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ABSTRACT

Despite widespread use of LLMs as conversational agents, evaluations of perfor-
mance fail to capture a crucial aspect of communication: interpreting language
in context. Humans interpret language using beliefs and prior knowledge about
the world. For example, we intuitively understand the response “I wore gloves”
to the question “Did you leave fingerprints?” as meaning “No”. To investigate
whether LLMs have the ability to make this type of inference, known as an impli-
cature, we design a simple task and evaluate widely used state-of-the-art models.
We find that, despite only evaluating on utterances that require a binary inference
(yes or no), most perform close to random. Models adapted to be “aligned with
human intent” perform much better, but still show a significant gap with human
performance. We present our findings as the starting point for further research into
evaluating how LLMs interpret language in context and to drive the development
of more pragmatic and useful models of human discourse.

1 INTRODUCTION

User: “Have you seen my phone?”
InstructGPT: “Yes, I have seen your phone.”

InstructGPT’s response1 is a perfectly fine answer to the question, but a human might answer dif-
ferently. They might respond “it’s in your bag," bypassing the obvious follow-up question (“where
is it?”). Giving such a helpful and efficient answer is an example of pragmatic language usage that
goes beyond the semantic meaning of utterances. Meaning is not only determined by a combination
of words, but also context, beliefs, and social institutions (Wittgenstein, 1953; Grice, 1975; Huang,
2017). Consider another exchange where Esther asks her friend Juan “Can you come to my party on
Friday?” and Juan responds “I have to work.”. We resolve Juan’s response into a decline by using
the contextual commonsense knowledge that having to work on a Friday night precludes attendance.
Both these exchanges contain an implicature—utterances that convey something other than their lit-
eral meaning2. Implicatures illustrate how context contributes to meaning; distinguishing writing
and speaking from communicating (Green, 1996). We cannot fully understand utterances without
understanding their implications, nor can a computational model. Indeed, the term “communication”
presupposes the speaker’s implications are understood by the addressee. Although communication
encompasses much more than implicatures, such as assertives and other illocutionary acts, we view
implicature understanding as a necessary condition for communicating with humans. Being able to
resolve seemingly completely novel implicatures and—more broadly—engage in pragmatic under-
standing constitutes an essential and ubiquitous aspect of our every day usage of language.

Large language models (LLMs) have demonstrated remarkable ability on a variety of downstream
tasks such as planning (Huang et al., 2022a), commonsense reasoning (Kojima et al., 2022), infor-
mation retrieval (Lewis et al., 2020; Kim et al., 2022) and code completion (Austin et al., 2021;
Biderman & Raff, 2022), to name just a few. When finetuned with human feedback, LLMs ob-
tain higher ratings on desiderata like helpfulness (Ouyang et al., 2022; Bai et al., 2022), and are
proposed as conversational agents (Thoppilan et al., 2022). Despite the widespread use and deploy-

1Appendix A contains details on how this answer was obtained from InstructGPT-3.
2In Appendix B we present a comprehensive introduction to implicature.
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Figure 1: A schematic depiction of the protocol we propose to evaluate whether language models can
interpret language in context. Each example in the test set gets wrapped in templates and transformed
into an incoherent example by swapping “yes” and “no”. The model is said to understand the
implicature if it assigns a higher likelihood to the coherent text than the incoherent text.

ment of LLMs as conversational agents, there has been limited evaluation of their ability to navigate
contextual commonsense knowledge.

This raises an important question: to what extent do large language models understand conversa-
tional implicature? To answer this question we use a publicly available dataset of conversational
implicatures and propose an evaluation protocol on top of it (Figure 1). We evaluate a range of state-
of-the-art models that can be categorised into four distinct groups; base LLMs (like OPT (Zhang
et al., 2022)), instructable LLMs finetuned on downstream tasks (like Flan-T5 (Chung et al., 2022)),
LLMs finetuned on conversational data (like BlenderBot (Ng et al., 2019)), and instructable LLMs
finetuned with an unknown method (i.e. the latest versions of OpenAI’s InstructGPT-3 series3). We
evaluate both zero-shot and test whether performance improves by presenting in-context examples
(few-shot evaluation). Our results suggest that implicature resolution is a very challenging task for
LLMs. Most models obtain around 60% accuracy on the test set, whereas humans obtain 86% and
random performance is 50%. InstructGPT-3 consistently outperforms other models across almost
all model sizes considered, but even here zero-shot evaluation leaves a gap of 14% with the average
human. In-context prompting can shrink this gap to 6% for the best of OpenAI’s models. However,
it does not help much for other models; at 30-shot they still all perform worse than instructGPT-3
does at zero-shot. We do a comprehensive error analysis by manually grouping the test examples
into categories and uncover that the performance increase for the largest models seems driven by the
simplest examples in the dataset that require no context to be resolved. For these examples the con-
ventional meaning of the words entails a proposition, e.g. “some people came to the party” implying
“not all people came”. When isolating the best model’s performance on implicatures that do require
commonsense knowledge to be resolved (like the one in Figure 1), the gap between zero-shot and
the human average becomes 24%, and the gap between few-shot and the human average becomes
9%. Furthermore, scaling analysis shows that most of the model classes we evaluate do not exhibit
increased performance when scaled up. Based on this result, we hypothesise it is unlikely further
scaling alone will lead to significant improvements.

The main contributions of this work are as follows i) we motivate implicature understanding as a
crucial aspect of communication that is currently missing from evaluations of LLMs, ii) we design an
implicature resolution task and propose a comprehensive evaluation protocol on which we evaluate
both humans and LLMs to find that it poses a significant challenge for state-of-the-art LLMs, and
(iii) we perform a comprehensive error analysis and identify opportunities for future work.

3The method is unpublished and might differ from the original instructGPT (Ouyang et al., 2022).
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2 RELATED WORK

LLMs have demonstrated remarkable performance on tasks for which they were not explicitly
trained (Brown et al., 2020). Building on the hypothesis that these abilities arise due to implicit
multitask learning (Radford et al., 2019), the recent works of Sanh et al. (2022) and Wei et al. (2022)
explicitly train LLMs in a supervised multitask fashion, leading to models that are better zero-shot
learners with fewer parameters. Besides rapidly saturating language understanding benchmarks
(Kiela et al., 2021), these advancements make LLMs beneficial foundations for agents performing
a plethora of tasks (Adolphs et al., 2022; Reed et al., 2022). The trend towards using these models
as agents brings along with it increased urgency for alignment with human values (Kenton et al.,
2021). However, larger models trained with next-word prediction are generally more toxic and un-
helpful (Gehman et al., 2020; Bender et al., 2021; Lin et al., 2022). Recent work mitigates this with
approaches like prompting and finetuning on human-annotated outputs (Askell et al., 2021; Ouyang
et al., 2022; Thoppilan et al., 2022). The produced models are more aligned on desiderata such as in-
formativeness when evaluated by dedicated benchmarks and humans. We argue, however, that there
is still something missing in these benchmarks. What is helpful and informative, as Kasirzadeh &
Gabriel (2022) also point out, depends on the context in which a conversation is held. Consequently,
any application of language models that requires communicating with humans will rely on prag-
matic communication skills—something that is not explicitly captured by the benchmarks used to
evaluate the alignment of LLMs.

The standard set of benchmarks LLMs are further evaluated on covers tasks like question answering
(Berant et al., 2013; Joshi et al., 2017; Kwiatkowski et al., 2019), language completion (Levesque
et al., 2012; Paperno et al., 2016; Mostafazadeh et al., 2016; Zellers et al., 2019; Sakaguchi et al.,
2021), common-sense reasoning (Mihaylov et al., 2018; Clark et al., 2018; Bisk et al., 2020; Bhak-
thavatsalam et al., 2021), reading comprehension (Lai et al., 2017; Choi et al., 2018; Reddy et al.,
2019; Dua et al., 2019), natural language inference (Rajpurkar et al., 2018; Nie et al., 2020), and
more (Wang et al., 2019; Srivastava et al., 2022). Even though implicature is one of the most impor-
tant aspects of language pragmatics (Levinson, 1983), none of these benchmarks explicitly evaluate
implicature understanding. Reddy et al. (2019) evaluate implicit coreference among other aspects
of conversation. This may indirectly measure performance on implicatures. However, unlike our
work, it fails to decouple performance on implicatures from other aspects of pragmatics. Zheng
et al. (2021) are the first to fill this gap with a dataset of conversational implicatures, called GRICE.
This is important pioneering work highlighting the difficulty of implicature for language models, but
their evaluations require task-specific training. In contrast, our evaluation protocol is applicable out-
of-the-box and is much more comprehensive, evaluating models up to 176 billion parameters and
using in-context prompting. Additionally, Zheng et al. (2021) benchmark synthetic data whereas
this work evaluates performance on naturally occurring implicatures (George & Mamidi, 2020). We
believe this to be a better representation of the true distribution of implicatures in natural dialogue.

Critiques of language modelling benchmarks are widespread (Raji et al., 2021; Bender et al., 2021;
Bender & Koller, 2020; Raji et al., 2022). These works question whether the evaluation protocols
measure what researchers claim they do. In similar spirit to our work, Valmeekam et al. (2022)
point out that despite the fact that many works claim to use LLMs to “plan” (Ahn et al., 2022; Shah
et al., 2022; Huang et al., 2022b) they either do not evaluate whether LLMs can do planning or use
limited benchmarks that cannot justify the claims being made. Valmeekam et al. (2022) introduce
an extensive evaluation suite for planning and find that “GPT-3 is, as of right now, pretty ineffective
in reasoning about actions and change.”

3 THE EVALUATION PROTOCOL

In this section we outline the full evaluation protocol we use to answer the research question “To
what extent do large language models understand conversational implicature?”. We focus on simple
binary implicatures that require inferring “yes” or “no” (like the one in Figure 1). As a proxy
for “understanding”, we say a model understands an utterance if it assigns higher likelihood to a
coherent utterance than a similar but incoherent one, detailed below.

Zero-shot evaluation. Consider the example from the introduction packed into a single utterance:

3



Under review as a conference paper at ICLR 2023

Esther asked “Can you come to my party on Friday?” and Juan responded “I have
to work”, which means no.

We can transform this example to be incoherent (in the sense that it will become pragmatically
inconsistent with expected use) by replacing the word “no” with “yes”:

Esther asked “Can you come to my party on Friday?” and Juan responded “I have
to work”, which means yes.

If the model understands the implicature, it should assign higher likelihood to the first of the two
sentences above, namely the most coherent one. Importantly, both sentences have exactly the same
words except for the binary implicature “yes” or “no”, making the assigned likelihood scores directly
comparable. Formally, let the coherent prompt be x and the augmented, incoherent prompt be x̂. A
model outputs a likelihood p parameterized by weights θ. We say a model pragmatically understands
an example x when it assigns pθ (x) > pθ (x̂). This is equivalent to evaluating whether the model
assigns a higher likelihood to the correct continuation of the two options. Note that this is a more
lenient evaluation protocol than sometimes used for language models, where models are evaluated
on on their ability to generate the correct continuation, in this case “no”. However, “no” is not
the only coherent continuation here, and marginalising over all possible correct continuations is
intractable. The more lenient evaluation does capture implicature understanding, because the choice
of “no” versus “yes” is only determined by the resolution of the implicature.

We use a dataset of conversational implicatures curated by George & Mamidi (2020). It contains
conversational implicatures that, like in Figure 1, are presented in utterance-response-implicature
tuples. Of these, 718 are binary implicatures that we can convert into an incoherent sentence. We
randomly sample 600 examples for the test set and keep the remaining 118 as a development set to
improve implicature understanding after pretraining through in-context prompting or finetuning.

Few-shot in-context evaluation. We add k examples of the task to the prompt, e.g. with k = 2:

The following examples are coherent sentences:

Esther asked “Have you found him yet?” and Juan responded “They’re still
looking”, which means no.

Esther asked “Are you having fun?” and Juan responded “Is the pope Catholic?”,
which means yes.

Finish the following sentence:

Esther asked “Can you come to my party on Friday?” and Juan responded “I have
to work”, which means no.

We evaluate the models’ k-shot capabilities for k ∈ {1, 5, 10, 15, 30} by randomly sampling k
examples from the development set for each test example. We opt for a random sampling approach in
place of the predominant approach in prior work which leverages the same ordered set of k prompts
for each test example. This change in protocol allows us to control for two sources of randomness.
Firstly, examples have different levels of informativeness. Secondly, recent work found that the
order in which examples are presented matters (Lu et al., 2022). Ideally, to marginalise over these
random factors, we would evaluate each test example with all permutations of k examples from
the development set. This requires 118!

