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ABSTRACT

Data selection is crucial for optimizing language model (LM) performance on
specific tasks, yet most existing methods fail to effectively consider the target
task distribution. Current approaches either ignore task-specific requirements
entirely or rely on approximations that fail to capture the nuanced patterns needed
for tasks like Autoformalization or code generation. We introduce ZIP-FIT, a
data selection framework that uses compression to directly measure the alignment
between potential training data and the target task distribution. Our key insight is
that compression-based similarity captures both syntactic and structural patterns
relevant to the target task (like code), enabling more precise selection of task-
relevant data for code. In extensive evaluations on Autoformalization and Python
code generation, ZIP-FIT significantly outperforms leading baselines like DSIR
and D4. Models trained on ZIP-FIT-selected data achieve their lowest cross-
entropy loss up to 85.1% faster than these baselines, demonstrating that better
task alignment leads to more efficient learning. In addition, ZIP-FIT performs
selection up to 65.8% faster than DSIR and two orders of magnitude faster than
D4. In addition, we achieve 18.86% Pass@1 on HumanEval compared to LESS’s
18.06% while being approximately 2000 times faster. Notably, ZIP-FIT shows
that smaller, well-aligned datasets often outperform larger but less targeted ones,
demonstrating that a small amount of higher quality data is superior to a large
amount of lower quality data.

1 INTRODUCTION

Choosing training data is crucial for the performance of language models (LMs) in both general-
purpose and domain-specific applications (Brown et al., 2020; Gururangan et al., 2020; Hoffmann
et al., 2022). To date, most research on data curation has focused on creating diverse pre-training
datasets to enhance model performance across a wide range of tasks (Sorscher et al., 2022; Xie et al.,
2023b; Tirumala et al., 2023; Abbas et al., 2023; Xie et al., 2023a; Lee et al., 2023; Wettig et al.,
2024; Penedo et al., 2024; Li et al., 2024; Sachdeva et al., 2024), and while these methods have been
demonstrated to work well for general pre-training, they fall short in domain-specific fine-tuning,
where data relevance is crucial. This raises a key question: Is there an effective methodology we can
use to effectively select fine-tuning data for domain-specific target tasks such as coding?

One approach is to train classifiers to identify relevant data. For example, DeepSeekMath (Shao
et al., 2024) used a compilation of high-quality mathematical texts (Paster et al., 2023), to train a
classifier to retrieve similar texts from the Web (Bojanowski et al., 2017). This method depends on
large, well-annotated datasets, which are often unavailable for niche tasks.

Embedding-based methods measure similarity between data points and a reference corpus (Xie et al.,
2023c), selecting relevant data, but incurring high computational costs and being highly dependent
on the choice of embedding space (Muennighoff, 2022). DSIR (Data Selection via Importance
Resampling) (Xie et al., 2023b) instead utilizes unigrams and bigrams to select data points without
the need for pre-trained embeddings, with the aim of matching the hashed n-gram distributions of
the target data. Although DSIR is effective in capturing direct word correlations, it may not capture
structured patterns of syntax that unfold across sentences or paragraphs, such as nested function calls
in code or embedded clauses in formal language translation (Moura et al., 2015). Additionally, the
hashing introduces noise due to collisions.
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Figure 1: ZIP-FIT selects task-specific data for efficient finetuning. (0) Obtain both the source
and target datasets. (1) Calculate ZIP-FIT Alignment of each source example with the target dataset
using compression. (2) Rank all source examples based on these alignment scores. (3) Select the
top-K most aligned examples for fine-tuning. (4) Fine-tune a large language model using the selected
top-K examples to improve performance on the target task.

Figure 2: Code Generation: ZIP-FIT accelerates cross-entropy loss reduction, even in code-
specialized models like CodeGemma-2B. The plots show cross-entropy test loss versus the number
of training tokens for Gemma-2-2B (top row) and CodeGemma-2B (bottom row) across different
token selection sizes. ZIP-FIT (blue) consistently reduces loss faster than DSIR (green) and D4
(red), achieving up to 85.11% speed improvement at lower token counts. These results demonstrate
ZIP-FIT’s efficiency in data selection for fine-tuning models on code-geneation tasks.

Gradient-based methods like LESS (Low-rank gradiEnt Similarity Search) (Xia et al., 2024) take
a different approach, selecting data with gradients most similar to the target data. While LESS
can identify useful training examples, computing and storing gradient features adds computational
overhead. These limitations highlight the need for better domain-specific data selection strategies.

To address these challenges, we propose ZIP-FIT, a novel data selection framework that leverages
compression algorithms (e.g., gzip, lz4, etc.). Recent research suggests that language modeling and
data compression are fundamentally equivalent tasks (Delétang et al., 2024), and the intelligence
of large language models (LLMs) is closely related to their ability to compress external corpora
(Huang et al., 2024). This insight suggests that compression algorithms can encode information in
ways similar to neural networks. For example, Jiang et al. (2023c) found that the use of normalized
compression distances for text classification outperformed traditional neural embeddings. Inspired
by this, ZIP-FIT selects aligned training data with a target data set based on compression-based
alignment, providing a lightweight and embedding-free method for selecting high-quality data.

We evaluated ZIP-FIT in two domains: Autoformalization and Python code generation. ZIP-FIT
outperforms existing data selection methods, consistently improving model performance across
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Figure 3: Higher ZIP-FIT alignment correlates with lower cross-entropy loss. The relationship
between ZIP-FIT alignment and cross-entropy (CE) loss for (a) GPT-2 trained on 22k tokens
(R2 = 0.90, p = 0.001) and (b) Mistral7B trained on 22k tokens (R2 = 0.75, p = 0.025). Each
point represents a dataset, with its position reflecting the dataset’s ZIP-FIT alignment score against
the ProofNet validation split and the resulting testnCE loss. The dashed red line indicates the linear
regression fit, while the dashed grey line shows the pretrained CE loss. Higher alignment scores
correspond to lower CE losses, demonstrating that training on better aligned data yields better
performance.

multiple metrics. Smaller, well-aligned datasets selected by ZIP-FIT lead to faster convergence
and better performance than larger, less aligned datasets, highlighting the importance of data quality.

