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ABSTRACT

In the realm of time series data, it is common to encounter time trends, which
manifest as a function concerning time within a given data span. Time trends can
be classified into intrinsic (real) and measurement (false) trends. Intrinsic trends
are inherent to the underlying mechanisms of the variables, while measurement
trends are essentially measurement errors unique to the observed values (e.g., an
increase in diagnosed thyroid nodule patients due to enhanced medical techniques,
despite a stable incidence rate over time). Measurement trends can critically in-
fluence the results of a variety of causal discovery methods and hence, necessi-
tate elimination prior to causal analytic procedures. In this study, we introduce
a novel framework capable of detecting all trend-influenced variables and distin-
guishing between intrinsic and measurement trends, called Trend Differentiator
(TrendDiff). This approach consists of two primary steps: trend variable identi-
fication and trend type differentiation. The first step leverages Constraint-based
Causal Discovery from heterogeneous/Nonstationary Data (CD-NOD) to identify
variables with trends. Following this, we utilize the structure characteristics to
differentiate between intrinsic and measurement trends. Experimental results on
various synthetic scenarios and real-world data sets are employed to demonstrate
the efficacy of our methods.

1 INTRODUCTION

Emerging in the early 1990s, causal discovery algorithms have undergone substantial growth in the
past two decades (Spirtes & Zhang, 2016). These algorithms strive to infer causal relationships
from purely observational data, serving as a valuable instrument in situations where randomized
controlled trials are rendered impractical due to ethical concerns, financial constraints, and other ob-
stacles. Standing at the intersection of explosive data volumes and advancements in computational
capabilities, a surge in theoretical and applied causal research has ensued. Hitherto, causal discov-
ery methods have been employed across various disciplines, such as climatology, healthcare, and
economics, among others(Ebert-Uphoff & Deng, 2012; Shen et al., 2020; Hall-Hoffarth, 2022). Yet
the rapid accumulation of data presents not only exhilarating possibilities but significant challenges
in the domain of causal discovery.

A prevalent challenge is the presence of time trends, frequently encountered in time series data.
As articulated by Phillips (2005), “No one understands trends, but everyone sees them in the data”
(Phillips, 2005). While previous efforts have extensively examined the impact of time trends on
the performance of conventional statistical algorithms (White & Granger, 2011; Wu et al., 2007),
the effects on causal discovery methodologies remain unexplored. Given that the definition of time
trends is still contentious, to be more precise, time trends are defined as a function concerning
time within a given data span here. Based on the origin of these trends, they are classified into
two categories: intrinsic (real) and measurement (false) trends. Intrinsic trends are inherent to the
fundamental mechanisms governing the variables (e.g., global warming, the temperature is really
increasing), whereas measurement trends are essentially observation errors unique to the recorded
values (e.g., an observed increase in diagnosed thyroid nodule patients due to enhanced medical
techniques, despite a stable real incidence rate over time (Davies & Hoang, 2021), see Figure 1 ).
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These two types of trends originate from distinct sources, exert disparate impacts, and necessitate
differential treatment in the context of causal discovery.

Figure 1: The true and observed incidence of the thyroid nodule along time – a typical example of
measurement trends.

However, there is this impression – time trends, be it an intrinsic trend, or a measurement trend,
should be removed before analyses – which is not accurate. Undoubtedly, measurement trends, be-
ing a form of measurement error, necessitate removal. Consider constraint-based causal discovery
methods, which rely on conditional independence tests; measurement trends introduce two issues
for constraint-based algorithms: 1. the dependence between measurement-trend variables and their
neighbors weakens with increasing trends; 2. the conditional independence given the measurement-
trend variables vanishes, yielding increasing dependence (Scheines & Ramsey, 2016; Zhang et al.,
2017a). As illustrated in Figure 2, the measurement trend in X2 not only affects its dependence
with X1 and X3 (the dependence decreases with trends), but also causes X2 to fail in separating X1

and X3. Analogous phenomena transpire for another measurement-trend variable X3. The causal
network identified by constraint-based methods diverges significantly from the ground truth in such
scenarios. As noted in earlier research regarding measurement error in causal discovery, measure-
ment trends not only influence constraint-based causal algorithms but also extend their impact to
other methodologies, including those based on functional causal models (Zhang et al., 2017a). Con-
versely, intrinsic trends are integral components of the variables and mechanisms, facilitating the
identification of underlying causal relationships. Removal of intrinsic trends would decrease the
signal-to-noise ratio, leading to lower detection power, and thus should be avoided. Consequently,
discerning between intrinsic and measurement trends and eliminating the latter is crucial before
conducting causal discovery analyses.

Figure 2: An illustration of how ignoring measurement trends in causal discovery may lead to spu-
rious connections by constraint-based methods. (a) The true causal graph (including measurement-
trend variables X2 and X3, the true values of which are not observable). (b) The estimated skeleton
on the observed data. Note: the circled underlined variables X2 and X3 in (a) are real values, while
X2 and X3 in (b) are observed values with measurement trends. )

In the present study, we assume the underlying causal structure to be a directed acyclic graph (DAG)
containing variables exhibiting time trends, either intrinsic or measurement. Our objective is to
devise a principled framework capable of identifying trend-influenced variables and distinguishing
those with measurement trends from those exhibiting intrinsic trends. The paper is structured as
follows: Section 2 defines the research question using DAG. Section 3 outlines our methodology for
pinpointing variables exhibiting time trends, encompassing both intrinsic and measurement trends.
In Section 4, we delve deeper into the techniques employed to distinguish between intrinsic and
measurement trends. Together, these two sections offer a thorough exposition of the method Trend
Differentiator (TrendDiff) used to identify and differentiate variables based on their time trends.
Finally, an array of simulation studies under various scenarios and a real-world application are pre-
sented in section 5, substantiating the efficacy of our approach.
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2 PARAMETERIZING TIME TRENDS