(118−k)! evaluations for each test example, which is intractable.
Instead, we estimate performance per test example by randomly sampling from the development set.
In this way we control for some of the variance in performance, but avoid extra evaluations.

Controlling for prompt sensitivity. It has been shown language models are sensitive to the word-
ing of the prompt (Efrat & Levy, 2020; Tan et al., 2021; Reynolds & McDonell, 2021a; Webson
& Pavlick, 2021). To control for this factor of randomness we manually curate six different tem-
plate prompts and measure performance across these different wordings. One of the templates has
already been presented in the examples in this section, namely “Esther asked <utterance> and Juan
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responded <response>, which means <implicature>”. Another prompt template is: “Question: <ut-
terance>, response: <response>, meaning: <implicature>”. The former we call natural prompts
and the latter structured prompts. Each group has three templates that only differ slightly in word-
ing. This grouping allows us to look at the variance due to slight changes in wording as well as
performance difference due to a completely different way of presenting the example. The full list
of prompts can be found in Table 4. As Perez et al. (2021) point out, for the few-shot evaluation to
be truly few-shot, we formulate these prompt templates before any evaluation is done and never use
more than k examples from the development set for a test example.

4 EXPERIMENTS

The set of large language model classes we evaluate can be grouped into four distinct categories:
(1) base models (namely RoBERTa (Liu et al., 2019), BERT (Devlin et al., 2018), GPT-2 (Radford
et al., 2019), EleutherAI (Wang & Komatsuzaki, 2021; Black et al., 2022), BLOOM (BigScience,
2022), OPT (Zhang et al., 2022), and GPT-3 (Brown et al., 2020)), (2) LLMs finetuned on dialogue
(BlenderBot (Ng et al., 2019)), (3) instructable LLMs finetuned on downstream tasks (T0 (Sanh
et al., 2022) and Flan-T5 (Chung et al., 2022)), and (4) instructable LLMs finetuned with an un-
known method (OpenAI’s API models). Each group contains one or more model classes for which
we evaluate a range of model sizes. A detailed categorization of the models and the attributes we
discuss in the results can be found in appendix D.4 We make use of the OpenAI and Cohere APIs as
well as the pretrained models in the transformers library (Wolf et al., 2020) and EleutherAI’s frame-
work to evaluate them (Gao et al., 2021). All code used for this paper can be found on GitHub5 and
the dataset is made publicly available on HuggingFace6. We separately treat zero-shot and few-shot
in-context evaluation, discussing performance for different model sizes of each model class and the
variance over the prompt templates. Additionally, we manually group the test examples into cat-
egories and analyse what type of examples are difficult for the models. We contrast the models’
performance with human performance. To this end, each test example gets annotated by five hu-
mans. We split the test set in four and assign each annotator a subset, giving us twenty annotators
in total. Details on the human experiment can be found in the Appendix E. Detailed performance
broken down by model and prompt template can be found in Appendix F.5.

4.1 ZERO-SHOT EVALUATION

The best performing model classes overall. Table 1 shows the best zero-shot accuracy each model
class achieved on the implicature task. The OpenAI models (“UNK FT”) perform significantly bet-
ter than any other. The best accuracy is achieved by InstructGPT-3-175B (i.e. text-davinci-001,
a 175 billion parameter model7) at 72% ± 2.8. This leaves a gap of 13.9% with human average
performance. Text-davinci-002 comes second with a zero-shot accuracy of 70.6% ± 2.3, but the
difference with InstructGPT-3-175B is not significant. All models in the other groups obtain per-
formance closer to random than to humans (between 53.4% by BlenderBot-2.7B and 63.3% by
Flan-T5-780M), showing a gap of at least 23% with the average human. We hypothesise that in-
struction finetuning as done for OpenAI’s API models is especially important for this task, but we
do not know the method and cannot say anything about it. In Appendix F.1 we reframe the task such
that models can contrast the coherent and incoherent prompt, but this did not improve performance.
Moreover, in Appendix F.3 we go into the stochasticity due to the fact that OpenAI’s and Cohere’s
models are behind an API. After running the zero-shot experiment ten times through each API we
conclude there is some stochasticity, but it is too small to impact the conclusions.

Sensitivity to prompt wording. As detailed in Table 4, each example in the test set is wrapped in
six different prompt templates. The standard deviation in Table 1 shows the estimated sensitivity to
different prompt wording. The standard deviation ranges from 0.3 for BlenderBot to 7.0 for T0-11B
when looking at all templates. This variation is often much smaller when separating the performance
over structured and natural prompts. Cohere-52B and BLOOM-7B1 are better at naturally worded

4Note that there are several important aspects unknown for models behind APIs, like Cohere and OpenAI.
5Supplied in supplementary material.
6When anonymity period is over link will appear here.
7For all OpenAI’s API models except text-davinci-002 the size is assumed to align with the GPT-3 paper.

There is reasonable evidence for this to be true https://blog.eleuther.ai/gpt3-model-sizes/
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Table 1: The zero-shot accuracy for the best performing model of each class. The largest model does
not always perform the best (i.e. for EleutherAI, BLOOM, OPT, GPT-3, BlenderBot, and Flan-T5).
Column “all templates” has the mean performance on all templates. The std is over prompt templates
for the models and over annotators for humans. The rightmost two columns hold a breakdown into
the mean performance on the templates of the groups “structured” and “natural” respectively.

Model All templates Structured Natural

Baselines and Toplines Random 50%
Human avg. 86.2% ± 2.3

Base models

BERT-110M 54.8% ± 1.6 56.1% ± 1.0 53.4% ± 0.2
RoBERTa-125M 55.6% ± 2.0 54.1% ± 0.9 57.1% ± 1.5
GPT2-354M 55.1% ± 2.6 53.5% ± 0.2 56.8% ± 2.8
EleutherAI-2.7B 59.2% ± 3.1 56.4% ± 1.9 62.0% ± 0.6
BLOOM-7B1 58.7% ± 4.0 55.1% ± 2.5 62.2% ± 1.0
OPT-30B 61.5% ± 1.9 62.5% ± 1.9 60.4% ± 1.2
Cohere-52B 58.5% ± 4.0 54.6% ± 1.0 62.4% ± 0.3
GPT-3-1.3B 57.7% ± 3.1 55.1% ± 1.3 60.4% ± 1.8

Dialogue FT BlenderBot-2.7B 53.4% ± 0.3 53.6% ± 0.3 53.3% ± 0.0

Multitask FT T0-11B 55.6% ± 7.0 62.2% ± 3.4 49.0% ± 0.7
Flan-T5-780M 63.3% ± 2.8 61.4% ± 2.7 65.2% ± 1.1

UNK FT InstructGPT-3-175B 72.3% ± 2.8 73.1% ± 3.7 71.5% ± 1.1
text-davinci-002-? 70.6% ± 2.3 72.7% ± 1.0 68.5% ± 0.8

Figure 2: Left: The zero-shot accuracy for different sizes of the model classes. The error bars show
standard deviation over prompt templates. OpenAI’s instructable models perform better than most
other models. For all models there is a significant gap between best accuracy and human accuracy.
Right: Relative to zero-shot performance increase due to in-context examples, shown for the largest
models of classes InstructGPT, Cohere, and OPT (note they are of a different size). The error bars
show std. dev. over prompt templates. Performance increases strictly up to k = 5, and only slightly
after. For OPT-175B there is a large variance over prompt templates.

prompts (template 2, 5, and 6 in Table 4), whereas OpenAI’s models, T0-11B, and OPT-30B are
better at structured prompts (template 1, 3, and 4 in Table 4). All in all, the sensitivity to prompt
wording does not seem to be a problem for this task; the best and worst evaluations for each model
do not change the fact that InstructGPT-3-175B perform best, but significantly worse than humans.

The effect of scaling. The left plot in Figure 2 shows the scaling laws we obtained from the model
classes for which we know the number of non-embedding parameters. We again observe that Ope-
nAI’s instructable models perform significantly better than almost all other models on this task.
Surprisingly, for many models the slope of the line is either near zero or decreasing. The only model
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Table 2: An example from the dataset for each type of implicature found in the test set. The rightmost
column shows the amount of that type we manually found in the test set.

Type Example Utterance Example Response Impl. #

Generalised You know all these people? Some. No. 47
Particularised Want to stay for a nightcap? I’ve gotta get up early. No. 88
World knowledge Did you leave fingerprints? I wore gloves. No. 23
Idiom Would he fire me? He’s all bark and no bite. No. 42
Rhetorical question Can you drive that far? Can fish swim? Yes. 11
Other - - - 387

Figure 3: Relative accuracy (w.r.t. mean accuracy) for each example type for Cohere and
InstructGPT-3. A point above the dotted line means the model gets that type right more often than
the average performance on the test set. Particularised (context-heavy) examples are significantly
more difficult than generalised (context-free) examples for both model classes. The type labels
World knowledge, Idiom, and Rhetorical question do not show a significantly meaningful pattern.

classes for which the largest model performs best are Cohere, T0, and InstructGPT-3. For all other
classes the largest model we tested obtains a worse performance than smaller versions. E.g. for
GPT-3 the 1.3 billion parameter model performs better than the 175 billion parameter model. For
Flan-T5 the smallest model of the class performs best.

Breaking down performance per example type. In Table 2 a taxonomy of the examples is shown,
representing types of examples that occur frequently in the dataset. We manually labeled 213 exam-
ples of the 600 examples in the test set according to this taxonomy. The remaining 387 examples
do not fall as clearly within a category and are grouped together as type other. Generalised im-
plicatures require little or no context to be understood. They are the simplest type of example in
the test set, and generally imply the same thing (“some” almost always implies “not all”). Partic-
ularised implicatures, by contrast, do require context to be resolved. For example, from Table 2,
we need the context that it is undesirable to stay up late drinking when one has to get up early (see
in Appendix B more generalised vs. particularised). The type world knowledge requires knowl-
edge of the physical world to be resolved. From the example in Table 2; we need to know that you
cannot leave fingerprints when wearing gloves to resolve this implicature. Idiom types contain an
idiom or a metaphor that one needs to know or understand to resolve the implicature, and finally
Rhetorical question types contain a question like “Is the Pope Catholic?”, often requiring factual
knowledge to be resolved. In Figure 3 the relative accuracy difference with the mean is shown for
model classes Cohere and InstructGPT-3 (an absolute plot can be found in Appendix F.4). Gener-
alised implicatures are relatively easier for almost all model sizes, and particularised implicatures
are more difficult for all model sizes. In fact, for the largest models this difference becomes more
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pronounced. Cohere-52B obtains a mean performance of 58.5% whereas for generalised examples
it is 73.9% and for particularised examples it is 51.5%, which is close to random performance. For
InstructGPT-3-175B the mean performance is 72.3%, whereas for generalised examples it is 79.3%
and for particularised examples it is 59.7%. Humans also do worse on the particularised examples
(83.2%), but the gap with the mean is smaller. Comparing the accuracy on these examples with
humans uncovers a larger gap of 23.5% for InstructGPT-3-175B and 31.7% for Cohere-52B. The
performance increase for larger models seems driven by the simple examples in the dataset that re-
quire no context to be resolved. We hypothesise that scaling up model size alone will not help with
more complex implicature resolution. Moreover, as mentioned in Section 1, even though particu-
larised implicatures do require context to be resolved, they are all implying a simple “yes” or “no”.
We conjecture that implicatures entailing several non-binary propositions are unlikely to be resolved
by current SOTA language models.

On prompting. There is a narrative around large language models that if they fail a task,
it might be that the prompt was not the right one (through works like Reynolds & Mc-
Donell (2021b); Kojima et al. (2022)). The idea is that they can be prompted to simulate
almost anything, if you set them up correctly. Because implicature resolution is a ubiqui-
tous result of learning language, we hold the view that a model should be able to do this
task if a prompt is given in coherent natural language. Nonetheless, in an additional effort
to find the “let’s think step-by-step” (Kojima et al., 2022) of zero-shot implicature resolution
we try three more prompt templates. We evaluate a base large language model and the two
best performing instructable models: GPT-3-175B, InstructGPT-3-175B, and text-davinci-002.

Table 3: Zero-shot accuracy over three
additional prompt templates for a base
LLM and two instructable models.

