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ABSTRACT
Distance-based classification is among the most competitive classi-

fication methods for time series data. The most critical component

of distance-based classification is the selected distance function.

Past research has proposed various different distance metrics or

measures dedicated to particular aspects of real-world time series

data, yet there is an important aspect that has not been consid-

ered so far: Robustness against arbitrary data contamination. In this

work, we propose a novel distance metric that is robust against ar-

bitrarily “bad” contamination and has a worst-case computational

complexity of O(n logn). We formally argue why our proposed

metric is robust, and demonstrate in an empirical evaluation that

the metric yields competitive classification accuracy when applied

in k-Nearest Neighbor time series classification.

CCS CONCEPTS
•Mathematics of computing→ Time series analysis; • Com-
puting methodologies → Classification and regression trees; •
Information systems→ Clustering.
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1 INTRODUCTION
Time series data classification is an important task in many do-

mains such as data mining, machine learning and econometrics.

Extensive past evaluations [6] have shown that k-Nearest Neighbor

(k-NN) classification is among the most competitive classification

approaches for time series data. In simple terms, k-NN classification

assigns a query time series instance the class based on its k nearest

neighbors in a labeled training set. As such, the k-NN classifier is

a distance-based classifier, since its distance function is the only
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component that discriminates between classes. The same applies

to distance-based clustering algorithms [15, 21].

The data mining and machine learning communities have pro-

posed numerous different distance functions for improving clas-

sification and clustering accuracies on benchmark datasets [1, 6]

and for accelerating the practical computation [14, 16, 17, 20, 23].

However, there is an important aspect of distance measures that

was not considered so far to the best of our knowledge: Robustness
against arbitrary data contamination. While previous research has

proposed distance measures that are “robust” against additive white

Gaussian noise [13] or against temporal misalignment [22], we fol-

low the definition used in the field of robust statistics. A crucial

measure for determining the robustness of a distance function is

breakdown point (BP) analysis [11]. The asymptotic BP describes

the amount of contamination in the data that an estimator (in this

case a distance function) can tolerate before it will be fully biased

by the contamination in the worst case. For example, the Euclidean

distance has an asymptotic BP of zero: If a single observation in one

of the time series instances it compares is contaminated to (plus

or minus) infinity, then the Euclidean distance becomes infinite as

well, regardless of the remaining observations.

To address this issue, one may propose to use the raw Edit dis-

tance [18], as it is robust against arbitrary contamination at a few

observations. However, Edit distance is susceptible to a different

type of contamination that is routinely overlooked, as it is trivially

fulfilled by most distance measures. If time series data are subject

to a tiny contamination at every single data point, then the Edit dis-

tance will become very large. One may be tempted to address this

issue by defining a small tolerance interval suggested by Chen et

al. [3], yet this is difficult if the variance of the data is large or time-

dependent, which is a well-known behavior of many econometric

time series [8, 19]. Further, the time series classification accuracy of

the raw Edit distance is poor for real time series data. If one extends

Edit distance to an elastic (non-lockstep) variant thereof, such as

Edit distance with real penalty [2], then the classification accuracy

may increase, yet the asymptotic BP immediately drops to 0 .

Since all existing distance measures either have a low asymptotic

BP or else yield a low classification accuracy, we aim to fill this

gap. In this work, we propose a novel distance metric which is

formally robust according to Huber’s definition [11] against a small

percentage of contaminated observations, and robust against tiny

deviations at many observations. Additionally, we show that its

classification accuracy is not significantly different from other dis-

tance metrics and that our metric has a worst-case computational

complexity of O(n logn). The source code of our implementation

and a script that reproduces all results can be found online.
1
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2 NOTATION AND PROBLEM FORMULATION
2.1 Theoretical Concepts
Let x = {xt , t ∈ 1, . . .,n} and y = {yt , t ∈ 1, . . .,n} be two time

series instances and d : Rn × Rn → R a distance function for

comparing them. For an efficient distance-based classification, it is

advantageous if d(·) is a metric, as this allows a variety of run-time

acceleration techniques [9, 10]. To be a metric, d(·) has to fulfill the
following properties for all x ,y ∈ Rn :

• d(x ,y) ≥ 0 Non-negativity
• d(x ,y) = 0⇔ x = y Identity of Indiscernibles
• d(x ,y) = d(y,x) Symmetry
• d(x , z) ≤ d(x ,y) + d(y, z) Triangle Inequality

A typical example for a distance metric is the Euclidean distance

e(x ,y) =

√√ n∑
t=1
(xt − yt )2. (1)

If a distance function d(·) fulfills all properties except the identity
of indiscernibles, then it is called a pseudometric.