To put intrinsic and measurement trends clearer, we resort to structural equation models (SEMs),
where each variable Vi is formulated as a function of its direct causes and an error term εi. Here
εi encapsulates all other unmeasured causes of Vi and εi of variables are independent of each other.
Figure 3 shows the structures of intrinsic and measurement trends, respectively. Figure 3 (a) illus-
trates a straightforward model featuring a causal chain from X1 to X2 to X3. Each variable is asso-
ciated with a structural equation, and the model can be parameterized by assigning exact functions
to f (Vi), as well as a joint normal distribution to ε1, ε2, ε3∼ N (µ,Σ2). In this case, Σ2 is diago-
nal, reflecting the independence among the error terms ε1, ε2, and ε3. Regardless of the functions
and free parameter values assigned, the model in Figure 3 (a) exhibits conditional independence:
X1 ⊥⊥X3 |X2.

In Figure 3 (b), we present the same model as in Figure 3 (a) but with an added intrinsic trend T2

affecting X2. The intrinsic trend T2 impacts the generation of X2 and is an inherent part of its
underlying mechanisms. In this case, the observed and real values of X2 are identical. The added
intrinsic time trend is able to go into the causal network through X2 without altering the original
causal structure. Consequently, a trend in X3 can be observed, which arises due to the influence of
T2. In Figure 3 (c), we depict the same model but with true values X2 being “measured” as X2,
accompanied by a measurement trend T2. In this case, the real and observed values of X2 differ.
The measurement trend T2 is present only in the observed X2. Due to the collider at X2, T2 cannot
influence the real values X2 and is unable to propagate through the original causal network. As
previously mentioned, here the measurement trend T2 essentially represents a form of measurement
error, which can adversely affect the performance of causal discovery algorithms.

Figure 3: An illustration of causal models for variables with intrinsic and measurement trends and
corresponding equations. (a) A three-variable chain graph without trend). (b) X2 with an intrinsic
trend. (c) X2 with a measurement trend, X2 represents the true values of X2. Note: variables
without a circle are observed variables, while those with a circle are hidden variables. To make the
graph clearer, we omitted ε1, ε2, ε3 in Figure 3 (b) and (c)

3 PHASE 1: DETECTION OF TIME-TREND VARIABLES AND CAUSAL
STRUCTURE RECOVERY

3.1 ASSUMPTIONS

Adopting a more relaxed version of causal sufficiency, this work assumes pseudo causal sufficiency.
In causal discovery, the causal sufficiency assumption posits that all common causes (confounders)
of the observed variables are included in the data set. The presence of time trends in data, however,
may violate this assumption. Time trends typically emerge from intricate, compounded factors. As a
statistical expedient, these factors are collectively considered, predicated on the combined effect be-
ing expressible as a mathematically smooth function of time when quantitatively represented. Time
trends across distinct variables can be interrelated due to specific types of unobserved confounders.
Consequently, we merely assume that these confounders, if any, are fixed at each time point within
data exhibiting time trends, which is referred to as pseudo causal sufficiency.
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Assuming that the observed data are independently identically distributed (I.I.D), this work con-
centrates on instantaneous or contemporaneous causal relationships, and the strength of the causal
relations does not change over time. As a consequence, time-delayed causal relations, specifically
autoregressive models, are not explicitly explored. Nevertheless, it is worth noting that our frame-
work can be naturally generalized to encompass time-delayed causal relations in time series, akin to
how constraint-based causal discovery has been adapted to manage time series data (see, e.g. (Chu
et al., 2008)).

Let {gl(C)}Ll=1 represent the set of confounders (potentially empty). Additionally, we posit that for
each Vi, the local causal process can be depicted by the SEM:

Vi = fi
(
PAi,gi(C), θi(C), εi

)
(1)

Here, gi(C) ⊆ {gl(C)}Ll=1 signifies the set of confounders influencing Vi (an empty set when
no confounder is present behind Vi and any other variable), while θi(C) represents the effective
parameters within the model, also presumed to be functions of C. Moreover, εi denotes a disturbance
term, independent of C and exhibiting non-zero variance (i.e., the model is non-deterministic). The
mutual independence of εi is also assumed.

In this work, we consider C as a random variable, yielding a joint distribution over V∪{gl(C)}Ll=1∪
{θm(C)}nm=1. We assume that this distribution adheres to the Markov and faithfulness properties
with respect to the graph resulting from the subsequent modifications to G (which, as a reminder,
represents the causal structure over V): add {gl(C)}Ll=1 ∪ {θm(C)}nm=1 to G, and for each i, add
an arrow from each variable in gi(C) to Vi and add an arrow from θi(C) to Vi. This extended graph
is denoted as Gaug . Evidently, G is merely the induced subgraph of Gaug over V. Importantly,
leaf nodes — those devoid of descendants — manifest characteristics indistinguishable when they
are with either an intrinsic or a measurement trend. Hence, we assume that trend variables are not
positioned as leaf nodes.

3.2 DETECTION OF TIME-TREND VARIABLES AND CAUSAL STRUCTURE RECOVERY

In this section, we use the Constraint-based Causal Discovery from heterogeneous/Nonstationary
Data (CD-NOD) to detect variables exhibiting time trends and subsequently deduce the causal net-
work for V ∪ {C}. The core concept hinges on using the (observed) variable C as a surrogate for
the unobserved {gl(C)}Ll=1 ∪ {θm(C)}nm=1. In essence, we utilize C to encapsulate the C-specific
information. Under the assumptions detailed in Section 3.1, it becomes feasible to deploy condi-
tional independence tests on the combined set of V ∪ {C} to detect variables with time trends and
recover the structure. This is achieved by Algorithm 1 and supported by Theorem 1.