Model Templates
GPT-3-175b 59.2% ± 4.5
InstructGPT-3-175b 66.1% ± 3.2
text-davinci-002-? 67.7% ± 9.6

The prompts we use are taken from recent work that
proposes a dialogue agent trained with human feedback
(Glaese et al., 2022), but adapted to the task of implica-
ture resolution. The full prompts are presented in Table
5 and Table 3 shows the results. The new templates do
not improve performance for any of these models. The
variance over the prompt templates for text-davinci-002 is
very high, and the best prompt template of these three does
achieve a slightly higher accuracy than the others: 74.5%.
These results do not change the picture sketched so far. Of
course, we will never claim a black swan does not exist,
but given the breadth of our experiments we can conclude
that using current LLMs to interpret language in context is non-trivial and advancements are needed.

4.2 FEW-SHOT IN-CONTEXT EVALUATION

The effect of larger k. We prompt the models with in-context examples from the development set to
prime them for the task (detailed results in Appendix F.5). The highest accuracy we obtain is 80.6%
± 1.22, by text-davinci-002 for k = 30. This shrinks the gap with the average human to 5.6%
and with the best human to 9.2%. Note that humans were tested zero-shot. When looking at the
structured prompts, the accuracy is even slightly higher at 81.7% ± 0.9. The best performance due
to in-context prompting of the other model groups is obtained by OPT-13B with 67.4% ± 2.1. Note
that this is a worse accuracy than OpenAI’s instructable models achieve zero-shot. The right plot
in Figure 2 shows the relative performance increase due to prompting for the models InstructGPT-
3-175B, Cohere-52B, and OPT-175B. In-context prompting boosts performance up to k = 5, for
higher k the performance barely increases. For OPT-175B there is a large variance in the effect.
We stopped at k = 30 because the models’ context windows could not handle more examples.
Regardless, from Figure 2 it seems like larger k would not increase performance significantly. In
Appendix F.2 a small experiment is done to estimate the variance over prompt order for text-davinci-
002, where the variance is again low enough to conclude this will not impact the results.

The effect of in-context examples on sensitivity to prompt wording. Figure 4 shows the rel-
ative performance increase due to in-context prompting broken down per prompt template. For
InstructGPT-3-175B, most templates benefit similarly from more in-context examples, except for
template 1. Perhaps surprisingly, we see that this template already achieves a performance of 76.5%
at the zero-shot evaluation and does not improve much with few-shot prompting. For Cohere-52B
and OPT-175B we see a clear grouping between the structured prompts (dashed lines) and natural
prompts (dotted lines). Cohere struggles significantly more with the structured prompts than with
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Figure 4: Relative performance increase over 0-shot due to in-context prompting. Structured prompt
templates are dashed lines (1, 3, 4) and natural prompt templates dotted lines (2, 5, 6).

the natural prompts in the zero-shot evaluation, and few-shot prompting can mitigate that, lowering
the standard deviation over prompt templates to 1.89 at k = 30 from 4 at k = 0. OPT benefits from
prompting for the natural prompts, but not for the structured prompts.

Breaking down performance per example type. We observe again that the context-heavy exam-
ples are more difficult for the best performing model text-davinci-002 at k = 30. Recall that humans
obtain a performance of 83.2% on the particularised examples. The model text-davinci-002 obtains
a performance of 74.4% performance, leaving a gap of 8.8% with the average human.

5 CONCLUSION AND FUTURE WORK

Large language models have made remarkable progress on fluency and coherence in recent years.
We argue however that a central aspect of language understanding is still missing. To understand lan-
guage means to understand its pragmatics: its usage in context. We design a protocol that evaluates
LLMs on binary implicature resolution and establish a significant gap with human understanding.
The best performing models leave a gap of 13.9% with the average human in the zero-shot setting,
and of 5.6% when k = 30. All other models obtain performance closer to random than to human
performance. Model scaling plots and few-shot evaluations show increasing model size and prompt
size is unlikely to close the gap. Moreover, when isolating performance on a context-heavy subset
of the test set the gap becomes more pronounced. On context-heavy examples the gap with the
average human for the best model is 23.5% in the zero-shot setting, and 8.8% when k = 30. We
conjecture that a large part of the zero-shot performance increase for larger models is driven by
simple examples in the dataset that require no context to be resolved. We further conjecture that
the large difference in performance between OpenAI’s text-davinci models and all other LLMs can
be explained by the type of instruction finetuning they apply. However, without access to other in-
structable models (Thoppilan et al., 2022; Chowdhery et al., 2022) it is impossible to substantiate
this hypothesis. Additionally, to substantiate the hypothesis that model size will not close the gap
future work with larger model sizes is needed.

The type of implicatures we study is a simple type of conversational implicature that can be resolved
to a yes or a no. This leaves ample room for the design of benchmarks with complex implicatures
entailing more interesting propositions. Humans resolve much more complex propositions intu-
itively in conversation. For example, imagine Esther now asking “Can I use your stapler?” and Juan
responding “Here’s the key to my office.”. Juan is implicating that (1) Esther can use the stapler, (2)
the stapler is located in the office, and (3) the office is currently locked. Additionally, an interesting
question for future work is for which accuracy models will be indistinguishable from humans. This
could be answered with a type of Turing test in which a human must distinguish a LLM from another
human by prompting both with a sequence of implicatures. We believe substantial work needs to be
done to move beyond fluent text generation towards communication with autonomous agents and
we hope this work will allow researchers to measure progress towards this goal.
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6 REPRODUCIBILITY STATEMENT

We share all the data, human annotations, code used for the evaluations, and the raw results in the
supplementary material. Additionally, in Appendix F.3 we estimate the variance due to stochasticity
in the API’s of OpenAI and Cohere. Of course, if either OpenAI or Cohere decides to change the
models behind the API, the results might look different. We publish the exact date and time each
API was queried for the results in Appendix G. Finally, in Appendix F.2 we estimate the variance
over the prompt order of the in-context examples.

7 ETHICS STATEMENT

In this work, we conduct a study with human subjects (see Appendix E for details). To get matched
with participants, we used the platform Prolific. Prolific complies with ethical standards according
to UK law (e.g. complying with the GDPR). We compensated participants with a UK living wage at
15 GBP an hour, which is 6 GBP an hour more than Prolific recommends at 9 GBP per hour.
Implicature is an aspect of pragmatics, and pragmatic language impairments are universal in Autism
Spectrum Disorder (ASD) (American Psychiatric Association, 2013). Difficulties in understanding
scalar implicatures are claimed to be present in people with ASD (Volden, 2017), although the na-
ture of the relation has proven hard to establish and has recently been debated (Katsos et al., 2011;
Schaeken et al., 2018). For the purposes of this work, whether or not implicature understanding
relates to ASD is not important. We took the following steps to make sure no sensitive data is col-
lected or published. The human annotations we obtain are anonymous, related to a participant only
by their Prolific ID for the purposes of compensation. In publishing the human annotations, we will
not publish the Prolific ID of participants or anything else related to the participants. Additionally,
we did not collect or request any personal or demographic characteristics of the participants apart
from that they are all native English speakers.
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A OPENER EXAMPLE WITH INSTRUCTGPT

The opener quote by InstructGPT-3 was obtained through the OpenAI playground for text-davinci-
002. The model text-davinci-001 consistently generates better responses. The following prompt was
given:

User: “Have you seen my phone?”
InstructGPT:

With temperatures t = {0, 0.7, 1}. All three of text-davinci-002’s responses were similar to:

User: “Have you seen my phone?”
InstructGPT: “Yes, I have seen your phone.”

The model text-davinci-001 consistently generates:

User: “Have you seen my phone?”
InstructGPT: “No I have not seen your phone.”

We tried extending the prompt, which gave similar results for text-davinci-002.

The following is a request from a user. InstructGPT is a helpful and friendly
conversational agent that tries to assist its users.
User: “Have you seen my phone?”
InstructGPT: “Yes, I have seen your phone.”

The same approach makes text-davinci-001 a bit more helpful:

The following is a request from a user. InstructGPT is a helpful and friendly
conversational agent that tries to assist its users.
User: “Have you seen my phone?”
InstructGPT: “I haven’t seen your phone, what type of phone is it?”

This is just a small experiment to illustrate a point, which half of the time goes wrong, even when
prompted to be a helpful assistant. Of course, InstructGPT-3 cannot see, so the only “truthful”
response is no.

B BACKGROUND ON IMPLICATURE

The first influential consideration of implicature is Grice (1975). In his work, Grice continues the
trend of moving away from purely logical accounts of language started by Wittgenstein (1921) by
hypothesising implicatures arise in conversation when some mutually agreed upon maxims seem
to be violated. For example, if we agree on only making relevant contributions to conversation,
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Juan’s response in the introduction seemingly violates this maxim—after all, he starts talking about
work when Esther asks him about a party. However, because Juan agreed to be relevant he must
be implying that having to work means he cannot come to the party. Grice contrasts conversational
implicatures that arise through context with conventional implicatures. These are implicatures where
the conventional meaning of the word determines what is implicated. An example given by Grice is
the following sentence: “he is an Englishman; he is therefore brave.”. Grice notes that this sentence
does not literally state that an Englishman being brave is a direct consequence of him being English,
but it’s implied by the conventional meaning of the word ‘therefore’.

Since then, issues with the Gricean cooperative principle have been pointed out by many (Levinson,
1983; Sperber & Wilson, 1986; Davis, 1998; Lepore & Stone, 2014). The most influential alterna-
tive theory is relevancy theory by Sperber & Wilson (1986). They do away with the cooperative
principle and instead theorise implicatures arise because speakers try to produce utterances that are
both as relevant as possible and require the least effort to process. Another point of contention is the
incorporation of conventional implicatures on the pragmatics side. Bach (1999) argues that there is
no such thing as conventional implicatures, and they are simply instances of something else. Based
on a thorough treatment of what Grice calls conventional implicatures, Bach argues all examples
of it can be filed under other concepts within semantics, like utterance modifiers (called “utterance
modifiers” instead of “sentence modifiers” because they go against the semantic content of the rest
of the sentence). Potts (2005) also argues that to explain conventional implicatures we can stay on
semantic turf. Indeed, even Grice himself says conventional implicatures derive from the meaning
of the words, not from conversational context. However, Potts does not claim conventional implica-
tures do not exist, but instead argues they arise by a combination of lexical meaning and novel ways
of combining words—the latter being the well-known principle of compositionality, an important
part of semantics, not of pragmatics. Potts provides us with an illuminating demarcation between
conventional and conversational implicatures. Conventional implicatures are never negotiable by
context, whereas conversational implicatures are context-dependent and can always be cancelled
without causing incoherent discourse. Consider again the sentence “he is an Englishman; he is
therefore brave.” and the sentence “Eddie has three bicycles” (implicating that Eddie has exactly
three bicycles and not more). The former sentence can not be cancelled by new context without
contradiction, whereas for the latter, if we continue saying “In fact, Eddie has 10 bicycles, he is
a bicycle junkie”, we have cancelled the implicature. This demarcation clearly puts conventional
implicatures on the semantic side, and conversational implicatures on the pragmatic side. Potts goes
on by providing a formal theory for conventional implicatures.

In later work, Potts (2006) describes how pragmatic pressures interacting with context cause con-
versational implicature to arise. He shows how sensitive conversational implicatures are to small
changes in the context. Novel information about a speaker’s belief state might completely change
what is implied. There are many more models of implicature that aim to explain how humans under-
stand language in context. Most notably, Frank & Goodman (2012) formalise the view that speakers
produce utterances that are helpful and not longer than necessary with a Bayesian model called the
rational speech act (RSA). Many variants on the RSA framework have since been proposed. For
example, Goodman & Frank (2016) extend it to handle nonliteral uses of language, like irony, and
metaphor. In the context of computational models, prior work uses insights from pragmatics to
show that the use of certain words can make a language model produce biased completions (Patel
& Pavlick (2021), e.g. saying someone “claimed” something rather than “said” something), and
inform bias and sentiment classifiers (Greene & Resnik, 2009; Recasens et al., 2013).