To evaluate the robustness of a distance function, we adapt the

definition of the breakdown point given in [11]. Specifically, let

dsup = supx,y∈Rn d(x ,y) be the largest possible value the distance

function can obtain theoretically. Then, the breakdown point β⋆d (n)
is given by

β⋆d (n) = min

{
k

n

��� supd(x ,x + K) = dsup} (2)

where the supremum is over all x ∈ Rn and over all contamination

processes K = {Kt , t ∈ 1, . . .,n} that assume arbitrary non-zero

values in at most k positions and zero otherwise. In simple terms,

the breakdown point describes the highest percentage of contami-

nated observations that function d(·) can tolerate. For example, it

is evident that for the Euclidean distance contaminating a single

time point suffices, i.e., if K1 = ∞ and Kt = 0 for t = 2, . . .,n, then
e(x ,x + K) = dsup = ∞ for every x ∈ Rn ; thus, β⋆e (n) = 1/n. For

clarity, the asymptotic BP is obtained by evaluating β⋆d (n) as n tends

to infinity.

2.2 Classification-Specific Aspects
To link the theoretical concept of breakdown points with practical

classification, we formulate two classification-specific notions of

robustness. To this end, let C = {C1, . . .,Cr } denote a set of time

series classes and d(·) a candidate distance function.
Definition 2.1. Contamination Tolerance: A distance function

d(·) tolerates ˆk contaminated observation w.r.t. C if

∀i, j , i ∈ 1, . . ., r : ∀x ∈ Ci : ∀y ∈ Cj : d(x ,x + K) < d(x ,y). (3)

holds for every contamination processes K = {Kt , t ∈ 1, . . .,n} that

assumes arbitrary non-zero values in at most
ˆk positions.

Intuitively, assume that a distance function d(·) ideally separates

class Ci from other classes Cj, j,i . Function d(·) will tolerate up to

ˆk contaminated observations if the distance between an uncontam-

inated time series instance x and a contaminant variant thereof

x + K is smaller than the distance between x and an instance from

a different class y.

Table 1: The components of the proposed ensemblemetric E.
The top three members are metrics, while the bottom three
are pseudometrics.

Member name Definition

Euclidean distance e(x ,y)
Log-distance ℓ(x ,y)
Raw Edit distance Edit(x ,y)

Robust Euclidean distance e(
→
m(x),

→
m(y))

Robust Log-distance ℓ(
→
m(x),

→
m(y))

Robust Raw Edit distance Edit(
→
m(x),

→
m(y))

To specify imprecision invariance as mentioned in Section 1, i.e.

invariance to tiny changes, we introduce an imprecision process

{εt } that is negligibly small at all t . Specifically, we assume that,

for all t , |εt | ≤ εmax, where εmax is much smaller than the standard

deviation (or some norm) of the time series x .

Definition 2.2. Imprecision Invariance: A distance function d(·) is
invariant to an imprecision of εmax w.r.t. C if

∀i, j , i ∈ 1, . . ., r : ∀x ∈ Ci : ∀y ∈ Cj : d(x ,x + ε) < d(x ,y) (4)

holds for every imprecision processes ε = {εt , t ∈ 1, . . .,n} that
satisfies |εt | ≤ εmax for every t .

In other words, assume distance function d(·) perfectly discrimi-

nates class Ci from Cj, j,i . Function d(·) is invariant to an impreci-

sion of εmax if the distance between an instance x and almost the

same instance x + ε is smaller than the distance between x and an

instance from another class y.
Contamination tolerance and imprecision invariance are very

different properties. There are not many metrics that fulfill both

simultaneously: For example, no metric induced by an Lp norm

with a finite p ≥ 1 is contamination tolerant for any non-zero
ˆk .

Also, while many popular metrics are imprecision invariant, some

metrics such as the Edit distance are susceptible to it.

3 METHODS
In this section, we present a novel metric which can tolerate con-

siderable contamination and is invariant to imprecision. The metric

is obtained by aggregating an ensemble of metrics and pseudo-

metrics in a way that preserves their discriminatory power while

guaranteeing robust results.

3.1 Metric Ensemble Members
The ensemble consists of three metrics and three pseudometrics.

The distances measured by these metrics are combined via a scaling

function and an arbitraryLp norm, with p ≥ 1, to obtain the metric

E(x ,y). A summary of the ensemble members can be seen in Table 1.