In Algorithm 1, we first construct a complete undirected graph, denoted UC , which incorporates
both C and V. In Step 2 of the algorithm, the decision regarding whether a variable Vi exhibits
a time trend is contingent upon the conditional independence between Vi and C, given a subset of
other variables. If a time trend is present in Vi, then the module of Vi evolves in conjunction with
C. Consequently, the probability distribution P

(
Vi | PAi

)
will not remain constant across different

values of C. As a result, Vi and C are conditionally dependent regardless of any subset of other
variables. Based on this rationale, we assume that if Vi ⊥⊥ C | PAi, then there should be no
time trend in Vi. Conversely, if this assumption does not hold, then we claim to detect variables
with time trends. After this step, all variables linked to C, referred to as “C-specific variables”,
are considered to be with time trends. It’s important to highlight that this step is characterized by
high recall; however, its precision might exhibit slight variations. This precision is contingent on
the number of no-trend variables possessing changing modules within the data set. Specifically,
Algorithm 1 has been designed to effectively identify all variables exhibiting changing modules.
While time-trend variables inherently exhibit a changing module, the reverse is not necessarily true.
As a result, our categorization of “C-specific variables” also encompasses variables that, although
devoid of trends, display changing modules. Given that our focus is refined to “C-specific variables”
throughout Phase 2, this characteristic ensures Phase 1 is conservative. “C-specific variables” will
usually equal to or larger than the true trend-variable set, thereby guaranteeing the comprehensive
inclusion of every trend variable.

4



Under review as a conference paper at ICLR 2024

Algorithm 1 Detection of Time-trend Variables and Recovery of Causal Structure

1: Build a complete undirected graph UG on the variable set V ∪ C.
2: (Detection of time-trend variables) For each i, test for the marginal and conditional indepen-

dence between Vi and C. If they are independent given a subset of {Vk | k ̸= i}, remove the
edge between Vi and C in UG .

3: (Recovery of causal skeleton) For every i ̸= j, test for the marginal and conditional indepen-
dence between Vi and Vj . If they are independent given a subset of {Vk | k ̸= i, k ̸= j} ∪ {C},
remove the edge between Vi and Vj in UG .

4: (Orientation) For the obtained skeleton, orient it by standard orientation rules and distribution
shift. After the orientation process, we can get the causal network for V ∪ C, called Gphase1.

Step 3 aims to discover the skeleton of the causal structure over V. It leverages the results from Step
2: if neither Vi nor Vj is adjacent to C, then C does not need to be involved in the conditioning
set. In practice, one may apply any constraint-based search procedures on V ∪C, e.g., SGS and PC
(Spirtes et al., 1993). Its (asymptotic) correctness is justified by the following theorem:

Theorem 1: Given Assumptions made in Section 3.1, for every Vi, Vj ∈ V, Vi and Vj are not
adjacent in G if and only if they are independent conditional on some subset of {Vk | k ̸= i, k ̸= j}∪
{C}.

Given that this segment is identical to the Constraint-based Causal Discovery from Heteroge-
neous/Nonstationary Data (CD-NOD), we refrain from delving into further details here. For a com-
prehensive explanation of the step 4 orientation procedure and the complete proof of Theorem 1,
please refer to (Zhang et al., 2017b; Huang et al., 2020).

4 PHASE 2: UTILIZING STRUCTURAL DIFFERENCES TO DISTINGUISH
BETWEEN INTRINSIC AND MEASUREMENT-TREND VARIABLES

In Phase 1, we procured the set of variables exhibiting time trends (those associated with C) as well
as the causal network Gphase1 for V ∪ C. By constraining our analysis to only the “C-specific
variables” while pinpointing intrinsic-trend variables, Phase 2 of our algorithm benefits from in-
creased efficiency and a reduced risk of false positives. Besides, although the derived causal struc-
ture Gphase1 in Phase 1 might not be entirely accurate due to the existence of measurement trends,
it serves as a foundational aid in differentiating types of trends. In phase 2, we demonstrate that
by examining the different structures within causal networks, it is feasible to differentiate variables
with intrinsic trends from those influenced by measurement trends.

4.1 DISTINGUISH BETWEEN INTRINSIC AND MEASUREMENT TRENDS BY Gphase1

As depicted earlier, intrinsic-trend variables do not change the causal network, whereas those vari-
ables characterized by measurement trends can induce structural alterations in causal discovery.
Next, we delve into how a measurement-trend variable influences the causal structure of Gphase1 and
leverage this understanding to partly distinguish between the two trend types.

Figure 4 illustrates how a measurement-trend variable alters the output causal structure of Phase
1. In Figure 4(a), we depict a chain with a measurement trend in X2. During Phase 1, the time
index C is integrated into our analysis to pinpoint all trend variables. Due to the presence of a
measurement trend in X2, a connection from C to X2 is established. Furthermore, based on the
conditional independence observed in the actual structure Figure 4(a), we have T ⊥⊥ X3 and, cru-
cially, T ̸⊥⊥ X3|X2. By extension, because C is a proxy for T , the relationships C ⊥⊥ X3 and
C ̸⊥⊥ X3|X2 should hold. The dependency dynamics between X1 and C follow suit. As a result,
the Phase 1 structural outcome should be the one shown in Figure 4(b). It’s worth noting that since
the measurement trend T is independent across all variables within the causal network, no arrow
can stem from the measurement-trend variable to other variables in Gphase1. In essence, any linkage
from a “C-specific variable” to other entities indicates an intrinsic trend.
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Figure 4: An illustration of how a measurement-trend variable alters the output causal structure of
Phase 1. (a) the real structure with a measurement trend in X2. (b) the output structure of (a) by the
algorithm in Phase 1. X2 represents observed values, X2 represents the true values of X2. Note:
variables without a circle are observed variables, while those with a circle are hidden variables.

