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Abstract

Diffusion Models have gained significant popularity due to their remarkable capa-
bilities in image generation, albeit at the cost of intensive computation requirement.
Meanwhile, despite their widespread deployment in inference services such as Mid-
journey, concerns about the potential leakage of sensitive information in uploaded
user prompts have arisen. Existing solutions either lack rigorous privacy guarantees
or fail to strike an effective balance between utility and efficiency. To bridge this
gap, we propose ObCLIP, a plug-and-play safeguard that enables oblivious cloud-
device hybrid generation. By oblivious, each input prompt is transformed into a
set of semantically similar candidate prompts that differ only in sensitive attributes
(e.g., gender, ethnicity). The cloud server processes all candidate prompts without
knowing which one is the real one, thus preventing any prompt leakage. To mitigate
server cost, only a small portion of denoising steps is performed upon the large
cloud model. The intermediate latents are then sent back to the client, which selects
the targeted latent and completes the remaining denoising using a small device
model. Additionally, we analyze and incorporate several cache-based accelerations
that leverage temporal and batch redundancy, effectively reducing computation cost
with minimal utility degradation. Extensive experiments across multiple datasets
demonstrate that ObCLIP provides rigorous privacy and comparable utility to cloud
models with slightly increased server cost.

1 Introduction

Stable diffusion models [35, 34] have emerged as a de-facto standard technique in text-to-image
(T2I) generation due to their superior capability to generate high-quality images. This drives the
widespread application of T2I in inference services hosted by cloud servers. As depicted in Figure 1,
the client uploads text prompts to the cloud, which generates images and sends them back to the
client. This paradigm is widely-adopted since the generation typically requires huge computation
cost, which is unaffordable for clients, especially for devices with limited computation power.
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Figure 1: Illustration of existing server-only text-to-image generation services.

However, despite its growing popularity, there remain two essential problems: ① Prompt privacy re-
mains a critical concern [43, 48]: In image generation services like Midjourney [30] and DALL·E [32],
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the server deploys their models on the cloud and provides APIs that take client prompts as inputs,
which might contain sensitive attributes like gender, ethnicity, etc. ② Server cost increases drastically.
According to the scaling law [16, 20], the superior model capacity comes at the expense of larger
model size, leading to considerable hardware requirement and computation cost on the cloud servers.

Existing solutions typically only address one of the aforementioned issues. Cryptographic-based
approaches [47, 3] offer provable security to the sensitive prompts. However, the huge computation
overhead and efficiency decay hinders their application in real world scenarios. Meanwhile, some
prior works [46, 4] provide a client-side input filter that detects and perturbs sensitive information
before sent to the server. However, such kind of random perturbation incurs inevitable semantic and
utility loss, leading to mismatch between the user intent and generation output. Another line of works
employ on-device models [22, 49] to allow efficient image generation, avoiding data transmission to
the server. However, despite significant improvement that has been made, the image quality inevitably
decreases, failing to meet the users’ needs. Recently, Hybrid SD [44] incorporates a hybrid image
generation pipeline to lower the server-side computation cost, which however fails to preserve the
prompt privacy, the embedding of which is directly sent to the server. Such kind of information is
vulnerable to extraction attacks [33, 31]. Therefore, here arises the question:

Can we perform privacy-preserving image generation with better image quality and lower server
cost?

As an attempt to answer this question, we propose ObCLIP, an oblivious cloud-device hybrid image
generation scheme that provides rigorous privacy and comparable utility to large cloud models with
slightly increased server cost. Specifically, our contributions are summarized as follows:

• Oblivious Cloud-Device Hybrid Generation Scheme. ObCLIP consists of two main compo-
nents to address the aforementioned challenges: 1) Oblivious transformation: each input prompt
is transformed into a set of semantically similar candidate prompts that differ only in sensitive
attributes (e.g., gender ,age, ethnicity). The cloud server processes all candidate prompts without
knowing which one is the real one, thus preventing any prompt leakage. 2) Local extraction:
the client selects the targeted output corresponding to the real prompt. One straightforward
drawback of vanilla oblivious generation is heavy server cost. Therefore, we devise a hybrid
generation pipeline, where only partial denoising steps are performed by the server. Besides, we
analyze and incorporate several cache-based acceleration methods, leveraging both temporal
and batch redundancy, to further reduce server cost with minimal utility degradation.

• Temporal- and Batch- Redundancy based Acceleration. We analyze and incorporate several
cache-based acceleration techniques to exploit temporal redundancy in server-side generation.
Additionally, inspired by batch-level redundancy, we propose reusing attention maps across
the batch of candidate prompts. Together, these two acceleration strategies effectively reduce
computation costs with minimal utility degradation.

• Empirical Evaluations. We conduct extensive text-to-image generation experiments on several
stable diffusion models across three datasets. The experiments confirm that ObCLIP provides
rigorous privacy and comparable utility to large cloud models with slightly increased server
computation costs, which is about 4.4 ∼ 7.6× lower than vanilla oblivious generation baseline
and orders of magnitude lower than cryptographic approach.

2 Related Work

Existing works typically employ various privacy enhancing technologies. We provide a comprehen-
sive comparison of related works in Table 1, focusing on application domain and trade-off among
prompt privacy, server cost and image utility.

Cryptographic methods like secure multi-party computation (MPC) that support computation over
encrypted data and models are widely used to enable secure machine learning inference [27, 6, 42, 47].
MPCViT [47] employed MPC and proposed a search algorithm for MPC-friendly neural architecture.
HE-Diffusion [3] leveraged homomorphic encryption (HE) to perform partial image encryption
and protected the diffusion process. However, these works impose significant overhead compared
to plaintext baselines, limiting their practicality for real-world deployment. Other works employ
lightweight privacy techniques like differential privacy (DP) [7] to perturb prompts by adding random
noises in text generation. SANTEXT [46] designed a Exponential mechanism based word-level
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Table 1: Comparison of related work. , and refer to high-, medium- and low-performance.
Method Domain Privacy Server Cost Utility

Non-private Standalone Server-Only [34] Text-to-Image
Client-Only [22, 49] Text-to-Image

Hybrid Hybrid SD [44] Text-to-Image

Private

MPC MPCViT [47] Text-to-Image
HE-Diffusion [3] Text-to-Image

DP SANTEXT [46] Text Generation
CAPE [41] Text Generation

Ours ObCLIP Text-to-Image

perturbation mechanism to hide sensitive attributes within a prompt. CAPE [41] further proposed an
optimized perturbation mechanism by incorporating contextual information that achieves a better
trade-off between privacy and utility. However, privacy comes at the cost of semantics distortion
and utility degradation. Besides, the scalability to text-to-image generation domain is uncertain.
Another line of works manage to offload the generation to user devices, avoiding the transmission
of prompts to server. SnapFusion [22] introduced efficient network architecture and improved step
distillation process to enable generation within 2 seconds. MobileDiffusion [49] further studied
one-step sampling technique, which decreased the runtime to less than 1 second. However, its
scalability to larger models like SDXL [34] is not yet explored.