Definition 3.1. Log-distance: Let x ,y ∈ Rn be two real-valued

n-dimensional observations. Then, the Log-distance ℓ(·) between x
and y is given by

ℓ(x ,y) =
n∑
t=1

log(1 + |xt − yt |). (5)
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Proposition 3.2. The Log-distance ℓ(·) is a metric.

Proof. Since log(x) : R+ → R is a strictly monotonic subaddi-

tive function, log(1 + x) is also a strictly monotonic subadditive

function that is zero iff x = 0. Consequently, log(1+ |x −y |) also ful-
fills these properties and is a metric by Kelly’s theorem [12, p. 131].

That the sum of metrics is a metric [7] completes the proof. □

For 1-dimensional data, the Log-distance is asymptotically

smaller than any Lp metric with p ≥ 1, since the logarithm grows

slower than an arbitrary polynomial, i.e. lim

z→∞
log(z)
P (z) = 0, z ∈ R.

This property is beneficial when one expects a small number of

large outliers in time series data xt . L
p
metrics such as the Eu-

clidean distance will be much more influenced by a single large

difference than several small deviations that sum up to the same

value. The Log-distance will weight several small changes higher

than one large change due to subadditivity of the logarithm.

The remaining two metrics of the ensemble are the Euclidean

distance e(·) as defined in Equation (1) and the raw Edit distance

Edit(x ,y) =
n∑
t=1

ϕt , ϕt =

{
0 xt = yt

1 xt , yt
(6)

which is equivalent to the number of observations where xt and yt
differ. While the Edit distance tolerates up to n − 1 contaminated

observations and is sensitive to imprecision, the Euclidean distance

e(·) is invariant to imprecision but sensitive to contamination. The

Log-distance ℓ(·) aims to present a middle-ground between the

two. Compared to the Euclidean distance it is “more” sensitive to

imprecision and “less” sensitive to contamination, while the inverse

holds when it is compared against the Edit distance. However, in

terms of robustness, the Euclidean distance and the Log-distance

are asymptotically equivalent, since they have the same BP β⋆e (n) =

β⋆
ℓ
(n) = 1

n . Hence, when confronted with arbitrary contamination,

both metrics become equally useless in the worst case.

3.2 Pseudometric Ensemble Members
To raise the BP of the metrics in the ensemble E, one can introduce

a function composition with a function that has a high BP while

preserving metric properties. Let m(x) be the median of x . As a
measure of central tendency, the median has a BP of β⋆m (n) =

0.5 + 1

n according to Huber’s definition [11]. However, computing

the median of time series data xt is meaningless, since it disregards

the temporal structure of xt by treating it like an unordered data set.
To exploit the asymptotic robustness of the median in the context of

time series, one can instead apply the median via a sliding window:

Definition 3.3. Let x be a time series instance and letw , an odd

integer in [3;n], be the size of a sliding window. The sliding median

→
m : Rn → Rn−w+1 of x is then defined as

→
m(x) = {m(x1, . . .,xw ),m(x2, . . .,xw+1), . . .,m(xn−w+1, . . .,xn )}.

(7)

If one computes the Euclidean, Log and Edit distance of

→
m , then

the result is no longer a metric — the identity of indiscernibles

becomes violated since the median is not an injective function.

However, the remaining metric properties are preserved:

Proposition 3.4. Let d(·) be a metric. Then the sliding median
distanceMd (x ,y) = d(

→
m(x),

→
m(y)) is a pseudometric.

Proof. Non-negativity, symmetry and triangle inequality follow

trivially from the application of d(·). □

The sliding median distance Md (·) has a BP of
w
2n , since, if all

contamination occurred at
w+1
2

consecutive observations, the me-

dian of all
w−1
2

windows containing these observations could be

contaminated to an arbitrary value.

3.3 Combining the Members
Since all six ensemble members operate on different scales, it is

desirable to convert them to the same scale without loss of general-

ity. Therefore we propose the following scaling function S(·) that
is applied after distance computation and that preserves all metric

properties:

Definition 3.5. Let d(·) be an arbitrary distance function. The

metric-preserving scaling S : R+ → [0; 1] of this metric is then

defined as

S(d(x ,y)) = 1 −
1

1 + d(x ,y)
. (8)

Lemma 3.6. Metrics are closed under scaling with S(·).

