm
pretraining via document de-duplication and diversification, 2023. URL https://arxiv.
org/abs/2308.12284.

Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius Hobbhahn.
Will we run out of data? limits of llm scaling based on human-generated data, 2024. URL
https://arxiv.org/abs/2211.04325.

Qingxiang Wang, Chad Brown, Cezary Kaliszyk, and Josef Urban. Exploration of neural machine
translation in autoformalization of mathematics in mizar. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, volume 5 of POPL ’20, pp. 85–98.
ACM, January 2020. doi: 10.1145/3372885.3373827. URL http://dx.doi.org/10.1145/
3372885.3373827.

Alexander Wettig, Aatmik Gupta, Saumya Malik, and Danqi Chen. Qurating: Selecting high-quality
data for training language models, 2024. URL https://arxiv.org/abs/2402.09739.

Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jamnik, and Christian
Szegedy. Autoformalization with large language models, 2022. URL https://arxiv.org/
abs/2205.12615.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
Selecting influential data for targeted instruction tuning, 2024. URL https://arxiv.org/
abs/2402.04333.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy Liang, Quoc V.
Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up language model
pretraining, 2023a. URL https://arxiv.org/abs/2305.10429.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy Liang. Data selection for language
models via importance resampling, 2023b. URL https://arxiv.org/abs/2302.03169.

Yong Xie, Karan Aggarwal, and Aitzaz Ahmad. Efficient continual pre-training for building domain
specific large language models, 2023c. URL https://arxiv.org/abs/2311.08545.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan
Prenger, and Anima Anandkumar. LeanDojo: Theorem proving with retrieval-augmented language
models. arXiv preprint arXiv:2306.15626, 2023.

12

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2308.12284
https://arxiv.org/abs/2308.12284
https://arxiv.org/abs/2211.04325
http://dx.doi.org/10.1145/3372885.3373827
http://dx.doi.org/10.1145/3372885.3373827
https://arxiv.org/abs/2402.09739
https://arxiv.org/abs/2205.12615
https://arxiv.org/abs/2205.12615
https://arxiv.org/abs/2402.04333
https://arxiv.org/abs/2402.04333
https://arxiv.org/abs/2305.10429
https://arxiv.org/abs/2302.03169
https://arxiv.org/abs/2311.08545

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma,
Jiawei Hong, Kuikun Liu, Ziyi Wang, Yudong Wang, Zijian Wu, Shuaibin Li, Fengzhe Zhou,
Hongwei Liu, Songyang Zhang, Wenwei Zhang, Hang Yan, Xipeng Qiu, Jiayu Wang, Kai Chen,
and Dahua Lin. Internlm-math: Open math large language models toward verifiable reasoning,
2024. URL https://arxiv.org/abs/2402.06332.

Ori Yoran, Kunhao Zheng, Fabian Gloeckle, Jonas Gehring, Gabriel Synnaeve, and Taco Cohen. The
kolmogorov test: Compression by code generation, 2025. URL https://arxiv.org/abs/
2503.13992.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
Opt: Open pre-trained transformer language models, 2022. URL https://arxiv.org/abs/
2205.01068.

13

https://arxiv.org/abs/2402.06332
https://arxiv.org/abs/2503.13992
https://arxiv.org/abs/2503.13992
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A APPENDIX / SUPPLEMENTAL MATERIAL

Optionally include supplemental material (complete proofs, additional experiments and plots) in
appendix. All such materials SHOULD be included in the main submission.

B GZIP COMPRESSION DETAILS

gzip is a lossless data compression algorithm that combines two primary techniques: LZ77 com-
pression and Huffman coding. Here, we provide additional technical details on how gzip works.