Recently, a new paradigm of cloud-device hybrid generation scheme is proposed to lower the server-
side computation cost. Hybrid SD [44] proposed an cloud-device collaborative stable diffusion
pipeline. By offloading a great portion of denoising steps to client devices, the server-side costs can
be optimized. However, it only reduces server costs, failing to effectively protect the privacy of user
prompts, the embedding of which is directly sent to the server. Such kind of information is vulnerable
to extraction attacks [5, 31, 33], which could reconstruct the original prompt or infer partial sensitive
attributes. To make matters worse, even if embedding inversion fails, the server can still perform full
image generation based on the received embeddings, inevitably revealing sensitive visual patterns.
Built upon such paradigm, we manage to preserve the privacy in an oblivious way, providing rigorous
privacy. To hedge against the additional server-side cost introduced by our scheme, we incorporate
several acceleration methods based on temporal and batch redundancy.

3 Preliminary

Diffusion Model. Diffusion models [13] have attracted significant attentions due to their ability
to generate high-quality images. Its forward process adds Gaussian noise to the data over a fixed
number of timesteps as q(xt|xt−1) = N (xt;

√
1− βt · xt−1, βtI), where x0 refers to the original

image, t ∈ [1, ..., T ] denotes the total diffusion timestep, {x1, ..., xT } denote the sequence of noisy
latents, βt ∈ (0, 1) determines the amount of noise added at each timestep, I is the identity matrix
and N (x;µ, σ) denotes the Gaussian distribution with mean µ and covariance σ. During image
generation, the reverse (denoising) process aims to recover xt−1 from xt using a neural network as the
noise predictor (typically, U-net [36]) ϵθ(xt, t) that predicts the noise in each timestep. Concretely,

xt−1 =
1
√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
(1)

where αt = 1−βt and ᾱt =
∏T

i=1 αi. This process is iteratively applied starting from a random sam-
ple drawn from the noise prior and finally yields a denoised sample. For stable diffusion models [35],
the core idea is to perform the diffusion process in a lower-dimensional latent space—obtained
via a pretrained variational autoencoder (VAE)—rather than directly in pixel space. This approach
significantly reduces computation overhead during denoising process. Recently, the MMDiT archi-
tecture [8, 10], which jointly processes image and text tokens to model cross-modal relationships,
has also been gaining increasing attention.

Training-free Diffusion Acceleration. To mitigate the expensive computation cost of diffusion
generation, prior works either resort to training-based model distillation [38, 26] and model compres-
sion [9, 17] approaches, or training-free caching [28, 24, 21] methods. In this paper, we mainly focus
on training-free acceleration methods that leverages different kinds of feature redundancy throughout
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the diffusion process. As observed by prior works, adjacent steps exhibits temporal redundancy,
happening in layer outputs or even block outputs. In U-net, the attention module is computed as:

M = Softmax(
Q ·KT

√
d

), O = M · V (2)

where Q refers to projected features from latent, K,V refers to latent (self-attention) or text embed-
ding (cross-attention). Recently, Faster Diffusion [21] explored the feasibility of skip U-net encoder
computation with a delicate skip strategy. Applying these acceleration methods to the new paradigm
of hybrid inference presents unique challenges that necessitate a reexamination of previous strategies.

4 ObCLIP: Design

Inspired by prior works [2, 45], which highlight the feasibility of employing a mixture of diffusion
models at different stages of the denoising process, we devise ObCLIP for an optimal cloud-device hy-
brid generation scheme with privacy preservation. As illustrated in Figure 2, the two key components
in ObCLIP are oblivious transformation and local extraction. By transforming the private prompt into
a set of candidate prompts, server only acting as guidance of several initial steps and offloading most
of later diffusion steps to device, we achieve the following features: 1) enhanced image quality by
leveraging the on-cloud large-capacity models; 2) strengthened prompt privacy through on-device
computation. To further lower the server computation cost, we devise several server-side acceleration
methods tailored to our scenario.
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Figure 2: Holistic comparison of existing schemes.

4.1 Oblivious Cloud-Device Hybrid Image Generation

Before delving into the detailed design of ObCLIP, we first answer the two essential research questions.

• RQ 1: How to decide the diffusion allocation strategy to achieve better utility?
• RQ 2: How to hide the sensitive attributes in a prompt from the server?

Diffusion Allocation Strategy. As an answer to RQ 1, we empirically investigate the impact of
different allocation strategies, focusing on two key factors: 1) whether the initial denoising steps
are performed by a large server-side model or a small client-side model; and 2) the proportion of
diffusion steps distributed between the server and the client. We employ a 25-step DPM-Solver [25]
on the SD-v1.4 model and its compressed variant BK-SDM-Small [17], evaluated on the MS-COCO
dataset [23]. We run both quantitative and qualitative analysis by varying server execution proportion.
As shown in Figure 3a, when server involvement is limited (0%∼40%), allowing the server-side
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Figure 3: Quantitative and qualitative comparison result of using different hybrid execution strategies.

model to handle the initial diffusion steps yields better quantitative performance (i.e., lower FID)
compared to the client-first strategy (the performance gap is highlighted with a red dashed line). This
observation is consistent with the qualitative results in Figure 3b. As revealed in [24], the initial
steps—referred to as the semantics-planning stage—are crucial for determining global semantic
information. Consequently, server-guided semantics planning leads to better image quality. Based
on these findings, we adopt the server-first strategy in our approach. Besides, we also control the
proportion of server-side execution using the hyper-parameter switch point k, which serves as a
trade-off between utility and efficiency. As k increases, the FID consistently decreases, albeit at the
cost of higher server cost. More comprehensive evaluation are provided in Section 5.2.

