
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FAIR GRAPH MACHINE LEARNING UNDER ADVERSAR-
IAL MISSINGNESS PROCESSES

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have achieved state-of-the-art results in many rel-
evant tasks where decisions might disproportionately impact specific communities.
However, existing work on fair GNNs often assumes that either sensitive attributes
are fully observed or they are missing completely at random. We show that an
adversarial missingness process can inadvertently disguise a fair model through the
imputation, leading the model to overestimate the fairness of its predictions. We
address this challenge by proposing Better Fair than Sorry (BFtS), a fair missing
data imputation model for sensitive attributes. The key principle behind BFtS is
that imputations should approximate the worst-case scenario for fairness—i.e.,
when optimizing fairness is the hardest. We implement this idea using a 3-player
adversarial scheme where two adversaries collaborate against a GNN classifier,
and the classifier minimizes the maximum bias. Experiments using synthetic and
real datasets show that BFtS often achieves a better fairness × accuracy trade-off
than existing alternatives under an adversarial missingness process.

1 INTRODUCTION

With the increasing popularity of machine learning in high-stakes decision-making, it has become a
consensus that these models carry implicit biases that should be addressed to improve the fairness
of algorithmic decisions (Ghallab, 2019). The disparate treatment of such models towards African
Americans and women has been illustrated in the well-documented COMPAS (Angwin et al., 2022)
and Apple credit card (Vigdor, 2019) cases, respectively. While there has been extensive research on
fair ML, the proposed solutions have mostly disregarded important challenges that arise in real-world
settings. For instance, in many applications, data can be naturally modeled as graphs (or networks),
representing different objects, their relationships, and attributes, instead of as sequences or images.
Moreover, fair ML is also prone to missing data (Little & Rubin, 2019). This is particularly critical
because fair algorithms often require knowledge of sensitive attributes that are more likely to be
missing due to biases in the collection process or privacy concerns. For instance, census and health
surveys exhibit missingness correlated with gender, age, and race (O’Hare & O’Hare, 2019; Weber
et al., 2021). Networked data, such as disease transmission studies, face similar issues (Ghani et al.,
1998). As a consequence, fair ML methods often rely on missing data imputation, which can introduce
errors that compromise fairness (Mansoor et al., 2022; Jeong et al., 2022).

This work investigates the impact of adversarial sensitive value missingness processes on fairness,
where the pattern of missing sensitive data is structured to obscure true disparities. If the predictions
from the imputation method fail to capture the true distribution of a sensitive attribute, any fairness-
aware model trained on the imputed data is prone to inheriting the underlying true bias. More
specifically, a key challenge arises when an adversarial missingness process makes the imputed
dataset appear to be fair. In graphs, an adversary can exploit the graph structure to manipulate the
imputed values and, as a consequence, the fairness-aware model. Prior work on the fairness of graph
machine learning assumes sensitive values are Missing Completely At Random (MCAR). However,
this assumption rarely holds in practice (O’Hare & O’Hare, 2019; Weber et al., 2021; Ghani et al.,
1998; Jeong et al., 2022). Luh (2022) and Fukuchi et al. (2020) provide motivational examples of how
fairness can be manipulated by adversarial data collection. Methods that overlook the adversarial
missingness process risk producing misleading fairness guarantees w.r.t. the complete data.
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Figure 1: In Fig. (a), a graph machine learning algorithm is applied to decide who receives credit
(positive or negative) based on a possibly missing sensitive attribute, gender (and binary only for
illustrative purposes). As shown in Fig. (b), traditional missing data imputation does not account
for outcomes (positive/negative), and thus, their imputed values can under-represent the bias of
the complete dataset—demographic parity (DP) is 0.09 in this example (DP and bias are inversely
related). This paper proposes BFtS, an imputation method for graph data that optimizes fairness in
the worst-case imputation scenario using adversarial learning, as shown in Fig. (c), where DP is 0.47.

Figure 1 motivates our problem setting using a toy example. A machine learning algorithm is applied
to decide whether individuals should or should not receive credit. Figure 1a shows both the gender
and outcome for each individual. The genders of some samples are unknown in Figure 1a, and the
demographic parity (∆DP ) considering only the observed values is 0.25 (∆DP is a bias metric
described in Section 5). We illustrate how different missing data imputations affect the fairness of
credit decisions in Figures 1b and 1c. A straightforward imputation is demonstrated in Figure 1b,
where the gender of the majority of neighbors is assigned to the missing attribute, resulting in a
best-case scenario in terms of fairness with a ∆DP of 0.09. However, in the worst-case scenario,
shown in Figure 1c, ∆DP is 0.47. If an adversarial missingness process can induce the imputation
model to generate the imputation from Figure 1b but the complete data is Figure 1c, a fair model
trained on the imputed data will still be biased w.r.t. the complete data.

To counter an adversarial missingness process for sensitive values on graphs, we propose Better Fair
than Sorry (BFtS), a 3-player adversarial learning framework for missing sensitive value imputation
based on Graph Neural Networks (GNNs). Our experiments show that BFtS achieves a better accuracy
× fairness trade-off than existing approaches, especially under adversarial missing sensitive values.

We summarize our contributions as follows: (1) We investigate theoretically and empirically the
potential of an adversarial missingness process to bias a fair GNN; (2) We propose Better Fair
than Sorry (BFtS), a novel 3-player adversarial learning framework for the imputation of missing
sensitive data that produces worst-case imputed values for fair GNNs and is effective under adversarial
missingness processes and even when sensitive attribute information is completely unavailable; and
(3) We show empirically that BFtS achieves a better fairness × accuracy trade-off than the baselines.

1.1 RELATED WORK

Fairness in graph machine learning. Existing work can be grouped into pre-processing, extended
objectives, and adversarial learning. Pre-processing methods such as FairOT, FairDrop, FairSIN, ED-
ITS, and Graphair remove bias from the graph before training (Laclau et al., 2021; Spinelli et al., 2021;
Yang et al., 2024; Dong et al., 2022; Ling et al., 2023). Objective-based methods—including Fairwalk,
Crosswalk, Debayes, MONET, NIFTY, FairVGNN, PFR-AX, FairSAD, and FairGAE—modify GNN
losses to learn fair representations (Rahman et al., 2019; Khajehnejad et al., 2022; Buyl & De Bie,
2020; Palowitch & Perozzi, 2019; Agarwal et al., 2021; Wang et al., 2022; Merchant & Castillo,
2023; Zhu et al., 2024; Fan et al., 2021). Adversarial methods such as CFC, FLIP, DKGE, and Debias
jointly train GNNs with adversaries for fair prediction (Bose & Hamilton, 2019; Masrour et al., 2020;
Arduini et al., 2020; Zhang et al., 2018). All these require fully observed sensitive attributes.

Missing Data Imputation and fairness. Missing data can be imputed using unconditional mean,
reconstruction, preferential attachment, autoencoders, etc. (Donders et al., 2006; Pereira et al., 2020;
Huisman, 2009). The traditional procedure for handling missing data is independent imputation—i.e.,
to first impute the missing values and then solve the task (Rossi et al., 2021; Buck, 1960). SAT is a
matching-based GNN for graphs with missing attributes (Chen et al., 2020), but it does not account
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for fairness. Training a classifier from imputed data can amplify the bias of a machine learning model,
as discussed in (Subramonian et al., 2022; Zhang & Long, 2021; Feng et al., 2023; Guha et al., 2024;
Martı́nez-Plumed et al., 2019; Fricke, 2020; Mansoor et al., 2022). Some studies try to generate fair
feature imputations (Subramonian et al., 2022; Feng et al., 2023; Jeong et al., 2022; Zhang & Long,
2022). However, as the approaches discussed earlier, these methods do not consider missing sensitive
information and require full knowledge of the sensitive attributes for fairness intervention.

Fairness with missing sensitive attributes. One extreme assumption is the complete unavailability
of sensitive information. For example, Hashimoto et al. (2018) considers the worst-case distribution
over group sizes, Lahoti et al. (2020) reweighs training samples adversarially, Chai & Wang (2022)
minimizes a top-k average loss, and Zhao et al. (2022) reduces correlation between predictions and
features associated with sensitive attributes. Other approaches include class re-balancing (Yan et al.,
2020) and soft labels from an overfitted teacher (Chai et al., 2022). In practice, partial sensitive
information is often available and improves fairness (Chai & Wang, 2022), but these models fail to
leverage it. FairGNN (Dai & Wang, 2021) assumes limited sensitive data and imputes missing values
independently, FairAC (Guo et al., 2023) uses only observed attributes without imputation, and RNF
(Du et al., 2021) generates proxy annotations using generalized cross-entropy (Zhang & Sabuncu,
2018). Similar to RNF, our approach handles completely or partially missing sensitive information.
BFtS applies a 3-player scheme to minimize the maximum possible bias and outperforms FairGNN
and RNF in terms of fairness × accuracy. Minimizing the maximum instead of the average risk,
similar to our method, has been shown to achieve better guarantees (Shalev-Shwartz & Wexler, 2016).
A similar minmax approach has been applied to maximize the robustness and accuracy of uncertainty
models (Löfberg, 2003; Lanckriet et al., 2002; Chen et al., 2017; Fauß et al., 2021). In (Nguyen
et al., 2017; Vandenhende et al., 2019), a 3-player adversarial network is proposed to improve the
classification and stability of adversarial learning.