LZ77 Compression: LZ77 works by identifying repeated substrings in the input text and replacing
them with backward references. Mathematically, LZ77 can be described as follows:

Given an input sequence S = s1, s2, . . . , sn, the algorithm searches for the longest prefix of the
remaining sequence S′ = si, si+1, . . . , sn that matches a substring within a predefined window of
previous characters. If a match is found, it is replaced by a tuple (d, l, c), where:

• d is the distance from the current position to the start of the matching substring,
• l is the length of the matching substring, and
• c is the character following the match (if any).

For example, the substring si, si+1, . . . , si+l−1 can be replaced by the tuple (d, l, c), thereby reducing
redundancy in the data.

Huffman Coding: After applying LZ77, gzip employs Huffman coding to further reduce the size
of the compressed data. Huffman coding assigns variable-length codes to symbols based on their
frequency of occurrence, with shorter codes assigned to more frequent symbols.

The expected length L(X) of the Huffman code for a sequence of symbols X = x1, x2, . . . , xn is
calculated as:

L(X) =

n∑
i=1

p(xi) · len(C(xi)),

where:

• p(xi) is the probability of symbol xi,
• len(C(xi)) is the length of the Huffman code for xi.

This further minimizes the size of the compressed data by leveraging the statistical properties of the
input.

Combined gzip Compression: The total compressed size C(S) after applying both LZ77 and
Huffman coding can be approximated as the sum of the lengths of the backward references and the
Huffman-coded symbols:

C(S) =
∑
(d,l,c)

len(d, l, c) +
n∑

i=1

len(C(xi)).

Normalized Compression Distance (NCD): gzip’s effectiveness in data selection stems from
its ability to measure the alignment between two sequences A and B based on how efficiently they
compress together. The Normalized Compression Distance (NCD) is given by:

NCD(A,B) =
C(A⊕B)−min(C(A), C(B))

max(C(A), C(B))
,

where C(A) and C(B) are the compressed lengths of sequences A and B, and C(A ⊕ B) is the
length of the compressed concatenation of both sequences. A lower NCD indicates greater alignment
between the sequences.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

B.1 WHY USE COMPRESSION?

Compression algorithms, such as gzip, provide a computationally efficient way to detect patterns
and minimize redundancy in data.

Limitations of n-grams: Many traditional methods, including hashed n-grams, focus on capturing
immediate textual correlations by simplifying text into discrete, fixed-size buckets. Although these
techniques are computationally efficient, they may not adequately capture syntactic or structural
relationships within the data. Additionally, the introduce noise due to collisions during hashing.

Challenges with Neural Embeddings: Neural embeddings offer a powerful tool for capturing
semantic relationships, but they come with significant computational costs. These embeddings are
typically pre-trained on large corpora and fine-tuned for specific tasks, which requires substantial
resources. Given the scalability challenges of embedding-based methods, we conjecture that a simpler
method like compression can provide a more scalable and resource-efficient alternative.

We hypothesize that compression – in this case gzip, but perhaps a different compression algorithm
–serves as a strong proxy for capturing syntactic and structural relationships in textual sequences.
gzip’s ability to compress data based on redundancy minimization can be leveraged as a metric to
align text with a target distribution.

B.2 COMPOSITION OF THE SOURCE DATASET FOR AUTOFORMALIZATION

The source dataset for the AutoFormalization task was compiled from a variety of datasets to ensure
a diverse mix of mathematical, general textual, and code-related content. Below are the details of the
datasets included:

• UDACA/AF: 4,300 samples from informal formalization statements.

• C4: 10,000 samples from the clean crawl of the internet, ensuring a broad linguistic variety.

• LeanDojo: 10,000 samples from task-oriented proofs and tactics.

• LeanDojo Informalized: 10,000 samples combining traced tactics with informal descrip-
tions, aiming to bridge formal reasoning and natural language.

• UDACA/AF-split: 10,000 samples, a variant of the UDACA/AF dataset with split annota-
tions.

• WikiText: 10,000 samples from a collection of professionally curated articles, providing a
rich linguistic framework.

• Algebraic Stack: Samples from various subsets of mathematical and programming lan-
guages, capped at 10,000 samples per subset or fewer if the total subset size was under this
threshold.