Our contributions are as follows:

1. Methodology: The introduction of ZIP-FIT, an embedding-free data selection method
based on compression.

2. Superior Performance: ZIP-FIT achieves faster convergence (up to 85.1%) and lower test
cross-entropy loss compared to data selection baselines DSIR and D4. On downstream task
metrics, ZIP-FIT outperforms DSIR and LESS in autoformalization, measured with syntax
error compilation Pass@k, and exceeds DSIR, D4, and LESS on HumanEval, evaluated
with the unit test-based Pass@k metric.

3. Computational Efficiency: ZIP-FIT is computationally efficient, running up to 65.8%
faster than DSIR. This makes it scalable for low-resource environments without compromis-
ing performance.

2 ZIP-FIT: AN EMBEDDING-FREE DATA SELECTION ALGORITHM VIA
COMPRESSION-BASED ALIGNMENT FOR LM FINE-TUNING

Before introducing ZIP-FIT, it is essential to understand the desired attributes of effective data
selection algorithms. Ideally, such algorithms should be performant, computationally economical,
fast, scalable, and designed to improve the efficiency of model training. These characteristics ensure
that the data filtering process can be applied broadly and effectively in various machine learning
contexts, particularly when computational resources are limited. By setting these criteria, we can
better appreciate the innovations ZIP-FIT introduces in the realm of data selection.

2.1 BACKGROUND

Lossless Compression: Lossless text compression algorithms reduce data size by exploiting statistical
redundancies while ensuring perfect reconstruction of the original data. Pattern-based techniques like
LZ77 identify and replace repeated subsequences with compact references, while statistical encoding
methods such as Huffman coding assign shorter codes to frequent symbols. For more details, see
Appendix B.
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Autoformalization: The task of translating natural language mathematics into formal programming
languages like Lean4 Moura et al. (2015). This process requires precise understanding and represen-
tation of mathematical formal syntax, making the selection of well-aligned training data crucial for
effective model training.

2.2 ZIP-FIT ALGORITHM

Setup: Given a set of examples {x′
1, x

′
2, . . . , x

′
n} from a target distribution p and a large source

dataset {x1, x2, . . . , xN} from an arbitrary distribution q, ZIP-FIT aims to select a subset of K
examples (where K ≪ N ) from q. The selected subset is used for model training, in order to improve
performance for tasks associated with p. This approach is intended to maximize the efficacy and
efficiency of model training by focusing on the most relevant data samples.

Method: ZIP-FIT uses compression as a metric to measure the alignment of each example in q
with the target p, focusing on capturing patterns and redundancies.

To address the challenge of selecting highly aligned data, we propose the ZIP-FIT algorithm:

[H] [1] Input: A source dataset D = {x1, x2, . . . , xN} from distribution q, target examples
{x′

1, x
′
2, . . . , x

′
n} from distribution p. Output: A subset of K examples from D that improve

performance for p. i = 1 to N Compute alignment for each sample xi ∈ D with each target example
x′
j ∈ {x′

1, x
′
2, . . . , x

′
n} using Normalized Compression Distance:

NCD(xi, x
′
j) =

C(xi ⊕ x′
j)−min(C(xi), C(x′

j))

max(C(xi), C(x′
j))

where C(x) represents the compressed size of sequence x and ⊕ denotes concatenation. Compute
the average ZIP-FIT alignment for each xi:

ZIP-FIT-Alignment(xi) = 1− 1

n

n∑
j=1

NCD(xi, x
′
j)

Select the top-K examples from D based on the highest alignment scores.

3 HIGHER ZIP-FIT ALIGNMENT CORRELATES WITH BETTER MODEL
PERFORMANCE

Experiment: To validate the effectiveness of compression-based alignment, we evaluate the re-
lationship between ZIP-FIT alignment scores and model performance on the target task. Using
ProofNet’s validation split as the target distribution and test split for evaluation, we fine-tune GPT-
2 Radford et al. (2019) and Mistral7B Jiang et al. (2023b) on datasets with varying ZIP-FIT
alignment scores. To ensure fair comparison, we standardize each dataset to 100k tokens, except
where datasets are inherently smaller (e.g., ProofNet validation set).

Results Figure 3 demonstrates a strong negative correlation between ZIP-FIT alignment scores
and cross-entropy (CE) loss, with R2 values of 0.90 and 0.75 for GPT-2 and Mistral7B respectively.
Highly-aligned datasets like LeanDojo Yang et al. (2023) and the ProofNet validation split yield
substantially lower CE loss compared to less-aligned datasets like C4 Raffel et al. (2020) and
WikiText Merity et al. (2016). This suggests that ZIP-FIT effectively identifies training data that
improves model performance on the target task.

4 COMPARATIVE EVALUATION OF ZIP-FIT FOR EFFICIENT FINE-TUNING

We evaluate ZIP-FIT on two domain-specific tasks: Autoformalization and Python Code Generation.
Our goal is to show ZIP-FIT’s data selection leads to superior fine-tuning performance for coding
tasks compared to baselines.
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Figure 4: AutoFormalization: ZIP-FIT consistently achieves lower test loss more quickly than
D4 and DSIR, demonstrating its efficiency in data selection. The plots show cross-entropy test
loss versus the number of training tokens for three models (InterLM-Math-Plus-1.8B, Gemma-2-2B,
and Mistral7B) across different token selection sizes. ZIP-FIT (blue line) consistently outperforms
both DSIR (green line) and D4 (red line) across all model and token size configurations, highlighting
its ability to process data more efficiently. The percentage labels in each plot indicate the relative
speedup of ZIP-FIT over DSIR in reaching the lowest cross-entropy loss, reinforcing the method’s
scalability and adaptability for domain-specific fine-tuning.

4.1 CODE GENERATION

Experiment: We evaluated data selection methods for Python code generation using ZIP-FIT,
DSIR, and D4 on datasets combining MBPP Austin et al. (2021), Python docstrings, Proof-Pile 2,
C4, and WikiText (composition details: Appendix B.3). Alignment scores were computed using
HumanEval’s validation split, with top-n sequences selected (800K, 930K, 1.6M tokens) without
modifying baseline ranking mechanisms. Cross-entropy (CE) loss was evaluated on CodeGemma-2B
and Gemma-2-2B, while HumanEval Pass@1 results focus on Gemma-2-2B with added comparisons
to LESS. We use a separate hold-out portion for final testing.