Proof. S(·) is a concave, monotonically increasing function with

S(d(x ,y)) = 0 ⇔ d(x ,y) = 0. Hence, it is a metric by Kelly’s

theorem [12]. □

After scaling, the ensemble members can be combined into a

single metric E(·) via an arbitrary Lp norm with p ≥ 1. Specifically,

we suggest the L2
norm. The resulting function is a metric, since

the sum of a pseudometric and a metric is a metric. In particular,

we propose the following ensemble:

E(x ,y) B

√√√√√√√√√√S(e(x ,y))2 + S(ℓ(x ,y))2 + S(Edit(x ,y))2

+ S(e(
→
m(x)),

→
m(y))2 + S(ℓ(

→
m(x),

→
m(y))2

+ S(Edit(
→
m(x),

→
m(y)))2

(9)

The ensemble E : Rn → [0;
√
6] has a BP of β⋆

E
= 1. This follows

from the fact that the measurements of the non-robust metrics

e(·) and ℓ(·) are mapped onto the interval [0,
√
2] and thus their

influence on the ensemble is restricted. The remaining members

have a BP of
w
2n or higher, and the inclusion of the Edit distance

raises the total BP to 1.

The ensemble has a worst-case computational complexity of

O(n logn) under the assumption that w = O(n). This arises from
the ensemble’s most expensive step, which is the computation of

the sliding median

→
m . A more detailed explanation can be found in

the Appendix.

4 PRACTICAL EVALUATION
In this section, we describe the experiments we conducted to show

that the proposed ensemble metric E has competitive classification

accuracy. Further, we validate that E tolerates contamination and

is imprecision invariant. We compared E with Euclidean distance

(Euc), Dynamic Time Warping [22] (DTW) with window sizew =
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100, Log-distance (Log), raw Edit distance (ED), and edit distance

with a tolerance interval (EDR) set to 10% of the median absolute

deviation.

4.1 Setup
In our practical evaluation, we conducted three experiments to

assess the following properties of the ensemble E:

• 1-NN classification error rate

• Contamination tolerance (cf. Equation (3))

• Imprecision invariance (cf. Equation (4))

For all three experiments we used 83 selected benchmark data from

the UCR Time Series Classification Archive [4]. All datasets which

contained non-real data such as missing values were omitted, which

was necessary since otherwise the behavior of the ensemble would

be undefined. Further, we were forced to omit all datasets in which

either training or test datasets contained more that 1000 instances

due to our limited computational resources.

For the classification accuracy experiment we computed the raw

accuracy of a 1-NN classifier based on the ensemble metric and

subtracted the resulting value from 1 to obtain the error rate. To

determine statistical significance, we then performed a Friedman’s

rank test [5].

The dataset-dependent contamination tolerance was computed

with the following procedure:

i) Assume d(·) perfectly separates all classes in the dataset.

ii) For every instance x ∈ Ci , count for how many y ∈ Cj, j,i
Equation (3) holds when k = 0.05 × n, i.e. 5% of the observa-

tions are contaminated to be ±∞

iii) Compute the ratio of this count and the number of instances

in Cj,i .

iv) Compute the mean over all instance-based ratios.

The window size of the ensemble E was set to w = 0.1 × n +
1 observations, which ensures that the window is always large

enough to be resilient against 5% contamination. The imprecision

invariance was computed similarly, only with Equation (3) replaced

by Equation (4), k set to n and εt ∼ U(−10
−10, 10−10). Theoretically,

εt should be as close to zero as possible. Yet the results below

suggest that the above interval is sufficiently small for asserting the

imprecision invariance property of the distance functions under

consideration.

4.2 Results
In this subsection we present a summary of the results of the three

experiments we conducted. The complete results can be found in

the Appendix.

Our first experiment showed that, in terms of classification error

rate, there is no significant difference between the ensemble E and

Euc, DTW or Log, but that ED and EDR are significantly worse

than E. A visual representation of this result is depicted in Figure 1.

The second and third experiment revealed that the only distance

functions which are both contamination tolerant and imprecision

invariant are the ensemble E and EDR. An overview of these results

can be found in Table 2.

Figure 1: Critical distance plot for the classification error
rate. Average ranks are depicted in order, where lower is
better and the horizontal bars highlight no significant dif-
ference. The ensemble E is not significantly different from
either Euc, DTWor Log, but significantly better than ED and
EDR. Functions labeled with an asterisk (*) are not metrics.

Table 2: Summary of the second and third experiments. The
ensemble E and EDR tolerate contamination on 56 and 79
data sets, respectively, while the other distance measures
never tolerate contamination. In terms of imprecision in-
variance, the first four distances are perfectly invariant,
while ED is susceptible and EDR is almost perfectly invari-
ant.