Oblivious Generation Scheme. Regarding RQ2, one straightforward solution is to replace the actual
prompt (e.g., “portrait of young African woman”) to a random candidate prompt (e.g., “portrait
of elderly Caucasian woman”, semantically-close yet differ in sensitive attributes) to the server,
who sends back intermediate denoised latent. The client then use the actual prompt for remaining
denoising steps, aiming to rectify the semantics deviation. We examine the impact of different
denoising proportions where the initial steps are conditioned on a candidate prompt, and the remaining
steps use the actual prompt as the text condition. We conduct the analysis using SDXL [34] model
with a 25-step DPM-Solver. As illustrated in Figure 4, the intended semantics are accurately captured
only when the actual prompt governs more than 80% of the entire diffusion process. This observation
suggests that initial steps are critical for establishing semantic information, making it difficult to
correct semantic deviations introduced early on. Hence, to enhance the text-image semantic alignment,
we propose the oblivious hybrid generation scheme, where the client transforms the actual prompt
into a set of candidate prompts (including the actual prompt, security analysis in Section 4.3), serving
as text conditions during the server-side guidance of intermediate latents. The intended intermediate
latents are then retrieved by client for subsequent denoising. To construct the candidate prompt set P ,
we identify sensitive attributes and traverses their value space as the algorithm in Appendix B.1.
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Perturbed: “An elderly Caucasian woman with short hair, wearing a knitted sweater, sitting in a rocking chair.”
Actual: “A young African woman with short hair, wearing a knitted sweater, sitting in a rocking chair. ”
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Figure 4: Generated images from different prompt replacement configurations.

5



Notably, vanilla oblivious generation—where the server performs all the denoising and sends genera-
tion images to client—incurs an N× increase in total computation cost (N = |P|). While partial
denoising in ObCLIP effectively reduces server-side computation, the additional overhead introduced
by redundant denoising of multiple candidate prompts remains non-negligible. To mitigate this, we
introduce server-side acceleration techniques aimed at minimizing such overhead.

4.2 Server-side Acceleration

Conceptually, in ObCLIP, we optimize server-side generation efficiency from two perspectives:
1) Batch Redundancy: In oblivious generation, a set of candidate prompts is processed, which
differ only in the values of sensitive attributes while sharing most tokens, theoretically leading to
similar global semantics, with minor changes on local details. 2) Temporal Redundancy: Due to
the inherently sequential nature of the denoising process, intermediate features—such as outputs
from attention modules and down/mid blocks—across adjacent timesteps can be cached and reused.
High-level overview of the acceleration scheme is illustrated in Figure 5.

Cache point 𝑟

𝑐1

𝑐2

𝑐3

Skip point 𝑠 Switch point 𝑘

Server-side Client-side
① Batch Redundancy ② Attention Cache ③ Block Skip

Figure 5: Server-side acceleration. The temporal- and batch- redundancy based caching are controlled
by three hyper-parameters: cache point r, skip point s and switch point k.

4.2.1 Batch Redundancy

As empirically validated by the visualization of both cross-attention maps (Figure 6b) and self-
attention maps (deferred to Figure 9 in Appendix D.1) that implicitly reflect semantic information for
two candidate prompts by varying gender and age attributes, the global features like background,
gesture, etc. are similar, while those sensitive attributes share similar focus areas. In this regard, we
propose to reuse these attention maps across these candidate prompts. Specifically, we only compute
the attention map for pivot prompt (with index i∗, e.g., the first prompt with i∗ = 0), and reuse these
attention maps before cache point to lower server-side attention computation as follows:

q∗, k∗, V = to_q(Q[i∗]), to_k(K[i∗]), to_v(V) (3)
m∗ = get_attention_map(q∗, k∗) (4)
O = M · V {M ← broadcast(m∗)} (5)

In this case, the computation bottleneck of attention module (i.e., to_q, to_k, and Softmax in
get_attention_map) can be greatly reduced. The detailed algorithm is deferred to Appendix B.2.

4.2.2 Temporal Redundancy

Attention Cache. We motivate this optimization by T-Gate [24], which observes that in the early
phase (i.e., semantic-planning) conducted on the server side, self-attention makes limited contribu-
tions. We thus bypass the self-attention computations in subsequent diffusion steps after certain initial
steps (denoted as cache point r), making use of such temporal redundancy [24]. Furthermore, we
investigate the evolution of cross-attention map differences across adjacent timesteps. As shown in
Figure 6a (top), these differences are substantial during the first 2∼3 steps, but drop significantly and
stabilize thereafter. In addition, the cross-attention heatmap visualization in Figure 6b shows that
the distribution at the 3rd step is already similar to that at the 5th step. We thus propose to cache the
cross-attention maps after cache point as well. Notably, we follow T-Gate to refresh the cache every
5 steps to prevent significant deviations. The attention module is computed as follows:

Ot =

{
Attn(Q,K,V) if t ≤ r or (t mod 5) = 0

O∗ if t > r and (t mod 5)! = 0
(6)
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(a) Temporal difference.
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(b) Heatmap of cross-attention maps in two candidate prompts varying {gender, age}.
Figure 6: Temporal and batch redundancy analysis on SD-v1.4 and SDXL models.

Block Skip. Previous observations [28, 21] have revealed that features from the down-block and
mid-block exhibit relatively subtle variations across adjacent timesteps, especially when compared to
those from the subsequent up-blocks. As illustrated in Figure 6a (bottom), the mid-block outputs
show minimal changes during the denoising process—dropping significantly within the first 2∼3
steps and stabilizing after approximately 20% of total denoising steps. Motivated by this temporal
feature similarity, we propose to skip server-side computation of the down-block and mid-block after
a certain timestep (denoted as skip point s). We follow an intuitive way to select the skip point and
defer the parameter configurations to Section 5. The computation is formulated as follows, where
fmid denotes the cached output of mid-block and P refers to the set of candidate prompts.

zt =

{
(Downblock ◦ MidBlock ◦ Upblock)(zt−1,P, t) if t < s

Upblock(zt−1, fmid,P, t) if t ≥ s
(7)