In summary, we first employ the structure of Gphase1 to discern intrinsic-trend variables. A “C-
specific variable” is deemed to exhibit an intrinsic trend if it possesses an arrow pointing to other
variables in Gphase1.

4.2 DISTINGUISH BETWEEN INTRINSIC AND MEASUREMENT TRENDS BY FURTHER
CONDITIONAL INDEPENDENCE TESTS

Having identified certain intrinsic-trend variables based solely on the structure of Gphase1, it becomes
necessary to undertake additional conditional independence tests for further recognition of more
intrinsic-trend variables. As illustrated in Figure 3, the children of time-trend variables serve as
critical pivot points in their differentiation process. For variables with intrinsic trends (see Figure
3b), there is T2 ̸⊥⊥ X3 and T2 ⊥⊥ X3|X2. Conversely, for variables with measurement trends (see
Figure 3c), there is T2 ⊥⊥ X3 and T2 ̸⊥⊥ X3|X2. Thus, the criterion for identifying an intrinsic-trend
variable X2 can be T2 ̸⊥⊥ X3 and T2 ⊥⊥ X3|X2. Here T2 is the trend of X2 and X3 is a child of
X2. Since the trend T2 is not directly observable in this context. As an alternative, we employ the
time index C again, working as a suitable proxy for the unobservable trend. Therefore, the criterion
is: C ̸⊥⊥ X3 and C ⊥⊥ X3|X2.

The first row of Figure 5 illustrates four scenarios of child variables that may arise when screening
for the intrinsic-trend variable X1. In Figure 5 (a), no trend is evident in the child variable X2,
allowing us to easily identify X1 as an intrinsic-trend variable using our criterion. However, in
Figure 4 (b)(c), the child variable X2 exhibits intrinsic and measurement trends, respectively. Since
trends are functions of time, time serves as a confounder (common cause) of trends T1 and T2.
In these cases, the path from T1 to X2 via the confounder “time” cannot be blocked, as neither
“time” nor T2 is observable (we can obtain a surrogate for T2, but it is insufficiently accurate to
block the path). Consequently, we cannot distinguish variables with intrinsic trends from those with
measurement trends when all child variables have trends. However, if the trend in the child variable
X2 originates from its other observable parent X3, as depicted in Figure 4 (d), the intrinsic-trend
variable X1 is identifiable since we can block the path through “time” by conditioning on X3.

For structures (b) and (c), first-order descendants (children) do not facilitate distinguishing trend
types. However, can second-order descendants provide clarity? Will it help if structures similar to
(a) or (d) emerge subsequent to (b) and (c)? The subsequent row illustrates potential second-order
descendant structures for both (b) and (c). Although (b-1) and (b-2) remain non-identifiable, (c-
1) and (c-2) can be discerned. The principles behind (c-1) and (c-2) align with those of (a) and
(d), namely C ̸⊥⊥ X3 and C ⊥⊥ X3|X1. It’s noteworthy that structures (c-1) and (c-2) essentially
represent (a) and (d) but with an added measurement-trend variable subsequent to the intrinsic-trend
variable X1 under examination. Extending this rationale, we can infer that all structures obtained by
adding n measurement-trend variables between X1 and X2 in structures (a) and (d) can theoretically
be identified, where n=0,1,2...

In summary, intrinsic-trend variables are discernible only when (1) the intrinsic-trend variable X
to be tested possesses at least one descendant variable Y without trends (like structure (a)) or with
trends stemming from other observable variables (like structure (d)); and (2) there are no other
intrinsic-trend variables on the path from X to Y . Nevertheless, the performance deteriorates in
reality as the number of measurement-trend variables between X1 and X2 increases, due to the
amplification of noise with increasing distance. To maintain accuracy, this study restricts its focus
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to first-order scenarios, wherein X2 is a direct descendant, namely a child of X1. Algorithm 2 for
Phase 2 is provided in Appendix A.1. Combining Algorithm 1 and Algorithm 2, we can obtain the
proposed Trend Differentiator (TrendDiff Algorithm).

Figure 5: Different scenarios for descendants of intrinsic-trend variables. First raw: Four possible
cases of intrinsic-trend variable’s child nodes in causal networks. (a) Child node without trend. (b)
Child node with an intrinsic trend. (c) Child node with a measurement trend. (d) Child node with a
trend from other observable nodes. Second raw (b-1), (b-2), (c-1), and (c-2): Four possible cases of
intrinsic-trend variable’s second-order descendant for structure (b) and (c).

5 EXPERIMENTS

The proposed TrendDiff algorithm has been employed on a variety of synthetic and real-world data
sets. We assessed the accuracy with which this method can pinpoint variables exhibiting intrinsic
trends across diverse scenarios. Besides, we further contrasted the efficacy of causal discovery
methodologies pre- and post-removal of measurement trends discerned by our techniques, thereby
demonstrating the advantages of eliminating such trends.

5.1 SIMULATIONS

Algorithm performance is first evaluated by simulation data. We generated synthetic data according
to the SEMs specified in Figure 8. More specifically, V1, V5, and V7 have intrinsic trends, V2, and
V6 have measurement trends. Time trends are defined as a sinusoid function of time, with periods
w randomly selected from the range(5,25). All relationships are nonlinear. We tried different noise
types (Gaussian, Exponential, Gumbel), as well as different sample sizes (T = 600, 900, 1200, 1500).
In each setting, we ran 50 trials. We tested the generated data with the proposed TrendDiff method
and compared the results of PC algorithm before and after the removal of identified measurement
trends.

