leuro

Cognition and Behavior

Commentary

Inverted Encoding Models Assay Population-Level
Stimulus Representations, Not Single-Unit Neural

Tuning

Thomas*C. Sprague,’ Kirsten C. S. Adam,>
Sutterer,> and ®vy A. Vo*

DOl:http://dx.doi.org/10.1523/ENEURO.0098-18.2018

Joshua J. Foster,> Masih Rahmati,’”

David W.

"Department of Psychology, New York University, New York, NY 10003, 2Department of Psychology and Institute for
Mind and Biology, University of Chicago, Chicago, IL 60637, and *Neurosciences Graduate Program, University of

California, San Diego, La Jolla, CA 92093

Key words: cognitive vision; computational neuroimaging; fMRI; inverted encoding model

(s

ignificance Statement

kchanging sensory input or attention.

Inverted encoding models (IEMs) are a powerful tool for reconstructing population-level stimulus represen-
tations from aggregate measurements of neural activity (e.g., fMRI or EEG). In a recent report, Liu et al.
(2018) tested whether IEMs can provide information about the underlying tuning of single units. Here, we
argue that using stimulus reconstructions to infer properties of single neurons, such as neural tuning
bandwidth, is an ill-posed problem with no unambiguous solution. Instead of interpreting results from these
methods as evidence about single-unit tuning, we emphasize the utility of these methods for assaying
population-level stimulus representations. These can be compared across task conditions to better
constrain theories of large-scale neural information processing across experimental manipulations, such as
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Neuroscience methods range astronomically in scale.
In some experiments, we record subthreshold membrane

Received March 15, 2018; accepted May 3, 2018; First published May 11,

2018.

The authors declare no competing financial interests.

Author contributions: T.C.S., K.C.S.A., J.J.F., M.R., D.W.S., and V.A.V. wrote
the paper.

This work was supported by the National Eye Institute (NEI) Grant F32-
EY028438 (to T.C.S.), a National Science Foundation Graduate Student Fel-
lowship (to V.A.V.), the NEI Grant R01-EY016407 (M.R.), and the National
Institute of Mental Health Grant 2R01-MH087214-06A1 (K.C.S.A., J.J.F., and
D.W.S.).

*K.C.S.A, J.J.F., M.R,, D.W.S,, and V.A.V. contributed equally to this work.

Acknowledgments: We thank Clayton Curtis, Edward Ester, and John Ser-
ences for comments on early drafts of this manuscript and useful discussions.

Correspondence should be addressed to Thomas C. Sprague, Department
of Psychology, New York University, 6 Washington Place, New York, NY,
10003. E-mail: tsprague@nyu.edu.

DOl:http://dx.doi.org/10.1523/ENEURO.0098-18.2018

Copyright © 2018  Sprague et al.
This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International license, which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is
properly attributed.

May/June 2018, 5(3) e0098-18.2018 1-5

potentials in individual neurons, while in others we mea-
sure aggregate responses of thousands of neurons at the
millimeter scale. A central goal in neuroscience is to
bridge insights across all scales to understand the core
computations underlying cognition (Churchland and Se-
jnowski, 1988). However, inferential problems arise when
moving across scales: single-unit response properties
cannot be inferred from fMRI activation in single voxels,
subthreshold membrane potential cannot be inferred from
extracellular spike rate, and the state of single ion chan-
nels cannot be inferred from intracellular recordings.
These are all examples of an inverse problem in which an
observation at a larger scale is consistent with an enor-
mous number of possible observations at a smaller scale.

Recent analytical advances have circumvented chal-
lenges inherent in inverse problems by instead transform-
ing aggregate signals from their native “measurement
space” (e.g., activation pattern across fMRI voxels) into a
model-based “information space” (e.g., activity level of
modeled information channels). To make this inference
possible, aggregate neural signals (fMRI voxel activation
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Figure 1. [EM: use neural tuning as an assumption to estimate population-level representations. A, The IEM framework assumes that
aggregate neural responses (e.g., voxels) can be modeled as a combination of feature-selective information channels (i.e., orientation-
selective neural populations). Tuning properties of modeled information channels are experimenter defined and often based on
findings in the single-unit physiology literature. B, Once an encoding model (A) is defined, it can be used to predict how each
information channel should respond to each stimulus in the experiment. These predicted channel responses are used to fit the
encoding model to each voxel’s activation across all trials in a “training” dataset, often balanced across experimental conditions, or
derived from a separate “localizer” or “mapping” task. C, By inverting the encoding models estimated across all voxels (typically,
within an independently-defined region), new activation patterns can be used to compute the response of each modeled neural
information channel. This step transforms activation patterns from measurement space (one number per measurement dimension,
e.g., voxel) to information space (one number per modeled information channel, A). These computed channel response functions can
be aligned based on the known stimulus feature value on each trial (black arrowheads), and quantified and compared across
conditions (e.g., manipulations of stimulus contrast, spatial attention, etc.), especially when a fixed encoding model is used for

reconstruction (as schematized here). Cartoon data shown throughout figure.