4.3 Security Analysis

In ObCLIP, the client C transforms the actual prompt p∗ into a set of candidate prompts P , with
|P| = N . We consider the LLM inference service provider as the potential adversary A. We do not
consider man-in-the-middle attacks and assume the communication channel is secure. A is assumed
to be semi-honest, meaning the adversary follows the hybrid generation scheme, which is publicly
known, but may attempt to extract sensitive information by collecting and analyzing the messages
(i.e., P) from the client. Our scheme shows that A cannot distinguish the real prompt p∗ from N
candidates with probability better than 1/N + λ, where λ is negligible given no information other
than P . We defer the detailed proof of Theorem 1 to Appendix C.
Theorem 1 (Prompt In-distinguishability). The oblivious generation scheme is λ-oblivious if for any
probabilistic polynomial-time (PPT) adversary A:

|Pr[A(P = p∗)]− 1

N
| ≤ λ

5 Experiments

5.1 Experiment Settings

Models. We consider several combinations for hybrid generation. We consider SD-v1.4 [35], and its
compressed versions BK-SDM-small and BK-SDM-tiny [17]. We also test finetuned Realistic Vision
v4.0 [40] and compressed small-sd model [39]. For high-resolution setting, we consider SDXL [34]
and Koala-700m [18], along with the scalability to step-distilled server model LCM-SDXL [26].

Datasets & Metrics. To evaluate the performance of ObCLIP, we adopt two commonly-used datasets:
1) MS-COCO 2014 dataset [23] with a resolution of 512 × 512. We use 30k prompts from its
validation split. 2) MJHQ [19] with a resolution of 1024× 1024. For more comprehensive evaluation
on oblivious generation, we construct a candidate prompt dataset using 10 templates, like “High-
quality, face portrait photo of a <age> <ethnicity> <gender>” with random fill on these sensitive
attributes. The detailed construction is provided in Appendix B.3. Regarding image quality, we follow
prior works to evaluate the visual quality using Frechet Inception Distance (FID) [12] and Inception
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Score (IS) [37]. We assess text-image alignment using CLIP score [11] with CLIP-ViT-g/14 model.
Regarding efficiency, we use Floating-point Operations (FLOPs) and average running time.

Baselines. We compare ObCLIP with three lines of works: 1) Standalone Generation: The commonly
used paradigm where cloud-only or device-only generation is applied. This exhibits either high
privacy risk and server cost or low utility; 2) Hybrid SD [44]: This is the first work that proposed
cloud-device collaborative generation paradigm. 3) HE-Diffusion [3]: Last, we compare with
cryptographic approach HE-Diffusion in terms of efficiency. We take the runtime of the SD-v1.4
model as reported in their paper. We opt for 25-step DPM scheduler (8-step for LCM-SDXL) for
all evaluated works. For ObCLIP, we mainly adopt two acceleration configurations: 1) switch point
k = 5, cache point r = 3 and skip point s = 3; 2) k = 10, r = 4 and s = 6. We use N to denote the
cardinality of candidate prompt set, i.e., those edited prompts after oblivious transformation. To do
so, we use rule-based method and a finetuned distilbert model [15] to detect sensitive attributes. We
additionally evaluate vanilla oblivious generation (OG), where the cloud alone generates N images
without any accelerations. All the experiments are conducted on one Ubuntu machine equipped with
one Intel Xeon Platinum 8260 CPU, 16GB of RAM and 1 NVIDIA Tesla-V100-SXM2-32GB GPU.

5.2 Quantitative Results

Results on Candidate Prompt Dataset. To begin, we run experiments on Realistic Vision v4.0
and small-sd models on the candidate prompt dataset to evaluate oblivious generation. For gender
alone, N = 2. While for multi-attribute combinations, i.e., gender and age, we have N = 2× 3 = 6.
We present the results for 1-attribute and 2-attribute oblivious generation in Table 2. The results
for 3-attribute are deferred to Appendix D.4. We here mainly focus on cloud-side latency. In
general, ObCLIP shows better performance in the trade-off between generation performance and
computation cost, offering flexibility through the acceleration strategies, e.g., k. In terms of generation
performance, ObCLIP achieves comparable and even better FID and IS compared to Realistic Vision
v4.0 when k = 10 (e.g., FID drops from 113.39 to 109.76 when N = 6). Even when we use a
more aggressive k = 5, we still achieve comparable FID and IS while much lower latency (e.g., FID
increases from 113.39 to 113.92 with latency decreases from 1.12s to 0.98s). In terms of latency,
compared to Hybrid SD, ObCLIP incurs about N× FLOPs due to the oblivious generation. However,
with the cache and reuse accelerations enabled, the latency of ObCLIP is nearly reduced by 50%,
which is comparable to Hybrid SD when N = 2 (e.g., latency increases from 0.55s to 0.57s when
k = 10) and about 3× slower when N = 6. Given the strong privacy protection brought by ObCLIP,
such computation cost is significantly reduced. Especially,ObCLIP is orders of magnitude faster than
HE-Diffusion and about 4.4 ∼ 7.6× faster than vanilla OG. The results validate the effectiveness
of ObCLIP, which offers rigorous privacy and better generation performance (measured by FID and
CLIP scores), with only a marginal increase in latency.

Table 2: Multi-Attribute ObCLIP on candidate prompt dataset. For FLOPs, we use a(+b), where a
and b refer to cloud/device computations. For latency, we only measure the cloud-side runtime.

1-Attribute (gender, N = 2) 2-Attribute (gender + age, N = 6)
Generation Method FID ↓ IS ↑ CLIP ↑ FLOPs (T) Latency (s) FID ↓ IS ↑ CLIP ↑ FLOPs (T) Latency (s)

Realistic Vision v4.0 113.45 4.69 0.3322 18.53 (+0) 1.12 113.39 5.32 0.3215 18.53 (+0) 1.12
small-sd 128.87 5.04 0.3051 0 (+11.20) 0.78 118.19 5.11 0.2980 0 (+11.20) 0.78

Vanilla OG 113.45 4.69 0.3322 37.06 (+0) 2.51 113.39 5.32 0.3215 111.18 (+0) 7.47

HE-Diffusion - >106 - >106

Hybrid SD (k = 10) 117.18 4.96 0.3215 7.41 (+6.54) 0.55 114.05 5.02 0.3226 7.41 (+6.54) 0.55
ObCLIP(k = 10) 117.18 4.96 0.3215 14.82 (+6.54) 0.97 114.05 5.02 0.3226 44.46 (+6.54) 2.90
+ cache 118.59 4.99 0.3168 12.26 (+6.54) 0.62 115.65 5.02 0.3174 36.76 (+6.54) 1.85
+ reuse 114.26 4.82 0.3167 11.48 (+6.54) 0.57 109.76 4.94 0.3152 33.28 (+6.54) 1.55

