
A Bayesian Approach to Adversarially Robust Life Testing

Dorina Weichert 1 Sebastian Houben 2 Alexander Kister 3 Gunar Ernis 1 Tim Wirtz 1

Abstract

In materials science and engineering, the lifetime
of materials and products is tested by costly man-
ual characterization procedures that are standard-
ized only in certain cases. In this paper, we inves-
tigate a modular Bayesian approach to lifetime
testing that can reduce the number of experiments
and, thus, the overall cost of experiments. The
approach is based on the correct definition of the
probability of the outcome of an experiment, e.g.,
its likelihood. Since this is usually unknown, we
extend it to the adversarial setting, finding an ex-
perimental procedure that is robust to a given set
of probabilities in the worst case. By simulations,
we empirically show the advantages of this pro-
cedure over the state-of-the-art and the basic ap-
proach, potentially reducing the number of costly
experiments.

1. Introduction
Life testing describes the planning, execution, and analysis
of product tests to estimate a product’s expected lifetime,
e.g., in engineering or material science.

To estimate a product’s lifetime, first, the most critical fac-
tors stressing the product are identified. In practice, these
typically refer to alternating stresses, e.g., alternating me-
chanical loads, alternating temperatures, or alternating elec-
trical loads. Then, so-called accelerated tests are taken out,
where the identified stresses are cyclically applied to a sam-
ple in short intervals to determine the maximum stress a
sample can withstand. We generate a test statistic to find
this maximum stress: we apply different stress levels to dif-
ferent samples and record if they break or not - a so-called
accelerated binary test (Escobar & Meeker, 2006, p. 4).
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In the ideal setting, if the sample survives a predefined
number of cycles that are thought to approximate an infinite
lifetime (a so-called survivor), we infer that the product is
resistant to this load. If it fails the test (a so-called failure),
we infer that the product does not withstand this load for
its whole lifetime. Unfortunately, the real setting is noisy.
The product quality and, therefore, the samples vary, so at
some stress levels, some samples fail, and some survive
the testing procedure. Therefore, practical life tests aim to
either find the stress level that refers to a specific failure
probability or the estimation of a function expression for the
failure probability depending on the load.

There is no general standard procedure for life testing, but
standards exist for special applications, e.g., fatigue testing
of steels (DIN 50100:2016-12, 2016). Also, the analysis of
life test results is not standardized, but a spectrum of heuris-
tics, likelihood-based methods, and Bayesian approaches
exists. Please see the comprehensive standard work by
Meeker et al. (2022) for an overview.

These approaches (the testing and analysis procedures) have
multiple drawbacks. On the one hand, they do not explicitly
consider the similarity of different products. On the other
hand, the likelihood-based analysis procedure is sensitive
against false assumptions, e.g., the assumption of the false
failure probability distribution.

Our work uses Bayesian methods to find a testing procedure
and analysis approach that explicitly considers the similar-
ity of different products, is highly efficient, and worst-case
robust against possible misspecifications. As shown in the
motivating figure 1, it consists of two connected modules.
In the first module, we use a Machine Learning model to
implement the similarity of different products based on his-
torical data and expert knowledge. When now testing a new
product, we use the prediction of this model as a prior for a
traditional Bayesian Inference setup that offers the opportu-
nity to a) create a Maximum a Posteriori estimate of failure
behavior related quantities, to b) estimate standard devia-
tions of the parameters to be used as a confidence estimate,
and to c) derive a robust acquisition function, serving as a
testing protocol.

In an application study from fatigue testing, we show the
suitability of our approach for general life testing scenarios.



A Bayesian Approach to Adversarially Robust Life Testing

Maximum a Posteriori Estimate 

for Distribution Parameters ( ҧ𝑠, 𝛽)

Experiment 𝑠⋆ with Highest 

Impact on 𝑔( ҧ𝑠, 𝛽)

Experimental Data

Product

properties Prior over ҧ𝑠
Informed

Machine

Learning 

Model

Bayesian 

Inference for

Posterior

𝑔( ҧ𝑠, 𝛽)

Abstract 

Knowledge

Representation

Likelihood given

Distribution 

Type 𝑚

Standard Deviations of Estimated

Parameters ( ҧ𝑠, 𝛽)

Figure 1. Bayesian approach for life testing. While the similarity of materials is captured in the Machine Learning model in the first
module, the second one allows for estimation of relevant quantities via traditional Bayesian Inference.