Results: ZIP-FIT accelerates convergence and improves code generation quality. For CE loss,
ZIP-FIT achieves 85.1% faster convergence than DSIR on CodeGemma-2B and 67.5% faster
convergence on Gemma-2-2B. D4, again, demonstrates poor performance.

On HumanEval Pass@1 (Table ??), ZIP-FIT achieves 18.86% accuracy, outperforming DSIR
(17.98%) and LESS (18.06%) while requiring 3× less time than DSIR and no GPUs. LESS’s
computational cost (19h on 4 GPUs) limits its practicality.

4.2 AUTOFORMALIZATION

Experiment: Our source dataset comprised approximately 185,000 sequences from LeanDojo,
Proof-Pile 2, C4, and WikiText Yang et al. (2023); Azerbayev et al. (2024). For details on dataset
composition, refer to Appendix B.2. Training datasets were curated using ZIP-FIT, DSIR, and
D4, with ProofNet’s validation split as the target distribution. For fairness, we preserved the native
ranking mechanism of each method and selected top-n sequences (e.g., 353K, 695K tokens). We
fine-tuned three models—InternLM-Math-Plus-1.8B Ying et al. (2024), Gemma-2-2B Team et al.
(2024), and Mistral-7B—on each subset, evaluating cross-entropy (CE) loss on ProofNet’s test split.

Results: Figure 4 shows that ZIP-FIT significantly outperforms DSIR and D4 in reducing cross-
entropy (CE) loss across all token selection sizes (353k, 695k). The steep decline in the blue
curves (ZIP-FIT) highlights its ability to achieve faster convergence, resulting in up to 62.79%
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Method Pass@1 (%) Time Hardware
Gemma-2-2B 15.24 – –
ZIP-FIT 18.86 32s CPU
DSIR 17.98 97s CPU
LESS 18.06 19h 4 A100-80GB
D4 14.37 7h 40m 1 A100-80GB

Table 1: Python Code Generation: Comparison of data selection methods for code generation
using Gemma-2-2B. Pass@1 accuracy on HumanEval, selection time, and hardware requirements are
shown. ZIP-FIT achieves the highest Pass@1 score with the fastest selection time using only CPU
resources. All models where fine-tunes of Gemma-2-2B. For all methods, the top 1M tokens were
selected

improvements in convergence speeds compared to DSIR. Notably, ZIP-FIT demonstrates up to a
65.8% faster data selection process than DSIR. Similar results were observed at other token counts,
as detailed in Appendix E.

Additionally, we use a syntax error compilation Pass@k metric. Given k samples, we consider a trial
successful if at least one sample compiles without syntax errors. This method ensures that generated
formal statements are at least syntactically valid in Lean4, even if they are not fully correct. (Aniva
et al., 2024) Table ?? shows the results for Pass@5 across 183 tasks. The exact prompt format used
is detailed in Appendix K.

Method Pass@5 (%) Time Hardware
Gemma-2-2B 6.5 – –
ZIP-FIT 14.0 79s CPU
DSIR 0.0 135s CPU
LESS 0.1 20h 45m 4 A100-80GB

Table 2: AutoFormalization: ZIP-FIT achieves higher Lean4 compilation pass @ 5 than competing
methods on ProofNet’s test split. We computed the number of Lean4 compilation passes with k=5
samples. All models where fine-tunes of Gemma-2-2B. For all methods, the top 1M tokens were
selected

Notably, ZIP-FIT achieves a Pass@5 score of 14.0%, more than double that of the base Gemma-2-
2b model (6.5%) and orders of magnitude higher than prior data selection methods—DSIR (0.0%) and
LESS (0.1%). These results indicate that ZIP-FIT is particularly effective at enhancing the model’s
ability to generate syntactically valid and semantically meaningful Lean4 code for autoformalization
tasks. The fact that DSIR and LESS yield virtually no valid completions suggests that they may
be selecting data poorly suited to the rigid formal syntax of Lean, thereby failing to support model
learning in this highly structured domain. Crucially, ZIP-FIT achieves this performance without any
GPU acceleration, running entirely on CPUs—whereas LESS, despite requiring 4× A100-80GB
GPUs, fails to produce usable improvements. This highlights not only the effectiveness but also the
efficiency and practicality of ZIP-FIT as a fine-tuning data selection method for code.

5 IMPACT OF DATA MISALIGNMENT ON MODEL PERFORMANCE

Existing research showed that data alignment plays a critical role in improving model performance
and learning efficiency for downstream tasks. In this section, we explore how misalignment in data
can affect model performance and how ZIP-FIT addresses this issue with data selection.

Experiment: We fine-tuned the Mistral7B model on the same source dataset we used for the Auto-
Formalization experiment (see Appendix 4.2), filtering data with ZIP-FIT at different alignment
thresholds (>0.1, >0.2, >0.3). Each threshold creates a progressively more aligned dataset, where
the >0.3 dataset is the most aligned, and the >0.2 dataset is a superset of the >0.3 dataset, including
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Figure 5: Selective data filtering with ZIP-FIT allows us to achieve better cross-entropy test
loss faster than training on all the data, resulting in improved performance and efficiency. The
x-axis represents the number of training tokens, while the y-axis shows the cross-entropy test loss.
The curves represent models fine-tuned (FT) on datasets filtered by varying alignment thresholds (>
0.1, > 0.2, > 0.3). The dashed line indicates the baseline performance of the pretrained Mistral7B
model. Training on data filtered with higher alignment thresholds leads to superior performance,
demonstrating the effectiveness of removing misaligned data in fine-tuning.

less aligned data. Similarly, the >0.1 dataset is a superset of both >0.2 and >0.3. Figure 5 shows CE
test loss (y-axis) versus the number of training tokens (x-axis).

Results: ZIP-FIT selected data achieves lower CE loss faster than training on all data (Figure 5),
showing improved performance and efficiency. Higher alignment thresholds result in a steeper
loss reduction, confirming that filtering out misaligned data enhances fine-tuning. Misalignment
can introduce noise and irrelevant patterns, which we hypothesize require more training data and
computational resources to overcome. Applying higher alignment thresholds, ZIP-FIT ensures that
only the most relevant examples are used for training. This targeted selection leads to a more efficient
learning process as evidenced by the sharper decline in CE loss for higher alignment thresholds. Such
efficiency is crucial in scenarios where computational resources are limited or costly.