Hybrid SD (k = 5) 119.31 4.99 0.3107 3.71 (+8.96) 0.28 116.15 5.05 0.3117 3.71 (+8.96) 0.28
ObCLIP(k = 5) 119.31 4.99 0.3107 7.41 (+8.96) 0.49 116.15 5.05 0.3117 22.23 (+8.96) 1.48
+ cache 120.44 4.88 0.3079 6.13 (+8.96) 0.38 117.29 5.00 0.3091 18.38 (+8.96) 1.12
+ reuse 118.36 4.98 0.3077 5.74 (+8.96) 0.33 113.92 4.87 0.3076 16.64 (+8.96) 0.98

Results on Real-world Datasets. Table 3 and Table 4 (upper part) present the results for MS-COCO
and MJHQ datasets. For numbers marked with ∗, the total FLOPs should be multiplied by N .
Compared to distilled models, ObCLIP considerably reduces FLOPs while achieving better image
fidelity and stronger semantic alignment between image and prompt across various configurations.
When compared to base models, ObCLIP offers substantial FLOPs reduction at the cost of a slightly

8



higher FID. For instance, on SD and BK-SDM-small models, the FID of ObCLIP (k = 10, with
cache) increases from 13.86 to 15.73 with a reduction of FLOPs from 18.53T to 5.84∗T. Similarly,
on SDXL and Koala-700m models, ObCLIP (k = 10, with cache) achieves a FID of 30.79, which is
comparable to SDXL’s 30.67, while reducing the FLOPs from 159.35T to 45.11∗T — even lower
when N < 4. The trade-off between performance and latency can also be controlled via k: a larger k
yields better image fidelity at the expense of higher FLOPs.

Table 3: SD-v1.4 and BK-SDM-{small, tiny} on
30k MS-COCO dataset.

Generation Method FID ↓ IS ↑ CLIP ↑ FLOPs (T)
SD-v1.4 13.86 37.75 0.3015 18.53

BK-SDM-small 18.30 31.73 0.2710 10.90
ObCLIP(k = 10) 15.65 36.72 0.2946 7.41∗

+ cache 15.73 33.62 0.2865 5.84∗

ObCLIP(k = 5) 16.55 33.95 0.2839 3.71∗

+ cache 16.45 33.36 0.2833 3.06∗

BK-SDM-tiny 18.30 29.94 0.2681 10.25
ObCLIP(k = 10) 15.86 35.54 0.2936 7.41∗

+ cache 16.44 32.80 0.2887 5.84∗

ObCLIP(k = 5) 16.87 32.73 0.2812 3.71∗

+ cache 17.14 31.84 0.2854 3.06∗

Table 4: {SDXL, LCM-SDXL} and Koala-700m
on 5k MJHQ dataset. △t denotes timestep shift.
Generation Method FID ↓ IS ↑ CLIP ↑ FLOPs (T)
SDXL 30.67 26.31 0.3464 159.35
koala-700m 36.11 22.06 0.3263 58.85

ObCLIP(k = 10) 31.92 24.56 0.3389 63.74∗

+ cache 30.79 24.52 0.3320 45.11∗

ObCLIP(k = 5) 32.42 23.70 0.3337 31.87∗

+ cache 31.97 23.61 0.3317 24.41∗

LCM-SDXL 33.25 28.22 0.3296 50.99
ObCLIP (k=4,△t=8) 33.92 27.55 0.3315 25.50∗

+ cache (△t = 8) 34.12 27.15 0.3311
+ cache (△t = 10) 45.51 22.64 0.3293
+ cache (△t = 4) 39.07 22.73 0.3166
+ cache (△t = 0) 51.85 16.94 0.2936

21.78∗

Scalability to Distilled Models. We hereby further explore the scalability of ObCLIP to step-distilled
cloud models. Note that the LCM-SDXL uses a 8-step scheduler, while Koala-700m uses standard
25-step scheduler. We adopt k = 4, r = 2 for acceleration. Besides, to align the denoising timesteps
between cloud and device, we propose to apply a timestep shift as tdevice = tcloud + △t. A
smaller or larger△t introduces incompatible denoising scales. As depicted in the bottom of Table 4,
△t = 8 yields the best performance (marked in gray). We provide visual examples in Appendix D.7.
Compared to the standalone LCM-SDXL, ObCLIP (without cache) achieves a 0.67 drop in FID, a
slightly better CLIP score, and reduces FLOPs from 50.99 to 25.50∗. With cache enabled, the FLOPs
are further reduced by approximately 15%, with only a marginal FID drop of 0.2.

Additional Overhead. In ObCLIP, we introduce two additional operations: 1) device-side oblivious
transformation; 2) cloud-to-device latent transmission. The runtime for detecting sensitive attributes
using the fine-tuned DistilBERT model on a single V100 GPU is about 6.37ms. According to the
report 2, the latency on iPhone 13 Pro is below 10ms. For cloud-to-device transmission, the noise
latent is sized at 4 × res × res × N . Taking SD-v1.4 as an example, where res = 64, the total
data in FP16 precision is ∼ 32N KB. Considering the average WiFi bandwidth of 18.88Mbps [14],
the total transmission time is around 0.013N seconds. Even for N = 30, the transmission time is
approximately 0.39 seconds, demonstrating an acceptable overhead. We note that private information
retrieval (PIR) [1, 29] can also be employed for this transmission, achieving a communication size of
O(log2 N) or O(

√
N), albeit at the expense of O(N) server computation. This approach may be

preferable when the bandwidth is limited. Due to page limitation, we provide a more comprehensive
efficiency evaluation and detailed efficiency improvement breakdown in Appendix D.5∼D.6.

5.3 Qualitative Results

Effect of k. Figure 7a and Figure 7b show the samples generated using base models and ObCLIP (with
cache) with different k. One observation is that with the guidance of large cloud models, ObCLIP
achieves better semantic alignment and finer local details. For example, Koala-700m mistakenly
generates a girl for the second prompt, while small-sd generates three overlapping teddy bears.
Besides, a larger k exhibits better visual quality—closer to that of large cloud models—which is
consistent with our previous quantitative findings.