Adversarial attacks on fairness. Recent work has investigated data poisoning as a means to
adversarially degrade model fairness (Mehrabi et al., 2021; Solans et al., 2020). UnfairTrojan and
TrojFair introduce backdoor attacks specifically aimed at reducing model fairness (Furth et al., 2024;
Zheng et al., 2023). In the context of graph neural networks (GNNs), most adversarial fairness attacks
modify graph topology: Hussain et al. (2022); Zhang et al. (2023) perturb edges, NIFA injects nodes
via uncertainty maximization and homophily enhancement (Luo et al., 2024), and FATE applies
bilevel meta-learning for poisoning (Kang et al., 2023). Thus, prior work has primarily focused on
poisoning, node injection, or structural perturbations, while attacks that compromise fairness solely
by manipulating sensitive-attribute missingness remain unexplored.

2 PRELIMINARIES

Let G = (V, E ,X ,S) be an undirected graph where V is the set of nodes, E ⊆ V × V is the set of
edges, X are node attributes, and S is the set of sensitive attributes. The matrix A ∈ RN×N is the
adjacency matrix of G where Auv = 1 if there is an edge between u and v and Auv = 0, otherwise.
We focus on the setting where sensitive attributes might be missing and only VS ⊆ V nodes include
the information of the sensitive attribute sv for a node v. The sensitive attribute forms two groups,
which are often called sensitive (sv = 1) and non-sensitive (sv = 0).

While our work can be generalized to other fairness-aware tasks, we will focus on binary fair node
classification, where the goal is to learn a classifier fC to predict node labels yv ∈ {0, 1} based on a
training set VL ⊆ V . Without loss of generality, we assume that the class y = 1 is the desired one
(e.g., receive credit or bail). Given a classification loss Lclass and a fairness loss Lbias, the goal is to
learn the parameters θclass of fclass by minimizing their combination:

θ∗class = arg min
θclass

Lclass + αLbias

where Lbias measures the impact of the sensitive attribute sv over the predictions from fclass and α
is a hyperparameter. The main challenge addressed in this paper is how to handle missing sensitive
attributes. In this scenario, one can apply an independent imputation model sv ≈ fimp(v) before
training the fair classifier. However, the fairness of the resulting classifier will be highly dependent
on the accuracy of fimp, as will be discussed in more detail in the next section.
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3 INTRODUCING BIAS VIA AN ADVERSARIAL MISSINGNESS PROCESS

We investigate the impact of missing sensitive values on fairness in graph machine learning. Datasets
with substantial missingness typically require imputation. In this section, we focus on how the miss-
ingness process (i.e., the process that generates missing values) can lead to (intended or unintended)
biases in a fair model trained using the imputed data, leading fair models to underestimate bias and
remain unfair relative to the complete data.

The simplest missingness process for sensitive values is missing completely at random—i.e., the
probability of a value being missing is independent of the data. However, in practical scenarios,
missing values are rarely random (O’Hare & O’Hare, 2019; Weber et al., 2021; Ghani et al., 1998). We
focus on the particular case where the missingness process is adversarial. We prove that manipulating
the missingness process to induce bias optimally is computationally hard. However, a simple heuristic
can effectively introduce bias to an independent imputation model that simply tries to maximize
imputation accuracy. We formulate the problem for a given number of observed sensitive values k.
Definition 1. Adversarial Missingness Against Fair Classification (AMAFC): Given a graph
G = (V, E), select a set of nodes V∗

S that maximizes the bias of a fair classifier with parameters
θ∗class trained with an imputation model with parameters θ∗imp trained with VS:

V∗
S = argmaxVS∈V,|VS |=kLbias(θ

∗
class,V)

s.t. θ∗class = argminθclass
Lclass(θclass) + αLbias(θclass, θ

∗
imp,VS)

s.t. θ∗imp = argminθimp
Limp(θimp,VS)

where we assume that the adversary can compute the bias Lbias(θ
∗
class,V) based on all sensitive

attributes sv , while the classifier can only estimate its bias based on a combination of nodes VS with
observed sv and imputed values produced with θ∗imp. While AMAFC describes the objective of an
idealized adversary, it is impractical due to its associated complexity (tri-level optimization).
Definition 2. Adversarial Missingness against Data Bias (AMADB): Given a graph G = (V, E),
select a set of nodes V∗

S that minimizes the bias in the labels estimated using an imputation model
with parameters θ∗imp trained with VS:

V∗
S = argminVS∈V,|VS |=kLbias(θ

∗
imp,VS ,VL)

s.t. θ∗imp = argminθimp
Limp(θimp,VS)

where Lbias(θ
∗
imp,VS ,VL) is computed based on labels instead of fclass. By minimizing the bias

computed based on imputed values and labels, AMADB attempts to misguide any classifier that relies
on such imputation to mitigate bias. AMADB is more tractable than AMFC, but still NP-hard.
Theorem 1. The AMADB problem is NP-hard.

See the proof in the Appendix. We frame AMADB as an adversarial version of active learning where
the goal is to strategically minimize the accuracy of the imputation by selecting observed sensitive
attributes. More specifically, we apply a popular formulation of active learning as a coverage problem
(Yehuda et al., 2022; Ren et al., 2021). Theorem 1 can be interpreted as a positive result, as it shows
that, in theory, a simpler surrogate of the adversary’s objective is still hard to optimize.

A simple (yet effective) heuristic for adversarial missingness: Let s ∈ {0, 1} denote the true
sensitive attribute and ŝ ∈ {0, 1} be its imputation. We define the imputation error rate as p(s ̸=
ŝ) = ϵ. Let ŷ ∈ {0, 1} be the prediction of a fair model that minimizes demographic parity (∆DP )
with respect to ŝ, where we define ∆DP with respect to a sensitive attribute a ∈ {s, ŝ} as follows:

∆DPa = |p(ŷ = 1|a = 0)−p(ŷ = 1|a = 1)|
We want to design a heuristic where the goal of the adversary is to choose missing values to maximize
the difference between the true demographic parity ∆DPs and empirical demographic parity ∆DPŝ:

max
ŝ

∆DPs −∆DPŝ

= max
ŝ

|p(ŷ = 1|s = 0)−p(ŷ = 1|s = 1)| − |p(ŷ = 1|ŝ = 0)− p(ŷ = 1|ŝ = 1)|

4
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We assume the minority class is underrepresented, i.e. (∀a, |p(ŷ = 1|a = 0) ≥ p(ŷ = 1|a = 1)|):

max
ŝ

p(ŷ = 1|s = 0)−p(ŷ = 1|s = 1)− p(ŷ = 1|ŝ = 0) + p(ŷ = 1|ŝ = 1)

= max
ŝ

p(ŷ = 1|s = 0)−p(ŷ = 1|ŝ = 0) + p(ŷ = 1|ŝ = 1)− p(ŷ = 1|s = 1)

= max
ŝ

p(ŷ = 1|s = 0)−p(ŷ = 1|ŝ = 0) + p(ŷ = 0|s = 1)− p(ŷ = 0|ŝ = 1)

Assuming p(ŷ ̸= y) → 0, the adversary should attack nodes with y = 1 ∧ s = 0 and y = 0 ∧ s = 1
to maximize p(s ̸= ŝ|y = 1, s = 0) and p(s ̸= ŝ|y = 0, s = 1). Based on Theorem 1, this problem is
NP-hard. It also requires the adversary to have access to true class labels and sensitive values, which
is a strong assumption. For practicality, we design an efficient adversary that aims to increase the
imputation error ϵ = p(s ̸= ŝ) by exploiting the degree bias of GNNs using only the graph topology.

Definition 3. The degree bias assumption: Given nodes u, v ∈ V where deg(u) > deg(v), we
assume that p(sv ̸= ŝv) > p(su ̸= ŝu).