In this work, we focus on conversational implicatures and not on conventional implicatures. All
conversational implicatures are negotiable by context, but the way they depend on context can be
different. Grice (1975) identifies generalised conversational implicatures and particularised conver-
sational implicatures. The former require little or no context to be resolved. For example, “some
athletes smoke” can imply “not all athletes smoke”, but might also imply “I do not know whether
all athletes smoke” when it is a response to the question “do you know whether all athletes smoke?”
(Davis, 2019). The latter only arise in certain contexts. For example, the response “I have an early
morning” to the question “do you want to stay for a drink?”.
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C DETAILED PROMPT TEMPLATES

Table 4 contains the full prompt templates we used for the main evaluation and Table 5 contains the
extra prompt templates.

Table 4: The six templates we wrap the test examples in to present to the models. Template 1, 3, and
4 are of the type structured, and 2, 5, and 6 of the type natural. Within the type of prompt template
they only differ slightly in wording.

# Prompt template

1

Does the following response to the question imply yes or no?

question: <utterance>
response: <response>
implicature: <implicature>

2
Finish the following text:

Esther asked "<utterance>" and Juan responded "<response>", which means <implicature>

3

Is the implied meaning of the following response yes or no:

question: <utterance>
response: <response>
meaning: <implicature>

4

What is the intent of the following response, yes or no?

question: <utterance>
response: <response>
intent: <implicature>

5
Finish the following text:

Karen asked "<utterance>" and William responded "<response>", which means <implicature>

6
Finish the following text:

Bob asked "<utterance>" and Alice responded "<response>", which means <implicature>

D MODEL CATEGORIZATION

Table 6 contains details on the model classes that are a part of each group of models we evaluate,
along with their model sizes.

E HUMAN EVALUATION

The participants for the human evaluation in this paper were recruited using Prolific (www.
prolific.co). The setup of the experiment is as follows. We divide the test set of 600 ex-
amples into four non-overlapping subsets of 150 examples. Each set of 150 examples was given to
five unique annotators. This means each example in the test set is labeled five times by different
people, and we have in total twenty annotators for the whole test set (five different ones for each
of the four subsets). The only constraint for the annotators is that they are native English speakers.
In Figure 5 the screen shown to potential participants on Prolific is shown. Participants are paid
15 pounds an hour, which was the living wage at the time of the experiment and more than the 12
dollars an hour Prolific recommends.

The 150 test examples are wrapped in prompt template 2 (see Table 4) and presented in a Google
form. The reason to wrap all examples in prompt template 2, as opposed to a mixture of all six
templates is that although models have been shown to be very sensitive to prompt wording, humans
are less likely to perform differently for different prompt templates. All templates are coherent nat-
ural language that any native English speaker will understand. That said, to confirm this hypothesis
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Table 5: The three additional templates we wrap the test examples in to present to the models,
adapted from (Glaese et al., 2022).

# Prompt template

7

The following text shows an interaction between two humans called Esther and Juan.
In the interaction, Esther will ask Juan a question, and Juan will give an answer that contains
an implicature.
An implicature is an utterance that means something other than the literal meaning of the words.
The implicature of Juan’s response is yes or no.
You, the AI assistant, are asked to finish the text with yes or no.
The task begins:

Esther asked "<utterance>" and Juan responded "<response>", which means <implicature>

8

The following text shows an interaction between two humans called Esther and Juan.
In the interaction, Esther will ask Juan a question, and Juan will give an answer that has a meaning
besides the literal meaning of the words.
That meaning is either yes or no.
You, the AI assistant, are asked to finish the text with the correct meaning, either yes or no.
The task begins:

Esther asked "<utterance>" and Juan responded "<response>", which means <implicature>

9

The following text shows an interaction between two humans called Esther and Juan.
In the interaction, Esther will ask Juan a question, and Juan will give an answer that has a meaning
besides the literal meaning of the words.
That meaning is either yes or no.
You, a highly intelligent and knowledgeable AI assistant, are asked to finish the text with the
correct meaning, either yes or no.
The task begins:

Esther asked "<utterance>" and Juan responded "<response>", which means <implicature>

Table 6: Model categorization for each of the models. UNK stands for unknown, FT for finetuning,
MT for multitask, and DL for dialogue.

Group Model class Model IDs Model size Instruct

Base

BERT base uncased 110M No
RoBERTa base, large 125M, 355M No
GPT-2 GPT-2 medium, large, xl 354M, 774M, 1.6B No
EleutherAI GPT-J, GPT-NeoX 6B, 20B No
BLOOM - 560M, 1B1, 3B, 7B1, 176B No
OPT - 125M, 350M, 1.3B, 13B, 30B, 66B, 175B No
Cohere small, medium, large, XL 409.3M, 6.067B, 13.12B, 52.4B No
GPT-3 ada, babbage, curie, davinci Est. 350M, 1.3B, 6.7B, 175B No

DL FT BlenderBot - 90M, 2.7B, 9.4B No

MT FT T0 - 3B, 11B Yes
Flan-T5 - 780M, 3B, 11B Yes

UNK FT InstructGPT-3 ada, babbage, curie, davinci-1 Est. 350M, 1.3B, 6.7B, 175B Yes
text-davinci-002 - Unknown Yes

future work should investigate the effect of different wordings on implicature resolution by humans.
The participants are asked to choose the correct continuation, yes or no (see Figure 6a). As recom-
mended by Prolific, we subject the participants to an attention test (see Figure 6b). At three random
places in the form, we add a question that does not contain an implicature and obviously maps to
“yes”. In this way, if the participants fails at least two of these questions, we can conclude they were
not paying attention and remove their answers from the result. In practice, this happened once and
we decided to pay the participant regardless, but discard their results, which were close to random.
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Figure 5: A screenshot of how the experiment is presented to potential annotators on Prolific (www.
prolific.co).

(a) The start of the Google form participants are
asked to fill out for the human study.

(b) Part of the Google form the participants are
asked to fill out. The second question in this im-
age is part of the attention test. Juan’s response
does not contain an implicature but simply gives
away the correct answer.

Figure 6: Screenshots of the Google form participants fill out as part of the implicature study.

Table 7 shows the performance of each annotator on the subset they annotated. The average human
performance across subsets and annotators is 86.2% ± 2.3, the best performance is 89.8% ± 2.2, and
the worst performance is 83.5% ± 1.5. The column “IAA” shows the average Cohen’s Kappa coeffi-
cient which is the pairwise inter-annotator agreement for each annotator per subset. All agreements
are substantial according to the interpretation guidelines for Cohen’s Kappa (between 0.61–0.80).
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Table 7: The performance of the human annotators on the subsets of the test set. Subset 1 through 4
are non-overlapping and cover the whole test set. Annotator X for subset Y might be a different hu-
man than annotator X for subset Z. IAA is the average pairwise inter-annotator agreement (Cohen’s
kappa coefficient) between annotators per subset.

Annotator 1 2 3 4 5 Mean Best Worst IAA
Subset 1 86.0% 92.0% 90.7% 90.6% 86.0% 89.1% 92.0% 86.0% 0.73
Subset 2 84.7% 83.3% 87.3% 86.0% 86.0% 85.5% 87.3% 83.3% 0.64
Subset 3 84.0% 85.3% 88.0% 86.0% 82.7% 85.2% 88.0% 82.7% 0.78
Subset 4 85.3% 82.7% 84.0% 82.0% 92.0% 85.2% 92.0% 82.0% 0.71
Total - - - - - 86.2% 89.8% 83.5% 0.72
Std - - - - - 2.3 2.2 1.5 0.1

F ADDITIONAL RESULTS

F.1 CONTRASTIVE EXPERIMENT

In this section we reframe the implicature resolution task to a contrastive one, allowing the model to
contrast the coherent to the incoherent sentence in a single prompt.

Contrastive task. In the ranking task the model is required to assign higher likelihood to the coher-
ent utterance than the incoherent one (pθ (x) > pθ (x̂)). In assigning a likelihood to x, the model
has no knowledge of x̂, and vice-versa. We hypothesize that the task might become easier if we
reformulate it as a contrastive task. Consider the following prompt p.

Which of the following sentences is coherent:

A: Esther asked “Can you come to my party on Friday?” and Juan responded “I
have to work”, which means no.

B: Esther asked “Can you come to my party on Friday?” and Juan responded “I
have to work”, which means yes.

Answer:

We can now evaluate the models’ ability to understand which is the coherent sentence by evaluating
whether it assigns pθ (A | p) > pθ (B | p). Note that this can again be framed in a ranking task
of assigning a higher likelihood to the coherent prompt. If we finish the above prompt p by adding
“A” to make a coherent prompt x and “B” to make an incoherent prompt x̂ we can again formulate
the task by pθ (x) > pθ (x̂). The difference is that within both the coherent and the incoherent
prompt, the model can contrast the coherent and incoherent utterance to each other. We randomise
the assignment of A and B to the utterances.

We do a small experiment with the contrastive task with the best performing model overall, OpenAI’s
text-davinci-002, for k = {0, 1, 5}. We use two prompt templates and for each template try three
different multiple choice answers: A and B like above, one and two, or the full text of the answer.
For the last option the coherent prompt x would look as follows:

Which of the following sentences is coherent:

A: Esther asked “Can you come to my party on Friday?” and Juan responded “I
have to work”, which means no.

B: Esther asked “Can you come to my party on Friday?” and Juan responded “I
have to work”, which means yes.

Answer: Esther asked “Can you come to my party on Friday?” and Juan re-
sponded “I have to work”, which means no.
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Table 8: Performance on the implicature task framed contrastively by OpenAI’s text-davinci-002.
The mean and standard deviation are reported over two different prompt templates (template 1 and
2).

k Non-contrastive Rank one, two Rank A, B Rank full text
0 71.3% ± 1.75 53.9% ± 0.9 59.3% ± 1.3 48.9% ± 0.6
1 76.1% ± 2.6 59.4% ± 1.6 63.2% ± 2.0 66.9% ± 0.9
5 80.5% ± 2.3 61.4% ± 1.3 64.0% ± 1.3 67.9% ± 2.1

In Table 8, perhaps surprisingly, we can see that the contrastive task is much more difficult than the
original ranking task. For k = 0, the result is random except for the prompt where the multiple
choice options are A and B. For k = {1, 5} the full text ranking does best, but is still significantly
worse than the original ranking setup. Because of these disappointing results, we did not evaluate
the other models contrastively. Future work must establish whether the contrastive setup is worse
across all model classes and sizes.

F.2 VARIANCE OVER PROMPT ORDERING

As mentioned in Section 3, models are sensitive to the ordering of the k examples in the prompt.
Instead of marginalising over this random factor by evaluating all possible prompt orderings, we
randomly sampled an ordered set of examples from the development set for each test example.
Throughout experiments, we kept this randomly sampled order the same, meaning if you re-run the
5-shot evaluation you get exactly the same orderings. The reason for this is that we want evaluate
each model equally. In this section we ask how the performance chances for the best performing
model if we select another random order. We do this for the 5-shot evaluation, because the results
show that adding more in-context examples barely helps performance.

Table 9: Variance over prompt ordering for 5-shot evaluation per prompt template (P.T.) for text-
davinci-002

Seed P. T. 1 P. T. 2 P. T. 3 P. T. 4 P. T. 5 P. T. 6 Mean
0 80.17 78.17 82.83 80.50 79.17 76.50 79.56
1 80.17 76.17 81.33 81.83 76.00 76.33 78.64
2 79.50 78.17 81.17 80.17 78.17 76.50 78.94
mean 79.94 77.50 81.78 80.83 77.78 76.44 -
std 0.31 0.94 0.75 0.72 1.32 0.08 -

Table 9 shows the results of this experiment. Some prompt templates seem to be more sensitive to
prompt example ordering than others, but for none of them the variance is high enough to change
any conclusions.

F.3 VARIANCE OVER API RUNS

In this section we comment on the reproducibility of research done using APIs. Two of the model
classes we evaluate have their models behind an API, meaning we do not have control over what
happens to the prompt before the model processes it. We run the main evaluation, which is zero-shot,
ten more times for the largest models of OpenAI and Cohere, text-davinci-002 and Cohere-52B. The
results from this experiment are shown in Table 10 and 11. From this we can conclude that there is
some stochasticity in the API that we have no control over, a bit more for OpenAI than for Cohere,
but again we can be relatively confident that the conclusion will not be different because of it. The
results from this work are therefore reproducible with access to the same models behind the API
now. Unfortunately, when OpenAI or Cohere changes the models behind the API, these results are
not exactly reproducible anymore.

For completeness, we add the timestamp that each result was obtained below (Appendix G).
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Table 10: Results per prompt template (P.T.) for 10 different runs from text-davinci-002 for 0-shot
evaluation.
Each evaluation has exactly the same text, so the variance in performance is due to API stochasticity.