Effect of batch reuse. Furthermore, we present the samples generated with different acceleration
strategies in Figure 8. Specifically, the reuse across different gender, age, and ethnicity attributes
results in strong semantic alignment, even when the attributes are contradictory (e.g., from female to
male). Global structural information unrelated to the sensitive attributes—such as hairstyle and ges-
ture—are well preserved, while the transformation to the target attribute is effectively accomplished.

2https://machinelearning.apple.com/research/neural-engine-transformers
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Realistic Vision v4.0 small-sdObCLIP (𝒌 = 𝟏𝟎) ObCLIP (𝒌 = 𝟓)

Smoothies in plastic cups lined up in a glass container and a black crate full of oranges, bananas and pineapple.

three teddy bears giving each other a hug

A white cake topped with berries and a plate of fruit and cheeses.

(a) Results on Realistic Vision v4.0 and small-sd.

SDXL Koala-700mObCLIP (𝒌 = 𝟏𝟎) ObCLIP (𝒌 = 𝟓)

squirrel and rabbit. The setting is the forest. The time period is the Middle Ages.The artist is Lane Smith.

in a magical woodland there is a house in the shape of a high heel ornate shoe, red and black and spots, front
door and windows, ladybeetles and lots of flowers, moss, steps, photography,

Classic DD rpg scene, 16 feet Tall Hill Giants armed with clubs and wearing fur in battle against human viking 
soldiers, Wooden fortress in northern european forest Hills background, photorealistic, Epic action pose

(b) Results on SDXL and Koala-700m.
Figure 7: Images generated by cloud (left), device (right) and ObCLIP (middle) with different k.

For instance, reusing female-associated attention maps in male image generation yields a male with
long hair, illustrating both structural consistency and effective attribute modification.

Faceshot Portrait of pretty young (18-year-old) male Caucasian with black hair

ObCLIP

male 
← female

young 
← old

Caucasian 
← African

SD-v1.4

① Switch point ② Cache

③ Reuse

BK-SDM-small

SD-v1.4

(a) SD-v1.4 and BK-SDM-small

SDXL

Koala-700m

Faceshot Portrait of pretty young (18-year-old) male Caucasian with black hair

① Switch point ② Cache ③ Reuse

ObCLIP

Caucasian 
← African

SDXL

(b) SDXL and Koala-700m
Figure 8: Qualitative visual results when using different server-side acceleration strategies.

6 Conclusion

In this paper, we propose an oblivious cloud-device hybrid image generation scheme, acting as a
plug-and-play safeguard to ML inference services, to provide rigorous prompt privacy, with better
utility against on-device generation and only slightly increased server computation cost. Extensive
experiments across multiple datasets demonstrate that ObCLIP provides comparable utility to cloud
models with slightly increased server cost compared to non-private baselines.

Limitations. Despite the significant efficiency improvement over private baselines, a limitation lies in
the inherent nature of oblivious generation, which leads to a sub-linear increase in computation relative
to the number of candidate prompts. A potential mitigation is to achieve statistical indistinguishability,
thereby reducing the effective size of candidate prompts. This can be achieved by differential privacy-
based top-k selection of these candidate prompts. By choosing appropriate privacy budget, we can
achieve measurable privacy, while providing a much better efficiency. In the future, we also plan to
extend our approach to the image-to-image generation domain, where inputs include not only text
prompts but also real reference images—such as human faces—that carry more sensitive information.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experiments are conducted on open-source models and three datasets—two
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• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We do not have the time to refactor the code, which is of poor readability.
We promise to open-source the code to reproduce the experimental results on GitHub once
accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We follow the standard method of prior work as we have mentioned in Section
5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conduct the experiments many times and report average results. In Figure 3,
we show the one standard deviation as a shaded region.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We mention that we run the experiments on 1 NVIDIA V100 GPU. The
specific configurations are included in the Section 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential positive societal impacts of using ObCLIP for protect-
ing the prompt privacy in the Introduction Section 1. More detailed elaboration is provided
in Appendix A.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The answer NA means that the paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original paper that produced the code, dataset and models.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

19



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only use the LLM for paper writing, editing, or formatting purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Broad Impacts

This paper presents work whose goal is to advance the field of Machine Learning. Our work aims
to address critical privacy concerns surrounding user prompts in widely adopted stable diffusion
based text-to-image generation services. To safeguard sensitive user information during inference,
we propose an oblivious cloud-device hybrid image generation scheme, acting as a plug-and-play
safeguard to ML inference services, to provide rigorous prompt privacy. We also acknowledge the
redundant computational overhead introduced by generating intermediate latents for all candidate
prompts in oblivious generation. Beyond our proposed acceleration strategies, further improvements
could be achieved by constraining the sampling space of candidate prompts. Ultimately, this reflects
a fundamental trade-off between privacy and efficiency. These advancements have the potential to
make private LLM inference more practical and scalable for real-world applications.

B Implementation Details

B.1 Oblivious Cloud-Device Hybrid Generation Algorithm

The detailed design is presented in Algorithm 1. Note that in line 2, all_combination refers to
enumerating all possible combinations by traversing every value of each attribute Fi ∈ Foccur, where
Fi = {f1, . . . , fq}.

Algorithm 1: Oblivious Hybrid Generation
Input: User prompt p = {w1, ..., wi, ..., wn}, wi corresponds to some sensitive attribute

Fi ∈ F = {F1, ..., Fm}, with a value space of size q as Fi = {f1, ..., fq}, a client-side
small diffusion modelMC and a small language modelMLM , a server-side large model
MS , denoising steps T = {tT−1, ..., t0}, switch point k, random latent zT ∼ N (0, I),
VAE decoder D(·)

Output: Generated image y
/* Oblivious Transform: construct candidate prompts based on p */

1 Foccur =MLM (p), with Fi ∈ Foccur = {f1, ..., fq}
2 P ← all_combination(p,Foccur)
3 ẑT = repeat(zT , N), with N = |P|
/* Run initial k steps on cloud-side */

4 for t ∈ T [: k] do
5 ẑt−1 =MS(ẑt,P, t)
/* Extraction:ẑT−k are sent to device, who chooses the actual latent

zT−k */
6 zT−k = ẑT−k,j , s.t. pj ∈ P and pj = p
/* Run remaining T − k steps on device-side */

7 for t ∈ T [k :] do
8 zt−1 =MC(zt, p, t)

9 y = D(z0)
10 return y

B.2 Batch Reuse Algorithm

In this section, we provide the batch-reuse in attention modules in Algorithm 2.