The degree bias assumption has been supported by both theoretical and empirical results in the
literature (Tang et al., 2020; Liu et al., 2023; Ju et al., 2024; Subramonian et al., 2024). Moreover,
low-degree nodes are known to be more vulnerable to attacks than high-degree nodes ones (Zügner
et al., 2018; Zügner & Günnemann, 2019). Therefore, our adversarial missingness process simply
selects low-degree nodes to have missing sensitive values.

To assess the effect of degree-based adversarial missingness, we compare imputation under adversarial
and random missingness. Figure 2 reports correlations between sensitive attributes and class labels
across datasets. Using a GCN for independent imputation, we observe that with less than 50%
sensitive data, adversarial missingness consistently underestimates the true bias in the dataset, while
random missingness performs slightly better. In contrast, BFtS (Figures 2 c–d), introduced in the next
section, rarely underestimates bias. These results highlight that off-the-shelf imputation can mislead
fair graph learning by underestimating bias in the dataset, particularly under adversarial missingness.
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 Bias in data represented as correlation between node labels and sensitive attribute 

Figure 2: Empirical results showing that a simple degree-based adversarial missingness process
is effective at minimizing the bias of an independent imputation model (GNN) compared with a
random missingness process. The last column of each matrix shows the true bias in the data, and
lower values show that the bias is underestimated. NBA exhibits the largest correlation gap, with
a 433% difference when only 20% of the protected attribute is observed. We also show results for
our approach (BFtS) described in Section 4 that addresses this problem using a 3-player adversarial
imputation method.

4 FAIRNESS-AWARE ADVERSARIAL MISSING DATA IMPUTATION

We introduce BFtS (Better Fair than Sorry), a 3-player adversarial framework for fair GNN training
under adversarially missing sensitive data. The fair GNN is trained jointly with two adversaries–one
to predict sensitive attributes based on GNN embeddings and another to impute missing values that
minimize fairness, ensuring that fairness is evaluated against worst-case imputations.

We motivate the worst-case assumption using distributionally robust optimization (Ben-Tal et al.,
2013; Mandal et al., 2020; Namkoong & Duchi, 2016; Shafieezadeh Abadeh et al., 2015). Let Ps be
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the sensitive attribute distribution. We can express the fairness objective in terms of the expected bias.
θ∗class = arg min

θclass

Lclass + αEs∼Ps
[Lbias]

However, under adversarial missingness, the true distribution of sensitive values cannot be accurately
estimated from the observations (Mohan et al., 2013; Tian, 2017). To handle this uncertainty, let us
define an uncertainty set U of plausible distributions for s. This leads to the worst-case imputation:

θ∗class = arg min
θclass

Lclass + αmax
u∈U

Es∼u[Lbias]

4.1 PROPOSED MODEL (BFTS)

ŷ

sî

node 
representations hv

 maximize

Node Classifier: fclass

Fairness Adversary: fbias

X

  input/output

minimize

  class

sâ

x1

x2
x3

h1

h2
h3

Imputation Adversary: fimp

x1

x2
x3
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h2
h3

   bias   imp

node 
features

s
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Figure 3: 3-player framework for fair GNN training with
missing data imputation (BFtS). fclass generates node rep-
resentations by minimizing the classification loss Lclass

(Eqn. 1) and the maximizing sensitive attribute prediction
loss Lbias (Eqn. 3). fbias predicts sensitive attributes using
representations from fclass by minimizing Lbias. fimp pre-
dicts missing values by minimizing the imputation loss Limp

(Eqn. 2) and maximizing Lbias. ŷ, ŝi, ŝa are predictions
from fclass, fimp and fbias, respectively.

Our goal is to learn a fair and ac-
curate GNN ŷ = fclass(G,X ) for
node classification with adversarially
missing sensitive values. The pro-
posed solution is model-agnostic (e.g.,
GNN) and based on adversarial learn-
ing. It formulates the imputation
model as a second adversary of the
GNN. Figure 3 depicts the flow di-
agram of the proposed model. The
model has three primary components:
a missing sensitive attribute imputa-
tion GNN fimp, a node classification
GNN fclass, and a sensitive attribute
Deep Neural Net (DNN) prediction
fbias. fclass takes X and G as inputs
and predicts the node labels. fbias
is an adversarial neural network that
attempts to estimate the sensitive in-
formation from the final layer repre-
sentations of fclass to assess the bias.
More specifically, fclass is biased if
the adversary fbias can accurately pre-
dict the sensitive attribute informa-
tion from the representations of fclass.
The model fimp predicts the missing
sensitive attributes by taking X and G as inputs and generating the missing sensitive attributes ŝi. The
goal of fimp is to generate sensitive values that minimize the fairness of fclass, and, thus, it works as
a second adversary to fclass.

4.1.1 PLAYER ARCHITECTURES

GNN classifier fclass: Node classification model ŷv = fclass(xv,G) implemented using a GNN.
We assume that fclass does not apply sensitive attributes but uses other attributes in X that might
be correlated with sensitive ones. The goal of fclass is to achieve both accuracy and fairness. To
improve fairness, fclass tries to minimize the loss of adversary fbias.
Sensitive attribute predictor (Adversary 1) fbias: Neural network that uses representations hv

from fclass to predict sensitive attributes as ŝav = fbias(hv). fclass is fair if fbias performs poorly.
Missing data imputation GNN (Adversary 2) fimp: Predicts missing sensitive attributes as
ŝiv = fimp(xv,G). However, besides being accurate, fimp plays the role of an adversary to fclass
by predicting values that maximize the accuracy of fbias.

4.1.2 LOSS FUNCTIONS

Node Classification: We apply the cross-entropy loss to learn fclass as follows:

Lclass = − 1

|VL|
∑
v∈VL

ŷvlog(ŷv) + (1− ŷv)log(1− ŷv). (1)

6
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Sensitive Attribute Imputation: Because sensitive attributes tend to be imbalanced, fimp applies
the Label-Distribution-Aware Margin (LDAM) loss Cao et al. (2019). Let ŝi = fimp(X,G) be the
one-hot encoded predictions and ŝi

s

v be the prediction for sv . The LDAM loss of fimp is defined as:

Limp =
1

|VS |

|VS |∑
v=1

−log
eŝi

s
v−∆s

eŝi
s
v−∆s

+
∑

k ̸=s e
ŝi

k
v

. (2)

where ∆j = C/n
1
4
j and j ∈ {0, 1}, C is a constant independent of the sensitive attribute s, and nj is

the number of samples that belong to s = j.

The LDAM loss is a weighted version of the negative log-likelihood loss. Intuitively, since ∆j is
larger for smaller values of nj , and thus it ensures a higher margin for the smaller classes.

Sensitive attribute imputation with no sensitive information: BFtS can generate fair outputs when
very little or no sensitive information is provided by letting fimp impute the sensitive values from
the ground truth training labels y using the LDAM loss Du et al. (2021). More specifically, we
replace VS with VL and s with y for each node v ∈ VL in Eqn 2. The reasoning is that the worst-case
fairness model generally assigns a more desired outcome to the non-sensitive group and a less desired
outcome to the sensitive one. Therefore, the nodes predicted as the minority class will fall into the
sensitive group, and vice versa. This is consistent with the worst-case assumption of BFtS.

Sensitive Attribute Prediction: Given the sensitive information for Vs, we first replace ŝiv by sv
for v ∈ Vs and thereby generate ŝ. The parameters of fbias are learned using:

Lbias = Eh∼p(h|ŝ=1)[log fbias(h)] + Eh∼p(h|ŝ=0)[log(1− fbias(h))] (3)

4.1.3 LEARNING THE PARAMETERS OF BFTS

Let θclass, θbias, and θimp be the parameters of fclass, fbias, and fimp, respectively, which are
learned via a 3-player adversarial scheme described in Figure 3. Parameters θclass are optimized as:

θ∗class = arg min
θclass

Lclass + αLbias. (4)

where α is a hyperparameter that controls the trade-off between accuracy and fairness.

The parameters of the sensitive attribute predictor θbias are learned by maximizing Lbias:

θ∗bias = argmax
θbias

Lbias. (5)

To learn the parameters θimp of the imputation model to generate predictions that are accurate and
represent the worst-case scenario for fairness, we apply the following:

θ∗imp = argmin
θimp

Limp − βLbias. (6)

Here β is a hyperparameter that controls the trade-off between imputation accuracy and worst-case
imputation. The min-max objective between the three players is therefore:

min
θclass

max
θimp,θbias

Eh∼p(h|ŝ=1)[log fbias(h)] + Eh∼p(h|ŝ=0)[log(1− fbias(h))]. (7)

The training algorithm and time complexity analysis of BFtS are discussed in Appendix.

4.2 THEORETICAL ANALYSIS

We will analyze some theoretical properties of BFtS. All the proofs are provided in Appendix.