API-run P. T. 1 P. T. 2 P. T. 3 P. T. 4 P. T. 5 P. T. 6 Mean
0 73.50 68.83 73.00 71.17 67.17 68.83 70.42
1 73.83 69.00 72.83 71.50 67.67 68.33 70.53
2 73.67 68.67 73.17 71.33 67.50 68.50 70.47
3 73.83 68.17 73.17 71.00 67.67 68.17 70.33
4 73.67 68.83 73.33 71.17 67.00 68.33 70.39
5 73.83 68.50 73.00 71.00 67.00 68.17 70.25
6 73.67 69.00 73.00 71.17 67.33 68.50 70.44
7 73.67 68.67 72.83 71.33 67.50 68.67 70.44
8 73.83 69.17 72.83 71.17 67.33 68.00 70.39
9 73.50 68.50 72.83 71.00 67.50 68.67 70.33
10 73.67 69.50 73.00 71.33 67.50 68.50 70.58
mean 73.70 68.80 73.00 71.20 67.38 68.42 -
std 0.12 0.35 0.16 0.16 0.23 0.24 -

Table 11: Results per prompt template (P.T.) for 10 different runs from Cohere-52B for 0-shot
evaluation.
Each evaluation has exactly the same text, so the variance in performance is due to API stochasticity.

API-run P. T. 1 P. T. 2 P. T. 3 P. T. 4 P. T. 5 P. T. 6 Mean
0 56.00 62.67 54.33 54.00 62.17 62.17 58.56
1 56.00 62.83 54.33 54.00 62.33 62.33 58.64
2 56.00 62.83 54.33 54.00 62.17 62.33 58.61
3 56.00 62.83 54.33 54.00 62.17 62.33 58.61
4 55.83 62.67 54.33 54.00 62.17 62.33 58.56
5 56.00 62.83 54.33 54.00 62.17 62.17 58.58
6 56.00 62.83 54.33 54.00 62.17 62.17 58.58
7 56.00 62.67 54.33 54.00 62.33 62.17 58.58
8 56.00 62.83 54.33 54.00 62.00 62.33 58.58
9 56.00 62.83 54.00 53.83 62.17 62.17 58.50
mean 55.98 62.78 54.30 53.98 62.18 62.25 -
std 0.05 0.08 0.10 0.05 0.09 0.08 -

F.4 ABSOLUTE TYPE LABEL ANALYSIS

Figure 7 shows the absolute accuracy for the type labels (from Section 4.1) that show a significant
pattern; particularised and generalised. We observe increasing performance for generalised implica-
tures with scale, and decreasing or random performance for particularised implicatures.

F.5 DETAILED RESULTS PER MODEL

This section contains the results used for the zero-shot and few-shot evaluation in the main text in
Section 4, broken down per prompt template. See Table 12 until Table 58.

G TIMESTAMPS API CALLS

For reproducibility purposes, Table 59 and 60 contain the dates and times the APIs from OpenAI
and Cohere were queries for the results.
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Figure 7: The absolute accuracy for each example type for model classes Cohere and InstructGPT-3.
Particularised (context-heavy) examples are significantly more difficult than generalised (context-
free) examples for both model classes. The type labels World knowledge, Idiom, and Rhetorical
question do not show a significantly meaningful pattern and are left out of this plot. The error bars
are standard deviation over prompt templates.

Table 12: Accuracy per prompt template for BERT-cased.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 47.3 48.8 50.5 49.8 46.7 46.7
2 46.8 50.3 45.5 50.2 46.7 46.5
3 57.3 51.5 50.0 50.0 47.0 46.7
4 48.8 51.0 49.5 48.5 46.8 46.7
5 46.7 50.3 44.5 47.7 46.7 46.7
6 46.7 50.3 45.8 47.8 46.8 46.7

Mean 48.9 50.4 47.6 49.0 46.8 46.7
– std 3.81 0.832 2.42 1.04 0.107 0.0745

Structured 51.1 50.4 50.0 49.4 46.8 46.7
– std 4.4 1.17 0.408 0.665 0.125 7.11e-15

Natural 46.7 50.3 45.3 48.6 46.7 46.6
– std 0.0471 7.11e-15 0.556 1.16 0.0471 0.0943

Table 13: Accuracy per prompt template for RoBERTa-base.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 54.0 55.8 58.0 58.7 58.3 57.8
2 56.5 50.5 52.0 55.8 56.0 54.2
3 53.0 56.8 56.8 61.3 59.5 58.8
4 55.2 56.0 58.7 59.8 56.8 57.2
5 55.7 50.3 52.3 54.8 55.5 53.0
6 59.2 50.3 54.2 55.8 55.7 55.3

Mean 55.6 53.3 55.3 57.7 57.0 56.1
– std 1.97 2.93 2.65 2.38 1.47 2.05

Structured 54.1 56.2 57.8 59.9 58.2 57.9
– std 0.899 0.432 0.785 1.07 1.1 0.66

Natural 57.1 50.4 52.8 55.5 55.7 54.2
– std 1.5 0.0943 0.974 0.471 0.205 0.939
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Table 14: Accuracy per prompt template for RoBERTa-large.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 57.7 50.2 62.0 64.7 64.7 60.5
2 46.7 53.3 58.5 64.2 61.2 55.7
3 60.8 54.8 64.5 62.8 61.8 59.5
4 66.2 50.3 64.0 59.0 57.0 58.2
5 46.7 53.3 58.8 63.5 60.5 56.5
6 46.7 55.5 59.3 60.0 60.8 52.3

Mean 54.1 52.9 61.2 62.4 61.0 57.1
– std 7.84 2.03 2.45 2.13 2.26 2.7

Structured 61.6 51.8 63.5 62.2 61.2 59.4
– std 3.51 2.15 1.08 2.37 3.18 0.942

Natural 46.7 54.0 58.9 62.6 60.8 54.8
– std 7.11e-15 1.04 0.33 1.84 0.287 1.82

Table 15: Accuracy per prompt template for GPT-2-medium.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.2 53.7 54.0 53.8 53.8 55.0
2 52.8 53.7 55.8 57.2 60.3 57.2
3 53.7 54.0 52.5 56.5 55.8 55.3
4 53.5 55.7 53.3 55.8 55.5 54.3
5 59.2 54.3 56.7 57.7 60.7 58.8
6 58.3 54.8 55.7 57.7 61.7 57.8

Mean 55.1 54.4 54.7 56.4 58.0 56.4
– std 2.6 0.706 1.5 1.36 3.03 1.63

Structured 53.5 54.5 53.3 55.4 55.0 54.9
– std 0.205 0.881 0.613 1.14 0.881 0.419

Natural 56.8 54.3 56.1 57.5 60.9 57.9
– std 2.83 0.45 0.45 0.236 0.589 0.66

Table 16: Accuracy per prompt template for GPT-2-large.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.3 53.3 54.5 53.5 55.3 56.2
2 47.5 56.7 57.5 57.8 60.8 61.0
3 55.0 53.8 55.7 54.0 54.8 56.0
4 54.0 53.7 56.2 53.5 54.8 56.7
5 47.2 54.5 56.7 58.8 61.2 60.8
6 47.0 53.3 57.2 59.5 60.3 60.8

Mean 50.7 54.2 56.3 56.2 57.9 58.6
– std 3.47 1.18 1.0 2.57 2.92 2.29

Structured 54.1 53.6 55.5 53.7 55.0 56.3
– std 0.698 0.216 0.713 0.236 0.236 0.294

Natural 47.2 54.8 57.1 58.7 60.8 60.9
– std 0.205 1.41 0.33 0.698 0.368 0.0943

28



Under review as a conference paper at ICLR 2023

Table 17: Accuracy per prompt template for GPT-2-xl.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.2 53.3 57.0 54.5 54.7 56.2
2 48.7 61.3 57.3 63.7 62.0 60.5
3 55.0 55.2 59.5 59.0 58.0 60.7
4 54.2 54.3 56.0 54.5 54.3 56.3
5 48.0 59.7 58.3 60.8 62.7 61.7
6 48.5 60.8 58.0 61.8 61.5 61.5

Mean 51.3 57.4 57.7 59.1 58.9 59.5
– std 2.92 3.25 1.1 3.5 3.43 2.32

Structured 54.1 54.3 57.5 56.0 55.7 57.7
– std 0.736 0.776 1.47 2.12 1.66 2.1

Natural 48.4 60.6 57.9 62.1 62.1 61.2
– std 0.294 0.668 0.419 1.2 0.492 0.525

Table 18: Accuracy per prompt template for EleutherAI-125M.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 53.3 53.7 52.7 56.2 56.2 54.0
2 52.2 50.0 47.5 53.5 55.7 53.3
3 53.3 53.8 51.2 55.8 54.8 52.8
4 53.7 52.5 51.2 53.8 55.8 53.2
5 50.7 50.2 47.3 53.8 56.2 53.8
6 48.2 49.8 47.5 53.2 57.5 53.5

Mean 51.9 51.7 49.6 54.4 56.0 53.4
– std 1.93 1.72 2.19 1.17 0.806 0.394

Structured 53.4 53.3 51.7 55.3 55.6 53.3
– std 0.189 0.591 0.707 1.05 0.589 0.499

Natural 50.4 50.0 47.4 53.5 56.5 53.5
– std 1.65 0.163 0.0943 0.245 0.759 0.205

Table 19: Accuracy per prompt template for EleutherAI-1.3B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 54.3 53.7 54.8 57.5 57.2 56.2
2 51.8 56.8 57.5 59.0 55.8 54.7
3 58.0 55.5 59.5 58.0 61.5 57.5
4 53.2 57.5 56.8 55.2 56.5 54.7
5 49.7 55.2 57.5 58.7 57.2 56.7
6 51.8 55.7 56.5 58.7 56.5 56.2

Mean 53.1 55.7 57.1 57.8 57.4 56.0
– std 2.59 1.21 1.4 1.29 1.87 1.02

Structured 55.2 55.6 57.0 56.9 58.4 56.1
– std 2.05 1.55 1.93 1.22 2.21 1.14

Natural 51.1 55.9 57.2 58.8 56.5 55.9
– std 0.99 0.668 0.471 0.141 0.572 0.85
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Table 20: Accuracy per prompt template for EleutherAI-2.7B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 54.0 52.8 58.2 57.8 59.5 56.7
2 62.0 56.2 57.7 55.8 57.8 57.7
3 58.7 60.0 58.8 59.2 57.8 57.8
4 56.5 54.2 57.5 56.2 57.5 55.5
5 62.7 54.7 58.7 55.7 57.3 57.8
6 61.2 55.2 57.3 57.5 58.5 58.7

Mean 59.2 55.5 58.0 57.0 58.1 57.4
– std 3.13 2.25 0.576 1.26 0.741 1.02

Structured 56.4 55.7 58.2 57.7 58.3 56.7
– std 1.92 3.12 0.531 1.23 0.881 0.939

Natural 62.0 55.4 57.9 56.3 57.9 58.1
– std 0.613 0.624 0.589 0.826 0.492 0.45

Table 21: Accuracy per prompt template for EleutherAI-6B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 57.5 58.8 52.7 53.0 52.5 51.3
2 57.7 51.8 63.2 62.7 64.3 65.3
3 56.2 58.2 57.2 53.0 54.7 54.5
4 52.8 55.5 53.3 52.2 54.0 53.8
5 56.8 52.7 62.7 63.2 65.2 64.2
6 57.2 52.8 61.3 61.8 62.2 63.3

Mean 56.4 55.0 58.4 57.6 58.8 58.7
– std 1.67 2.75 4.28 4.94 5.2 5.65

Structured 55.5 57.5 54.4 52.7 53.7 53.2
– std 1.98 1.44 1.99 0.377 0.918 1.37

Natural 57.2 52.4 62.4 62.6 63.9 64.3
– std 0.368 0.45 0.804 0.579 1.26 0.818

Table 22: Accuracy per prompt template for EleutherAI-20B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 53.0 58.0 55.3 54.3 52.8 54.3
2 61.3 54.2 65.8 63.3 65.0 60.3
3 54.3 58.3 58.5 56.7 55.3 52.0
4 56.2 58.2 55.3 57.2 57.0 58.7
5 59.0 53.0 66.7 62.8 65.0 59.2
6 61.3 53.5 65.2 61.7 64.0 59.7