or EEG electrode activity) are modeled as a combination
of feature-selective information channels, each with de-
fined sensitivity profiles consistent with the single-unit
literature (e.g., experimenter-defined tuning to a particular
orientation; Fig. 1A; Brouwer and Heeger, 2009, 2011).
When an aggregate neural signal is described with such
an encoding model, it is possible to invert this model to
infer the activity of each channel given a new pattern of
neural activity [hence, these methods are often called
inverted encoding models (IEMs); Sprague et al., 2015].
Importantly, rather than attempt to solve the inverse prob-
lem (how do single-units respond?), this method makes
simplifying assumptions that enable transformation of one
population-level measurement (aggregate neural signals
in voxel or electrode space) into another (stimulus repre-
sentations in “channel space”). These reconstructed
“channel response functions” enable visualization, quan-
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tification, and comparison of population-level stimulus
representations across manipulations of task conditions
(Brouwer and Heeger, 2011, 2013; Scolari et al., 2012;
Garcia et al., 2013; Sprague and Serences, 2013; Foster
et al., 2017).

Recently, Liu et al. (2018) examined whether an IEM
applied to fMRI data can be used to unambiguously infer
the underlying response properties of single units. To this
end, they manipulated the contrast of orientated gratings,
because contrast only affects the amplitude of single-
unit orientation tuning functions, but not their tuning
width (Sclar and Freeman, 1982). The authors reasoned
that, if the width of single-unit tuning functions does not
change with stimulus contrast, and if population-level
feature reconstructions derived from aggregate neural
signals can be used to make meaningful inferences
about single-unit tuning, then manipulating contrast
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should not change the width of population-level
channel-response functions.

To test this prediction, the authors used an IEM to
reconstruct representations of grating orientations for two
different contrast levels. The authors modeled voxel re-
sponses as a sum of neural channels tuned to different
orientations based on known visual response properties
(Fig. 1A). After extracting activation patterns from visual
cortex, the authors split data from each contrast condition
into a training set, used to estimate how each modeled
neural channel contributes to each voxel (Fig. 1B), and a
testing set, which was used in conjunction with the best-
fit model from the training set to compute channel re-
sponse functions (Fig. 1C).

The authors found that reconstructed channel response
functions in visual cortex were “broader” for low-contrast
gratings than for high-contrast gratings (Fig. 2-4; Liu
et al., 2018), which they suggest could be interpreted as
evidence that single-unit orientation tuning width depends
on stimulus contrast. However, because this observation
conflicts with demonstrations from single-unit physiology
that orientation tuning is contrast-invariant, Liu et al.
(2018) sought to resolve this discrepancy using simula-
tions.

The authors simulated cortical fMRI data under different
conditions to assess how changes in single-unit re-
sponses might be reflected in reconstructed channel re-
sponse functions. Each simulated voxel’s response was
modeled as a noisy weighted sum of orientation-tuned
neurons, each with a different orientation preference (Liu
et al., 2018, their Fig. 3). Across runs of their simulations,
the authors manipulated simulated response properties,
like orientation tuning width of constituent model neurons
and signal-to-noise ratio (SNR) of the voxel response. The
authors found that by decreasing the response amplitude
of each simulated neuron (thus, decreasing SNR) without
changing the tuning width, they could almost exactly
reproduce the broadening in the width of the channel
response function when stimulus contrast was decreased
(Liu et al., 2018, their Fig. 4). Interestingly, they also found
that changes in modeled neural tuning width could alter
the width of channel response functions. However, be-
cause such broadening is consistent with either a change
in SNR or a change in neural tuning width, the authors
conclude that it remains impossible to conclusively infer
how changes in channel response functions relate to
changes in neural tuning. Since it is plausible that low-
contrast stimuli evoke weak, noisy responses relative to
high-contrast stimuli, the authors argue this is a more
parsimonious explanation for their observed data than
overturning well-characterized results from the animal
physiology literature and inferring that single-unit tuning
properties change with contrast. Accordingly, the authors
concluded that “changes in channel response functions
do not necessarily reflect changes in underlying neural
selectivity” (Liu et al., 2018, p 404).

This report makes an important contribution in its dis-
section of how model-based analysis methods can be
sensitive to features of the data that might vary across
conditions (e.g., SNR), and clearly demonstrates that
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changes in population-level channel response functions
cannot and should not be used to infer changes in unit-
level neural tuning properties. However, we would like to
emphasize that this is not the intended purpose of the IEM
approach, which is designed to assess population-level
stimulus representations. Any inferences made about
single-unit tuning from channel response functions are
plagued by the same pitfalls encountered when attempt-
ing reverse inference about single-unit neural signals from
aggregate measurements.