E Euc DTW Log ED EDR

Is a metric? ✓ ✓ × ✓ ✓ ×

Contam. tol. on # datasets 56 0 0 0 83 81

Imprec. Invar. on # datasets 83 83 83 83 0 79

Both on # datasets 56 0 0 0 0 79

5 DISCUSSION AND CONCLUSION
The goal of this work was to propose a distance function that

• is robust against arbitrary contamination

• is invariant to imprecision

• fulfills all metric properties

• has a competitive classification accuracy

• is computationally efficient.

The combined results of our theoretical analysis and of the prac-

tical evaluation suggest that the ensemble E has all of these prop-

erties. One might argue that the ensemble E is no improvement

over EDR, since both methods depend on one parameter which in-

fluences their classification accuracy. However, correctly choosing

an appropriate tolerance interval for time series with large or time-

dependent variance is difficult, while tuning the ensemble’s window

size is simpler — it should be just larger than the expected amount

of contamination. Additionally, E has a significantly better classi-

fication accuracy than EDR. The same holds for the Log-distance,

which we believe should be seen as a natural alternative to the

Euclidean distance.

Future work might consider less extreme cases of contamination

and determine precisely how this affects classification accuracy.

Further, evaluating robust distance functions on a clustering task
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with arbitrarily contaminated data seems a promising avenue for

the future.
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A DETAILED TIME COMPLEXITY ANALYSIS
A procedural description of the ensemble E is listed in Algorithm 1.

Since there are no directly listed loops, the ensemble is linear in the

complexity of the functions it applies. Hence, its worst-case time

complexity is equal to that of the function that requires the most

expensive computation. When looking at the distance functions, it

quickly becomes evident that these can be computed in O(n), since
these lockstep methods look at each observation only once. The

scaling function can be computed in O(1), so the only non-trivial

step is the computation of the sliding median.

Algorithm 1 Ensemble Metric E

Require: xt ,yt ,w
if w � 0 (mod 2) then
w ← w + 1

end if
medx ←

→
m(x)

medy ←
→
m(y)

dist1 ← Se (x ,y)
dist2 ← Sℓ(x ,y)
dist3 ← S

Edit
(x ,y)

dist4 ← Se (medx ,medy )

dist5 ← Sℓ(medx ,medy )

dist6 ← S
Edit
(medx ,medy )

return
√∑

6

i dist
2

i

Directly computing the sliding median requires one to sort the

observations in all windows. Since the most efficient sorting al-

gorithm requires O(w logw) steps, sorting all n −w + 1 windows
would take (n −w + 1) × O(w logw) = n × O(w logw) steps. We

assume that a certain small percentage of the n observations is

contaminated, so we must conclude thatw = O(n), which results

in a total complexity of O(n2 logn).
However, there exist more efficient algorithms for computing

the sliding median, and several implementations are available in C

libraries. If one starts by sorting the initial window, one consumes

O(n logn) time as argued above. After this, if one keeps the com-

putedwindow and an index list in thememory, the next window can

be computed by removing the oldest observation in O(1) time and

sorting in the new observation in O(logn) time. So, for all windows,

this algorithms requires O(n logn)+ (n−w)×O(logn) = O(n logn)
steps.

B PROOFS
This section contains alternate proofs of the propositions and lem-

mas presented in the main article. These proofs do no rely on Kelly’s

theorem and are easy to verify.

B.1 Proof of Proposition 3.2
Proof. Non-negativity: ℓ(x ,y) ≥ 0

ℓ(x ,y) = log(1 + |x − y |) ≥ log(1) = 0 ≥ 0

Identity of Indiscernibles: ℓ(x ,y) = 0⇔ x = y
This is trivial, since the log function has exactly one zero at

log(1 + |x − x |) = loд(1) = 0

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
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Symmetry
Trivial, due to absolute value.

Triangle Inequality: ℓ(x , z) ≤ ℓ(x ,y) + ℓ(y, z)

ℓ(x , z) = log(1 + |x − z |) ≤ log(1 + |x − y |) + log(1 + |y − z |)

log(1 + |x − z |) ≤ log

(
(1 + |x − y |)(1 + |y − z |)

)
1 + |x − z | ≤ (1 + |x − y |)(1 + |y − z |)

|x − z | ≤ |x − y | + |y − z | + |x − y | |y − z |

|x − z | ≤ |x − y | + |y − z |

□

B.2 Proof of Proposition 3.4
Proof. Non-negativity:Md (x ,y) ≥ 0

This follows trivially from the fact that d(·) ≥ 0.

Symmetry:Md (x ,y) = Md (y,x)
This also follows trivially from the symmetry of d(·).