Practical Considerations: For practitioners, these results suggest that investing in better data
curation and alignment tools can significantly cut down the cost and time of model training without
compromising performance. It also highlights the potential pitfalls of using large, uncurated datasets
that might slow down the learning process or lead to poorer generalization on specific tasks.

Future Directions: Could explore adaptive alignment thresholds based on real-time validation CE,
potentially automating the selection process to optimize both speed and accuracy during training.

Filtering out misaligned data accelerates fine-tuning and reduces computational overhead, confirming
its performance gains and computational efficiency as outlined in our contributions.

6 RELATED WORKS

Curating pre-training data often involves using classifiers to filter high-quality data from large
corpora like Common Crawl, as done for models like GPT-3 and PaLM2 (Brown et al., 2020; Google,
2023; Shao et al., 2024). While effective, this process requires significant computational resources
and large volumes of curated data. In contrast, ZIP-FIT efficiently selects relevant data without
relying on external models, making it especially useful in data-scarce environments.

Deduplication techniques, such as SemDeDup (Abbas et al., 2023) and D4 (Tirumala et al., 2023),
improve data efficiency by removing duplicate or semantically similar examples using embedding-
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based clustering. However, these methods are computationally expensive and not tuned to the target
task. ZIP-FIT is embedding-free and task-aware, making it both scalable and more effective at
selecting relevant data.

Mixture weights are essential when drawing from multiple domains, as they influence the perfor-
mance of language models (Du et al., 2022; Xie et al., 2023b). DoReMi (Domain Reweighting
with Minimax Optimization) (Xie et al., 2023a) proposes a reweighting strategy suitable for han-
dling diverse target distributions, but it primarily focuses on adjusting weights at the domain level.
Adapting it to select individual data points for specific target distributions would require substantial
modifications to its foundational algorithm. One potential approach would be to effectively transform
each data point into a ’mini-domain,’ a process that would stray significantly from DoReMi’s original
purpose and scope. Therefore, we did not use DoReMi in our comparisons because it does not directly
address the fine-grained selection needs that ZIP-FIT fulfills.

Autoformalization refers to the process of translating natural language mathematics into formal
language (Wang et al., 2020; Wu et al., 2022), which is advantageous because formal proofs can be
verified for correctness. However, the ability of current models to autoformalize text is limited by
the scarcity of human-curated formal data. ZIP-FIT provides a framework for selecting the most
relevant data, ensuring that models are trained on aligned datasets that enhance their performance. ]

Compression: (Pandey, 2024) demonstrates that gzip-compressibility predicts how language model
scaling laws shift with data complexity, challenging the data-agnostic assumptions of Chinchilla-style
scaling laws. (Jiang et al., 2022) use gzip-based compression distance with kNN for zero-shot text
classification, outperforming BERT on some datasets. (Delétang et al., 2024) show that language
modeling is equivalent to compression, where even gzip can define predictive distributions via
coding length. (Yoran et al., 2025) propose the KoLMogorov Test, showing that gzip remains a
strong baseline for code-based compression, outperforming pretrained LLMs on real data. show that
gzip compression ratio is a fast, effective proxy for text diversity, capturing key repetition patterns
in LLM outputs and aligning with slower lexical metrics e.g., self-BLEU.

7 LIMITATIONS

While ZIP-FIT provides a computationally efficient method for data selection, it has several
limitations. First, compression-based alignment may not fully capture nuanced semantic relationships
that dense representations can, potentially affecting its effectiveness for complex domains like
natural language understanding, where paraphrasing is important. Second, ZIP-FIT’s reliance on
compression means that its performance could vary depending on the nature of the textual data,
particularly in highly diverse datasets where compression gains are less apparent.

8 DISCUSSION AND FUTURE WORK

ZIP-FIT introduces an efficient, embedding-free approach for data selection in language model
fine-tuning. By leveraging compression algorithms to capture redundancies in data, ZIP-FIT
enables the alignment of large-scale datasets with a target domain without the computational burden
of neural embeddings. Our experiments with different compression algorithms (Figure 8) reveal that
lighter compression (e.g., LZ4 at level 0) leads to better performance, achieving a 12.19% Pass@1
on HumanEval compared to 11.58% with gzip. This suggests that while compression effectively
captures alignment signals, aggressive compression can remove subtle but important patterns. These
insights highlight the importance of careful selection of compression parameters in optimizing the
quality of data selection. Our results show that using compression-based alignment leads to faster
convergence and lower cross-entropy loss compared to existing methods like DSIR and D4 (Tirumala
et al., 2023; Xie et al., 2023b).

However, this approach highlights the trade-off between simplicity and the ability to capture complex
semantic relationships. While compression-based methods offer a lightweight alternative, they might
not fully replace embedding-based techniques for highly intricate domains, such as natural language
understanding or paraphrases. Nonetheless, ZIP-FIT’s promising results suggest that leveraging
compression as a data selection tool can be highly effective, especially in resource-constrained
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scenarios and economically crucial tasks like code generation, compression can leverage the syntactic
structure of the data.

Future work could explore hybrid models that combine the strengths of compression-based techniques
with neural embeddings to further enhance data selection. Additionally, extending ZIP-FIT to
support more diverse data modalities and investigating its robustness across various domains would
provide a more comprehensive understanding of its capabilities and limitations. We plan for future
work to study its application to complex tasks based on natural language alone and mathematics,
where paraphrasing and semantics are important.

We also plan to explore the use of ZIP-FIT for synthetic data generation. While generating synthetic
data is straightforward, selecting high-value samples for training presents challenges, especially when
managing limited token budgets Villalobos et al. (2024). Autoformalization is a fantastic task for this
exploration, as it inherently has a limited number of tokens, thus simulating the critical challenge of
token scarcity. Additionally, studying synthetic data selection is crucial for developing self-improving
agents that can avoid model collapse (Gerstgrasser et al., 2024; Kazdan et al., 2024) by ensuring
high-quality data accumulation.