Theorem 2. BFtS learns an imputation model fimp with the worst-case imputation:

7
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θ∗imp = argmax
θimp

Lbias = argmax
θimp

|p(ŷ = 1|ŝ = 1)− p(ŷ = 1|ŝ = 0)|

where ŷ = fclass(G,X ) and, ŝ = fimp(G,X )

The theorem shows that fimp indeed generates imputations with minimum fairness (or maximum
bias) based on Demographic Parity for a given classifier fclass.

Theorem 3. BFtS learns a classifier fclass that minimizes the worst-case bias:

θ∗class = arg min
θclass

sup
θimp

|p(ŷ = 1|ŝ = 1)− p(ŷ = 1|ŝ = 0)|

The optimal GNN classifier fclass, will achieve demographic parity (∆DP = 0 in Sec 5) for the
worst-case imputation (minimum fairness) ŝ generated by fimp.

Corollary 1. Let s′ = f(G,X) be an imputation method independent of models fclass and fbias,
then the BFtS imputation ŝ = fimp(G,X ) is such that:

JS(p(h|s′ = 1); p(h|s′ = 0)) ≤ JS(p(h|ŝ = 1); p(h|ŝ = 0))

where JS is the Jensen Shannon divergence.

The value of JS(p(h|s′ = 1); p(h|s′ = 0)) is related to the convergence of adversarial learning. For
independent imputation, if s′ is inaccurate, then JS(p(h|s′ = 1); p(h|s′ = 0)) ≈ 0 and Lbias in Eq.
4 will be constant. The interplay between the three players makes BFtS more robust to convergence
issues because the objective minimizes the upper bound on the JS divergence. This reduces the
probability that the divergence vanishes during training (see details in the Appendix).
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Figure 4: Performance of the methods using the SIMULATION dataset for different values of assor-
tativity coefficients. In the x-axis, we plot the F1 score, and in the y-axis of the top row, we plot
1−∆DP , and in the y-axis of the bottom row, we plot 1−∆EQOP . The top right corner of the
plot, therefore, represents a high F1 with low bias. When the assortativity is low, other methods fail
to learn the node labels. With higher assortativity, though other methods learn the class labels, BFtS
is less biased and has similar accuracy. Note that the X-axes have different ranges.

5 EXPERIMENTAL EVALUATION

We compare our approach (BFtS) against alternatives in terms of accuracy and fairness using real
and synthetic data. We apply average precision (AVPR) and F1 for accuracy evaluation and ∆DP
and ∆EQOP for fairness. Details about datasets, baselines, evaluation, and hyperparameters are
provided in the Appendix. Additional experiments varying the GNN, using a synthetic large-scale
graph, and ablation studies are also included in the Appendix. Our code can be found in an anonymous
repository: https://anonymous.4open.science/r/BFtS-6ADA.
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Figure 5: Fairness vs. accuracy results. The x-axis of each plot shows the F1 score. We plot
1−∆DP and 1−∆EQOP on the y-axis of rows 1 and 2, respectively. The top right corner of the
plot represents a high F1 with low bias. BFtS often achieves better fairness for a similar value of F1.

RNF BFtS
%AVPR(↑) %F1(↑) %∆DP (↓) %∆EQ(↓) %AVPR(↑) % F1(↑) %∆DP (↓) %∆EQ(↓)

BAIL 81.0±0.1 85.3±0.3 11.65±0.02 8.51±0.02 83.1±0.2 86.2±0.3 8.01±0.03 4.12±0.01
CREDIT 80.4±0.4 75.9±0.1 8.01±0.08 7.25±0.08 82.1±0.4 76.8±0.0 5.97±0.10 4.96±0.06
GERMAN 73.2±0.2 74.4±0.1 9.42±0.04 8.92±0.12 74.1±0.3 74.7±0.4 6.42±0.11 7.68±0.17
NBA 70.1±0.2 70.2±0.1 6.47±0.03 5.89±0.05 72.9±0.3 69.8±0.1 5.19±0.01 3.59±0.05
POKEK-Z 73.1±0.4 71.2±0.1 6.18±0.05 6.29±0.07 73.4±0.2 73.2±0.3 5.10±0.02 3.20±0.06
POKEK-N 71.6±0.2 72.2±0.1 7.58±0.01 7.09±0.04 72.6±0.1 69.6±0.4 4.29±0.02 3.01±0.03

Table 1: AVPR, F1, %∆DP , and %∆EQOP without any sensitive information for BFtS and RNF
(only baseline that operates in this setting). BFtS outperforms RNF in terms of fairness and accuracy.

5.1 RESULTS AND ANALYSIS

Figure 4 shows the F1 score, 1 − ∆DP , and 1 − ∆EQOP for different methods while varying
their hyperparameters. The SIMULATION graph was generated using a stochastic block model with
different assortativity coefficients, i.e., the extent to which links exist within clusters compared with
across clusters. Learning missing sensitive values and node labels under low assortativity is hard, and
graphs with assortativity 0.17 and 0.37 represent the scenario described in Corollary 1, therefore, the
JS divergence tends to be small for independent imputation, which may result in a lack of convergence
for the baselines (FairGNN and Debias). As we increase the assortativity, all baselines can predict
the labels, but BFtS still achieves a better fairness vs. accuracy trade-off in all cases.

We demonstrate the accuracy vs. fairness trade-off for real datasets in Figure 5. The top right corner
of the plot represents high fairness and accuracy. Our model achieves better fairness and similar
accuracy to the best baseline for the BAIL, NBA, GERMAN, POKEC-N and POKEC-Z. For all datasets,
BFtS achieves a better fairness-accuracy tradeoff.

Table 1 shows the accuracy and fairness results for BAIL, CREDIT, GERMAN, POKEC-Z, POKEK-N
and NBA without any sensitive attribute information. Among the baselines, only RNF works in this
setting. BFtS outperforms RNF for the BAIL, GERMAN, and CREDIT. BFtS also outperforms RNF
in terms of fairness on POKEC-Z,POKEC-N, and NBA with similar AVPR and F1.

6 CONCLUSION

We investigate the challenge of incorporating fairness considerations into graph machine learning
models when sensitive attributes are missing due to adversarial processes. Our solution is BFtS,
a 3-player adversarial learning framework for the imputation of adversarially missing sensitive
attributes that produce challenging values for graph-based fairness. Theoretical and empirical results
demonstrate that BFtS achieves a better fairness × accuracy trade-off than existing alternatives.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Details about datasets, baselines, evaluation, and hyperparameters are fully described in the Ap-
pendix. All real datasets and baselines applied in our experiments are publicly available. Our
code can be found in an anonymous repository: https://anonymous.4open.science/r/
BFtS-6ADA.
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Elizabeth Luh. Not so black and white: Uncovering racial bias from systematically misreported
trooper reports. Available at SSRN 3357063, 2022.

Zihan Luo, Hong Huang, Yongkang Zhou, Jiping Zhang, Nuo Chen, and Hai Jin. Are your models
still fair? fairness attacks on graph neural networks via node injections. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024.

Debmalya Mandal, Samuel Deng, Suman Jana, Jeannette Wing, and Daniel J Hsu. Ensuring fairness
beyond the training data. 2020.

Haris Mansoor, Sarwan Ali, Shafiq Alam, Muhammad Asad Khan, Umair Ul Hassan, and Imdadullah
Khan. Impact of missing data imputation on the fairness and accuracy of graph node classifiers. In
BigData, 2022.

Fernando Martı́nez-Plumed, Cèsar Ferri, David Nieves, and José Hernández-Orallo. Fairness and
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

This supplementary material includes the following:

• Details of Graph Neural Network (GNN)

• Evaluation Metrics

• Dataset Details

• Baselines

• Software and Hardware

• Hyperparameter Setting

• Proof of theorems and corollaries

• Training algorithm

• Complexity and Running time comparison

• Imputation accuracy

• Worst case fairness accuracy trade-off

• Additional experiments

• Ablation Study

GRAPH NEURAL NETWORK

Two of the models (or players) learned by our model are GNNs. Without loss of generality, we will
assume that they are message-passing neural networks (Gilmer et al., 2017), which we will simply
refer to as GNNs. A GNN learns node representations hv for each node v that can be used to predict
(categorical or continuous) values yv = f(hv). These representations are learned via successive
AGGREGATE and COMBINE operations defined as follows:

hk
v=COMBINEk(hk−1

v ,AGGREGATEk−1(hk−1
u , Au,v=1)).

where akv aggregates the messages received by the neighbors of v in G and hk
v are representations

learned at the k-th layer.

EVALUATION METRICS

Utility Evaluation: As with many datasets in the fairness literature, our datasets are imbalanced. To
evaluate their accuracy, we apply average precision (AVPR) and the F1 score.

