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Abstract

Spiking Neuromorphic Computing uses binary activity to improve Artificial
Intelligence energy efficiency. However, the non-smoothness of binary ac-
tivity requires approximate gradients, known as Surrogate Gradients (SG),
to close the performance gap with Deep Learning. Several SG have been
proposed in the literature, but it remains unclear how to determine the
best SG for a given task and network. Good performance can be achieved
with most SG shapes, after a costly search of hyper-parameters. Thus, we
aim at experimentally and theoretically define the best SG across different
stress tests, to reduce future need of grid search. Here we first show that
more complex tasks and network need more careful choice of SG, and that
overall the derivative of the fast sigmoid outperforms other SG across tasks
and networks, for a wide range of learning rates. Secondly, we focus on the
Leaky Integrate and Fire (LIF) spiking neural model, and we note that high
initial firing rates, combined with a sparsity encouraging loss term, can lead
to better generalization, depending on the SG shape. Finally, we provide
a theoretical solution, inspired by Glorot and He initializations, to find a
SG and initialization that experimentally result in improved accuracy. We
show how it can be used to reduce the need of extensive grid-search of
dampening, sharpness and tail-fatness.

1 Introduction

Spiking Neuromorphic Computing uses binary and sparse signals to construct learning al-
gorithms with higher energy efficiency (Henderson et al., 2020; Blouw et al., 2019; Davies
et al., 2021; Lapique, 1907; Izhikevich, 2003). However, a binary signal means that the true
derivative is zero essentially always, and training with gradient descent will be at best very
poor. Research has shown that designing an approximate gradient, referred to as Surrogate
Gradient (SG) (Esser et al., 2016; Zenke and Ganguli, 2018; Bellec et al., 2018), significantly
improves training success. However, that entails an additional hyper-parameter to choose:
the SG to use. Additionally, the best SG can depend on the neural architecture chosen, on
the task, on the learning rate, on the initialization, and so on, making it difficult to know
a priori which to pick. Thus, finding the best SG for a particular setting, requires a time
consuming grid search, and reducing that search time is desirable.

To meet that need, we stress test a wide variety of SG, focusing on one specific neuron model,
the Leaky Integrate and Fire (LIF) (Lapique, 1907; Gerstner et al., 2014), and provide a
mathematical solution based on gradient stability methods (Glorot and Bengio, 2010; He
et al., 2015), to design the best SG for a LIF. In contrast, it is standard to pick one SG for all
the experiments (Bohte, 2011; Hubara et al., 2016a; Bellec et al., 2018; Zenke and Ganguli,
2018; Zenke and Vogels, 2021; Yin et al., 2021), possibly exploring the effect of changing a
width factor (sharpness) (Zenke and Ganguli, 2018) or a height factor (dampening) (Bellec
et al., 2018). Only in the past five years, the possibility of choosing an optimal SG has been
considered (Neftci et al., 2019; Zenke and Vogels, 2021). Moreover, even if many SG can
achieve good performance (Zenke and Vogels, 2021), some shapes have more chances to fail
training or achieve lower accuracy. It seems therefore valuable to have a complete picture
of when and where each SG works, and which ones are better left behind.
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For example, on more complex neural models and tasks, we measure an increase in sensitivity
to the choice of SG with complexity, and observe some to degrade more gracefully, which
stresses the need to pick the right SG in each setting. We then focus on arguably the
simplest spiking neural model, the LIF, and confirm that the initialization scheme has
different impact on each SG. Finally, to be able to propose our theoretical solution, we need
to justify the use of high firing rates. Fortunately, we observe that low initial sparsity, can
help generalization with high final sparsity. We use this observation to better justify, that
setting the network on a high firing rate at the beginning of training, is not in contrast
with a low firing rate at the end of training. Taking this finding into consideration, and in
the spirit of Glorot and He initializations (Glorot and Bengio, 2010; He et al., 2015), we
propose four conditions that keep the representations and gradients stable with time. We
show that these conditions provide hyper-parameters that result in improved performance
without additional hyper-parameter grid-search. When we observe closely the fine details
of the SG shape, such as (1) its dampening, (2) its sharpness, and (3) how fast it decays to
zero, i.e. tail-fatness, we see that the theoretically justified choice tends to be close to the
best experimental choice.

Our contribution is therefore

• We show how task and network complexity, lead learning to be more sensitive to
the choice of SG;

• We observe that the derivative of the fast-sigmoid outperforms other SG across
tasks and networks;

• High initial firing rate can promote generalization with low final firing rate;
• We provide a theoretical method for SG choice based on bounding representations
that improves experimental performance.