Triangle Inequality:Md (x , z) ≤ Md (x ,y) +Md (y, z)

d(
→
m(x),

→
m(z)) ≤ d(

→
m(x),

→
m(y) + d(

→
m(y),

→
m(z)

a B
→
m(x), b B

→
m(y), c B

→
m(z)

d(a, c) ≤ d(a,b) + d(b, c)

□

B.3 Proof of Lemma 3.6
Proof. Non-negativity: S(x ,y) ≥ 0

1 −
1

1 + d(x ,y)
≥ 0

1

1 + d(x ,y)
≤ 1

1 + d(x ,y) ≥ 1

d(x ,y) ≥ 0

Identity of Indiscernibles: S(x ,y) = 0⇔ x = y
First we show S(x ,y) = 0 =⇒ x = y

1 −
1

1 + d(x ,y)
= 0

1 + d(x ,y) = 1

d(x ,y) = 0

Now we show S(x ,y) = 0 ⇐= x = y

S(x ,x) = 1 −
1

1 + d(x ,x)

= 1 −
1

1

= 0

Symmetry: S(x ,y) = S(y,x)
This is trivial, since d(x ,y) is symmetric.

Triangle Inequality: S(x , z) ≤ S(x ,y) + S(y, z)

1 −
1

1 + d(x , z)
≤ 1 −

1

1 + d(x ,y)
+ 1 −

1

1 + d(y, z)

−
1

1 + d(x , z)
≤ 1 −

1

1 + d(x ,y)
−

1

1 + d(y, z)

− 1 ≤ (1 + d(x , z)) −
1 + d(x , z)

1 + d(x ,y)
−
1 + d(x , z)

1 + d(y, z)

−
(
1 + d(x ,y)

) (
1 + d(y, z)

)
≤

(
1 + d(x , z)

) ( (
1 + d(x ,y)

) (
1 + d(y, z)

)
−
(
1 + d(x ,y)

)
−
(
1 + d(y, z)

) )
−
(
1 + d(x ,y)

) (
1 + d(y, z)

)
≤

(
1 + d(x , z)

) (
d(x ,y)d(y, z) − 1

)
− 1 − d(x ,y)d(y, z) − d(x ,y) − d(y, z) ≤ d(x ,y)d(y, z) − 1 − d(x , z)

+ d(x ,y)d(y, z)d(x , z)

d(x , z) − d(x ,y) − d(y, z) ≤ 0 ≤ d(x ,y)d(y, z)d(x , z)

□

C FULL EMPIRICAL RESULTS
This section contains tables with the complete empirical results.

The classification accuracy of Dynamic Time Warping was taken

from the results published in the UCR archive [4]. The names of

the used datasets and the complete results can be found below. The

first two tables list the classification error rate per distance function.

The second two table compare the contamination tolerance and the

imprecision invariance per distance function.