Each dataset was selected to complement the others by covering different aspects of language use,
from technical to informal, ensuring the model’s exposure to a wide range of linguistic structures and
contents. The total dataset size aggregated to approximately 185,000 sequences, which were then
subjected to alignment scoring and further processing for model training.

B.3 COMPOSITION OF THE SOURCE DATASET FOR CODE GENERATION

The source dataset for the Code Generation task was assembled from various data sources to provide a
diverse range of coding and natural language contexts. Below are the details of the datasets included:

• MBPP (Google Research): A total of 964 samples focusing on Python coding challenges.

• Python Code Instructions (18k Alpaca): 5,000 sequences providing natural language
prompts for Python code, fostering a practical approach to code generation.

• Python Docstrings (Calum/The Stack): 5,000 sequences each of Python function doc-
strings integrating detailed natural language documentation of python functions.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

• Python Docstrings (Calum/The Stack): 5,000 sequences each of Python function code
bodies, integrating raw python code without documentation.

• C4 (AllenAI): 10,000 samples from a clean web crawl.
• WikiText: 10,000 samples from a collection of curated articles, providing rich natural

language training material.
• Algebraic Stack: A selection of sequences from various programming language subsets,

each capped at 10,000 samples or the total subset size if less than this threshold.

This combination of datasets was specifically chosen to challenge our methods ’s ability to choose
syntactically correct and functionally accurate Python code, while also responding appropriately to
natural language prompts.

B.4 HYPERPARAMETERS FOR MODEL FINE-TUNING

All models in our experiments were fine-tuned with the following unified setup, aimed at ensuring a
consistent evaluation across different models and data selection strategies.

Models and Tokenizer: The fine-tuning was performed using the following models:

• InterLM-Math-Plus-1.8B
• Gemma-2-2B
• Mistral7B

Training Settings: The key hyperparameters used across all models are as follows:

• Block Size: 1024 tokens
• Learning Rate: 7.5× 10−7

• Batch Size: 4 (per device)
• Number of Epochs: 1
• Weight Decay: 0.01
• Maximum Gradient Norm: 1.0

Training was facilitated using the Trainer class from Hugging Face’s Transformers library, with the
Accelerate library handling model parallelism to efficiently utilize available computational resources.

Evaluation Metrics: For model evaluation, we employed:

• Cross-Entropy Loss at the end of training to measure the effectiveness of the fine-tuning.

Fine-tuning was performed under controlled conditions to ensure fair comparison between data
selected by ZIP-FIT, DSIR, and manual curation methods. The effectiveness of each method was
assessed based on how the models performed on the ProofNet and HumanEval.

Data Handling and Logging: All logs, model checkpoints, and tokenizer settings were systemati-
cally saved in designated directories for thorough analysis post-experiment

This comprehensive and standardized approach to fine-tuning ensures that our experimental results
are robust, reproducible, and transparent, providing clear insights into the effectiveness of the data
selection methodologies employed in our study.

C RATIONALE FOR THE METHOD NAME ZIP-FIT

We chose the name ZIP-FIT for two reasons:

1. ZIP refers to the use of gzip compression for data selection, where compression aligns the
data for better future fine-tuning (or FITting).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

2. The name also references scaling laws, as ZIP-FIT consistently reduces loss faster than
competing methods, implying better power-law scaling parameters, drawing a parallel to
Zipf’s law Piantadosi (2014), which describes similar scaling behavior in language models.