• Our method predicts dampening, sharpness and tail-fatness, that lead to high ac-
curacy experimentally on the LIF network;

2 Preliminaries

2.1 Initialization Schemes

Our theoretical method for SG choice is based on techniques from the weights initializa-
tion literature, that we use in an unorthodox way, to design a SG. The initial values of
the network parameters have a strong impact on training speed (Hanin and Rolnick, 2018)
and peak performance (Glorot and Bengio, 2010; He et al., 2015). The theory often fo-
cuses on fully-connected feed-forward networks (FFN), given their mathematical tractability
(Roberts et al., 2022). FFNs are defined as yl = bl+Wlσ(yl−1), where y0 is the data, yL is
the network output at depth L, σ(·) an activation and bl ∈ Rnl ,Wl ∈ Rnl×nl−1 are the layer
biases and weights, where nl is layer l size. Typically, biases are sampled as zero and weights
such that Mean[Wl] = 0 and V ar[Wl] = cl. The general recommendation is a 1/cl ∝ nl to
avoid exploding variance of representations (Glorot and Bengio, 2010; He et al., 2015). (Glo-
rot and Bengio, 2010) finds V ar[Wl] = 2/(nl−1+nl) optimal for linear networks (σ(y) = y),
known as Glorot initialization, while (He et al., 2015) finds V ar[Wl] = 2/nl−1 for ReLU
networks (σ(y) = max(0, y)), known as He initialization. Instead, (Saxe et al., 2014) finds
a column orthogonal Wl optimal for linear networks, known as Orthogonal initialization.
Usually Wl elements are drawn from a uniform or a normal distribution. We propose the
BiGamma distribution, such that wij ∼ Gamma(w;α, β)/2 + Gamma(−w;α, β)/2, Fig. 1.
The BiGamma keeps the optimal variance and orthogonality without sampling zeros.

On the contrary, theoretical justification for recurrent networks initialization has been pro-
posed for the LSTM (Mehdipour Ghazi et al., 2019), and other non spiking recurrent net-
works (Hochreiter et al., 2001; Arjovsky et al., 2016; Pascanu et al., 2013). However, on
spiking recurrent networks, an initialization theory is missing, since arguments such as the
Echo State Network (Jaeger et al., 2007) do not apply to non convex activations, or ac-
tivations without a slope one regime. In practice, (Zenke and Vogels, 2021) samples a
V ar[Wl] = 1/3nl−1 Uniform, while (Bellec et al., 2018) a V ar[Wl] = 1/nl−1 Normal distri-
bution, for similar spiking models.
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Figure 1: Surrogate Gradient shapes and initialization distributions. Panel (a)
shows the SG investigated in this work, and (b) the tail dependence of the q-PseudoSpike
SG for q ∈ [1.01, 16.85]. The SG considered are symmetrical around vt = yt − ϑ = 0, so
we only plot half the curve (centered voltage vt > 0). Panel (c) shows the weight sampling
distributions used, Gaussian (dashed), Uniform (dotted) and BiGamma (solid), with He,
orange. and Glorot initialization, green, for a weight shape of (n0, n1) = (200, 300).

2.2 Neural Models and Notation

Arguably the simplest spiking recurrent network model is the LIF (Lapique, 1907; Gerstner
et al., 2014; Woźniak et al., 2020). It is defined as yt = αdecayyt−1(1 − xt−1) + it where
it = Wrecxt−1 + Winzt + b, and yt is the neuron membrane voltage, using (Glorot and

Bengio, 2010; He et al., 2015) notation. We define xt = σ(yt) = H̃(yt − ϑ) = H̃(vt) as
the spiking activity, where ϑ is the spiking threshold, vt = yt − ϑ the centered voltage, and
H̃(vt) a Heaviside function with SG. The term (1−xt−1) represents a hard reset, that takes
the voltage to zero after firing. The input zt can represent the data, or a layer below. It
is common to write αdecay = 1 − dt

τm
, where dt is the computation time, τm the membrane

time constant, and to multiply the other terms by biologically meaningful constants, that
we compress for cleanliness. Each neuron can have its own speed αdecay, intrinsic current b
and ϑ. In this work, all the parameters in the LIF definition are learnable.