B.3 Candidate Prompt Dataset Construction
template:

- "headshots portrait with a $age $ethnicity $gender covered in religious tattoos ."
- "$age $ethnicity $gender in hat Fashion portrait photo"
- "Smiling $age $ethnicity $gender sitting on flower field , Outdoor portrait photo"
- "$age red haired $gender $ethnicity urban portrait photo"
- "Faceshot Portrait of pretty $age $ethnicity $gender wearing a high neck sweater"
- Closeup portrait photo of a $age $ethnicity $gender , wearing a rugged leather

jacket , with a five o’clock shadow and prominent laugh lines around his eyes ,
captured in soft , golden hour lighting ."
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Algorithm 2: Batch-reused Attention Module

Input: Hidden states Q = {qi}Ni=1, Encoder hidden states K = {ki}Ni=1,V = {vi}Ni=1 for N
candidate prompts, Pivot sample index i∗ for pivot prompt p

Output: Attention outputs O = {oi}Ni=1
/* Compute query q∗, key k∗ for pivot prompt p (e.g., i∗ = 0) */

1 q∗ = to_q(Q[i∗])
2 k∗ = to_k(K[i∗])
/* Compute attention map for pivot prompt */

3 m∗ = get_attention_map(q∗, k∗)
/* Compute value v for all candidate prompts */

4 V = to_v(V)
/* Compute attention outputs for all candidate prompts */

5 M = broadcast(m∗, N)
6 O = M · V
7 return O

- "RAW photo , (closeup :1.2), portrait of a $age $ethnicity $gender , wearing minimal
makeup , showcasing the freckles , with a serene expression in a lush botanical
garden , illuminated by gentle dappled sunlight ."

- "High -quality , face portrait photo of a $age $ethnicity $gender , wearing glasses ,
revealing the fine lines and character on the forehead ."

- "B&W photo of a $age $ethnicity $gender , shot from the side , highlighting elegant
profile and the delicate lines etched across cheeks ."

- "High -quality , closeup portrait photo of a $age $ethnicity $gender , wearing
traditional clothing ."

age:
- young
- middle -aged
- old

gender:
- male
- female

ethnicity:
- caucasian
- african
- asian
- indian
- european

Listing 1: Prompt templates and sensitive attributes taxonomy.

We list the 10 templates used in constructing a small prompt dataset, tailored for candidate prompts,
with replacement on sensitive attributes age, gender and ethnicity. We consider age ∈ {young,
middle-aged, old}, gender ∈ {male, female} and ethnicity ∈ {caucasian, african, asian, indian,
european}.

C Security Analysis

Proof of Theorem 1. Consider a user prompt p. We obtain its candidate prompts as P =
candidate_prompt(p) by traversing the entire value space for each sensitive attribute in p. Then,
we randomly select another sensitive prompt p′ ∈ P . Since we traverse the sensitive attributes to get
P , we have P = candidate_prompt(p) = candidate_prompt(p′). That is,

View(p) = View(p′), ∀p′ ∈ P

We thus have, for any two sensitive prompts p, p′ ∈ P , the server’s observable view is identically
distributed. That is, no efficient adversary can guess the correct p with significantly better probability
than random guessing (1/N ) as:

|Pr[A(P = p∗)]− 1

N
| ≤ λ

where λ is negligible. The proof shows that the server learns nothing about the true input p beyond
what is leaked by the candidate prompts (i.e., the value space for sensitive attributes) and those
non-sensitive tokens, which are independent of the specific sensitive tokens.
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D Additional Experiments

D.1 Self-Attention Visualization

Figure 9: The top components obtained using SVD of self-attention maps for two candidate prompts.

Figure 9 illustrates the self-attention maps for two candidate prompts by varying gender and age
attributes. Specifically, from “An elderly woman with short hair, wearing a knitted sweater, sitting in a
rocking chair.” to “A young man with short hair, wearing a knitted sweater, sitting in a rocking chair.”.
We capture the self-attention maps in middle layers and run SVD to obtain the top components.

D.2 Model Statistics

Table 5 presents the quantitative statistics for standalone cloud and device models, including utility
scores, parameter size and FLOPs consumption. We adopt 25-step DPM scheduler for all these
models by default. For LCM-SDXL, we use 8-step LCM scheduler instead. The FLOPs and latency
are measured for a batch size of 4. We run each experiment ten times and report the average results.

Table 5: Model statistics. By default, we use 25-step DPM scheduler. B = 4.
Generation Method FID ↓ IS ↑ CLIP ↑ #Params (M) FLOPs (T) Latency (s)

MS-COCO

SD-v1.4 13.86 37.75 0.3015 859.40 74.10 5.01
BK-SDM-small 18.30 31.73 0.2710 482.28 43.60 3.01
BK-SDM-tiny 18.30 29.94 0.2681 323.34 41.00 2.87

Realistic Vision v4.0 16.21 37.39 0.3033 859.40 74.10 4.42
small-sd 14.59 35.06 0.3046 579.30 44.80 2.96

MJHQ

SDXL 30.67 26.31 0.3464 2562.13 637.40 29.33
koala-700m 34.11 22.06 0.3263 2562.13 235.40 12.00
LCM-SDXL (8-step) 33.25 28.22 0.3296 777.53 203.97 8.35

D.3 Visualization of Hybrid Generation

In this section, we provide the visualization of generated images for large server model (top), and
ObCLIP with/without server-side acceleration (middle and bottom) in Figure 10 and Figure 11. The
used prompt is “Faceshot Portrait of pretty young (18-year-old) female Caucasian wearing a high
neck sweater”. We mark the two images with an optimal balance between image quality and server
computation cost, i.e., when k ∈ {5, 10}. The better semantic from large server model are well
preserved with minimal server denoising cost.
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𝑘 = 1 𝑘 = 2 𝑘 = 5 𝑘 = 10 𝑘 = 15 𝑘 = 20 𝑘 = 24

SD-v1.4

ObCLIP (𝑘)

ObCLIP (with cache)

Figure 10: Visualization of SD-v1.4 + BK-SDM-small

𝑘 = 1 𝑘 = 2 𝑘 = 5 𝑘 = 10 𝑘 = 15 𝑘 = 20 𝑘 = 24

Realistic_Vision_V4.0

ObCLIP (𝑘)

ObCLIP (with cache)

Figure 11: Visualization of Realisti-Vision-V4.0 + small-sd

D.4 3-Attribute Oblivious Hybrid Generation

The detailed utility scores for 3-attribute oblivious hybrid image generation are presented in Table 6.
Compared to the large server-side model, there is only a marginal drop in image quality and text-image
alignment, while achieving significantly better utility than the on-device small model.