Fairness Evaluation: We apply two bias metrics that will be defined based on a sensitive attribute
s. Let s = 1 be the sensitive group and s = 0 be the non-sensitive group. The Demographic Parity
(DP) requires the prediction to be independent of the sensitive attribute (Kamiran & Calders, 2009).
We evaluate demographic parity as:

∆DP (ŷ, s) = |p(ŷ = 1|s = 1)− p(ŷ = 1|s = 0)|. (8)

Equality of Opportunity (EQOP) calculates the difference between true positive rates between
sensitive and non-sensitive groups (Hardt et al., 2016) as follows:

∆EQOP (ŷ, s, y) = |p(ŷ = 1|s = 1, y = 1)− p(ŷ = 1|s = 0, y = 1)|. (9)

We can get corresponding fairness by subtracting ∆DP and ∆EQOP from 1.
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DATASET DETAILS

SIMULATION: We simulate a synthetic graph consisting of 1000 nodes based on the stochastic block
model with blocks of sizes 600 and 400, for the majority and minority classes, respectively. We
can have different edge probabilities within and across blocks and generate graphs with different
assortativity coefficients. The sensitive attribute s is simulated as s ∼ Bernoulli(p) if y = 1
and s ∼ Bernoulli(1 − p) otherwise. The probability p = 0.5 generates a random assignment
of the sensitive attribute, while p close to 1 or 0 indicates an extremely biased scenario. For our
simulation, we use p = 0.7 so that the dataset is unfair. Each node has 20 attributes, of which 8 are
considered noisy. The noisy attributes are simulated as Normal(0, 1) and the remaining ones as
γ ∗ y +Normal(0, 1), where γ is the strength of the signal in important features.

BAIL (Jordan & Freiburger, 2015): Contains 18,876 nodes representing people who committed a
criminal offense and were granted bail by US state courts between 1990 and 2009. Defendants
are linked based on similarities in their demographics and criminal histories. The objective is to
categorize defendants as likely to post bail vs. no bail. No-bail defendants are expected to be more
likely to commit violent crimes if released. Race information is considered a sensitive attribute.
Features include education, marital status, and profession.

CREDIT (Yeh & Lien, 2009): The dataset has 30, 000 nodes representing people each with 25 features,
including education, total overdue counts, and most recent payment amount. The objective is to
forecast if a person will or won’t miss a credit card payment while considering age as a sensitive
attribute. Nodes are connected based on payment patterns and spending similarities.

GERMAN (Hofmann, 1994): The dataset consists of 1000 nodes and 20 features (e.g., credit amount,
savings) representing clients at a German bank. Labels are credit decisions for a person (good or bad
credit). The sensitive attribute is gender. The goal is to predict who should receive credit.

NBA (Dai & Wang, 2021): Dataset based on a Kaggle dataset about the National Basketball
Association (US). It contains 403 players as nodes connected based on their Twitter activity. Attributes
represent player statistics and nationality is considered the sensitive attribute. The goal is to predict
the players’ salaries (above/under the median).

POKEC (Takac & Zabovsky, 2012): This dataset has two variations: POKEC-Z and POKEC-N. The
pokec dataset is based on a popular social network in Slovakia. The sensitive attribute in POKEC-Z
and POKEC-N are two different regions of Slovakia. The goal is to predict the working field of users.

BASELINES

Vanilla: The vanilla model is the basic GNN model trained with cross-entropy loss without any
fairness intervention.

Debias (Zhang et al., 2018): Debias is an adversarial learning method that trains a classifier and an
adversary simultaneously. The adversary is trained using the softmax output of the last layer of the
classifier. It does not handle missing sensitive data. Hence, we only use VS ∈ V to calculate the
adversarial loss.

FairGNN (Dai & Wang, 2021): FairGNN first uses a GNN to estimate the missing sensitive attributes.
It then trains another GNN-based classifier and a DNN adversary. The adversary helps to eliminate
bias from the representations learned by the GNN classifier.

RNF (Du et al., 2021): RNF imputes the missing sensitive attributes by first training the model with
generalized cross entropy (Zhang & Sabuncu, 2018). It eliminates bias from the classification head.
RNF uses samples with the same ground-truth label but distinct sensitive attributes and trains the
classification head using their neutralized representations.

FairVGNN (Wang et al., 2022): FairVGNN learns fair node representations via automatically
identifying and masking sensitive-correlated features. It requires complete sensitive information, so
we use the same imputation method as FairGNN for the missing values.

FairSIN (Yang et al., 2024): FairSIN learns fair representations by adding additional fairness-
facilitating features. It also requires complete sensitive information, so we use the same independent
imputation method as FairGNN for the missing values. (Yang et al., 2024):
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SOFTWARE AND HARDWARE

• Operating System: Linux (Red Hat Enterprise Linux 8.9 (Ootpa))
• GPU: NVIDIA A40
• Software: Python 3.8.10, torch 2.2.1, dgl==0.4.3

HYPERPARAMETER SETTINGS

The size of VS was set to 30% of |V| unless stated otherwise. Each GNN has two layers and a
dropout probability of 0.5. In practice, some sensitive information is often available, unless otherwise
stated. Therefore, we concentrate the majority of our experiments on the assumption that there
is a limited amount of sensitive information available, and we generate the imputations using the
available sensitive information in Equation 2. The VS was set to 30% for all experiments unless stated
otherwise. VL is 300, 400, 1400, 100, 500, 500, and 800 for the SIMULATION, GERMAN, CREDIT,
NBA, POKEC-Z, POKEC-N and BAIL datasets, respectively. We adjust the values of α and β for
each dataset using cross-validation based on the F1 score. For all baselines, we choose the respective
regularizers using cross-validation based on the same metrics. Every model, except RNF, combines
the training of several networks with various convergence rates. We stop training RNF based on early
stopping to eliminate overfitting. We train the rest of the models for certain epochs and choose the
model with the best AVPR. All the results shown in the following section are the average of 10 runs.
We use GCN as the GNN architecture for all experiments unless mentioned otherwise.

PROOF OF THEOREMS

THEOREM 1

We will consider an adversarial active learning setting, where the goal of the adversary is to select k
labels (i.e., observed sensitive values) to minimize the bias Lbias of the data imputed by fimp. More
specifically, our proof will use the coverage model for active learning, where an unlabeled data point
xu
i can be correctly predicted iff it is covered by at least one labeled point xl

j . The goal is for the
labeled points {xl

1, x
l
2, . . . x

l
k} to cover as many unlabeled data points {xu

1 , x
u
2 , . . . x

u
n−k} as possible

(Yehuda et al., 2022; Ren et al., 2021). Thus, in our setting, the adversary’s goal is to select labels to
minimize the coverage of the following sets of nodes: (1) nodes in the sensitive group (sv = 1) and
the negative class (y = 0) and (2) nodes in the non-sensitive group (sv = 0) and the positive class
(y = 1). This can be achieved by minimizing the coverage of such nodes. We provide a reduction
from the minimum k-union problem.

Minimum k-union problem (MkU, Chlamtáč et al. (2017)): Given a set of sets S = S1, S2, . . . Sq ,
where each set Si ⊆ I and I is a set of items. The problem consists of selecting r sets S1, S2, . . . Sr

from S to minimize the coverage S1 ∩ S2 ∩ . . . Sr.

Under our coverage model, the reduction is straightforward. Given an instance of MkU, we define
a corresponding instance of the Adversarial Missingness against Data Bias (AMADB) problem as
follows. We represent each item in I and each set in S as a data point x and assign all data points to
both the non-sensitive group (sv = 0) and the positive class (y = 1). Moreover, we will add one data
point x′ that will belong to the sensitive group (sv = 1) and the positive class (y = 1). Therefore, the
resulting set of data points is {x1, x2, . . . xn}, where n = |S|+ |I|+ 1. Moreover, let xi cover xj

iff xi represents a set Si ∈ S, xj represents an item ij ∈ I, and ij ∈ Si. It follows that minimizing
the bias in the AMABD instance by selecting data points xj to be labeled is equivalent to minimizing
the coverage in the corresponding MkU instance.