A Robust Distance Metric MileTS ’19, August 5th, 2019, Anchorage, Alaska, USA

Dataset Error rate
E Euc DTW Log ED EDR

ACSF1 0.28 0.46 0.36 0.17 0.90 0.48

Adiac 0.42 0.39 0.40 0.40 0.97 0.54

ArrowHead 0.21 0.20 0.30 0.20 0.61 0.31

Beef 0.33 0.33 0.37 0.40 0.80 0.50

BeetleFly 0.25 0.25 0.30 0.35 0.50 0.40

BirdChicken 0.45 0.45 0.25 0.35 0.50 0.35

BME 0.25 0.17 0.10 0.20 0.65 0.59

Car 0.27 0.27 0.27 0.28 0.77 0.30

CBF 0.06 0.15 0.00 0.11 0.67 0.38

Chinatown 0.06 0.05 0.04 0.05 0.45 0.03

Coffee 0.04 0.00 0.00 0.07 0.46 0.11

Computers 0.47 0.42 0.30 0.42 0.50 0.42

CricketX 0.37 0.42 0.25 0.37 0.92 0.71

CricketY 0.38 0.43 0.26 0.34 0.92 0.70

CricketZ 0.38 0.41 0.25 0.36 0.93 0.72

DiatomSizeReduction 0.07 0.07 0.03 0.08 0.70 0.08

DistalPhalanxOutlineAgeGroup 0.35 0.37 0.23 0.33 0.58 0.26

DistalPhalanxOutlineCorrect 0.29 0.28 0.28 0.26 0.42 0.30

DistalPhalanxTW 0.37 0.37 0.41 0.37 0.70 0.34

Earthquakes 0.35 0.29 0.28 0.33 0.75 0.75

ECG200 0.12 0.12 0.23 0.11 0.64 0.20

ECGFiveDays 0.18 0.20 0.23 0.21 0.50 0.36

EOGHorizontalSignal 0.60 0.58 0.50 0.67 0.83 0.83

EOGVerticalSignal 0.68 0.56 0.55 0.73 0.86 0.86

EthanolLevel 0.72 0.73 0.72 0.69 0.75 0.69

FaceFour 0.22 0.22 0.17 0.15 0.70 0.26

FiftyWords 0.34 0.37 0.31 0.31 0.97 0.61

Fish 0.22 0.22 0.18 0.23 0.88 0.30

Fungi 0.12 0.18 0.16 0.08 0.96 0.51

GunPoint 0.07 0.09 0.09 0.05 0.51 0.24

GunPointAgeSpan 0.03 0.10 0.08 0.00 0.49 0.17

GunPointMaleVersusFemale 0.01 0.03 0.00 0.01 0.47 0.21

GunPointOldVersusYoung 0.00 0.05 0.16 0.00 0.52 0.01

Ham 0.42 0.40 0.53 0.50 0.51 0.43

HandOutlines 0.14 0.14 0.12 0.14 0.46 0.18

Haptics 0.63 0.63 0.62 0.64 0.79 0.64

Herring 0.47 0.48 0.47 0.41 0.41 0.55

HouseTwenty 0.14 0.34 0.08 0.18 0.32 0.37

InlineSkate 0.66 0.66 0.62 0.64 0.83 0.69

InsectEPGRegularTrain 0.00 0.32 0.13 0.00 0.00 0.00

InsectEPGSmallTrain 0.00 0.34 0.27 0.00 0.00 0.00

LargeKitchenAppliances 0.47 0.51 0.21 0.42 0.67 0.67

Lightning2 0.18 0.25 0.13 0.18 0.46 0.51

Lightning7 0.33 0.42 0.27 0.26 0.74 0.71

Meat 0.07 0.07 0.07 0.07 0.65 0.07

Table 3: Classification error per distance function, Part 1. The ensemble E is not significantly different from DTW, Log or Euc.
ED and EDR frequently have a higher classification error than the remaining functions. Unsurprisingly, DTW has the lowest
overall error rate. Its elastic nature likely superior classification accuracy over lockstep distance functions.
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Dataset Error rate
E Euc DTW Log ED EDR