Mean 57.5 55.9 61.1 59.3 59.9 57.4
– std 3.25 2.33 4.9 3.42 4.98 3.09

Structured 54.5 58.2 56.4 56.1 55.0 55.0
– std 1.31 0.125 1.51 1.27 1.72 2.78

Natural 60.5 53.6 65.9 62.6 64.7 59.7
– std 1.08 0.492 0.616 0.668 0.471 0.45
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Table 23: Accuracy per prompt template for BLOOM-560M.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 54.3 54.2 53.5 53.8 53.8 53.5
2 46.7 56.3 54.0 54.8 56.0 55.3
3 58.8 53.3 53.8 53.3 54.5 54.0
4 56.3 54.8 53.5 54.8 52.7 56.7
5 46.7 54.3 53.7 55.3 56.3 55.5
6 46.7 56.0 54.0 55.2 56.7 55.0

Mean 51.6 54.8 53.8 54.5 55.0 55.0
– std 5.05 1.04 0.206 0.734 1.45 1.04

Structured 56.5 54.1 53.6 54.0 53.7 54.7
– std 1.84 0.616 0.141 0.624 0.741 1.41

Natural 46.7 55.5 53.9 55.1 56.3 55.3
– std 7.11e-15 0.881 0.141 0.216 0.287 0.205

Table 24: Accuracy per prompt template for BLOOM-1B1.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 53.3 53.5 56.2 54.2 55.2 54.5
2 49.0 51.5 58.2 59.8 58.8 60.8
3 57.2 54.2 55.8 54.0 55.5 50.8
4 53.3 54.0 54.2 53.3 55.7 55.8
5 47.3 51.2 59.8 61.3 60.2 60.0
6 46.8 51.0 60.2 61.2 60.2 59.3

Mean 51.2 52.6 57.4 57.3 57.6 56.9
– std 3.75 1.36 2.18 3.51 2.19 3.53

Structured 54.6 53.9 55.4 53.8 55.5 53.7
– std 1.84 0.294 0.864 0.386 0.205 2.12

Natural 47.7 51.2 59.4 60.8 59.7 60.0
– std 0.942 0.205 0.864 0.685 0.66 0.613

Table 25: Accuracy per prompt template for BLOOM-1B7.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 53.5 54.7 53.8 54.0 55.7 56.5
2 57.7 52.2 56.3 55.5 55.8 52.0
3 54.7 53.2 53.8 51.0 54.5 54.0
4 54.5 53.8 54.5 51.2 55.5 50.3
5 50.0 51.2 54.3 53.2 54.7 50.0
6 51.3 51.8 53.8 54.0 54.7 50.8

Mean 53.6 52.8 54.4 53.1 55.1 52.3
– std 2.49 1.2 0.886 1.6 0.528 2.31

Structured 54.2 53.9 54.0 52.1 55.2 53.6
– std 0.525 0.616 0.33 1.37 0.525 2.55

Natural 53.0 51.7 54.8 54.2 55.1 50.9
– std 3.37 0.411 1.08 0.953 0.519 0.822
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Table 26: Accuracy per prompt template for BLOOM-3B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 53.0 54.0 56.8 59.5 60.0 58.2
2 62.5 58.0 58.2 59.7 57.5 60.0
3 53.5 54.0 57.2 58.7 59.2 58.2
4 54.8 55.3 55.7 59.0 58.2 55.8
5 58.5 57.5 58.0 59.7 58.8 60.2
6 59.0 56.8 57.3 59.8 58.5 59.5

Mean 56.9 55.9 57.2 59.4 58.7 58.6
– std 3.4 1.6 0.823 0.408 0.783 1.5

Structured 53.8 54.4 56.6 59.1 59.1 57.4
– std 0.759 0.613 0.634 0.33 0.736 1.13

Natural 60.0 57.4 57.8 59.7 58.3 59.9
– std 1.78 0.492 0.386 0.0471 0.556 0.294

Table 27: Accuracy per prompt template for BLOOM-7B1.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 53.2 55.2 55.2 52.0 53.0 52.7
2 61.2 59.0 53.7 58.3 58.8 61.7
3 58.7 53.3 53.0 53.3 53.0 52.8
4 53.5 53.5 55.2 52.8 54.3 53.5
5 62.0 61.0 55.3 60.3 58.5 62.5
6 63.5 60.0 54.7 59.8 56.3 62.5

Mean 58.7 57.0 54.5 56.1 55.7 57.6
– std 4.03 3.11 0.871 3.46 2.39 4.63

Structured 55.1 54.0 54.5 52.7 53.4 53.0
– std 2.52 0.852 1.04 0.535 0.613 0.356

Natural 62.2 60.0 54.6 59.5 57.9 62.2
– std 0.953 0.816 0.66 0.85 1.11 0.377

Table 28: Accuracy per prompt template for BLOOM-176B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.8 58.8 58.5 57.7 55.7 56.7
2 55.8 60.8 68.0 65.7 64.2 62.7
3 53.5 66.7 69.3 71.8 71.7 69.8
4 54.3 59.8 64.8 62.2 60.7 61.3
5 52.3 61.3 66.2 61.8 58.8 57.5
6 55.5 59.2 65.7 61.7 60.3 58.3

Mean 54.2 61.1 65.4 63.5 61.9 61.1
– std 1.19 2.65 3.43 4.38 5.06 4.44

Structured 53.9 61.8 64.2 63.9 62.7 62.6
– std 0.33 3.51 4.43 5.88 6.68 5.43

Natural 54.5 60.4 66.6 63.1 61.1 59.5
– std 1.58 0.896 0.988 1.86 2.28 2.29
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Table 29: Accuracy per prompt template for OPT-125M.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 53.3 55.2 54.0 55.2 54.2 55.0
2 49.5 50.5 47.5 52.7 50.5 48.2
3 53.5 55.5 53.0 55.0 53.7 56.0
4 53.3 54.5 54.2 53.8 54.3 53.8
5 48.5 50.5 46.3 50.7 49.5 48.0
6 47.3 50.2 46.3 50.0 49.0 48.0

Mean 50.9 52.7 50.2 52.9 51.9 51.5
– std 2.55 2.35 3.56 1.99 2.25 3.49

Structured 53.4 55.1 53.7 54.7 54.1 54.9
– std 0.0943 0.419 0.525 0.618 0.262 0.899

Natural 48.4 50.4 46.7 51.1 49.7 48.1
– std 0.899 0.141 0.566 1.14 0.624 0.0943

Table 30: Accuracy per prompt template for OPT-350M.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 53.3 53.8 51.5 56.5 54.2 54.7
2 60.5 50.3 50.8 56.5 55.2 54.0
3 53.3 56.3 52.8 58.7 55.0 56.2
4 53.7 56.3 52.0 55.2 55.2 56.3
5 62.3 50.3 50.8 57.0 56.5 53.5
6 59.7 50.3 50.8 56.5 56.5 53.0

Mean 57.1 52.9 51.4 56.7 55.4 54.6
– std 3.78 2.71 0.752 1.04 0.826 1.26

Structured 53.4 55.5 52.1 56.8 54.8 55.7
– std 0.189 1.18 0.535 1.44 0.432 0.732

Natural 60.8 50.3 50.8 56.7 56.1 53.5
– std 1.09 7.11e-15 7.11e-15 0.236 0.613 0.408

Table 31: Accuracy per prompt template for OPT-1.3B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 57.8 56.2 55.5 60.2 59.8 62.7
2 62.2 57.0 61.2 61.8 64.8 67.2
3 60.8 59.5 57.2 59.7 60.3 58.2
4 54.8 55.8 59.2 56.5 57.0 54.7
5 62.5 56.2 59.3 61.7 65.0 64.5
6 64.0 53.2 55.8 59.7 62.7 62.8

Mean 60.4 56.3 58.0 59.9 61.6 61.7
– std 3.13 1.85 2.05 1.76 2.86 4.11

Structured 57.8 57.2 57.3 58.8 59.0 58.5
– std 2.45 1.66 1.51 1.64 1.45 3.27

Natural 62.9 55.5 58.8 61.1 64.2 64.8
– std 0.787 1.64 2.24 0.967 1.04 1.81
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Table 32: Accuracy per prompt template for OPT-2.7B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 54.7 53.0 53.2 53.8 54.3 53.7
2 64.0 60.3 60.2 60.3 61.3 64.5
3 55.8 53.3 55.2 55.8 57.0 56.5
4 54.5 53.3 54.8 55.5 56.8 57.0
5 64.8 60.7 60.7 62.2 64.3 64.3
6 63.5 60.3 60.0 60.5 63.3 63.2

Mean 59.6 56.8 57.4 58.0 59.5 59.9
– std 4.58 3.62 3.02 3.11 3.68 4.28

Structured 55.0 53.2 54.4 55.0 56.0 55.7
– std 0.572 0.141 0.864 0.881 1.23 1.45

Natural 64.1 60.4 60.3 61.0 63.0 64.0
– std 0.535 0.189 0.294 0.852 1.25 0.572

Table 33: Accuracy per prompt template for OPT-6.7B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 55.7 54.3 60.8 61.2 61.2 58.5
2 64.2 68.0 66.8 65.7 66.3 66.3
3 54.2 53.5 59.5 61.2 63.3 60.5
4 58.8 56.3 61.8 62.2 63.5 63.2
5 64.2 65.2 66.0 65.2 67.7 67.5
6 65.0 63.2 64.8 64.3 66.3 65.7

Mean 60.4 60.1 63.3 63.3 64.7 63.6
– std 4.34 5.62 2.73 1.84 2.23 3.23

Structured 56.2 54.7 60.7 61.5 62.7 60.7
– std 1.92 1.18 0.942 0.471 1.04 1.93

Natural 64.5 65.5 65.9 65.1 66.8 66.5
– std 0.377 1.97 0.822 0.579 0.66 0.748

Table 34: Accuracy per prompt template for OPT-13B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 54.7 64.0 69.8 68.2 67.8 62.2
2 68.2 57.8 69.5 68.0 66.8 63.7
3 54.3 62.2 65.2 63.2 64.3 66.3
4 58.3 63.3 64.3 63.7 63.5 64.0
5 66.0 58.5 67.2 65.3 63.7 62.7
6 64.7 57.5 68.3 66.2 64.8 61.5

Mean 61.0 60.6 67.4 65.8 65.1 63.4
– std 5.51 2.68 2.06 1.92 1.6 1.55

Structured 55.8 63.2 66.4 65.0 65.2 64.2
– std 1.8 0.741 2.41 2.25 1.87 1.68

Natural 66.3 57.9 68.3 66.5 65.1 62.6
– std 1.44 0.419 0.939 1.12 1.28 0.899
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Table 35: Accuracy per prompt template for OPT-30B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 62.2 62.7 66.0 65.2 65.5 65.0
2 62.0 58.7 69.0 65.7 66.3 69.0
3 60.3 63.5 62.7 60.8 60.5 61.5
4 65.0 66.8 57.8 57.2 57.2 56.2
5 60.3 55.8 70.0 66.0 67.2 71.0
6 59.0 54.5 68.3 65.3 67.7 70.2

Mean 61.5 60.3 65.6 63.4 64.1 65.5
– std 1.92 4.37 4.24 3.27 3.87 5.28

Structured 62.5 64.3 62.2 61.1 61.1 60.9
– std 1.93 1.77 3.37 3.27 3.41 3.62

Natural 60.4 56.3 69.1 65.7 67.1 70.1
– std 1.23 1.76 0.698 0.287 0.579 0.822

Table 36: Accuracy per prompt template for OPT-66B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 59.3 56.2 56.7 56.5 55.7 54.3
2 66.5 67.3 65.3 64.2 67.2 65.2
3 56.5 64.3 55.5 55.0 56.2 52.2
4 62.0 61.5 66.5 63.0 61.7 63.7
5 62.5 66.0 64.8 63.7 65.7 65.0
6 61.2 63.8 60.2 62.5 64.7 64.7

Mean 61.3 63.2 61.5 60.8 61.9 60.8
– std 3.06 3.61 4.3 3.65 4.5 5.43

Structured 59.3 60.7 59.6 58.2 57.9 56.7
– std 2.25 3.36 4.93 3.47 2.72 5.0

Natural 63.4 65.7 63.4 63.5 65.9 65.0
– std 2.26 1.44 2.3 0.713 1.03 0.205

Table 37: Accuracy per prompt template for OPT-175B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 56.7 58.0 64.8 61.0 65.0 62.3
2 52.7 53.3 67.3 63.2 68.0 65.8
3 54.5 68.5 60.0 55.3 57.8 56.7
4 64.0 66.7 61.5 58.0 62.0 58.7
5 52.0 52.0 65.0 63.8 67.8 65.2
6 52.2 51.7 64.7 63.2 68.0 66.0

Mean 55.3 58.4 63.9 60.8 64.8 62.4
– std 4.19 6.87 2.42 3.13 3.79 3.62

Structured 58.4 64.4 62.1 58.1 61.6 59.2
– std 4.06 4.58 2.0 2.33 2.95 2.32

Natural 52.3 52.3 65.7 63.4 67.9 65.7
– std 0.294 0.694 1.16 0.283 0.0943 0.34
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Table 38: Accuracy per prompt template for Cohere-409.3M (Cohere-small).