THEOREM 2

Proof. From Eq. 7, the min-max objective of BFtS is:
Eh∼p(h|ŝ=1)[log(fbias(h))] + Eh∼p(h|ŝ=0)[log(1− fbias(h))]

=
∑
h

p(h|ŝ = 1) log(fbias(h)) +
∑
h

p(h|ŝ = 0) log(1− fbias(h))
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If we fix θclass and θimp, then the optimal fbias is p(h|ŝ=1)
p(h|ŝ=1)+p(h|ŝ=0) . By substituting the optimal

fbias in Eq. 7 we get:

min
θclass

max
θimp

Eh∼p(h|ŝ=1)[log
p(h|ŝ = 1)

p(h|ŝ = 1) + p(h|ŝ = 0)
]+

Eh∼p(h|ŝ=0)[log(1−
p(h|ŝ = 1)

p(h|ŝ = 1) + p(h|ŝ = 0)
)]

We further simplify the objective function and get:

Eh∼p(h|ŝ=1)[log
p(h|ŝ = 1)

p(h|ŝ = 1) + p(h|ŝ = 0)
]+

Eh∼p(h|ŝ=0)[log
p(h|ŝ = 0)

p(h|ŝ = 1) + p(h|ŝ = 0)
]

=
∑
h

p(h|ŝ = 1) log
p(h|ŝ = 1)

p(h|ŝ = 1) + p(h|ŝ = 0)
+

∑
h

p(h|ŝ = 0) log
p(h|ŝ = 0)

p(h|ŝ = 1) + p(h|ŝ = 0)

= − log 4 + 2JS(p(h|ŝ = 1); p(h|ŝ = 0))

By removing the constants, we can further simplify the min-max optimization with optimal fbias to:
min
θclass

max
θimp

JS(p(h|ŝ = 1); p(h|ŝ = 0))

The optimal fimp thereby maximizes the following objective:

JS(p(h|ŝ = 1); p(h|ŝ = 0))

Since ŷ = σ(h.w), fimp generates imputation so that
min
θclass

sup
ŝ

JS(p(ŷ|ŝ = 1); p(ŷ|ŝ = 0))

The supremum value will make the two probabilities maximally different. Therefore, for the optimal
fimp we get,

min
θclass

sup
ŝ

|p(ŷ|ŝ = 1)− p(ŷ|ŝ = 0)|

Let ∆DPθclass,θimp
= |p(ŷ = 1|ŝ = 1) − p(ŷ = 1|ŝ = 0)|, then, the optimal θ∗imp generates the

worst-case (minimum fairness) imputation so that ∆DPθclass,θ∗
imp

≥ ∆DPθclass,θimp

THEOREM 3

Proof. From Theorem 1, we get,
min
θclass

sup
ŝ

|p(ŷ|ŝ = 1)− p(ŷ|ŝ = 0)|

Let us assume that there can be m different ŝ that produce sensitive attributes ŝ1, ŝ2, ..., ŝm. If we let
Di be the uniform distribution over each si, then BFtS minimizes the |p(ŷ|ŝ = 1)− p(ŷ|ŝ = 0)| in
the worst case over these different distributions Di. Therefore, fclass is a minimax estimator. The
objective of Eq. 7 with optimal θ∗bias, θ

∗
imp and f∗

class becomes:

inf
ŷ
sup
ŝ

|p(ŷ|ŝ = 1)− p(ŷ|ŝ = 0)|

Therefore, fclass is a minimax estimator and the maximal ∆DP of BFtS is minimum among all
estimators of s.

At the global minima of θclass, |p(ŷ|ŝ = 1)− p(ŷ|ŝ = 0)| will be minimum. Its minimum value is 0.
Therefore, p(h|ŝ = 1)− p(h|ŝ = 0) = 0. The optimal θ∗class achieves demographic parity for the
worst case.
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COROLLARY 1

Proof. If s′ is a separate imputation independent of fclass and fbias, then the min max game according
to Dai & Wang (2021) is the following:

min
θclass

max
θbias

Eh∼p(h|s′=1)[log fbias(h)]

+ Eh∼p(h|s′=0)[log(1− fbias(h))].

With optimal θ∗bias, the optimization problem simplifies to-

min
θclass

− log 4 + JS(p(h|s′ = 1); p(h|s′ = 0)).

With independent imputation s′, the adversary fbias tries to approximate the lower bound of Jensen
Shannon Divergence (Weng, 2019). In BFtS, the adversarial imputation fimp tries to approximate the
upper bound of the JS divergence, and the classifier fclass tries to minimize the upper bound on the
JS divergence provided by the adversarial imputation (see Proposition 1). Therefore,

JS((p(h|s′=1); p(h|s′=0)))≤JS(p(h|ŝ=1); p(h|ŝ=0)).

CONVERGENCE OF ADVERSARIAL LEARNING FOR THREE PLAYERS VS TWO PLAYERS WITH
INDEPENDENT IMPUTATION

Let us consider a scenario when the independent missing sensitive value imputation (Dai & Wang,
2021) fails to converge. There are three possible reasons for the convergence to fail:

1. s′ is always 1
2. s′ is always 0
3. s′ is uniform, i.e. p(h|s′ = 1) = p(h|s′ = 0)

In scenario 1 and 2 the supports of p(h|s′ = 1) and p(h|s′ = 0) are disjoint. According to (Dai &
Wang, 2021), the optimization for the classifier with an optimal adversary is

min
θclass

− log 4 + 2JS(p(h|s′ = 1); p(h|s′ = 0))

As the supports of p(h|s′ = 1) and p(h|s′ = 0) are disjoint, JS(p(h|s′ = 1); p(h|s′ = 0)) is
always 0. The gradient of the JS divergence vanishes, and the classifier gets no useful gradient
information—it will minimize a constant function. This results in extremely slow training of the node
classifier, and it may not converge.

In scenario 3, ŝ is uniform. Therefore, p(h|s′ = 1) will be equal to p(h|s′ = 0) which results in
JS(p(h|s′ = 1); p(h|s′ = 0)) being equal to 0. Moreover, the classifier may assign all training
samples to a single class and yet have an adversary that may not be able to distinguish the sensitive
attributes of the samples as ŝ is random. If the classifier assigns all samples to the majority class, it
will achieve low classification loss Lclass along with minimum Lbias. The training of the classifier
may get stuck in this local minima (see Eq. 4). This phenomenon is similar to the mode collapse of
GANs (Thanh-Tung & Tran, 2020).

Based on Corollary 1, our approach is more robust to the convergence issues described above.

TRAINING ALGORITHM

Algorithm 1 is a high-level description of the key steps applied for training BFtS. It receives the graph
G, labels y, labeled nodes VL, nodes with observed sensitive attributes VS and hyperparameters, α
and β as inputs and outputs the GNN classifier fclass, sensitive attribute predictor, fbias and missing
data imputation GNN fimp. We first estimate ŝi and then fix θclass and θbias to update θimp. Then
we update θbias with Eq. 5. After that, we fix θbias and θimp and update θclass with Eq. 4 and repeat
these steps until convergence.
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Algorithm 1 Training BFtS
Input: G; y; VL; VS ; α, β
Output: fclass, fbias, fimp

1: repeat
2: Get the estimated sensitive attributes ŝi with fimp

3: Fix θclass and θbias and update θimp using Eq. 6
4: Update θbias using Eq. 5
5: Fix θimp and θbias and update θclass using Eq. 4
6: until converge

1 50 100 150 200 250
Epochs

0

5

10

15

Lo
ss

 V
al

ue

Training Loss Curves

class

bias

imp

Figure 6: Convergence of Lclass, Lbias and Limp. All three losses converge smoothly, confirming
theoretical stability.

COMPLEXITY ANALYSIS

BFtS model consists of two GNNs and one DNN. If we consider GCN for training the GNN, the
complexity is O(L|V |F 2 + L|E|F ), where L is the number of layers and F is the nodes in each
layer (We assume that the number of nodes in each layer is the same) (Blakely et al., 2021). The
complexity is polynomial, and therefore, BFtS is scalable. The complexity of FairGNN (Dai & Wang,
2021) is the same as the complexity of BFtS. FairGNN makes an additional forward pass to the
trained sensitive attribute imputation network. Therefore, the empirical running time of FairGNN is
higher than the one for BFtS, as shown in the next section.

RUNNING TIME

Table 2 shows that Debias has the lowest runtime but performs the worst in fairness (See Fig. 4 and
5). BFtS had the second-lowest runtime. While the 3-player network adds complexity, it removes the
requirement of training a separate imputation method (as for other benchmarks). Figure 6 presents

German Credit Bail NBA pokec-z pokec-n
Debias 21.74 110.99 170.95 14.85 650.67 647.62
FairGNN 31.43 229.41 340.48 29.12 1356.57 1234.62
FairVGNN 212.64 10557.79 2554.72 234.57 15956.62 15632.75
RNF 136.67 432.31 655.54 138.31 1945.58 2012.13
FairSIN 615.74 15142.25 2884.34 342.14 20565.13 20456.34
BFtS 28.91 168.88 242.88 22.34 942.35 956.42

Table 2: Running time (secs) of different methods

the convergence behavior of Lclass, Lbias and Limp across training epochs on the NBA dataset.