2. Background
In the following, we first give an overview of the related
work and afterward introduce the staircase approach. This
approach is a method designed for fatigue testing which is
transferable to general life testing problems.

2.1. Related Work

For brevity, we narrow down the related work to Bayesian
approaches for data analysis and data acquisition that are
suitable for accelerated binary tests and highlight the most
relevant ones for our approach. For other types of tests or
non-Bayesian approaches, we like to refer the reader to the
standard work by Meeker et al. (2022).

Bayesian analysis of reliability data has a long tradition, see
e.g., chapter 10 of Meeker et al. (2022) for an overview.
To estimate the unknown parameters of the failure prob-
ability distribution, authors make use of conjugate priors
(Barnett, 1972), other analytical approximations (Soman &
Misra, 1994), and of Markov Chain Monte Carlo (MCMC)
methods, see e.g., Zhang & Meeker (2006); Li & Meeker
(2014); Shuto & Amemiya (2022). In our approach, we
use a grid-based sampling approach, significantly speed-
ing up the approximation of the posterior in contrast to the
use of MCMC methods, even though slightly downgrading
precision. As the quality of the Bayesian analysis highly
depends on the choice of the prior, several authors, e.g.,
Tian et al. (2024); Li & Meeker (2014) study the impact of
the prior explicitly. As expected, they find that the quality
of the posterior estimates depends on the choice of prior:
if it is too narrow and far from the true values, it hinders
finding the true estimates, but a reasonable prior supports
the estimation of the unknown parameters.

The idea to use the Bayesian framework also for data acqui-
sition is newer (Insua et al., 2020; Limon et al., 2017). The
most similar acquisition functions to ours are the use of the
variance of the predictive posterior (Yili Hong & Meeker,
2015), the Kullback-Leibler-divergence of the actual esti-
mate and the predictive posterior (Xu & Tang, 2015). The
latter approach, as well as ours that uses the entropy of the
predictive posterior distribution, are very useful in a poten-
tial multi-modal setup that the variance approach does not
cover.

Even though the approaches above are described for arbi-
trary likelihoods, experiments mainly focus on the use of
special types, such as the Weibull distribution (Yili Hong &
Meeker, 2015; Zhang & Meeker, 2006; Xu & Tang, 2015)
or the log-normal distribution (Yili Hong & Meeker, 2015).
Even though we are working in the same Bayesian setup,
we twist the acquisition function such that it tackles the fact
that the underlying ground truth is unknown, treating the
special case of an adversarial choice of distribution.

2.2. Staircase Approach for Fatigue Testing

Unfortunately, there is no general approach to life testing.
This section describes the so-called staircase approach for
fatigue testing, as defined in DIN 50100:2016-12 (2016, pp.
45-50, pp. 56-59). It is transferable to life tests of other
products. These are often also carried out in a staircase
procedure, but this is not clearly defined (Meeker et al.,
2022, pp. 289-309).

As we use the staircase method for later benchmarking our
approach, we quickly revisit its working principle. Before
applying the staircase method, the process engineer defines
load levels for experimentation. These load levels are de-
fined by Li = Lini · di, where Lini is a user-defined initial
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load, d is the user-defined step size, and i ∈ Z.

Given the load levels, experimentation follows a strict pro-
tocol: if a specimen at a specific load is a failure, the load
level for the next experiment is reduced by one step; if it is
a runout, the load level is raised by one step.

For later analysis, the generated experimental series has to
fulfill multiple requirements: in a valid series, the initial load
level is reached at least once again during experimentation.
Additionally, the series must contain at least three load levels
and at least two turning points where a runout is followed
by a failure or the other way around.

Given a valid experimental series, the mean fatigue strength
is estimated using two parameters: the lowest valid load
level L0 and the number lk each load level was reached,
where k ∈ N0 and k = 0 refers to the lowest valid load
level.