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 54.2 49.7 52.7 51.7 53.5 56.0
2 47.5 50.7 52.7 53.2 55.8 57.8
3 57.2 55.5 55.2 55.5 55.7 57.0
4 54.8 53.8 54.5 56.8 54.8 54.5
5 48.5 50.7 52.8 52.7 56.0 58.8
6 47.5 51.0 52.5 53.7 55.3 58.8

Mean 51.6 51.9 53.4 53.9 55.2 57.2
– std 3.91 2.05 1.05 1.72 0.847 1.54

Structured 55.4 53.0 54.1 54.7 54.7 55.8
– std 1.3 2.43 1.05 2.16 0.903 1.03

Natural 47.8 50.8 52.7 53.2 55.7 58.5
– std 0.471 0.141 0.125 0.408 0.294 0.471

Table 39: Accuracy per prompt template for Cohere-6.067B (Cohere-medium).

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 54.7 54.2 55.3 51.8 56.3 55.3
2 61.8 62.8 64.3 63.8 65.2 64.7
3 57.2 53.3 58.5 55.3 57.8 55.3
4 56.0 53.3 57.0 53.2 55.8 56.7
5 57.8 60.7 64.0 64.2 64.7 64.2
6 56.2 62.8 66.2 64.0 62.8 66.0

Mean 57.3 57.9 60.9 58.7 60.4 60.4
– std 2.24 4.32 4.11 5.38 3.92 4.65

Structured 56.0 53.6 56.9 53.4 56.6 55.8
– std 1.02 0.424 1.31 1.44 0.85 0.66

Natural 58.6 62.1 64.8 64.0 64.2 65.0
– std 2.36 0.99 0.974 0.163 1.03 0.759

Table 40: Accuracy per prompt template for Cohere-13.12B (Cohere-large).

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 55.3 57.3 56.3 55.0 58.5 59.0
2 59.2 64.2 68.0 66.3 64.7 69.5
3 57.2 62.8 61.0 59.0 64.2 62.3
4 55.5 61.3 56.3 54.0 59.0 59.8
5 56.8 64.3 66.7 64.2 65.7 69.8
6 59.2 60.7 66.5 63.7 65.0 68.3

Mean 57.2 61.8 62.5 60.4 62.9 64.8
– std 1.56 2.41 4.88 4.69 2.94 4.55

Structured 56.0 60.5 57.9 56.0 60.6 60.4
– std 0.852 2.32 2.22 2.16 2.58 1.41

Natural 58.4 63.1 67.1 64.7 65.1 69.2
– std 1.13 1.67 0.665 1.13 0.419 0.648
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Table 41: Accuracy per prompt template for Cohere-52B (Cohere-xl).

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 56.0 60.7 70.3 65.3 66.3 68.7
2 62.8 65.0 64.3 64.2 65.0 64.3
3 54.0 65.3 62.8 60.2 64.0 63.5
4 53.8 55.5 61.8 64.8 64.3 64.7
5 62.2 65.7 67.3 63.0 63.7 65.3
6 62.2 65.7 64.2 62.3 65.0 67.8

Mean 58.5 63.0 65.1 63.3 64.7 65.7
– std 3.97 3.77 2.87 1.72 0.855 1.89

Structured 54.6 60.5 65.0 63.4 64.9 65.6
– std 0.993 4.0 3.79 2.3 1.02 2.22

Natural 62.4 65.5 65.3 63.2 64.6 65.8
– std 0.283 0.33 1.44 0.785 0.613 1.47

Table 42: Accuracy per prompt template for GPT-3-350M (ada).

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 55.3 57.2 58.3 57.5 58.2 60.5
2 46.7 56.8 56.3 59.5 59.2 61.7
3 54.0 54.5 53.3 54.0 56.5 56.7
4 53.5 52.8 54.7 56.7 58.8 59.7
5 49.8 57.3 55.3 58.5 58.8 61.8
6 49.5 57.2 56.3 60.2 61.5 61.2

Mean 51.5 56.0 55.7 57.7 58.8 60.3
– std 3.02 1.72 1.55 2.04 1.48 1.75

Structured 54.3 54.8 55.4 56.1 57.8 59.0
– std 0.759 1.81 2.11 1.5 0.974 1.64

Natural 48.7 57.1 56.0 59.4 59.8 61.6
– std 1.4 0.216 0.471 0.698 1.19 0.262

Table 43: Accuracy per prompt template for GPT-3-1.3B (babbage).

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 55.7 60.7 61.0 59.0 60.7 57.8
2 63.0 62.5 65.7 61.7 63.0 59.3
3 56.2 59.0 60.5 59.3 64.8 61.0
4 53.3 59.7 60.7 62.5 65.0 66.7
5 59.2 62.5 63.7 61.8 61.5 58.7
6 59.0 60.2 64.3 61.2 62.2 57.7

Mean 57.7 60.8 62.6 60.9 62.9 60.2
– std 3.1 1.33 2.01 1.31 1.6 3.11

Structured 55.1 59.8 60.7 60.3 63.5 61.8
– std 1.27 0.698 0.205 1.58 1.98 3.68

Natural 60.4 61.7 64.6 61.6 62.2 58.6
– std 1.84 1.08 0.838 0.262 0.613 0.66
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Table 44: Accuracy per prompt template for GPT-3-6.7B (curie).

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 53.3 58.3 63.0 64.8 67.7 64.0
2 57.5 65.2 63.2 65.3 65.8 65.2
3 57.0 54.2 59.2 61.2 60.8 59.3
4 53.3 61.7 62.8 63.8 64.7 60.7
5 55.3 64.2 62.5 64.5 65.8 63.7
6 52.5 63.5 63.7 64.0 66.2 64.3

Mean 54.8 61.2 62.4 63.9 65.2 62.9
– std 1.92 3.83 1.48 1.32 2.14 2.12

Structured 54.5 58.1 61.7 63.3 64.4 61.3
– std 1.74 3.07 1.75 1.52 2.82 1.97

Natural 55.1 64.3 63.1 64.6 65.9 64.4
– std 2.05 0.698 0.492 0.535 0.189 0.616

Table 45: Accuracy per prompt template for GPT-3-175B (davinci).

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 61.2 67.3 66.3 62.7 66.7 66.2
2 53.7 65.3 68.8 69.3 71.0 69.7
3 58.7 65.8 68.2 64.7 65.0 65.3
4 64.0 62.8 71.3 68.7 66.2 67.8
5 54.2 66.3 69.0 70.0 70.0 70.8
6 51.7 66.7 68.7 68.3 71.0 70.0

Mean 57.2 65.7 68.7 67.3 68.3 68.3
– std 4.4 1.44 1.46 2.65 2.43 2.03

Structured 61.3 65.3 68.6 65.4 66.0 66.4
– std 2.16 1.87 2.06 2.49 0.713 1.03

Natural 53.2 66.1 68.8 69.2 70.7 70.2
– std 1.08 0.589 0.125 0.698 0.471 0.464

Table 46: Accuracy per prompt template for BlenderBot-90M.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 46.7 51.5 46.7 46.7 46.5 46.5
2 46.7 51.3 46.5 46.7 46.7 46.7
3 46.7 46.7 46.7 46.7 46.3 46.8
4 46.7 46.7 46.7 46.7 46.5 46.7
5 46.7 50.0 46.7 46.7 46.7 46.7
6 46.5 53.5 46.3 46.7 46.7 46.7

Mean 46.7 49.9 46.6 46.7 46.6 46.7
– std 0.0745 2.52 0.153 7.11e-15 0.149 0.0898

Structured 46.7 48.3 46.7 46.7 46.4 46.7
– std 7.11e-15 2.26 7.11e-15 7.11e-15 0.0943 0.125

Natural 46.6 51.6 46.5 46.7 46.7 46.7
– std 0.0943 1.44 0.163 7.11e-15 7.11e-15 7.11e-15
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Table 47: Accuracy per prompt template for BlenderBot-2.7B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 54.0 53.2 53.3 53.0 52.8 53.3
2 53.3 53.3 53.3 53.3 53.3 53.3
3 53.2 53.2 53.3 53.2 53.2 53.2
4 53.5 53.5 53.5 53.3 52.8 53.0
5 53.3 53.3 53.3 53.3 53.3 53.3
6 53.3 53.3 53.3 53.3 53.3 53.3

Mean 53.4 53.3 53.3 53.2 53.1 53.2
– std 0.269 0.1 0.0745 0.111 0.227 0.111

Structured 53.6 53.3 53.4 53.2 52.9 53.2
– std 0.33 0.141 0.0943 0.125 0.189 0.125

Natural 53.3 53.3 53.3 53.3 53.3 53.3
– std 7.11e-15 7.11e-15 7.11e-15 7.11e-15 7.11e-15 7.11e-15

Table 48: Accuracy per prompt template for BlenderBot-9.4B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 53.7 51.5 53.0 53.0 53.0 54.0
2 53.2 53.8 54.2 52.5 52.2 52.2
3 53.3 49.7 52.0 54.0 54.2 55.5
4 54.0 55.3 52.5 54.0 53.5 53.7
5 53.3 52.8 53.5 53.2 53.5 53.3
6 52.7 52.0 51.7 53.5 52.8 53.7

Mean 53.4 52.5 52.8 53.4 53.2 53.7
– std 0.407 1.77 0.859 0.537 0.63 0.978

Structured 53.7 52.2 52.5 53.7 53.6 54.4
– std 0.287 2.33 0.408 0.471 0.492 0.787

Natural 53.1 52.9 53.1 53.1 52.8 53.1
– std 0.262 0.736 1.05 0.419 0.531 0.634

Table 49: Accuracy per prompt template for T0-3B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 48.7 49.5 46.5 46.7 46.7 46.7
2 46.7 47.5 46.7 46.7 46.7 46.7
3 49.2 48.3 46.7 46.7 46.7 46.7
4 51.7 49.0 46.7 46.7 46.7 46.7
5 46.7 49.2 46.7 46.7 46.7 46.7
6 46.7 49.8 46.8 46.7 46.7 46.7

Mean 48.3 48.9 46.7 46.7 46.7 46.7
– std 1.84 0.773 0.0898 7.11e-15 7.11e-15 7.11e-15

Structured 49.9 48.9 46.6 46.7 46.7 46.7
– std 1.31 0.492 0.0943 7.11e-15 7.11e-15 7.11e-15

Natural 46.7 48.8 46.7 46.7 46.7 46.7
– std 7.11e-15 0.974 0.0471 7.11e-15 7.11e-15 7.11e-15
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Table 50: Accuracy per prompt template for T0-11B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 57.5 47.7 47.3 46.8 46.7 46.7
2 49.3 47.5 46.7 46.7 46.8 46.7
3 65.3 48.8 47.3 46.7 46.7 46.7
4 63.8 48.0 47.0 46.7 46.7 46.7
5 48.0 47.2 46.7 46.7 47.0 46.8
6 49.7 47.5 47.0 46.8 47.0 47.0

Mean 55.6 47.8 47.0 46.7 46.8 46.8
– std 7.04 0.515 0.245 0.0471 0.134 0.111

Structured 62.2 48.2 47.2 46.7 46.7 46.7
– std 3.38 0.464 0.141 0.0471 7.11e-15 7.11e-15

Natural 49.0 47.4 46.8 46.7 46.9 46.8
– std 0.726 0.141 0.141 0.0471 0.0943 0.125

Table 51: Accuracy per prompt template for Flan-T5-780M.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 64.5 63.3 62.2 60.7 61.5 60.2
2 66.5 65.8 65.3 62.8 65.5 65.0
3 61.7 60.2 58.8 60.8 59.8 59.7
4 58.0 50.2 50.7 51.3 52.3 54.8
5 63.8 69.0 64.3 63.2 65.2 65.5
6 65.3 68.8 64.8 62.3 64.7 63.8