IMPUTATION ACCURACY

Table 5 shows the imputation accuracy of the methods. We exclude results for Debias, which is
based only on the sensitive information available, and for FairVGNN and FairSIN, as they are
identical to FairGNN (same imputation method). The results show that BFtS imputation outperforms
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Figure 7: Sensitivity analysis of α and β. BFtS is more sensitive to α than β. These parameters can
be optimized using automated techniques, such as grid-search.
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Figure 8: Performance of the models on different datasets for varying amounts of observed data VS .
In the majority of the settings, our approach (BFtS) achieves a better fairness × accuracy trade-off
than the baselines.
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VANILLA DEBIAS FairGNN RNF FairVGNN FairSIN BFtS (Ours)

BAIL

AVPR (↑) 0.86±0.00 0.81±0.00 0.82±0.00 0.81±0.00 0.80 ±0.00 0.81±0.00 0.83±0.00
F1 score (↑) 0.88±0.00 0.85 ±0.00 0.84±0.00 0.84±0.01 0.84 ±0.00 0.84±0.00 0.85±0.00
%∆DP (↓) 19.10±0.03 8.78±0.02 7.9±0.03 8.50±0.04 9.81 ±0.09 8.64 ±0.20 6.70±0.03
%∆EQOP (↓) 14.20±0.04 7.50±0.03 4.10±0.04 4.70±0.05 4.79±0.06 3.92 ±0.09 2.70±0.01

CREDIT

AVPR (↑) 0.85±0.00 0.82±0.00 0.83±0.00 0.81±0.00 0.81 ±0.02 0.81 ±0.02 0.83±0.00
F1 score (↑) 0.79±0.00 0.73 ±0.00 0.76±0.00 0.75±0.01 0.73 ±0.00 0.75 ±0.00 0.76±0.00
%∆DP (↓) 12.10±0.10 8.80±0.20 5.60±0.08 5.30±0.09 7.77 ±0.25 5.21 ±0.12 5.40±0.02
%∆EQOP (↓) 14.50±0.10 9.20±0.10 5.90±0.10 5.10±0.00 5.56 ±0.21 4.95 ±0.13 4.50±0.01

GERMAN

AVPR (↑) 0.75±0.00 0.72 ±0.00 0.73±0.00 0.72±0.01 0.70 ±0.01 0.73 ±0.00 0.74±0.00
F1 score (↑) 0.78±0.01 0.73 ±0.00 0.73±0.00 0.72±0.01 0.72±0.00 0.72 ±0.00 0.74±0.00
%∆DP (↓) 8.30±0.10 5.02±0.20 5.70 ±0.30 4.20±0.00 4.37 ±3.06 4.05 ±0.08 2.74±0.02
%∆EQOP (↓) 7.40±0.08 6.24±0.20 5.70±0.20 5.90±0.01 3.63 ±3.03 4.2 ±0.13 1.70±0.04

NBA

AVPR (↑) 0.76±0.00 0.73±0.00 0.73±0.00 0.73±0.00 0.73 ±0.07 0.73 ±0.01 0.74±0.00
F1 score (↑) 0.73±0.00 0.67 ±0.00 0.70±0.00 0.69±0.00 0.69 ±0.05 0.70 ±0.02 0.71±0.00
%∆DP (↓) 13.10±0.02 6.40±0.04 1.20±0.03 1.50±0.05 2.39 ±1.2 1.5 ±0.21 1.10±0.04
%∆EQOP (↓) 11.50±0.02 5.50±0.02 5.30±0.00 3.10±0.03 4.19 ±2.1 3.9 ±0.07 2.70±0.01

POKEC-Z

AVPR (↑) 0.76±0.00 0.72±0.00 0.72±0.00 0.73±0.00 0.72 ±0.07 0.71 ±0.05 0.73±0.00
F1 score (↑) 0.73±0.00 0.69 ±0.00 0.70±0.00 0.69±0.00 0.68 ±0.01 0.71 ±0.03 0.71±0.00
%∆DP (↓) 12.10±0.01 7.40±0.02 5.20±0.01 5.51±0.04 5.69 ±1.1 5.98 ±1.06 4.10±0.04
%∆EQOP (↓) 16.50±0.01 8.50±0.06 3.30±0.00 2.10±0.03 4.19 ±1.9 2.1 ±1.09 1.70±0.03

POKEC-N

AVPR (↑) 0.74±0.00 0.71±0.00 0.72±0.00 0.72±0.00 0.70 ±0.08 0.71 ±0.02 0.72±0.00
F1 score (↑) 0.75±0.00 0.70 ±0.00 0.71±0.00 0.71±0.00 0.70 ±0.03 0.72 ±0.04 0.73±0.00
%∆DP (↓) 11.10±0.02 5.40±0.01 2.10±0.01 2.50±0.01 2.39 ±1.7 2.12 ±0.98 1.89±0.02
%∆EQOP (↓) 10.50±0.01 5.50±0.02 3.10±0.00 2.90±0.01 3.19 ±2.2 2.1 ±0.85 1.80±0.01

Table 3: AVPR, F1 score, %∆DP , and %∆EQOP of different methods. For the BAIL, and NBA
dataset, we outperform all baselines in terms of accuracy and fairness. For other datasets, we improve
fairness while slightly sacrificing accuracy.

VANILLA DEBIAS FAIRGNN RNF FairVGNN FairSIN BFtS (Ours)

BAIL

AVPR (↑) 0.88±0.00 0.81±0.00 0.81±0.00 0.82±0.00 0.82 ±0.01 0.83 ±0.01 0.84±0.00
F1 (↑) 0.71±0.00 0.59 ±0.00 0.68±0.00 0.62±0.003 0.66±0.01 0.69 ±0.02 0.70±0.00
%∆DP (↓) 11.10±0.04 12.70±0.04 8.20±0.03 9.80±0.05 8.48 ±0.51 8.31 ±0.03 7.9±0.04
%∆EQOP (↓) 8.90±0.01 6.50±0.06 4.30±0.03 5.90±0.01 5.88 ±0.08 3.96 ±0.21 2.80±0.02

CREDIT

AVPR (↑) 0.79±0.00 0.73±0.00 0.75±0.00 0.75 ±0.01 0.76±0.00 0.74 ±0.00 0.74±0.00
F1 (↑) 0.71±0.00 0.68 ±0.00 0.69±0.00 0.71±0.00 0.70 ±0.00 0.70 ±0.00 0.71±0.00
%∆DP (↓) 14.20±0.02 9.10 ±0.02 8.02±0.05 6.40±0.04 6.70 ±0.05 5.01 ±0.20 4.20±0.02
%∆EQOP (↓) 18.30±0.20 15.12±0.08 12.15±0.10 10.95±0.06 9.75±0.09 9.31 ±0.09 8.60±0.04

GERMAN

AVPR (↑) 0.73±0.00 0.70 ±0.00 0.71±0.00 0.72±0.00 0.71±0.00 0.70 ±0.00 0.71±0.00
F1 (↑) 0.74±0.00 0.71 ±0.00 0.70±0.00 0.72±0.01 0.71 ±0.00 0.71 ±0.01 0.72±0.00
%∆DP (↓) 9.80±0.07 6.12±0.06 6.70 ±0.10 7.10±0.00 6.01±0.06 5.01 ±0.02 4.1±0.04
%∆EQOP (↓) 10.80±0.04 6.70±0.10 5.80±0.04 6.10±0.06 5.20±0.07 4.13 ±0.09 3.90±0.04

NBA
AVPR (↑) 0.74±0.00 0.70±0.00 0.71±0.00 0.72±0.00 0.71±0.00 0.70 ±0.00 0.71±0.00
F1 (↑) 0.79±0.00 0.75 ±0.00 0.75±0.00 0.75±0.00 0.75±0.01 0.74 ±0.08 0.76±0.00
%∆DP (↓) 7.60±0.03 4.20±0.03 2.30±0.01 3.10±0.04 2.10±0.04 3.19 ±0.10 2.01±0.01
%∆EQOP (↓) 11.20±0.03 5.40±0.04 3.30±0.01 3.30±0.01 3.12±0.05 2.91 ±0.05 2.10±0.01

POKEC-Z

AVPR (↑) 0.78±0.00 0.73±0.00 0.74±0.00 0.73±0.00 0.73 ±0.07 0.74 ±0.05 0.74±0.00
F1 score (↑) 0.75±0.00 0.71 ±0.00 0.72±0.00 0.72±0.00 0.73 ±0.01 0.73 ±0.03 0.74±0.00
%∆DP (↓) 10.19±0.07 8.21±0.08 5.98±0.07 5.18±0.08 5.79 ±1.08 4.98 ±2.01 3.90±0.05
%∆EQOP (↓) 12.13±0.01 6.85±0.02 2.98±0.02 2.38±0.07 3.15 ±2.01 2.90 ±1.07 1.98±0.01