Generally, the staircase method assumes the failure proba-
bility of a sample to follow the cumulative density function
of a log-normal distribution with mean µL and standard
deviation σL. The mean µL is then found by:

µL = L0 ·
∑

k k · lk∑
k lk

. (1)

The standard deviation σL is calculated using a more com-
plex heuristic (DIN 50100:2016-12, 2016, p. 58). In prac-
tice, the reliable estimation of this value requires many
experiments and is rarely performed.

Looking at the staircase method, potential disadvantages
become clear: its efficiency depends heavily on the experi-
ence of the test engineer, who determines the initial value
of the method and the step size. These values also include
the similarity of one product with others. In addition, the
assumption of a log-normal distribution can be disadvanta-
geous if the ground truth is different.

3. Bayesian Life Testing
The main requirement for life testing approaches is to obtain
a sufficiently precise estimate of the stress-dependent failure
behavior with a high sample efficiency. This efficiency
is motivated by the high induced test costs, e.g., a single
fatigue test can cost up to $10, 000.

To face this requirement, we include as much data and
expert knowledge as possible in our approach. Before giving
a detailed description, let us briefly summarize our basic
assumptions.

3.1. Basic Assumptions

First of all, the probability pfailure of a sample to fail the life
test at a particular stress follows a monotonically increasing

function Φ(s) : S 7→ [0, 1], s ∈ R. In turn, we can also
calculate the survival probability of a sample psurvivor by
Φ(s) = 1 − Φ(s). Typically, this function is expressed
by the cumulative density function of a parametric heavy-
tailed probability distribution m, such as the log-normal, the
Weibull, or the Gumbel distribution (Meeker et al., 2022,
pp. 66-90). For the sake of simplicity, we will concentrate
on two-parametric distributions with a location parameter s̄
and a scale parameter β in the following.

We are not able to observe any of these functions directly,
but if applying a certain stress level, we observe if the probe
either fails or survives the test. Given a statistic over failures,
indexed by i, and survivors, indexed by j, we are able to
express the likelihood of the unknown parameters of Φm(s)
by

em(s̄, β) =
∏
i

Φm;s̄,β(si) ·
∏
j

(1− Φm;s̄,β(sj)) . (2)

Unfortunately, most open-source data on life tests is only
available in aggregated form, i.e., in terms s̄, instead of the
overall test statistics. Examples include, e.g., the open fa-
tigue data sheet1, or the open space use materials strength
data sheet2. It usually corresponds to a specific quantile of
the resulting distribution, e.g., the stress where the probabil-
ity of failure corresponds to 90 %. In our setup, we assume
that Φ(s) can be expressed in terms of the maximum stress
as the location parameter s̄.

3.2. Method

To include as much information as possible, we conduct
a two-modular approach. We capture the general product
properties in the first module and learn a Machine Learn-
ing model for the location parameter s̄. In the second mod-
ule, we describe the expectations about the individual prod-
uct’s response to stress. We connect the modules by using
the prediction from the first module as prior for the second
one, so we combine the available data and knowledge to
obtain a highly efficient approach.

MODULE 1: MACHINE LEARNING MODEL

In the first module, we apply a Machine Learning model
that is able to predict a distribution over the location param-
eter p(s̄). In our application study, we opt for a Gaussian
Process model with an engineered covariance function to
include assumptions on the material behavior by domain ex-
perts, but other models, such as Bayesian linear regression
or a Random Forest, are also suitable.

1https://fds.nims.go.jp/
2https://sds.nims.go.jp/
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MODULE 2: BAYESIAN INFERENCE

Given the prior distribution on the location parameter p(s̄)
from the first module and the expression for the likelihood
in equation (2), we find the posterior distribution over the
unknown parameters of pfailure by

g(s̄, β) = p(s̄) · p(β) · em(s̄, β) . (3)

For p(β), any prior is possible as long as it is valid for
the assumed underlying distribution, e.g., positive for the
Weibull distribution.

Given the equation for the posterior distribution, we can find
helpful quantities for the daily work of life-testing engineers,
namely, a Maximum a Posteriori estimate, a confidence
estimate, and an acquisition function.

Maximum a Posteriori Estimate The Maximum a Pos-
teriori estimate is defined as the argmax location of the
posterior and thus corresponds to the most probable param-
eters. We find

ˆ̄s, β̂ = argmax
s̄,β

gm(s̄, β) . (4)

Often, estimates ˆ̄s from historical measurements is used as
label data of module 1.