Remark: Zipf’s law Piantadosi (2014) describes the inverse relationship (thus power law f(r) ∝ 1/rs,
where r is the rank and f(r) is the frequency of the word with rank r) between a word’s frequency
and its rank in natural language, a pattern that reflects scaling behavior. Rank in this context is the
position of the word after sorting with respect to frequency in the text.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 6: Highly aligned data lowers cross-entropy loss more efficiently. The x-axis shows the
number of training tokens, and the y-axis represents the cross-entropy (CE) test loss on the ProofNet
test set. Different curves correspond to datasets filtered by different alignment scores, indicating their
relevance to the target domain. The most aligned data reduce Test CE loss significantly faster than
less aligned data. The left panel depicts results using GPT-2, and the right panel uses Mistral7B,
demonstrating that using highly aligned data not only accelerates training but also achieves better
model performance, validating the effectiveness of ZIP-FIT for data selection in fine-tuning.

D HIGHER ALIGNMENT LEADS TO MORE EFFICIENT TRAINING

Experiment: We fine-tuned GPT-2 (124M) and Mistral7B for the AutoFormalization task using
different datasets scored with ZIP-FIT alignment. We used ProofNet (test) for the evaluation. The
curves represent different datasets with varying alignment to the target domain (ProofNet validation).

Results: More aligned data reduces CE loss quickest, as shown by the steep decline for high-alignment
datasets. This is most evident as ProofNet (validation). Less aligned data require significantly more
tokens to achieve similar performance. This demonstrates that targeted data selection with ZIP-FIT
accelerates fine-tuning and improves performance, reducing computational costs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

E ADDITIONAL EXPERIMENTAL RESULTS: DATA SELECTION FOR EFFICIENT
FINE-TUNING USING ZIP-FIT

Figure 7: ZIP-FIT consistently achieves a lower test loss at a faster rate compared to D4 and
DSIR for Autoformalization. The plots show the cross-entropy test loss against the number of
training tokens for three models (InterLM-Math-Plus-1.8B, Gemma-2-2B, and Mistral7B) across
various token selection sizes. ZIP-FIT (blue line) consistently surpasses both DSIR (green line) and
D4 (red line) across all model and token size configurations, emphasizing its superior data processing
efficiency. The percentage labels in each plot denote the relative speedup of ZIP-FIT over DSIR in
attaining the lowest cross-entropy loss, further underscoring the method’s scalability and adaptability
for domain-specific fine-tuning.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

F BASELINE COMPARISON USING TEACHER-FORCED ACCURACY(TFA) FOR
AUTOFORMALIZATION

Teacher-Forced Accuracy (TFA): TFA evaluates mathematical reasoning tasks by measuring
exact syntactic alignment with reference solutions (Jiang et al., 2023a). It correlates strongly with
correctness in competition-level mathematics (Gulati et al., 2024), making it a suitable metric for
autoformalization.

We evaluated Teacher-Forced Accuracy (TFA) on ProofNet’s test split by fine-tuning Gemma-2-2B
on datasets curated with ZIP-FIT, DSIR, and LESS.

Table 3: Performance and efficiency comparison of data selection methods. Results show Pass@1
and Pass@10 scores on HumanEval using top 1M tokens for fine-tuning, along with data selection
time. Data selection times exclude fine-tuning time.

Fine-tuning Data Selection Pass@1 (%) Pass@10 (%) Selection Time
None Pre-trained Gemma-2-2B 15.24 38.81 –
None Pre-trained Gemma-2-2B (4-bit quantized) 6.09 – –

Full FT ZIP-FIT 18.86 41.78 32s
Full FT LESS 18.06 40.19 19h
Full FT DSIR 17.98 44.27 97s

QLoRA ZIP-FIT 12.19 – 32s
QLoRA DSIR 9.14 – 97s
QLoRA D4 6.09 – 7h 40m

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

G IMPACT OF COMPRESSION ALGORITHMS AND LEVELS

Figure 8: Lighter compression preserves crucial information for data selection. At minimum
compression levels, both gzip and LZ4 achieve the strongest Pass@1 scores (11.58% and 12.19%),
significantly outperforming the base model (6.09%, dashed line). Performance systematically de-
grades with increased compression across all algorithms, suggesting that aggressive compression
removes valuable alignment signals.