Figure 6 displays the simulation results. Figure 6 (a) presents the F1 score, precision, and recall
of identified intrinsic-trend variables under varying data length T and noise type. The robustness
of the proposed algorithm is evidenced by its consistent performance in Gaussian, Exponential, and
Gumbel noise models. As the data length increases, there is a corresponding enhancement in per-
formance. When data length equals to or above 1500, the algorithm demonstrates commendable
efficiency, with the F1 score, precision, and recall all close to 0.9. The recall is a little bit lower
compared with the precision. This discrepancy arises from our conservative approach, prioritiz-
ing the minimization of false-positive intrinsic-trend variables, as they present greater detrimental
consequences than false negatives. Figure 6 (b) contrasts the efficacy of the PC algorithm in recon-
structing the original causal network using data pre and post-elimination of detected measurement
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trends. Removal of these measurement trends notably bolsters the performance of the PC algorithm,
with a pronounced enhancement in the F1 score and precision. Besides these tests, we also generated
data from random structures. We further used the data from random structure to evaluate the sen-
sitivity of our approach towards data length, noise type, dimensionality (denoted by the number of
nodes), and sparsity (defined by the degree considering edges in both directions). Since time trends
may be approximately linear in some situations, we tested TrendDiff performance for linear-trend
scenarios as well. Our method displayed stability across varying conditions, the results of which can
be found in the Appendix. These results further establish its robustness and adaptability.

Figure 6: Simulation performance. (a)Performance of identifying intrinsic-trend variables under
varying conditions, measured in terms of F1 score, precision, and recall (higher values indicate better
performance). (b) Performance of PC algorithm using data pre and post-elimination of detected
measurement trends.

5.2 REAL DATA

We also applied the proposed approach to a real environmental health dataset. This dataset contains
daily values of variables regarding air pollution, weather, and sepsis emergency hospital admission
in Hong Kong for the period from 2007 to 2018. It is a typical dataset used to assess the interactions
between environmental factors and human health. There are pronounced time trends in this data
(Figure 7a), rendering it a good application example for TrendDiff algorithm. In our initial analysis,
we applied TrendDiff to determine the intrinsic trend variables within the data. The outcome from
Phase 1 (as detailed in Algorithm 1) indicates that sepsis emergency hospital admissions, CO, O3,
and SO2 are variables exhibiting a trend, be it measurement or intrinsic. Subsequently, in our
follow-up phase (Algorithm 2), we differentiated between measurement-trend and intrinsic-trend
variables. It was discerned that CO, O3, and SO2 have intrinsic trends while the daily count of
sepsis emergency hospital admissions stood out as the sole variable characterized by a measurement
trend. This result is consistent with existing evidence. There have been heated discussions in top
medical journals about the observed rise in sepsis cases. A prevailing consensus among researchers
is that this uptick in sepsis incidences can be largely attributed to the refined definitions and enhanced
coding practices for sepsis, rather than the real incidence increase (Rhee et al., 2017; Fleischmann-
Struzek et al., 2018). As for the trio of variables recognized with an intrinsic trend — CO, O3,
and SO2 — ample research has been conducted on their trends. However, none have ascribed
these trends to measurement inaccuracies, supporting our results here (Wei et al., 2022). Beyond
merely distinguishing two types of trends, we also conducted a comparison of causal discovery
results, before and after eliminating the identified measurement trend. Here the time series causal
discovery method Peter-Clark-momentary-conditional-independence plus (PCMCI+) was adopted
(Runge, 2020). Utilizing this environmental health dataset from Hong Kong, our primary objective
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was to delineate the environmental determinants linked to sepsis. As illustrated in Figure 7(b), there
are significant variations in outcomes contingent on the removal of the measurement trend. Initial
analyses using raw data classified CO and SO2 as mitigating factors against sepsis. However,
upon exclusion of the sepsis measurement trend, only temperature was pinpointed as a synchronous
risk factor for sepsis. Though this analysis did not deal with factors like seasonality, the observed
discrepancies highlight the paramount importance of detecting and addressing measurement trends
in causal discovery analysis.

Figure 7: Evaluation of performance using a real-world dataset. (a) Depiction of time series
variables. (b) Raw: discovery of structure from raw data by Peter-Clark-momentary-conditional-
independence plus (PCMCI+). Detrended: discovery of structure after removal of identified mea-
surement trends by PCMCI+.

6 CONCLUSION AND DISCUSSIONS

There has long been a pressing need for techniques to discern intrinsic trends from measurement
trends. The proposed algorithm TrendDiff stands out as the first dedicated solution to this prob-
lem. Beyond its applicability in data pre-processing for causal discovery—as demonstrated in both
simulated and real-world scenarios—its advantages are manifold. Firstly, by addressing measure-
ment trends, which essentially is a kind of measurement error, data quality is enhanced. The adage
“Garbage In, Garbage Out” underscores the pivotal role of data quality in application studies, a
principle that spans multiple disciplines. This uplift in quality augments not only causal discovery
but also the efficacy of a myriad of other methodologies. Secondly, the practical significance of this
method is profound. For both entrepreneurs and investors, discerning genuine market trends from
ephemeral ones is pivotal. Investing resources or capital in fake trends can culminate in substantial
disappointment, given the absence of a genuine market fit. Algorithms tailored for distinguishing
trend types play a crucial role in mitigating such risks.