These issues are not unique to the IEM technique. For
example, they also complicate interpretation of results
from popular voxel receptive field (vVRF) techniques. In
these experiments, stimuli traverse the entire visual dis-
play while experimenters measure fMRI responses. Then,
they fit a RF model that best describes how each voxel
responds given the visual stimulus (Dumoulin and Wan-
dell, 2008; Wandell and Winawer, 2015). Recent studies
have demonstrated that changing task demands (e.g.,
locus of spatial attention) can change the shape and
preferred position of vRFs (Sprague and Serences, 2013;
Klein et al., 2014; Kay et al., 2015; Sheremata and Silver,
2015; Vo et al., 2017). While it is tempting to infer that
single-neuron RFs change accordingly, it could instead be
the case that each neuron maintains a stable RF, but
different neurons are subject to different amounts of re-
sponse gain, altering the voxel-level spatial sensitivity
profile measured with these techniques. Moreover, be-
cause aggregate measurements like fMRI pool over neu-
rons of different types (excitatory vs inhibitory), selectivity
widths (narrow vs broad), and cortical layers (e.g., Layer IV
vs Layer II/1ll), the ability to make inferences about single-
unit encoding properties is further limited.

Liu et al. (2018)’s report also highlights that it is impor-
tant to consider how an encoding model is estimated
when comparing channel response functions across con-
ditions. In their work, Liu et al. (2018) estimated separate
encoding models for each contrast condition (Fig. 1B).
But because SNR likely differed between conditions, the
observed differences between reconstructions may result
from differences in the training sets (i.e., different model
fits), or from differences in the testing sets (i.e., different
reconstructed activation patterns), or from a combination
of the two. More generally, this training scheme can pose
a problem for researchers who wish to minimize the effect
of known SNR differences between their conditions to
study some other variable (e.g., the effect of attention),
since it is not possible to unambiguously attribute
changes in reconstructed channel response functions to
changes in the quality of the model fit or the quality of the
representation supported by the population activity pat-
tern, which can both differ between conditions. This prob-
lem is roughly akin to reporting a change in a ratio, which
can result from changes in the numerator, denominator,
or both. One way that others have mitigated this issue is
by estimating an encoding model (Fig. 1B) using an unbi-
ased (equal numbers of trials from each relevant condi-
tion) or neutral (entirely separate task used solely for
model estimation) set of data. They then apply that single
“fixed” encoding model to test data from multiple stimulus
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conditions to reconstruct stimulus representations from
each condition. This implementation has the advantage
that researchers can avoid problems with comparing
channel outputs from different IEMs, so the only differ-
ence between conditions is the data used for stimulus
reconstruction (Fig. 1C). We note that even with such a
procedure the central result in Liu et al. (2018) could remain
true: reconstructions under a fixed encoding model could
still broaden with lower contrast. But, as discussed above,
this would reflect a change in the quality of the population-
level representation rather than provide unambiguous evi-
dence for a change in underlying tuning of individual units.
When interpreting results from IEM analyses, it is always
critical to consider how the model was estimated.

It would be a mistake to conclude from Liu et al. (2018)
that the IEM technique is not useful in the context of its
intended purpose: to assay properties of large-scale,
population-level neural representations. The quality of
these large-scale representations surely depends on myr-
iad factors occurring at the single-unit level. It remains a
fascinating question to evaluate how single measurement
units, at either the neural or voxel level, change their
response properties across visual and task manipulations,
but the goal of the IEM approach is to assay the net effect
of all these modulations on the superordinate population-
level representation. Moreover, few behaviors are guided
by single neurons in isolation, and so assaying the joint
activity of many neurons, and the resulting population-
level representations, is necessary to gain insight into the
neural underpinnings of cognition (Jazayeri and Movshon,
2006; Ma et al., 2006; Graf et al., 2011). Indeed, IEMs have
been used to assay the time course of covert attention
(Foster et al., 2017), understand the consequences of
attentional manipulations within working memory (Sprague
et al., 2016; Rahmati et al., 2018), evaluate how allocation of
attention impacts the representation of irrelevant visual stim-
uli across the visual field (Sprague and Serences, 2013; Vo
etal., 2017; Sprague et al., 2018), and probe the influence of
top-down expectations on sensory stimulus representations
(Myers et al., 2015; Kok et al., 2017).

We do not believe aggregate neural signals will ever be
useful for unambiguously inferring single-unit response
properties, including feature tuning. However, we see a
bright future for collaborative efforts across labs studying
similar questions in different model systems, such as human
and macaque. When experiments are well-matched be-
tween species, both aggregate measurements in humans
and single-unit responses in model systems can be used to
inform our understanding of neural coding across different
cognitive states. In bridging different levels of analysis, Liu
et al. (2018) add to the growing literature using data-driven
simulations to better understand the relationship between
tuning properties and population-level feature representa-
tions (Sprague and Serences, 2013; Kay et al., 2015; Vo
et al., 2017). Most importantly, their report underscores the
importance of avoiding inferences about signal properties,
such as single-unit neural feature tuning, that are fundamen-
tally inaccessible via fMRI or EEG, even when using state-
of-the-art acquisition and analysis techniques. We hope that
future studies take these issues into account when interpret-
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ing findings from model-based analyses applied to aggre-
gate measurement tools like fMRI and EEG. Finally, we
remain optimistic that the IEM technique, when applied
carefully and interpreted appropriately, will continue to re-
veal how experimental manipulations impact population-
level representations of information.
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