To investigate the impact of different compression algorithms on ZIP-FIT’s performance, we con-
ducted experiments comparing three widely used compression methods: gzip, zstd, and LZ4. Each
algorithm was tested across its available compression levels, normalized to a 0-1 scale for comparison.
As shown in Figure 8, compression algorithm choice and level significantly impact performance.

Key findings include:

• LZ4 at minimum compression achieves the best performance (12.19% Pass@1)
• Higher compression levels generally lead to decreased performance across all algorithms
• gzip shows more stable performance degradation compared to LZ4 and zstd
• zstd consistently underperforms relative to both GZIP and LZ4

These results suggest that lighter compression better preserves the structural information needed
for effective data selection. The superior performance of LZ4 at minimal compression indicates
that aggressive data compression may remove subtle but important patterns useful for alignment
assessment.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

H DATA SELECTION PROFILING (RUN TIMES)

ZIP-FIT performs selection up to 65.8% faster than DSIR and 21,076% (=5h/85s=211, which
is 2 orders of magnitude) faster than D4. Experimental results comparing ZIP-FIT vs DSIR
profiling/run time for Code data selection can be found in figure 9. Note that depending on the dataset
and number of samples these numbers may not hold. Compression may not scale well to long-context
datasets and depending on the source dataset, our run times varied widely. However, on average we
observed that ZIP-FIT is comparable to DSIR and generally faster. More experiments across a
wider range of datasets need to be conducted in order to infer more.

Figure 9: ZIP-FIP demonstrates lower cross-entropy and lower run time during data selection
than competing DSIR and D4 methods. ZIP-FIT is cheaper, faster, and better performing. The
run times do no include fine-tuning time, since it’s a constant offset across all models. D4’s data
selection (not shown) takes 5hs because it uses an embedding model (opt-125m Zhang et al. (2022)),
the same one as the original paper Tirumala et al. (2023).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

I NORMALIZED COMPRESSION DISTANCE (NCD): HOW COMPRESSION
MEASURES DATA ALIGNMENT INTUITIVELY

Normalized Compression Distance (NCD) uses compression to quantify how much two objects
x and x′ share in common. First, observe that if x and x′ are similar, then the compressed size
of their concatenation, C(x ⊕ x′), will not be much larger than the compressed size of one of
them alone—because most of their information overlaps. Conversely, if x and x′ are very different,
C(x⊕ x′) will be roughly the sum of their individual compressed sizes, since they share little or no
redundancy.

Formally, NCD isolates how much extra information one object contributes beyond their shared core
by subtracting min(C(x), C(x′)) from C(x⊕ x′). This “delta” measures what is new or unique in
combining x with x′. Dividing that delta by max(C(x), C(x′)) then normalizes the distance so that
its value lies between 0 and 1:

NCD(x, x′) =
C(x⊕ x′)−min

(
C(x), C(x′)

)
max

(
C(x), C(x′)

) .

When x and x′ are identical, the numerator is near zero, giving NCD ≈ 0. When x and x′ are very
different, the numerator is comparable to max(C(x), C(x′)), so NCD ≈ 1. By measuring how easily
one object’s information can be “compressed away” given the other object, NCD succinctly captures
their similarity or dissimilarity.

J QUALITATIVE ANALYSIS

Qualitative results show top 20 examples can be found it table ??.

Selected Samples by ZIP-FIT with ZIP-FIT Alignment scores
Sample Text (Beginning) Alignment Score
Across all his bands and projects, Townsend has released twenty @-@
three studio albums and three live albums.

0.5000

Require Import CodeDeps. Require Import Ident. Local Open Scope
Z_scope. Definition _addr := 1%positive. Definition _g := 2%positive.

0.4928

This Photostock Vector Night Sky Background With Full Moon Clouds
And Stars Vector Ilgraphicration has 1560 x 1560 pixel resolution...

0.4926

module Structure.Logic where ... 0.4926
{ dg-do compile } PR fortran/51993 Code contributed by Sebastien
Bardeau <bardeau at iram dot fr> module mymod type ::
mytyp...