In future work, we aim to solve the following questions: 1. How to further improve the performance
of the current algorithm, especially when data length is limited? 2. What if a variable bears both
intrinsic and measurement trends? Can we develop a method to distinguish the two types of trends
within the same variable? 3. How to better remove the identified measurement trends? For linear
trends, removal is straightforward. Yet, addressing nonlinear trends is more challenging, primarily
because their exact form or shape is often unknown.
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A APPENDIX

A.1 ALGORITHM 2

In phase 2, structural differences will be used to distinguish intrinsic-trend variables from
measurement-trend ones. For each “C-specific variable” Xi identified in phase 1 (these are vari-
ables with time trends), we first check if there is an outgoing link from this variable to others in the
Gphase1. If there is, the variable is added to the intrinsic trend set. After this procedure, we further
check each of the left “C-specific variable” Xi. We use time index C as the surrogate of trend. Then
conditional independence tests will be conducted between C and each of Xi’s neighbor Xj in the
identified causal network Gphase1 under different conditional sets. Since the conditional sets are used
to block paths via other parents of Xj (as is shown in Figure 5 (d)), it will iterate on all combinations
of Xj’s neighbors, rather than iterate on the combinations of all rest variables. For each pair of Xi

and Xj , once C and Xj are dependent conditions on any set S0 and become independent conditions
on the set S0 + Xi, Xi is identified as intrinsic-trend variables. After getting the intrinsic-trend set,
we derive the set of measurement-trend variables by subtracting the intrinsic-trend variables from
the “C-specific variables”.

Algorithm 2 Identify intrinsic-trend variables by structural differences

Require: Dataset V, ”C-specific variables” identified in phase 1, causal structure Gphase1 identified
in phase 1, significance threshold α, CI test CI(X,Y,Z) returning p-value.

1: IntrinsicSet = ∅
2: for all Xi ∈ ”C-specific variables” do
3: β = Causal Graph Matrix(Gphase1)
4: links = βi· if 1 ∈ links then ▷ Check if Xi has an outgoing link
5:6: Store Xi in IntrinsicSet
7:
8: RestSet = ”C-specific variables” - IntrinsicSet
9: for all Xi ∈ RestSet do

10: TestNeighbors = Neighbors(Xi) - IntrinsicSet
11: for all Xj ∈ TestNeighbors do
12: JNeighbors = Neighbors(Xj) - Xi

13: for all n ∈ Range(len(JNeighbors)) do
14: for all S0 ∈ Combinations(JNeighbors, n) do
15: S1 = S0 + Xi

16: C = Time index
17: p0 = CI(C,Xj ,S0)
18: p1 = CI(C,Xj ,S1)
19: if (p0 < α) & (p1 > α) then
20: Store Xi in IntrinsicSet
21: MeasurementSet = ”C-specific variables” - IntrinsicSet
22: return IntrinsicSet, MeasurementSet

Note: the Causal Graph Matrix in line 3 outputs a Causal Graph object, where βj,i = 1 and βi,j =
−1 indicate i → j;βi,j = βj,i = −1 indicates i — j; βi,j = βj,i = 1 indicates i ↔ j.

A.2 FIXED STRUCTURE SIMULATION

The simulated data from the fixed structure is obtained following three steps: 1) Get the original
fixed structure without trends. The structure used in this study to test our algorithm is shown in
Figure 8. Figure 8 (a) is the SEMs and Figure 8 (b) is the visualization of the structure. 2) Embed
intrinsic and measurement trends into the structure. To include both the identifiable structures (a)
and (d) in Figure 5 in our simulation, we add intrinsic trends in X1, X2, and X7. Besides, to
mimic the properties of real-world data, we also add two measurement trends in X3 and X6. All
trends are defined as smoothed functions of time, generating from trend = sin

(
w·t
T

)
. Here the

period w is randomly selected from a uniform distribution Unif([5, 25]), T is data length, t is time
index. 3) Generate simulation data. Finally, we generate the simulation data based on the structure
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constructed after steps (1) and (2). All relationships are nonlinear, with randomly selected 50%
links using f (1)(x) =

(
1− 4e−x2/2

)
x and 50% links using f (2)(x) =

(
1− 4x3e−x2/2

)
x. We

tested our algorithm under the joint distribution of ε0, ε1, ...ε9∼ (Gaussian, Exponential, Gumbel),
respectively. We tried different sample sizes (T = 600, 900, 1200, 1500). We tested the proposed
TrendDiff by the generated data in these different scenarios. In each setting, we ran 50 trials.

Figure 8: Data structure for fixed-structure simulation. (a) The SEMs according to which we added
intrinsic and measurement trends and generated the simulated data. (b) The visualization of the
structure. All relationships are nonlinear.

We also analyzed the outcomes of the PC algorithm both prior to and following the elimination
of the measurement trends pinpointed by our TrendDiff. This comparison underscores the efficacy
of our method in enhancing causal discovery performance by data pre-processing. In addressing
variables with measurement trends, we employ the Savitzky-Golay filter to eliminate these trends.
We subtract the Savitzky-Golay filtered trend from the raw data to obtain the detrended data. The
Savitzky-Golay filter is a polynomial smoothing filter that essentially fits a polynomial of a given
degree to a window of consecutive data points using a method of linear least squares. Once the
polynomial is fitted to the data, the smoothed value or the derivative of the function can be obtained.
The filter is commonly applied to noisy data in various fields, including analytical chemistry and
signal processing. The two main parameters of it are the window size and the polynomial order. The
window size dictates how many data points will be used for each polynomial fit and thus controls
the overall smoothing, while the polynomial order controls the model complexity. Note that, if the
trend variable is a leaf node, it is impossible to ascertain whether it has an intrinsic or a measurement
trend. Therefore, we only address scenarios when the trend variables are not leaf nodes. Importantly,
our strategy for finding variables with measurement trends is as follows: (1) Identify variables that
exhibit trends, regardless of whether they stem from intrinsic factors or measurement errors (Phase
1), (2) Identify variables that possess intrinsic trends, and (3) The variables with measurement trends
are then derived by subtracting the intrinsic-trend variables from the overall trend variables identified
in Step (1). In this study, all variables labeled as “C-specific variables” exhibit trends. However, in
real-world data, this set might also include nonstationary variables (those with changing modules)
that don’t necessarily have trends. Consequently, the set of measurement-trend variables, derived by
subtracting the intrinsic-trend variables from the “C-specific variables”, could have false positives.
This implies that while the output for intrinsic-trend variables is highly accurate, the accuracy for
the measurement-trend variables might be slightly compromised.