Estimation of Confidence To provide information about
the quality of the Maximum a Posteriori estimate, we
vote for using the standard deviation of the joint pos-
terior, marginalized in the direction of each parameter,
Std(gm(s̄, β)). This estimation is risky to potential mis-
interpretation if the priors p(β) or p(s̄) are wrong or too
tight but very valuable in the well-conditioned case.

Definition of Acquisition Function Given the posterior
distribution g(s̄, β), we are also able to approximate its
entropy H via sampling. The entropy is an essential mea-
sure of uncertainty and is used in information-based ac-
quisition functions, which are well-known for their high
efficiency, for example, in Bayesian Optimization (Gar-
nett, 2023, p. 136), Bayesian Optimal Experimental De-
sign (Lindley, 1956), or Active Learning (Settles, 2012, pp.
13-16).

However, we cannot only approximate the entropy given the
actual dataset, but we can also estimate the effect of adding
an experiment at stress s at timestep t. As the experiment
either fails or survives, we must approximate the resulting
entropy for both cases. Additionally, we weigh these en-
tropies by the probability of the considered outcomes using
the Maximum a Posteriori estimates ˆ̄st, β̂t at timestep t.

Given a specific model m, we find:

αm(s) =

(−H(gm(s̄, β|outcome(s) = failure, s)))
· Φmˆ̄s,β̂

(s)

+ (−H(gm(s̄, β|outcome(s) = survivor, s)))
· (1− Φmˆ̄s,β̂

(s)) .

(5)

The next experiment is taken out at argmaxs∈S αm(s).

3.3. Adversarially Robust Adaption

We extend our formulation of the acquisition function in
equation (5) to the setting, where the underlying model m
of the failure probability pfailure is unknown, which is the
typical case (Meeker et al., 2022, pp. 17-19).

In our adaption, we take a conservative approach and con-
sider the adversarial setting. This approach is highly relevant
in engineering applications, where estimating a system’s be-
havior (in our case, the failure behavior) under worst-case
assumptions is essential. For our acquisition function, this
means that we aim to add the experiment that provides max-
imum information about the distribution parameters of the
model m with the highest uncertainty. Given a set M of
potential models, we find

s⋆ = argmax
s∈S

min
m∈M

αm(s) . (6)

4. Case Study: Adversarially Robust Fatigue
Strength Estimation

The following case study shows the application of our ap-
proach for the fatigue strength estimation of stainless steels.
It is transferable to other settings of accelerated binary test-
ing. Fatigue strength is “the value of stress at which failure
occurs after Nf cycles” (ASTM E1823-24a, 2024), in our
case Nf = 107. Our example examines the fatigue strength
against a switching tensile and compressive load with zero
mean stress. The median fatigue strength s̄ is the estimate,
where the failure probability is 50 % (DIN 50100:2016-12,
2016, p. 5). Knowing the fatigue strength of a material is of
high practical importance: the measure is used in the design
of products such as gears, springs, or other highly stressed
mechanical components.

4.1. Machine Learning Model

In the first module, we create Gaussian Process with a
tailored covariance function to include existing historical
data and expert knowledge. The training data was offered
by a partner company and is based on fatigue data from 114
stainless steels. Unfortunately, we are not allowed to publish
the data and thus the final trained model, as the GP offers
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Figure 2. Best function regret over iteration. We report the median and the quantiles of 100 runs. The robust maxmin acquisition function
from equation (6) performs worse than when assuming the actual (unknown) ground truth, but better than when using a wrong assumption
or the heuristic staircase method.

direct access to the train data. Our model uses four relevant
dimensions of an experiment as input: the loaded volume
V90 of the specimen, the specimen’s edge hardness, the load
type (e.g., bending, stress, and strain), and the load ratio
R, which describes the ratio between the maximum and the
minimum load amplitude. The output for training was the
related median fatigue strength s̄ estimated via historical
experiments.