0.4891

For over ten years, the St. Louis Mercy home has formed a special
connection with a local community theatre: The Muny. This summer
the...

0.4889

Read("SchreierSims.gi"); LoadPackage("AtlasRep"); MicroSeconds :=
function() local t; t := IO_gettimeofday(); return t.tv_sec * 1000000 + t.t

0.4889

Get the keyId used by this peer (this peer’s identifier). This is stored in
the key store.

0.4857

Initializes and adds a node to the graph. NOTE: At least the type must
be supplied for the Node to exist in the graph. Args: graph: The graph...

0.4853

def bgra2rgb(img): cv2.cvtColor(img, cv2.COLOR_BGRA2BGR) has
an issue removing the alpha channel, this gets rid of wrong trans...

0.4853

Table 4: Beginning characters of the top 20 samples selected by ZIP-FIT when the target task is
code generation.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Selected Samples by DSIR with ZIP-FIT Alignment scores
Sample Text (Beginning) ZIP-FIT Alignment Score
<a href=“https://colab.research.google.com/github/julianovale/simulaca
o_python/blob/master/0006_ex_trem_kronecker_algebra_computacao ...

0.122

library(qcc) \\n death=c(2,1,2,4,2,5,3,3,5,6,3,8,3,3,6,3,6,5,3,5,2,6,2,3,4,
3,2,9,2,2,3,2,10,7,9,6,2,1,2,4,2,5,3,3,5,6,3,8,3,3,6,3,6,5,3,5,2,6,2 ...

0.121

gap >List(SymmetricGroup(4), p - >Permuted([1 .. 4], p)); \\n perms(4);
[[1, 2, 3, 4], [4, 2, 3, 1], [2, 4, 3, 1], [3, 2, 4, 1 ...

0.191

Solutions \\n ## Question 1 \\n >‘1’. Using a ‘for’ loop print the types
of the variables in each of the >following iterables: \\n >‘1’ ...

0.145

Some small pregroups \\n # The lists of small pregroups were generated
by \\n # Chris Jefferson <caj21@st-andrews.ac.uk> and \\n ...

0.195

adjacency_mat = [false true true true true true true true true false true
true true true false false false true false true false true false ...

0.182

\section{Lookup table used for accessing child voxels using a parent’s
child descriptor} \label{app:lookup-table} \lstset{language=C,cap ...

0.199

* statistics test_nist.c \\n * \\n * Copyright (C) 1996, 1997, 1998, 1999,
2000, 2007 Jim Davies, Brian Gough \\n * \\n * This pro ...

0.180

Problem Description Write a python function to find the first missing
positive number. \\n def first_Missing_Positive(arr,n): \\n ptr = 0 ...

0.239

import numpy as np \\n mandelTable =
[[0,
...

0.189

Table 5: Beginning characters of the top 20 samples selected by DSIR when the target task is code
generation. DSIR does not easily provide alignment scores, so instead we report the ZIP-FIT
scores, which reveals that ZIP-FIT doesn’t score highly the DSIR examples which might explain
why ZIP-FIT achieves better CE loss.

J.1 CHOICE OF EXAMPLES

To evaluate our approach, we selected **three examples from MiniF2F in Lean4**. ProofNet was
avoided since its validation and test sets are highly similar, meaning the model could memorize and
correctly predict the first few examples without true generalization. MiniF2F, containing formal-
ized math exercises from textbooks, provided a more robust test set. Some exercises differ only
slightly (e.g., proving a theorem for + instead of ∗), making it a better challenge for evaluating
autoformalization models.