Table 6: Evaluation results for 3-attribute oblivious generation.
Generation Method FID ↓ IS ↑ CLIP ↑
Realistic 111.87 4.78 0.3322

small-sd 115.96 5.02 0.3034

Vanilla OG (Realistic) 111.87 4.78 0.3322

OG (k = 10) 112.75 5.04 0.3214
OG (k = 10) w cache 113.31 5.03 0.3171
OG (k = 10) w cache + reuse 110.22 4.62 0.3138

OG (k = 5) 113.57 5.02 0.3108
OG (k = 5) (w cache) 114.07 5.04 0.3083
OG (k = 5) (w cache) + reuse 113.30 4.66 0.3077

D.5 Comprehensive Efficiency Evaluation

We here present a more comprehensive efficiency evaluation across different candidate prompt size
N to validate the effectiveness of ObCLIP. As shown in Table 7, in most cases, ObCLIP achieves
server-side efficiency comparable to that of server-only image generation on both SD-v1.4 and SDXL
models. When accounting for device-side computation, the total latency remains of the same order of
magnitude as the baseline. These results demonstrate the superior performance of ObCLIP, which
offers rigorous privacy with only a slight increase in overall computation cost.
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Table 7: Comprehensive efficiency evaluation.
FLOPs Latency (s)

k = 5 k = 10 k = 5 k = 10Generation Method
N = 4 N = 6 N = 4 N = 6 N = 4 N = 6 N = 4 N = 6

SD (SD-v1.4 + BK-SDM-small)

SD-v1.4 18.53 1.28
Non-Private Hybrid SD 3.71 7.41 0.30 0.51

HE-Diffusion - > 106

Vanilla OG 74.10 111.15 74.10 111.15 5.01 7.47 5.01 7.47
ObCLIP 14.82 22.23 29.64 44.46 1.11 1.48 1.93 2.90

+ cache 12.25 18.38 23.36 35.04 0.67 1.12 1.33 1.85
+ reuse 11.13 16.64 21.86 32.72 0.61 0.98 1.12 1.55

Private

Total ( + device) 19.85 25.36 28.40 39.26 1.25 1.62 1.65 2.08

SDXL (SDXL + koala-700m)

SDXL 159.35 7.45
Non-Private Hybrid SD 31.87 63.74 1.45 2.84

Vanilla OG 637.40 956.10 637.40 956.10 29.33 43.16 29.33 43.16
ObCLIP 127.48 191.22 254.96 382.44 5.92 8.43 11.35 16.90

+ cache 97.62 146.44 180.42 270.62 4.08 6.81 7.98 11.28
+ reuse 86.32 128.38 165.34 246.55 3.51 5.05 6.81 9.92Private

Total ( + device) 133.40 175.46 200.65 281.86 6.07 7.61 8.88 11.99

D.6 Efficiency Improvement Breakdown

Take SD-v1.4 and BK-SDM-small hybrid generation with switch point k = 10, cache point r = 4,
skip point s = 6 as an example. We illustrate the per-step FLOPs of server-side denoising in Figure 12,
where the reduced computation FLOPs are highlighted in yellow. Prior to the cache point, only batch
reuse of attention maps is enabled, resulting in a reduction of approximately 10%. Subsequently,
with the addition of temporal attention reuse and block skipping, reductions of about 20% and nearly
50% are achieved, demonstrating the effectiveness of the overall acceleration strategy.
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Figure 12: Per-step FLOPs (T) for SD-v1.4 with k = 10, r = 4, s = 6.

D.7 Visualization of Step-distilled Model Generation

In this section, we present visualizations of images generated with the server-side LCM-SDXL
(optimized using step distillation) and client-side Koala-700m models. Note that we use an 8-step
LCM scheduler for LCM-SDXL and a 25-step DPM scheduler for Koala-700m. Recall that as
mentioned in Section 5.2, we apply a timestep shift △t to align the timesteps between cloud and
device as tdevice = tcloud +△t. We here vary△t ∈ {0, 2, 4, 6, 8}. The input prompt is “Faceshot
Portrait of a pretty young (18-year-old) male African with black hair.” To demonstrate the effect of
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batch reuse, we choose a candidate prompt: “Faceshot Portrait of a pretty young (18-year-old) male
Caucasian with black hair.” As shown in Figure 13, the final generated images show poor fidelity
when△ < 6, with△ = 8 yielding the best visual quality. Additionally, the text-image semantics are
well aligned.

Timesteps = [999, 879, 759, 639, 499, 379, 259, 139]

Timesteps = [951, 913, 875, 837, 799, 761, 723, 685, 647, 609, 571, 533, 495, 457, 419, 381, 343, 305, 267, 229, 191, 153, 115, 77, 39]

LCM-SDXL

Koala-700m

Faceshot Portrait of pretty young (18-year-old) male {Caucasian, African} with black hair

① Switch point

② Cache

③ Reuse

ObCLIP

Figure 13: Visualization of LCM-SDXL + Koala-700m.

27


	Introduction
	Related Work
	Preliminary
	ObCLIP: Design
	Oblivious Cloud-Device Hybrid Image Generation
	Server-side Acceleration
	Batch Redundancy
	Temporal Redundancy

	Security Analysis

	Experiments
	Experiment Settings
	Quantitative Results
	Qualitative Results

	Conclusion
	Broad Impacts
	Implementation Details
	Oblivious Cloud-Device Hybrid Generation Algorithm
	Batch Reuse Algorithm
	Candidate Prompt Dataset Construction

	Security Analysis
	Additional Experiments
	Self-Attention Visualization
	Model Statistics
	Visualization of Hybrid Generation
	3-Attribute Oblivious Hybrid Generation
	Comprehensive Efficiency Evaluation
	Efficiency Improvement Breakdown
	Visualization of Step-distilled Model Generation