POKEC-N

AVPR (↑) 0.75±0.00 0.72±0.00 0.72±0.00 0.72±0.00 0.71±0.08 0.72 ±0.04 0.73±0.00
F1 score (↑) 0.78±0.00 0.75 ±0.00 0.75±0.00 0.74±0.00 0.74 ±0.02 0.75 ±0.01 0.76±0.00
%∆DP (↓) 14.10±0.01 6.51±0.02 3.40±0.02 4.12±0.02 2.98 ±1.9 2.75 ±1.2 1.89±0.02
%∆EQOP (↓) 12.50±0.07 5.50±0.02 3.10±0.00 2.90±0.01 3.19 ±2.2 2.1 ±0.85 1.80±0.01

Table 4: AVPR, F1, % ∆DP, and % ∆ EQOP of different methods. GAT is the GNN architecture for
all models. For the BAIL dataset, our model outperforms every other baseline in terms of fairness and
accuracy. For the GERMAN, NBA and CREDIT datasets, we perform more fairly but less accurately.
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independent imputation methods. BFtS worst-case imputation based on the LDAM loss outperforms
the alternatives in terms of accuracy. This is due to the adversarial missingness process where
low-degree nodes are selected to have missing values. Independent imputation methods are less
effective in this adversarial setting.

German Credit Bail NBA pokec-z pokec-n
FairGNN 0.70 0.90 0.56 0.78 0.81 0.84
RNF 0.59 0.73 0.53 0.64 0.65 0.68
BFtS 0.72 0.94 0.63 0.78 0.83 0.87

Table 5: Accuracy of missing sensitive imputation.
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Figure 9: 2-D kernel PCA node representations for the BAIL dataset generated by the FairGNN and
BFtS (our approach). We use different markers for nodes depending on their predicted class, sensitive
attribute (race), and whether the sensitive attribute is missing. The results show that representations
for nodes with missing values are more biased for FairGNN where they are concentrated in a negative
class region. On the other hand, nodes with missing values are better spread over the space for BFtS
representations. In BFtS, there are more ‘Race = Black’ nodes than in FairGNN that have missing
sensitive values in training but are predicted to be positive.

WORST-CASE FAIRNESS ACCURACY TRADE-OFF

As our proposed model operates under a worst-case fairness assumption, it may overestimate the
bias in the complete data, as illustrated in Figure 2 using the BAIL dataset. This results in a trade-off
between fairness and utility, which is governed by a hyperparameter β. Figures 10(a), (b), and (c)
show the F1 score, 1−∆DP, and 1−∆EQOP, respectively, as β varies and with 30% of sensitive
values observed. Here, F1 serves as the utility metric, while 1 −∆DP and 1 −∆EQOP quantify
fairness. We compare the performance of our BFtS model against a fair adversarial model trained
with complete data. Adjusting β enables controlling the balance between utility and robustness to
worst-case bias, with appropriate tuning yielding an effective trade-off.

ADDITIONAL EXPERIMENTS

LARGE SCALE GRAPH DATASET

To verify the performance of BFtS on large-scale dataset, we generated a synthetic graph with 250k
nodes and 100 features, as we were unable to identify a large-scale real-world graph dataset with
sensitive values. Following the setup in Figure 4 (with 150k nodes in the non-protected group and
assortativity = 0.77). We compared BFtS against RNF (the strongest baseline in this scenario) in
Figure 11 across different hyperparameter settings. BFtS completed training in 85.4 minutes versus
RNF’s 114.6 minutes.
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Figure 10: Fairness–utility trade-off of BFtS on the BAIL dataset as β varies, compared to a fair
adversarial model trained with complete data. Lower β yields higher accuracy but lower fairness.
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Figure 11: Fairness accuracy trade off for large scale graph dataset. BFtS achieves better fairness-
accuracy trade-off

AVERAGE PERFORMANCE WITH GCN AND GAT

Table 3 shows the average results for BAIL, CREDIT, GERMAN, and NBA datasets. In terms of
accuracy and fairness, BFtS outperforms all baseline approaches for the BAIL and NBA datasets. We
also outperform competitors on the CREDIT and GERMAN datasets in terms of fairness, with a slight
AVPR loss. Although we lose some AVPR in the GERMAN and CREDIT datasets, we win in F1 and
the AVPR loss is negligible when compared to the fairness benefit. Table 4 shows the average results
for BAIL, CREDIT, GERMAN, and NBA datasets using GAT Velickovic et al. (2017) to train fclass
and fimp. In terms of accuracy and fairness, BFtS outperforms all baseline approaches for the BAIL
dataset. We also outperform competitors on the CREDIT, GERMAN, and NBA datasets in terms of
fairness with a slight AVPR loss. The AVPR loss is negligible when compared to the fairness benefit.

VISUALIZATION OF REPRESENTATIONS

Figure 9 shows kernel PCA node representations produced by FairGNN and BFtS using the BAIL
dataset. We show the samples with missing ”Race” with a navy dot in the middle and samples
predicted as positive class and negative class in green and red, respectively. The representations
generated by FairGNN are noticeably more biased than the ones generated by our approach. A higher
number of ”Race = Black” samples with missing sensitive values in training are predicted as positive
by BFtS than for FairGNN. Moreover, BFtS spreads nodes with missing values more uniformly over
the space. This illustrates how the missing value imputation of FairGNN underestimates the bias in
the training data and, therefore, the model could not overcome the bias in the predictions.

FAIR NODE REGRESSION

While fairness-aware node regression datasets are lacking, we created a synthetic node regression
task (assortativity = 0.77) following our setup in Figure 5, with group-wise targets from N (0, 1) and
N (2, 1). The Table 6 reports MSE and ∆DP (Berk et al., 2017) for regression.
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Method MSE (±) ∆DP (±)
BFtS 0.71 ± 0.10 0.15 ± 0.02
Vanilla 0.65 ± 0.10 0.21 ± 0.01

Table 6: Fair regression: MSE and Fairness (∆DP ) Comparison Between BFtS and Vanilla Models

CROSS ENTROPY fimp LDAM fimp

AVPR (↑) F1 (↑) %∆DP (↓) %∆EQOP (↓) AVPR(↑) F1(↑) %∆DP (↓) %∆EQOP (↓)
GERMAN 0.75 ±0.00 0.73 ±0.00 4.10 ±0.05 3.70 ±0.03 0.74 ±0.00 0.74 ±0.00 2.74 ±0.02 1.7 ±0.04
CREDIT 0.83 ±0.00 0.77 ±0.01 5.55 ±0.03 4.70 ±0.05 0.83 ±0.00 0.76 ±0.00 5.4 ±0.02 4.5 ±0.01
BAIL 0.85 ±0.00 0.85 ±0.00 7.10 ±0.02 3.1 ±0.06 0.83 ±0.00 0.85 ±0.00 6.70 ±0.03 2.7 ±0.01
NBA 0.75 ±0.00 0.72 ±0.00 2.11 ±0.03 3.5 ±0.02 0.74 ±0.00 0.71 ±0.00 1.10 ±0.04 2.70 ±0.01
SIMULATION 0.94 ±0.00 0.96 ±0.00 16.00 ±0.03 8.00 ±0.08 0.92 ±0.00 0.96 ±0.01 12.00 ±0.03 5.10 ±0.04

Table 7: Ablation study using LDAM loss and cross-entropy loss for fimp. Using LDAM loss gives a
better fairness and accuracy trade-off.

ABLATION STUDY

To see the impact of α and β, we train BFtS on the GERMAN dataset with different values of α and β.
We consider values between [10−3, 10−2, 10−1, 1, 10] for both α and β. Figure 7 shows the ∆DP
and F1 of BFtS on the GERMAN dataset. α and β control the impact of the adversarial loss LA on
the GNN classifier and the missing value imputation GNN, respectively. The figure shows that α has
a larger impact than β on the fairness and accuracy of the model.

We also vary the amount of observed data VS and plot the results in Figure 8. We use 20%, 30%, 40%,
and 50% of training nodes as VS . For nearly all models, fairness increases and accuracy decreases
with |VS |. With BFtS, both accuracy and bias often decline with the increase of VS . In the majority
of the settings, our approach (BFtS) achieves a better fairness × accuracy trade-off than the baselines.

To see the impact of LDAM loss, we train fimp with cross-entropy loss and compare the performance
with fimp trained with LDAM loss in Table 7. Evidently, LDAM achieves a better trade-off between
accuracy and fairness.
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