Mean 63.3 62.9 61.0 60.2 61.5 61.5
– std 2.79 6.44 5.1 4.08 4.61 3.73

Structured 61.4 57.9 57.2 57.6 57.9 58.2
– std 2.66 5.59 4.82 4.45 4.0 2.44

Natural 65.2 67.9 64.8 62.8 65.1 64.8
– std 1.1 1.46 0.408 0.368 0.33 0.713

Table 52: Accuracy per prompt template for Flan-T5-3B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 54.7 58.8 56.8 56.7 57.5 60.0
2 51.2 50.8 59.0 59.2 59.0 59.7
3 54.8 51.3 49.7 49.0 48.7 48.5
4 55.3 50.0 48.0 49.0 49.3 50.8
5 51.0 54.3 57.2 58.0 58.0 57.8
6 48.0 51.2 58.7 59.0 58.0 59.8

Mean 52.5 52.7 54.9 55.1 55.1 56.1
– std 2.65 3.02 4.37 4.42 4.33 4.67

Structured 54.9 53.4 51.5 51.6 51.8 53.1
– std 0.262 3.88 3.81 3.63 4.01 4.97

Natural 50.1 52.1 58.3 58.7 58.3 59.1
– std 1.46 1.56 0.787 0.525 0.471 0.92
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Table 53: Accuracy per prompt template for Flan-T5-11B.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30

1 64.3 61.0 63.7 65.0 62.5 64.3
2 61.5 59.7 63.2 62.3 64.0 68.0
3 56.5 63.0 60.2 57.3 56.7 56.8
4 61.7 47.7 51.7 50.3 50.3 49.5
5 61.5 55.8 64.8 64.7 65.5 66.3
6 59.2 57.5 66.3 63.7 66.0 67.7

Mean 60.8 57.4 61.7 60.5 60.8 62.1
– std 2.42 4.94 4.82 5.25 5.62 6.78

Structured 60.8 57.2 58.5 57.5 56.5 56.9
– std 3.24 6.79 5.04 6.0 4.98 6.04

Natural 60.7 57.7 64.8 63.6 65.2 67.3
– std 1.08 1.6 1.27 0.984 0.85 0.741

Table 54: Accuracy per prompt template for InstructGPT-3-350M (text-ada-001).

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 60.8 62.8 60.8 59.0 58.7 58.8
2 50.7 56.3 54.8 56.0 57.7 52.7
3 63.7 58.5 60.8 59.0 56.7 57.5
4 61.8 56.3 59.3 58.3 61.0 56.7
5 53.3 55.5 55.2 55.7 58.0 54.3
6 48.7 54.7 54.7 56.2 57.7 53.5

Mean 56.5 57.3 57.6 57.4 58.3 55.6
– std 5.82 2.7 2.75 1.43 1.34 2.22

Structured 62.1 59.2 60.3 58.8 58.8 57.7
– std 1.2 2.7 0.707 0.33 1.76 0.865

Natural 50.9 55.5 54.9 56.0 57.8 53.5
– std 1.88 0.653 0.216 0.205 0.141 0.653

Table 55: Accuracy per prompt template for InstructGPT-3-1.3B (text-babbage-001).

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 67.5 64.0 66.3 63.0 64.0 64.7
2 63.0 62.5 66.2 64.2 66.5 68.2
3 65.3 65.2 66.0 63.2 64.7 64.5
4 65.2 63.5 65.7 62.7 63.0 64.8
5 61.8 64.3 66.5 64.0 66.3 67.8
6 64.0 63.8 66.2 64.2 66.7 66.0

Mean 64.5 63.9 66.1 63.6 65.2 66.0
– std 1.82 0.815 0.25 0.605 1.4 1.5

Structured 66.0 64.2 66.0 63.0 63.9 64.7
– std 1.06 0.713 0.245 0.205 0.698 0.125

Natural 62.9 63.5 66.3 64.1 66.5 67.3
– std 0.899 0.759 0.141 0.0943 0.163 0.957
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Table 56: Accuracy per prompt template for InstructGPT-3-6.7B (text-curie-001).

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 70.7 70.2 72.5 70.8 70.8 70.7
2 66.5 59.3 70.3 69.7 68.3 71.2
3 73.2 70.2 73.5 69.7 71.8 69.7
4 71.3 68.0 71.0 69.8 71.0 69.0
5 65.5 58.8 70.0 70.2 68.5 70.7
6 66.5 59.8 70.7 70.8 69.0 70.8

Mean 69.0 64.4 71.3 70.2 69.9 70.4
– std 2.9 5.14 1.25 0.478 1.35 0.754

Structured 71.7 69.5 72.3 70.1 71.2 69.8
– std 1.07 1.04 1.03 0.497 0.432 0.698

Natural 66.2 59.3 70.3 70.2 68.6 70.9
– std 0.471 0.408 0.287 0.45 0.294 0.216

Table 57: Accuracy per prompt template for InstructGPT-3-175B (text-davinci-001).

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 76.5 73.7 75.7 75.7 76.3 76.8
2 72.0 72.5 74.3 75.2 76.0 75.3
3 74.8 74.2 75.7 77.2 75.8 76.8
4 68.0 70.2 72.8 72.8 73.3 75.0
5 72.5 73.2 74.3 74.3 75.3 75.7
6 70.0 72.7 74.3 74.7 75.0 75.3

Mean 72.3 72.7 74.5 75.0 75.3 75.8
– std 2.82 1.28 0.991 1.34 0.986 0.724

Structured 73.1 72.7 74.7 75.2 75.1 76.2
– std 3.67 1.78 1.37 1.83 1.31 0.849

Natural 71.5 72.8 74.3 74.7 75.4 75.4
– std 1.08 0.294 0.0 0.368 0.419 0.189

Table 58: Accuracy per prompt template for text-davinci-002-unknown.

Template k = 0 k = 1 k = 5 k = 10 k = 15 k = 30
1 73.7 76.2 80.2 79.5 79.8 80.7
2 69.5 73.5 78.2 78.5 76.7 79.8
3 73.0 78.7 82.8 82.8 82.7 82.8
4 71.3 79.7 80.5 80.8 82.0 81.5
5 67.5 72.5 79.2 79.2 77.0 79.8
6 68.5 73.2 76.5 76.5 76.2 79.2

Mean 70.6 75.6 79.6 79.5 79.1 80.6
– std 2.28 2.79 1.96 1.94 2.6 1.22

Structured 72.7 78.2 81.2 81.0 81.5 81.7
– std 1.01 1.47 1.16 1.36 1.24 0.865

Natural 68.5 73.1 78.0 78.1 76.6 79.6
– std 0.816 0.419 1.11 1.14 0.33 0.283
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Table 59: Timestamp each was evaluated through OpenAI’s API.

model timestamp
GPT-3-ada/0-shot 2022-09-22 13:13:29
GPT-3-ada/1-shot 2022-09-22 15:11:13
GPT-3-ada/5-shot 2022-09-22 15:40:12
GPT-3-ada/10-shot 2022-09-22 18:14:18
GPT-3-ada/15-shot 2022-09-22 19:15:29
GPT-3-ada/30-shot 2022-09-22 22:47:58
GPT-3-babbage/0-shot 2022-09-22 23:19:05
GPT-3-babbage/1-shot 2022-09-22 23:39:53
GPT-3-babbage/5-shot 2022-09-23 00:01:32
GPT-3-babbage/10-shot 2022-09-23 00:24:27
GPT-3-babbage/15-shot 2022-09-23 00:49:13
GPT-3-babbage/30-shot 2022-09-23 01:15:44
GPT-3-curie/0-shot 2022-09-22 14:04:32
GPT-3-curie/1-shot 2022-09-23 02:09:14
GPT-3-curie/5-shot 2022-09-23 02:32:20
GPT-3-curie/10-shot 2022-09-23 02:56:43
GPT-3-curie/15-shot 2022-09-23 03:23:19
GPT-3-curie/30-shot 2022-09-23 03:52:30
GPT-3-davinci/0-shot 2022-09-22 12:21:48
GPT-3-davinci/1-shot 2022-09-23 14:27:15
GPT-3-davinci/5-shot 2022-09-23 15:10:40
GPT-3-davinci/10-shot 2022-09-23 16:04:53
GPT-3-davinci/15-shot 2022-09-23 17:17:04
GPT-3-davinci/30-shot 2022-09-23 18:36:38
OpenAI-text-ada-001/0-shot 2022-08-17 16:59:45
OpenAI-text-ada-001/1-shot 2022-08-17 18:23:12
OpenAI-text-ada-001/5-shot 2022-08-17 19:16:48
OpenAI-text-ada-001/10-shot 2022-08-17 20:24:16
OpenAI-text-ada-001/15-shot 2022-08-17 21:21:46
OpenAI-text-ada-001/30-shot 2022-08-17 22:44:47
OpenAI-text-babbage-001/0-shot 2022-08-17 11:50:44
OpenAI-text-babbage-001/1-shot 2022-08-17 12:22:08
OpenAI-text-babbage-001/5-shot 2022-08-17 12:50:59
OpenAI-text-babbage-001/10-shot 2022-08-17 13:27:52
OpenAI-text-babbage-001/15-shot 2022-08-17 14:57:43
OpenAI-text-babbage-001/30-shot 2022-08-17 15:45:16
OpenAI-text-curie-001/0-shot 2022-08-18 04:39:55
OpenAI-text-curie-001/1-shot 2022-08-18 05:10:17
OpenAI-text-curie-001/5-shot 2022-08-18 05:40:56
OpenAI-text-curie-001/10-shot 2022-08-18 06:15:28
OpenAI-text-curie-001/15-shot 2022-08-18 06:53:09
OpenAI-text-curie-001/30-shot 2022-08-18 07:35:40
OpenAI-text-davinci-001/0-shot 2022-08-26 20:26:21
OpenAI-text-davinci-001/1-shot 2022-08-26 21:02:31
OpenAI-text-davinci-001/5-shot 2022-08-26 21:35:19
OpenAI-text-davinci-001/10-shot 2022-08-27 07:14:02
OpenAI-text-davinci-001/15-shot 2022-08-27 07:58:25
OpenAI-text-davinci-001/30-shot 2022-08-27 08:44:42
OpenAI-text-davinci-002/0-shot 2022-08-10 21:41:50
OpenAI-text-davinci-002/1-shot 2022-08-11 10:04:17
OpenAI-text-davinci-002/5-shot 2022-08-12 15:41:45
OpenAI-text-davinci-002/10-shot 2022-08-12 16:41:14
OpenAI-text-davinci-002/15-shot 2022-08-16 12:11:43
OpenAI-text-davinci-002/30-shot 2022-08-16 14:35:38
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Table 60: Timestamp each model was evaluated through Cohere’s API.

model timestamp
Cohere-small/0-shot 2022-08-16 22:22:17
Cohere-small/1-shot 2022-08-17 08:22:43
Cohere-small/5-shot 2022-08-17 09:19:57
Cohere-small/10-shot 2022-08-17 10:43:53
Cohere-small/15-shot 2022-08-17 12:53:02
Cohere-small/30-shot 2022-08-17 13:46:08
Cohere-medium/0-shot 2022-08-17 15:14:02
Cohere-medium/1-shot 2022-08-17 16:00:21
Cohere-medium/5-shot 2022-08-17 18:23:38
Cohere-medium/10-shot 2022-08-17 19:16:00
Cohere-medium/15-shot 2022-08-17 20:24:12
Cohere-medium/30-shot 2022-08-17 21:20:28
Cohere-large/0-shot 2022-08-17 22:47:49
Cohere-large/1-shot 2022-08-17 23:27:00
Cohere-large/5-shot 2022-08-18 00:10:08
Cohere-large/10-shot 2022-08-18 00:56:55
Cohere-large/15-shot 2022-08-18 01:48:30
Cohere-large/30-shot 2022-08-18 02:47:14
Cohere-xl/0-shot 2022-07-29
Cohere-xl/1-shot 2022-07-31
Cohere-xl/5-shot 2022-08-02
Cohere-xl/10-shot 2022-08-02 15:16:45
Cohere-xl/15-shot 2022-08-07 13:55:44
Cohere-xl/30-shot 2022-08-16 19:51:08
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