K PASS@K FOR AUTOFORMALIZATION

The following prompt was used for evaluating syntax error compilation Pass@k in autoformalization
experiments:

from textwrap import dedent

def my_prompt_format(nl_stmt: str) -> str:
"""Format a prompt to translate a natural-language math statement to Lean."""
prompt: str = dedent(f"""\

Your task is to translate the natural-language mathematical statement
into a formal Lean statement using the following format:

natural language statement:
Let $z=\\frac{{1+i}}{{\\sqrt{{2}}}}.$ What is ...

formal Lean language statement:
##
theorem amc12a_2019_p21 (z :) (h : z = (1 + Complex.I) / Real.sqrt 2) :

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

(k in Finset.Icc 1 12, (z^(k^2))) * (k in Finset.Icc 1 12, (1 / z^(k^2))) = 36 := by
sorry

##
...

natural language statement:
{nl_stmt}

formal Lean language statement:
""")

return prompt

L TEACHER FORCED ACCURACY (TFA) RESULTS

Method TFA (%) Time Hardware
Gemma-2-2B 46.73 – –
ZIP-FIT 61.38± 2.73 79s CPU
DSIR 59.29± 1.33 135s CPU
LESS 63.72± 3.75 20h 45m 4 A100-80GB

Table 6: AutoFormalization: ZIP-FIT achieves similar Teacher Forced Accuracy (TFA) compared
to LESS in a statistically significant way. Confidence interval are at 95%.

For Gemma-2-2B, Table ?? shows that ZIP-FIT achieves a TFA of 61.38% ± 2.73%, which is
comparable to LESS (63.72% ± 3.75%) but with a drastically reduced selection time of 79 seconds
compared to LESS’s 20 hours and 45 minutes. ZIP-FIT also outperforms DSIR in both TFA
(59.29% ± 1.33%) and selection speed (135 seconds).

M FUTURE WORK (CONT.)

Lossless Compression for Alignment: While ZIP-FIT has demonstrated substantial efficiency
for data selection, there are several promising directions for future exploration. One potential
enhancement is leveraging faster compression algorithms, such as LZ4 and Snappy, which offer
rapid processing speeds at the cost of lossy compression. In our current approach, we utilize gzip
for compression-based alignment, which is lossless and provides a robust foundation. However,
LZ4 and Snappy are optimized for speed and could potentially offer even greater computational
efficiency without the need for decompression in our pipeline. Given that our primary goal is efficient
data selection rather than perfect data recovery, these faster algorithms might be more suitable.

Autonomous Validation Set Generation: A current limitation of ZIP-FIT is its dependence on a
small, curated validation set (e.g., 185 samples for ProofNet and 82 samples for half the HumanEval
test set). Future work could explore the use of generative models to create synthetic validation
sets from task-specific instructions. This approach could also be expanded to enable autonomous
self-directed, model-driven generation of validation data.

25

	Introduction
	ZIP-FIT: an Embedding-Free Data Selection Algorithm via Compression-Based Alignment for LM Fine-Tuning
	Background
	ZIP-FIT Algorithm

	Higher ZIP-FIT alignment correlates with better model performance
	Comparative Evaluation of ZIP-FIT for Efficient Fine-Tuning
	Code Generation
	Autoformalization

	Impact of Data Misalignment on Model Performance
	Related Works
	Limitations
	Discussion and Future Work
	Conclusion
	Appendix / supplemental material
	gzip Compression Details
	Why Use Compression?
	Composition of the Source Dataset for AutoFormalization
	Composition of the Source Dataset for Code Generation
	Hyperparameters for Model Fine-Tuning

	Rationale for the Method Name ZIP-FIT
	Higher Alignment leads to more efficient training
	Additional Experimental Results: data selection for efficient fine-tuning using ZIP-FIT
	Baseline Comparison using Teacher-Forced Accuracy(TFA) for AutoFormalization
	Impact of Compression Algorithms and Levels
	Data Selection Profiling (Run Times)
	Normalized Compression Distance (NCD): How Compression Measures Data Alignment Intuitively
	Qualitative Analysis
	Choice of Examples

	Pass@k for Autoformalization
	Teacher Forced Accuracy (TFA) Results
	Future Work (Cont.)