Furthermore, diversity was identified as an important meta-data property that can influence model
performance (Miranda et al., 2024). Therefore, we aim to address this in future work by either: (1)
developing an algorithm that balances diversity with alignment in data selection, or (2) creating a
metric that incorporates diversity as part of its evaluation process.

[backgroundcolor=blue!10, linecolor=blue!50!black, linewidth=2pt, innertopmar-
gin=nerbottommargin=nerrightmargin=20pt, innerleftmargin=20pt, roundcorner=10pt] Key
Takeaways:

• Efficiency in Data Selection: ZIP-FIT utilizes compression for alignment, demonstrating
significant efficiency in selecting domain-specific data, enhancing model fine-tuning.

• Resource Optimization: It outperforms traditional methods like DSIR, D4, and LESS by
speeding up training and reducing computational demands, beneficial in resource-limited
settings.

• Domain-Specific Improvements: Exhibits superior performance in tasks like AutoFormal-
ization and Python code generation, where precise data alignment is crucial.

• Practical Application: Effective in identifying and using the most relevant data from mixed
datasets, proving critical for achieving better domain-specific results.

9 CONCLUSION

In this work, we introduced ZIP-FIT, an efficient and scalable data selection method that leverages
compression to enhance the downstream performance of language models for domain-specific tasks.
Our experiments demonstrate that ZIP-FIT not only accelerates the fine-tuning process but also
significantly improves downstream performance by aligning training data more closely with target
tasks. By comparing against established methods like DSIR, D4 and LESS, ZIP-FIT proved
superior in selecting highly-aligned data, especially in complex tasks such as Autoformalization
and code generation. This methodology provides a resource-efficient and effective approach to data
selection for model training, contributing to a better understanding of how training data impacts
downstream transfer in LMs.

IMPACT STATEMENT

ZIP-FIT improves task-aware data selection efficiency, reducing compute costs and enabling faster,
more targeted fine-tuning. By eliminating embeddings, it enhances accessibility for low-resource
settings while maintaining strong performance. Its compression-based approach offers a scalable,
efficient alternative to traditional methods, with implications for sustainable AI training and fairer
dataset curation.
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A APPENDIX / SUPPLEMENTAL MATERIAL

Optionally include supplemental material (complete proofs, additional experiments and plots) in
appendix. All such materials SHOULD be included in the main submission.

B GZIP COMPRESSION DETAILS

gzip is a lossless data compression algorithm that combines two primary techniques: LZ77 com-
pression and Huffman coding. Here, we provide additional technical details on how gzip works.

LZ77 Compression: LZ77 works by identifying repeated substrings in the input text and replacing
them with backward references. Mathematically, LZ77 can be described as follows:

Given an input sequence S = s1, s2, . . . , sn, the algorithm searches for the longest prefix of the
remaining sequence S′ = si, si+1, . . . , sn that matches a substring within a predefined window of
previous characters. If a match is found, it is replaced by a tuple (d, l, c), where:

• d is the distance from the current position to the start of the matching substring,
• l is the length of the matching substring, and
• c is the character following the match (if any).

For example, the substring si, si+1, . . . , si+l−1 can be replaced by the tuple (d, l, c), thereby reducing
redundancy in the data.

Huffman Coding: After applying LZ77, gzip employs Huffman coding to further reduce the size
of the compressed data. Huffman coding assigns variable-length codes to symbols based on their
frequency of occurrence, with shorter codes assigned to more frequent symbols.

The expected length L(X) of the Huffman code for a sequence of symbols X = x1, x2, . . . , xn is
calculated as:

L(X) =

n∑
i=1

p(xi) · len(C(xi)),

where:

• p(xi) is the probability of symbol xi,
• len(C(xi)) is the length of the Huffman code for xi.

This further minimizes the size of the compressed data by leveraging the statistical properties of the
input.

Combined gzip Compression: The total compressed size C(S) after applying both LZ77 and
Huffman coding can be approximated as the sum of the lengths of the backward references and the
Huffman-coded symbols:

C(S) =
∑
(d,l,c)

len(d, l, c) +
n∑

i=1

len(C(xi)).

Normalized Compression Distance (NCD): gzip’s effectiveness in data selection stems from
its ability to measure the alignment between two sequences A and B based on how efficiently they
compress together. The Normalized Compression Distance (NCD) is given by:

NCD(A,B) =
C(A⊕B)−min(C(A), C(B))

max(C(A), C(B))
,

where C(A) and C(B) are the compressed lengths of sequences A and B, and C(A ⊕ B) is the
length of the compressed concatenation of both sequences. A lower NCD indicates greater alignment
between the sequences.
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B.1 WHY USE COMPRESSION?

Compression algorithms, such as gzip, provide a computationally efficient way to detect patterns
and minimize redundancy in data.

Limitations of n-grams: Many traditional methods, including hashed n-grams, focus on capturing
immediate textual correlations by simplifying text into discrete, fixed-size buckets. Although these
techniques are computationally efficient, they may not adequately capture syntactic or structural
relationships within the data. Additionally, the introduce noise due to collisions during hashing.

Challenges with Neural Embeddings: Neural embeddings offer a powerful tool for capturing
semantic relationships, but they come with significant computational costs. These embeddings are
typically pre-trained on large corpora and fine-tuned for specific tasks, which requires substantial
resources. Given the scalability challenges of embedding-based methods, we conjecture that a simpler
method like compression can provide a more scalable and resource-efficient alternative.

We hypothesize that compression – in this case gzip, but perhaps a different compression algorithm
–serves as a strong proxy for capturing syntactic and structural relationships in textual sequences.
gzip’s ability to compress data based on redundancy minimization can be leveraged as a metric to
align text with a target distribution.

B.2 COMPOSITION OF THE SOURCE DATASET FOR AUTOFORMALIZATION

The source dataset for the AutoFormalization task was compiled from a variety of datasets to ensure
a diverse mix of mathematical, general textual, and code-related content. Below are the details of the
datasets included:

• UDACA/AF: 4,300 samples from informal formalization statements.

• C4: 10,000 samples from the clean crawl of the internet, ensuring a broad linguistic variety.

• LeanDojo: 10,000 samples from task-oriented proofs and tactics.