In our algorithm, employing a general, nonparametric conditional independence test is of paramount
importance. The reason being, that the nature in which trends fluctuate over time remains unknown
and is often profoundly nonlinear. In the present study, we leverage the kernel-based conditional
independence test (KCI-test) (Spirtes et al., 1993) to capture these dependencies. Within the KCI
test framework, the kernel width parameter, instrumental in constructing the kernel matrices, plays
a pivotal role in determining performance outcomes. Our method’s efficacy was assessed across
various time lengths T and kernel widths w to choose optimal w. Figure 9 elucidates the variations
in performance based on distinct values of w for evolving T . It is evident from the data that as T
ascends, there’s an increase in performance. Furthermore, a kernel width of w = 0.5 consistently
delivers commendable results irrespective of the T value. These findings echo the guidelines pro-
posed in the original KCI paper, which recommends: set w to 0.8 for sample sizes n ≤ 200, to 0.3
if n > 1200, and to 0.5 in all other instances. In alignment with this advice, our study adopted these
kernel width settings.
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Figure 9: Parameter choosing results. Performance of our algorithm under different kernel width w
with changing data length T . The performance is evaluated using F1 score, precision, and recall.

A.3 RANDOM STRUCTURE SIMULATION

We also tested our algorithm using simulated data based on random structures. There are three
steps to this process: 1) We generated random graph G from the Erdös-Rényi (ER) random graph
model, with edges added independently with equal probability. The degree, that is, the total number
of edges linked with each node (in + out), is d. Given G, the weights of edges are drawn from
Unif([−0.6,−0.2] ∪ [0.2, 0.6]) to obtain a weight matrix W0. 2) Given W0, intrinsic and measure-
ment trends are randomly assigned to variables, with W0 updated to W . Note that, only intrinsic
trend structures like (a) and d in Figure 5 will be generated in this process, which means: a) no trend
in leaf nodes; b) variables with trends are not adjacent. 3) Then we sampled X = WTX + z ∈ Rd

from noise model. Finally, we generated random datasets X ∈ Rn×d by generating T rows I.I.D.
We considered different model setups for noise types, data length T, and the degree of sparsity to
comprehensively test our algorithm. Performance is evaluated by F1 score, precision, and recall.
Precision is the number of true positives divided by the number of true positives plus the number
of false positives P = TP

TP+FP . Recall is the number of true positives divided by the number of
true positives plus the number of false negatives R = TP

TP+FN . The F1 score is the harmonic mean
of precision and recall. It provides a balance between precision and recall and is a good metric to
consider if there is uneven class distribution F1 = 2× P×R

P+R . For each scenario, all metrics are com-
puted across all graphs from 50 realizations of the random graph-generating model at data length T
in (600, 900, 1200, 1500).

Figure 10 showcases the performance metrics—F1 score, precision, and recall—for identifying
intrinsic-trend variables across different data lengths T and noise types. Notably, the method proves
robust across noise variations and, consistent with fixed structure results, performance improves
with increasing data length. Figure 11 provides further insights into our method’s stability, demon-
strating its resilience across a range of data dimensions and degrees of sparsity, where dimension
is denoted by the number of nodes and sparsity is defined as the degree considering edges in both
directions. When comparing the algorithm’s performance in fixed-structure scenarios to those in
random-structure situations, we observe a slight decrease in precision for the latter. However, the
overall evaluation metric, the F1 score, remains consistently stable. Figure 12 shows TrendDiff
performance on data generated from random structures with linear trends. We measured the identi-
fication of intrinsic-trend variables across different data lengths T and noise types. TrendDiff excels
in scenarios with linear trends.

A.4 APPLICATION IN REAL-WORLD DATA

Besides simulation studies, we applied our algorithm to a real-world data set about environmental
health as well. The data set contains daily values of variables regarding air pollution, weather, and
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Figure 10: Performance evaluation on data generated from random structures with varying T and
noise type. We measure the identification of intrinsic-trend variables across different data lengths T
and noise types using F1 score, precision, and recall. Higher values denote better performance.

Figure 11: Performance evaluation on data generated from random structures with varying sparsity
and dimension. (a) Performance under different sparsity levels. (b) Performance across varying
dimensions.

Figure 12: Performance evaluation on data generated from random structures with linear trends.
We measure the identification of intrinsic-trend variables across different data lengths T and noise
types using F1 score, precision, and recall. Higher values denote better performance.
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sepsis emergency hospital admission in Hong Kong for the period from 2007 to 2018. This data set is
good for exploring the relationships between environmental factors and sepsis. Sepsis, alternatively
referred to as septicemia or blood poisoning, is a life-threatening medical emergency when the dys-
regulated host response to infection injures its own tissues and organs (Singer et al., 2016). It is one
of the leading causes of death and contributes significantly to preventable mortality (Organization
et al., 2020). In 2017, 11.0 million sepsis-related deaths were reported globally, constituting 20%
of all the annual deaths (Rudd et al., 2020). Understanding the relationships between environmental
factors and sepsis risk provides a deeper insight into the underlying mechanisms through which en-
vironmental factors may predispose, trigger, or exacerbate sepsis conditions. This knowledge is not
only pivotal for timely intervention but also offers a foundation for formulating targeted prevention
strategies.