Before training the model, we make a train-test split of
size 80/20. To cope with the data’s non-normality, we log-
arithmize the mean fatigue strength data before applying
standardization. Afterward, we use a constant zero mean
function and a tailored covariance function kL that was de-
fined with the help of process engineers. This covariance
function merges the assumption of a linear trend with an
expected very smooth local behavior by summing a linear
covariance function klin with automatic relevance determi-
nation with a rational quadratic covariance function kRQ.
Thus, our covariance function is defined as follows:

kL(x, x
′) =

D∑
d=1

σ2
dxdx

′
d +

(
1 +

(x− x′)2

2ασ2
l

)−α

.

Here, x are our input parameters, while σd, σl, and α are
hyperparameters of the covariance function that can be esti-
mated by maximizing the marginal log-likelihood. To val-
idate the approach, we perform a 10-fold cross-validation,
also comparing alternative covariance functions (a radial
basis function covariance function and a Matérn class covari-
ance function in sum and product combination with a linear
covariance function), each time estimating the covariance

function’s hyperparameters using maximum marginal log-
likelihood. For testing purposes, we condition the model
with the best performance (selecting the covariance function
and its hyperparameters from the best fold) on all train data
and find a model performance of R2 = 0.91, which is com-
parable to a state-of-the-art model (Agrawal et al., 2014, p.
13). For later use as a prior in the Bayesian Inference mod-
ule, we condition the model on all available data afterward,
keeping the hyperparameters fixed.

4.2. Studying Acquisition Functions

To study the behavior of the acquisition functions, we sim-
ulate an experiment for a stainless steel type with failure
probability Φ⋆ with median fatigue strength of s̄⋆ = 400 N,
which refers to steel C15 (1.0401), a non-alloy quality steel.
We assume the failure probability distribution to have a
standard deviation of 100.4 N.

We use the following ground truth models m ∈ M: the
cumulative distribution functions of the Gumbel, of the log-
normal and of the Weibull distribution, which we rewrite
to depend on the median s̄ as the location parameter and
another free parameter β. For each distribution, we calibrate
β to match the expected standard deviation. Please see the
supplementary material, section C for a visualization of the
failure models.

We virtually run the staircase acquisition function, the non-
robust approaches following equation (5), and the robust
approach from equation (6) for n = 80 iterations and 100
repetitions. We use positive normal priors for each distribu-
tion’s s̄ and β, s̄ is N (µ = 400, σ2 = 1002) N, while the
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prior over β is calibrated such that the entropy of g(s̄, β) is
approximately the same after observing a survivor at 300 N
and a failure at 500 N. We do not use the prediction of our
model as it is very close to the ground truth with a small
standard deviation, and we want to enable a fair comparison
with the staircase method that only indirectly takes into ac-
count the similarity with other materials. To approximate
the posterior distribution via sampling, we use 105 samples
from each of the priors.

We report the best function regret, which we define as
mint∈[1,n] |Φ⋆ −Φmˆ̄s,β̂ ,t

|, where Φmˆ̄s,β̂ ,t
is the distribution

defined by the Maximum a Posteriori parameter estimates
at iteration t.

As expected, the best approximations are made when ground
truth and approximating distributions are the same. The ro-
bust acquisition function is performing second-best, so it
shows that it is indeed helpful to characterize the failure
probability for cases where the ground truth is unknown.
While the staircase method is comparable to the other ac-
quisition functions in the first iterations, it seems to diverge
for a higher number of samples. This is due to the fact that
it struggles with determining the correct standard deviation
σL as it is tied to (predefined) fixed step size that does not
for a high precision.

5. Conclusion, Limitations and Outlook
We have introduced a sample-efficient approach for life test-
ing that integrates historical data and expert knowledge. It
includes a Machine Learning model and a Bayesian Infer-
ence module, which offers the possibility to derive an acqui-
sition function. This acquisition function is easily adapted
to be adversarially robust against a wrong assumption of the
failure probability over stress. In a case study, we show the
approach’s feasibility and the acquisition function’s superior
behavior.

Our approach is limited by the fact that all models are
equally considered in every iteration, which is disadvan-
tageous if a model assumption proves improbable given the
collected test data. In future work, we would like to enhance
our approach by taking into account more potential failure
models and additionally perform model selection, further
lowering the number of required samples to find a good
estimate of a product’s expected lifetime.
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