• LeanDojo Informalized: 10,000 samples combining traced tactics with informal descrip-
tions, aiming to bridge formal reasoning and natural language.

• UDACA/AF-split: 10,000 samples, a variant of the UDACA/AF dataset with split annota-
tions.

• WikiText: 10,000 samples from a collection of professionally curated articles, providing a
rich linguistic framework.

• Algebraic Stack: Samples from various subsets of mathematical and programming lan-
guages, capped at 10,000 samples per subset or fewer if the total subset size was under this
threshold.

Each dataset was selected to complement the others by covering different aspects of language use,
from technical to informal, ensuring the model’s exposure to a wide range of linguistic structures and
contents. The total dataset size aggregated to approximately 185,000 sequences, which were then
subjected to alignment scoring and further processing for model training.

B.3 COMPOSITION OF THE SOURCE DATASET FOR CODE GENERATION

The source dataset for the Code Generation task was assembled from various data sources to provide a
diverse range of coding and natural language contexts. Below are the details of the datasets included:

• MBPP (Google Research): A total of 964 samples focusing on Python coding challenges.

• Python Code Instructions (18k Alpaca): 5,000 sequences providing natural language
prompts for Python code, fostering a practical approach to code generation.

• Python Docstrings (Calum/The Stack): 5,000 sequences each of Python function doc-
strings integrating detailed natural language documentation of python functions.
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• Python Docstrings (Calum/The Stack): 5,000 sequences each of Python function code
bodies, integrating raw python code without documentation.

• C4 (AllenAI): 10,000 samples from a clean web crawl.
• WikiText: 10,000 samples from a collection of curated articles, providing rich natural

language training material.
• Algebraic Stack: A selection of sequences from various programming language subsets,

each capped at 10,000 samples or the total subset size if less than this threshold.

This combination of datasets was specifically chosen to challenge our methods ’s ability to choose
syntactically correct and functionally accurate Python code, while also responding appropriately to
natural language prompts.

B.4 HYPERPARAMETERS FOR MODEL FINE-TUNING

All models in our experiments were fine-tuned with the following unified setup, aimed at ensuring a
consistent evaluation across different models and data selection strategies.

Models and Tokenizer: The fine-tuning was performed using the following models:

• InterLM-Math-Plus-1.8B
• Gemma-2-2B
• Mistral7B

Training Settings: The key hyperparameters used across all models are as follows:

• Block Size: 1024 tokens
• Learning Rate: 7.5× 10−7

• Batch Size: 4 (per device)
• Number of Epochs: 1
• Weight Decay: 0.01
• Maximum Gradient Norm: 1.0

Training was facilitated using the Trainer class from Hugging Face’s Transformers library, with the
Accelerate library handling model parallelism to efficiently utilize available computational resources.

Evaluation Metrics: For model evaluation, we employed:

• Cross-Entropy Loss at the end of training to measure the effectiveness of the fine-tuning.

Fine-tuning was performed under controlled conditions to ensure fair comparison between data
selected by ZIP-FIT, DSIR, and manual curation methods. The effectiveness of each method was
assessed based on how the models performed on the ProofNet and HumanEval.

Data Handling and Logging: All logs, model checkpoints, and tokenizer settings were systemati-
cally saved in designated directories for thorough analysis post-experiment

This comprehensive and standardized approach to fine-tuning ensures that our experimental results
are robust, reproducible, and transparent, providing clear insights into the effectiveness of the data
selection methodologies employed in our study.

C RATIONALE FOR THE METHOD NAME ZIP-FIT

We chose the name ZIP-FIT for two reasons:

1. ZIP refers to the use of gzip compression for data selection, where compression aligns the
data for better future fine-tuning (or FITting).
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2. The name also references scaling laws, as ZIP-FIT consistently reduces loss faster than
competing methods, implying better power-law scaling parameters, drawing a parallel to
Zipf’s law Piantadosi (2014), which describes similar scaling behavior in language models.

Remark: Zipf’s law Piantadosi (2014) describes the inverse relationship (thus power law f(r) ∝ 1/rs,
where r is the rank and f(r) is the frequency of the word with rank r) between a word’s frequency
and its rank in natural language, a pattern that reflects scaling behavior. Rank in this context is the
position of the word after sorting with respect to frequency in the text.
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Figure 6: Highly aligned data lowers cross-entropy loss more efficiently. The x-axis shows the
number of training tokens, and the y-axis represents the cross-entropy (CE) test loss on the ProofNet
test set. Different curves correspond to datasets filtered by different alignment scores, indicating their
relevance to the target domain. The most aligned data reduce Test CE loss significantly faster than
less aligned data. The left panel depicts results using GPT-2, and the right panel uses Mistral7B,
demonstrating that using highly aligned data not only accelerates training but also achieves better
model performance, validating the effectiveness of ZIP-FIT for data selection in fine-tuning.

D HIGHER ALIGNMENT LEADS TO MORE EFFICIENT TRAINING

Experiment: We fine-tuned GPT-2 (124M) and Mistral7B for the AutoFormalization task using
different datasets scored with ZIP-FIT alignment. We used ProofNet (test) for the evaluation. The
curves represent different datasets with varying alignment to the target domain (ProofNet validation).

Results: More aligned data reduces CE loss quickest, as shown by the steep decline for high-alignment
datasets. This is most evident as ProofNet (validation). Less aligned data require significantly more
tokens to achieve similar performance. This demonstrates that targeted data selection with ZIP-FIT
accelerates fine-tuning and improves performance, reducing computational costs.
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E ADDITIONAL EXPERIMENTAL RESULTS: DATA SELECTION FOR EFFICIENT
FINE-TUNING USING ZIP-FIT

Figure 7: ZIP-FIT consistently achieves a lower test loss at a faster rate compared to D4 and
DSIR for Autoformalization. The plots show the cross-entropy test loss against the number of
training tokens for three models (InterLM-Math-Plus-1.8B, Gemma-2-2B, and Mistral7B) across
various token selection sizes. ZIP-FIT (blue line) consistently surpasses both DSIR (green line) and
D4 (red line) across all model and token size configurations, emphasizing its superior data processing
efficiency. The percentage labels in each plot denote the relative speedup of ZIP-FIT over DSIR in
attaining the lowest cross-entropy loss, further underscoring the method’s scalability and adaptability
for domain-specific fine-tuning.
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F BASELINE COMPARISON USING TEACHER-FORCED ACCURACY(TFA) FOR
AUTOFORMALIZATION

Teacher-Forced Accuracy (TFA): TFA evaluates mathematical reasoning tasks by measuring
exact syntactic alignment with reference solutions (Jiang et al., 2023a). It correlates strongly with
correctness in competition-level mathematics (Gulati et al., 2024), making it a suitable metric for
autoformalization.