In our real-data application, we initially utilized the proposed method to identify sets of all trend
variables, intrinsic-trend variables, and measurement-trend variables. We then compared these find-
ings with existing literature on trend and measurement errors in environmental variables and sepsis
data, reinforcing the accuracy of our algorithm. Furthermore, we employed the causal discovery al-
gorithm, ”Peter-Clark-momentary-conditional-independence plus (PCMCI+)”, both before and after
eliminating the detected measurement trends from the dataset. This comparative analysis of causal
discovery performance serves to underscore the advantages of our algorithm as an effective data
pre-processing tool.

Below we detail the PCMCI+ algorithm:

PCMCI+ belongs to the so-called constraint-based causal discovery methods family, which is based
on conditional independence test(Runge, 2020). Here “PC” refers to the developers Peter and Clark,
“MCI” means that the momentary conditional independence (MCI) test idea is added to the tradi-
tional PC algorithm, and “+” reminds users that it extends the earlier version of PCMCI to include
the discovery of contemporaneous links(Runge et al., 2019). Like other causal graphic models,
PCMCI+ works under the general assumptions of the causal Markov condition (each variable in the
system is independent of its non-descendants, given its parent variables) and faithfulness (proba-
bilistic information in data emerges not by chance but from causal structures) (Runge, 2018). On
top of the general assumptions, two specific assumptions are also requested: causal stationarity (i.e.,
the causal links hold for all the studied time points) and causal sufficiency (i.e. measured variables
include all of the common causes).

PCMCI+ algorithm starts with a skeleton discovery phase, which serves to remove the adjacencies
due to indirect paths (mediation) and common causes (confounders). This phase can be divided into
lagged stage and contemporaneous stage. The former is to identify lagged potential parents, and the
latter is to identify contemporaneous potential parents and optimize identified lagged parents. In the
lagged stage, for each variable Xj

t , a superset of lagged (τ > 0) parents β̂−
t

(
Xj

t

)
is estimated with

the iterative PC1 algorithm. In the contemporaneous stage, we iterate through subsets S ⊂ Xt of
contemporaneous adjacencies and remove adjacencies for all (lagged and contemporaneous) ordered
pairs (Xi

t−τ , X
j
t ) with Xj

t ∈ Xt and Xi
t−τ ∈ Xt ∪ β̂−

t

(
Xj

t

)
if the MCI conditional independence

holds:
(
Xi

t−τ ⊥ Xj
t | S, β̂−

t

(
Xj

t

)
, β̂−

t−τ

(
Xi

t−τ

)
. This skeleton discovery phase returns a skeleton

of causal network of undirected relationships among the nodes.

Next in the orientation phase the contemporaneous links (lagged links can automatically be directed
by time order) in the recognized skeleton will be oriented by the collider orientation stage and
followed by the rule orientation stage. In collider orientation process, unshielded triples Xi

t−τ →
Xk

t ◦−◦Xj
t (for τ > 0) or Xi

t ◦−◦Xk
t ◦−◦Xj

t (for τ = 0) where Xi
t−τ , X

j
t are not adjacent would

be oriented as collider structures if Xk
t is not in the sepset

(
Xi

t−τ , X
j
t

)
according to the rule “none”.

Here sepset
(
Xi

t−τ , X
j
t

)
means the controlled variables when obtaining conditional independence

of Xi
t−τ , X

j
t . Besides the rule “none”, another two rules “conservative” and “majority” can also be

chosen in this stage. After that, three rules R1, R2, and R3 are followed to orient left links. R1 rule
states that all unambiguous Xi

t−τ → Xk
t ◦ − ◦ Xj

t can be oriented as Xi
t−τ → Xk

t → Xj
t since

there is no collider left in this stage; in R2 rule, all Xi
t → Xk

t → Xj
t structures with Xi

t ◦−◦Xj
t are
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oriented as Xi
t → Xj

t to avoid circles. Finally, in R3 rule, for all unambiguous Xi
t ◦ − ◦Xk

t → Xj
t

and Xi
t ◦ − ◦ X l

t → Xj
t where Xk

t , X
l
t are independent and Xi

t ◦ − ◦ Xj
t , we orient Xi

t , X
j
t as

Xi
t → Xj

t to satisfy both the no-collider and no-circle rules. After the orientation process, we leave
unoriented correlations as ◦ − ◦ and conflicting correlations as ×−×.

The main free parameters of PCMCI+ (in addition to the free parameters of the conditional indepen-
dence tests) are the maximum time delay τmax and the significance threshold αPC. We used 3 and
0.05 for these two parameters, respectively. In the output causal network produced by PCMCI+, a
curved arrow represents a lagged causal relationship, with the lag day shown on the curve. A straight
arrow means a contemporaneous association. A conflicting, contemporaneous adjacency ”x-x” in-
dicates that the directionality is undecided due to conflicting orientation rules. The link color refers
to the cross-MCI value, which indicates the strength of the relationships. The node color denotes
the auto-MCI value, representing how strong the autocorrelation is.

17


	Introduction
	Parameterizing time trends
	Phase 1: Detection of time-trend variables and causal structure recovery
	Assumptions
	Detection of time-trend variables and causal structure recovery

	Phase 2: Utilizing structural differences to distinguish between intrinsic and measurement-trend variables
	Distinguish between intrinsic and measurement trends by Gphase1
	Distinguish between intrinsic and measurement trends by further conditional independence tests

	Experiments
	Simulations
	Real data

	Conclusion and discussions
	Appendix
	Algorithm 2
	Fixed structure simulation
	Random structure simulation
	Application in real-world data