MedicalImages 0.31 0.32 0.26 0.29 0.49 0.53

MiddlePhalanxOutlineAgeGroup 0.45 0.48 0.50 0.47 0.44 0.49

MiddlePhalanxOutlineCorrect 0.25 0.23 0.30 0.25 0.43 0.24

MiddlePhalanxTW 0.49 0.49 0.49 0.45 0.73 0.47

OliveOil 0.13 0.13 0.17 0.17 0.83 0.60

OSULeaf 0.48 0.48 0.41 0.45 0.90 0.55

PigAirwayPressure 0.88 0.94 0.89 0.90 0.90 0.94

PigArtPressure 0.73 0.88 0.75 0.72 0.93 0.86

PigCVP 0.87 0.92 0.85 0.87 0.91 0.88

Plane 0.04 0.04 0.00 0.04 0.85 0.01

PowerCons 0.03 0.07 0.12 0.04 0.20 0.32

ProximalPhalanxOutlineAgeGroup 0.23 0.21 0.20 0.22 0.57 0.22

ProximalPhalanxOutlineCorrect 0.24 0.19 0.22 0.22 0.32 0.24

ProximalPhalanxTW 0.28 0.29 0.24 0.30 0.98 0.27

RefrigerationDevices 0.57 0.61 0.54 0.52 0.67 0.69

Rock 0.44 0.16 0.40 0.34 0.62 0.46

ScreenType 0.65 0.64 0.60 0.62 0.67 0.72

SemgHandGenderCh2 0.13 0.24 0.20 0.22 0.35 0.36

SemgHandMovementCh2 0.24 0.63 0.42 0.55 0.83 0.82

SemgHandSubjectCh2 0.16 0.60 0.27 0.42 0.80 0.77

ShapeletSim 0.52 0.46 0.35 0.49 0.50 0.50

ShapesAll 0.24 0.25 0.23 0.24 0.98 0.37

SmallKitchenAppliances 0.46 0.66 0.36 0.51 0.66 0.74

SmoothSubspace 0.02 0.09 0.17 0.00 0.67 0.15

SonyAIBORobotSurface1 0.24 0.30 0.27 0.31 0.57 0.37

SonyAIBORobotSurface2 0.13 0.14 0.17 0.12 0.38 0.21

Strawberry 0.06 0.05 0.06 0.05 0.36 0.05

SwedishLeaf 0.22 0.21 0.21 0.22 0.93 0.32

Symbols 0.10 0.10 0.05 0.10 0.84 0.20

SyntheticControl 0.07 0.12 0.01 0.13 0.83 0.35

ToeSegmentation1 0.29 0.32 0.23 0.27 0.46 0.36

ToeSegmentation2 0.15 0.19 0.16 0.12 0.18 0.21

Trace 0.31 0.24 0.00 0.21 0.76 0.32

UMD 0.25 0.24 0.01 0.24 0.48 0.51

Wine 0.33 0.39 0.43 0.35 0.50 0.48

WordSynonyms 0.38 0.38 0.35 0.34 0.91 0.63

Worms 0.48 0.55 0.42 0.56 0.44 0.64

WormsTwoClass 0.36 0.39 0.38 0.42 0.44 0.43

Table 4: Classification error per distance function, Part 2.
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Dataset Contamination Tolerance Imprecision Invariance
E Euc DTW Log ED EDR E Euc DTW Log ED EDR

ACSF1 0.68 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.98

Adiac 0.49 0.00 0.00 0.00 1.00 0.94 1.00 1.00 1.00 1.00 0.00 0.98

ArrowHead 0.98 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Beef 0.85 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

BeetleFly 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

BirdChicken 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

BME 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Car 0.99 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

CBF 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Chinatown 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Coffee 0.30 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Computers 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.99

CricketX 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

CricketY 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

CricketZ 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

DiatomSizeReduction 0.95 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

DistalPhalanxOutlineAgeGroup 0.95 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

DistalPhalanxOutlineCorrect 0.66 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

DistalPhalanxTW 0.94 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Earthquakes 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

ECG200 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

ECGFiveDays 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

EOGHorizontalSignal 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.16 1.00

EOGVerticalSignal 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.15 1.00

EthanolLevel 0.85 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

FaceFour 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

FiftyWords 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Fish 0.97 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Fungi 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

GunPoint 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

GunPointAgeSpan 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.05 1.00

GunPointMaleVersusFemale 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.07 1.00

GunPointOldVersusYoung 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.04 1.00

Ham 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

HandOutlines 0.57 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Haptics 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Herring 0.62 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

HouseTwenty 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.18 1.00

InlineSkate 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

InsectEPGRegularTrain 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

InsectEPGSmallTrain 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

LargeKitchenAppliances 0.96 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Lightning2 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Lightning7 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Meat 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Table 5: Contamination tolerance and imprecision invariance per distance function, Part 1. The numbers indicate the percent-
age of non-class members which have a larger distance to the considered in-class time series, averaged over all classes. ED
perfectly tolerates contamination, while E and EDR commonly, but not always achieve perfect scores. In terms of imprecision
invariance, all measures besides ED appear to fulfill this property. Altogether, EDR with a median absolute deviation-based
tolerance interval appears to have the highest combined robustness.
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Dataset Contamination Tolerance Imprecision Invariance
E Euc DTW Log ED EDR E Euc DTW Log ED EDR

MedicalImages 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

MiddlePhalanxOutlineAgeGroup 0.69 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

MiddlePhalanxOutlineCorrect 0.54 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

MiddlePhalanxTW 0.84 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

OliveOil 0.00 0.00 0.00 0.00 1.00 0.01 1.00 1.00 1.00 1.00 0.00 0.51

OSULeaf 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

PigAirwayPressure 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

PigArtPressure 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.09 1.00

PigCVP 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Plane 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

PowerCons 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

ProximalPhalanxOutlineAgeGroup 0.88 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

ProximalPhalanxOutlineCorrect 0.52 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

ProximalPhalanxTW 0.71 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

RefrigerationDevices 0.97 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Rock 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.07 1.00

ScreenType 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

SemgHandGenderCh2 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.02 1.00

SemgHandMovementCh2 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.02 1.00

SemgHandSubjectCh2 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.02 1.00

ShapeletSim 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

ShapesAll 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

SmallKitchenAppliances 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

SmoothSubspace 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

SonyAIBORobotSurface1 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

SonyAIBORobotSurface2 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Strawberry 0.50 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

SwedishLeaf 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Symbols 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

SyntheticControl 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

ToeSegmentation1 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

ToeSegmentation2 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Trace 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

UMD 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Wine 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

WordSynonyms 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Worms 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

WormsTwoClass 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Table 6: Contamination tolerance and imprecision invariance per distance function, Part 2.
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