We evaluated Teacher-Forced Accuracy (TFA) on ProofNet’s test split by fine-tuning Gemma-2-2B
on datasets curated with ZIP-FIT, DSIR, and LESS.

Table 3: Performance and efficiency comparison of data selection methods. Results show Pass@1
and Pass@10 scores on HumanEval using top 1M tokens for fine-tuning, along with data selection
time. Data selection times exclude fine-tuning time.

Fine-tuning Data Selection Pass@1 (%) Pass@10 (%) Selection Time
None Pre-trained Gemma-2-2B 15.24 38.81 –
None Pre-trained Gemma-2-2B (4-bit quantized) 6.09 – –

Full FT ZIP-FIT 18.86 41.78 32s
Full FT LESS 18.06 40.19 19h
Full FT DSIR 17.98 44.27 97s

QLoRA ZIP-FIT 12.19 – 32s
QLoRA DSIR 9.14 – 97s
QLoRA D4 6.09 – 7h 40m
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G IMPACT OF COMPRESSION ALGORITHMS AND LEVELS

Figure 8: Lighter compression preserves crucial information for data selection. At minimum
compression levels, both gzip and LZ4 achieve the strongest Pass@1 scores (11.58% and 12.19%),
significantly outperforming the base model (6.09%, dashed line). Performance systematically de-
grades with increased compression across all algorithms, suggesting that aggressive compression
removes valuable alignment signals.

To investigate the impact of different compression algorithms on ZIP-FIT’s performance, we con-
ducted experiments comparing three widely used compression methods: gzip, zstd, and LZ4. Each
algorithm was tested across its available compression levels, normalized to a 0-1 scale for comparison.
As shown in Figure 8, compression algorithm choice and level significantly impact performance.

Key findings include:

• LZ4 at minimum compression achieves the best performance (12.19% Pass@1)
• Higher compression levels generally lead to decreased performance across all algorithms
• gzip shows more stable performance degradation compared to LZ4 and zstd
• zstd consistently underperforms relative to both GZIP and LZ4

These results suggest that lighter compression better preserves the structural information needed
for effective data selection. The superior performance of LZ4 at minimal compression indicates
that aggressive data compression may remove subtle but important patterns useful for alignment
assessment.
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H DATA SELECTION PROFILING (RUN TIMES)

ZIP-FIT performs selection up to 65.8% faster than DSIR and 21,076% (=5h/85s=211, which
is 2 orders of magnitude) faster than D4. Experimental results comparing ZIP-FIT vs DSIR
profiling/run time for Code data selection can be found in figure 9. Note that depending on the dataset
and number of samples these numbers may not hold. Compression may not scale well to long-context
datasets and depending on the source dataset, our run times varied widely. However, on average we
observed that ZIP-FIT is comparable to DSIR and generally faster. More experiments across a
wider range of datasets need to be conducted in order to infer more.

Figure 9: ZIP-FIP demonstrates lower cross-entropy and lower run time during data selection
than competing DSIR and D4 methods. ZIP-FIT is cheaper, faster, and better performing. The
run times do no include fine-tuning time, since it’s a constant offset across all models. D4’s data
selection (not shown) takes 5hs because it uses an embedding model (opt-125m Zhang et al. (2022)),
the same one as the original paper Tirumala et al. (2023).
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I NORMALIZED COMPRESSION DISTANCE (NCD): HOW COMPRESSION
MEASURES DATA ALIGNMENT INTUITIVELY

Normalized Compression Distance (NCD) uses compression to quantify how much two objects
x and x′ share in common. First, observe that if x and x′ are similar, then the compressed size
of their concatenation, C(x ⊕ x′), will not be much larger than the compressed size of one of
them alone—because most of their information overlaps. Conversely, if x and x′ are very different,
C(x⊕ x′) will be roughly the sum of their individual compressed sizes, since they share little or no
redundancy.

Formally, NCD isolates how much extra information one object contributes beyond their shared core
by subtracting min(C(x), C(x′)) from C(x⊕ x′). This “delta” measures what is new or unique in
combining x with x′. Dividing that delta by max(C(x), C(x′)) then normalizes the distance so that
its value lies between 0 and 1:

NCD(x, x′) =
C(x⊕ x′)−min

(
C(x), C(x′)

)
max

(
C(x), C(x′)

) .

When x and x′ are identical, the numerator is near zero, giving NCD ≈ 0. When x and x′ are very
different, the numerator is comparable to max(C(x), C(x′)), so NCD ≈ 1. By measuring how easily
one object’s information can be “compressed away” given the other object, NCD succinctly captures
their similarity or dissimilarity.

J QUALITATIVE ANALYSIS

Qualitative results show top 20 examples can be found it table ??.

Selected Samples by ZIP-FIT with ZIP-FIT Alignment scores
Sample Text (Beginning) Alignment Score
Across all his bands and projects, Townsend has released twenty @-@
three studio albums and three live albums.

0.5000

Require Import CodeDeps. Require Import Ident. Local Open Scope
Z_scope. Definition _addr := 1%positive. Definition _g := 2%positive.

0.4928

This Photostock Vector Night Sky Background With Full Moon Clouds
And Stars Vector Ilgraphicration has 1560 x 1560 pixel resolution...

0.4926

module Structure.Logic where ... 0.4926
{ dg-do compile } PR fortran/51993 Code contributed by Sebastien
Bardeau <bardeau at iram dot fr> module mymod type ::
mytyp...

0.4891

For over ten years, the St. Louis Mercy home has formed a special
connection with a local community theatre: The Muny. This summer
the...

0.4889

Read("SchreierSims.gi"); LoadPackage("AtlasRep"); MicroSeconds :=
function() local t; t := IO_gettimeofday(); return t.tv_sec * 1000000 + t.t

0.4889

Get the keyId used by this peer (this peer’s identifier). This is stored in
the key store.

0.4857

Initializes and adds a node to the graph. NOTE: At least the type must
be supplied for the Node to exist in the graph. Args: graph: The graph...

0.4853

def bgra2rgb(img): cv2.cvtColor(img, cv2.COLOR_BGRA2BGR) has
an issue removing the alpha channel, this gets rid of wrong trans...

0.4853

Table 4: Beginning characters of the top 20 samples selected by ZIP-FIT when the target task is
code generation.
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Selected Samples by DSIR with ZIP-FIT Alignment scores
Sample Text (Beginning) ZIP-FIT Alignment Score
<a href=“https://colab.research.google.com/github/julianovale/simulaca
o_python/blob/master/0006_ex_trem_kronecker_algebra_computacao ...

0.122

library(qcc) \\n death=c(2,1,2,4,2,5,3,3,5,6,3,8,3,3,6,3,6,5,3,5,2,6,2,3,4,
3,2,9,2,2,3,2,10,7,9,6,2,1,2,4,2,5,3,3,5,6,3,8,3,3,6,3,6,5,3,5,2,6,2 ...

0.121

gap >List(SymmetricGroup(4), p - >Permuted([1 .. 4], p)); \\n perms(4);
[ [ 1, 2, 3, 4 ], [ 4, 2, 3, 1 ], [ 2, 4, 3, 1 ], [ 3, 2, 4, 1 ...

0.191

# Solutions \\n ## Question 1 \\n >‘1’. Using a ‘for’ loop print the types
of the variables in each of the >following iterables: \\n >‘1’ ...

0.145

# Some small pregroups \\n # The lists of small pregroups were generated
by \\n # Chris Jefferson <caj21@st-andrews.ac.uk> and \\n ...

0.195

adjacency_mat = [ false true true true true true true true true false true
true true true false false false true false true false true false ...

0.182

\section{Lookup table used for accessing child voxels using a parent’s
child descriptor} \label{app:lookup-table} \lstset{language=C,cap ...

0.199

\* statistics test_nist.c \\n * \\n * Copyright (C) 1996, 1997, 1998, 1999,
2000, 2007 Jim Davies, Brian Gough \\n * \\n * This pro ...

0.180

Problem Description Write a python function to find the first missing
positive number. \\n def first_Missing_Positive(arr,n): \\n ptr = 0 ...

0.239

import numpy as np \\n mandelTable =
[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
...

0.189

Table 5: Beginning characters of the top 20 samples selected by DSIR when the target task is code
generation. DSIR does not easily provide alignment scores, so instead we report the ZIP-FIT
scores, which reveals that ZIP-FIT doesn’t score highly the DSIR examples which might explain
why ZIP-FIT achieves better CE loss.

J.1 CHOICE OF EXAMPLES

To evaluate our approach, we selected **three examples from MiniF2F in Lean4**. ProofNet was
avoided since its validation and test sets are highly similar, meaning the model could memorize and
correctly predict the first few examples without true generalization. MiniF2F, containing formal-
ized math exercises from textbooks, provided a more robust test set. Some exercises differ only
slightly (e.g., proving a theorem for + instead of ∗), making it a better challenge for evaluating
autoformalization models.

K PASS@K FOR AUTOFORMALIZATION

The following prompt was used for evaluating syntax error compilation Pass@k in autoformalization
experiments:

from textwrap import dedent

def my_prompt_format(nl_stmt: str) -> str:
"""Format a prompt to translate a natural-language math statement to Lean."""
prompt: str = dedent(f"""\

Your task is to translate the natural-language mathematical statement
into a formal Lean statement using the following format:

natural language statement:
Let $z=\\frac{{1+i}}{{\\sqrt{{2}}}}.$ What is ...

formal Lean language statement:
##
theorem amc12a_2019_p21 (z : ) (h : z = (1 + Complex.I) / Real.sqrt 2) :
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( k in Finset.Icc 1 12, (z^(k^2))) * ( k in Finset.Icc 1 12, (1 / z^(k^2))) = 36 := by
sorry

##
...

natural language statement:
{nl_stmt}

formal Lean language statement:
""")

return prompt

L TEACHER FORCED ACCURACY (TFA) RESULTS

Method TFA (%) Time Hardware
Gemma-2-2B 46.73 – –
ZIP-FIT 61.38± 2.73 79s CPU
DSIR 59.29± 1.33 135s CPU
LESS 63.72± 3.75 20h 45m 4 A100-80GB

Table 6: AutoFormalization: ZIP-FIT achieves similar Teacher Forced Accuracy (TFA) compared
to LESS in a statistically significant way. Confidence interval are at 95%.

For Gemma-2-2B, Table ?? shows that ZIP-FIT achieves a TFA of 61.38% ± 2.73%, which is
comparable to LESS (63.72% ± 3.75%) but with a drastically reduced selection time of 79 seconds
compared to LESS’s 20 hours and 45 minutes. ZIP-FIT also outperforms DSIR in both TFA
(59.29% ± 1.33%) and selection speed (135 seconds).

M FUTURE WORK (CONT.)

Lossless Compression for Alignment: While ZIP-FIT has demonstrated substantial efficiency
for data selection, there are several promising directions for future exploration. One potential
enhancement is leveraging faster compression algorithms, such as LZ4 and Snappy, which offer
rapid processing speeds at the cost of lossy compression. In our current approach, we utilize gzip
for compression-based alignment, which is lossless and provides a robust foundation. However,
LZ4 and Snappy are optimized for speed and could potentially offer even greater computational
efficiency without the need for decompression in our pipeline. Given that our primary goal is efficient
data selection rather than perfect data recovery, these faster algorithms might be more suitable.

Autonomous Validation Set Generation: A current limitation of ZIP-FIT is its dependence on a
small, curated validation set (e.g., 185 samples for ProofNet and 82 samples for half the HumanEval
test set). Future work could explore the use of generative models to create synthetic validation
sets from task-specific instructions. This approach could also be expanded to enable autonomous
self-directed, model-driven generation of validation data.
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