We denote vectors as a, matrices as A, and their elements as a. The matrix Wrec ∈ Rnl×nl

connects neurons in the same layer, with zero diagonal, and Win ∈ Rnl×nl−1 connects the
layer with the layer below, or the data if l = 0. We use curved brackets A(·) for functions,
and square brackets A[·] for functionals that depend on a probability distribution. We use
interchangeably x = Mean[x], x̂ = Max[x], and x̌ = Min[x]. We use θ for any parameter.
In a stack of layers, we add an index l to each parameter and variable. Since the equation
only depends on the previous timestep and layer, the probability distribution is a Markov
chain in time and depth. Therefore the statistics we discuss are computed element-wise
with respect to the distribution p(yt,l|t, l) = p(yt−1,l, zt,l−1,Wrec,l,Win,l, bl, αdecay,l, ϑl|t, l).
Additionally, we want to understand how the neuron complexity affects SG training. When
a LIF is upgraded with a dynamical threshold to maintain longer memories, we have the
Adaptive LIF (ALIF) (Gerstner et al., 2014; Bellec et al., 2018). Thus, we compare LIF to
ALIF, and we propose the spiking LSTM (sLSTM), App. G, defined by changing the LSTM
(Hochreiter and Schmidhuber, 1997) activations for neuromorphic counterparts.

2.3 Surrogate Gradients

As seen in the previous section, a spike is produced when the voltage surpasses the threshold,
which mathematically can be described through a Heaviside function, H̃(v), that is zero for
v < 0 and one for v ≥ 0. We use the tilde to remind that a SG is used for training, defined
as H̃ ′(v) = γf(β ·v), where β is the sharpness, γ the dampening, f is the shape of choice and
· the product. Therefore γ controls the maximal amplitude of the SG, and β controls the
width. A high sharpness, mostly passes the gradient for v close to zero, while low sharpness
also passes the gradient for a wider range of voltages. Therefore, the gradient can pass when
the neuron has not fired. Unless explicitly stated, dampening and sharpness are set to one.
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The SG shapes f we investigated are (1) rectangular (Hubara et al., 2016b), (2) triangular
(Esser et al., 2016; Bellec et al., 2018), (3) exponential (Shrestha and Orchard, 2018), (4)
gaussian (Yin et al., 2020), (5) the derivative of a sigmoid (Zenke and Vogels, 2021), and (6)
the derivative of a fast-sigmoid, also SuperSpike (Zenke and Ganguli, 2018). To make the
comparison between different SG fair, f is chosen to have a maximal value of 1 and an area
under the curve of 1. We also propose a generalization of the derivative of the fast-sigmoid,
that we call q-PseudoSpike SG. Its tail fatness is controlled by a hyper-parameter q and we
use it to study tail dependence in section 3.5. More in Fig. 1 and App. D.

2.4 Datasets

More details on the datasets can be found in App. A.

Spike Latency MNIST (sl-MNIST): the MNIST digits (LeCun et al., 1998) pixels (10
classes) are rescaled between zero and one, presented as a flat vector, and each vector value
x is transformed into a spike timing using the transformation T (x) = τeff log(

x
x−ϑ ) for

x > ϑ and T (x) = ∞ otherwise, with ϑ = 0.2, τeff = 50ms (Zenke and Vogels, 2021). The
network input is a sequence of 50ms, 784 channels (28× 28), with one spike per row.

Spiking Heidelberg Digits (SHD): is based on the Heidelberg Digits (HD) audio dataset
(Cramer et al., 2020) which comprises 20 classes of spoken digits, from zero to nine, in
English and German, spoken by 12 individuals. These audio signals are encoded into spikes
through an artificial model of the inner ear and parts of the ascending auditory pathway.

PennTreeBank (PTB): is a language modelling task. The PennTreeBank dataset (Marcus
et al., 1993), is a large corpus of American English texts. We perform next time-step
prediction at the word level. The vocabulary consists of 10K words, which we consider as
10K classes. The one hot encoding of words can be seen as a spiking representation, even if
it is the standard representation in the non neuromorphic literature.

2.5 Training Details

Our networks comprise two recurrent layers. The output of each feeds the following, and
the last one feeds a linear readout. Our LIF network has 128 neurons per layer on the
sl-MNIST task, 256 on SHD, and one layer of 1700 and another of 300 on PTB, as in
(Woźniak et al., 2020). On the SHD task, the ALIF has 256 neurons and the sLSTM 85,
to keep a comparable number of 350K parameters. We train on the crossentropy loss. The
optimizer had a strong effect, where Stochastic Gradient Descent (Robbins and Monro,
1951; Kiefer and Wolfowitz, 1952) was often not able to learn, and AdaM (Kingma and Ba,
2015) performed worse than AdaBelief (Zhuang et al., 2020). AdaBelief hyper-parameters
are set to default, as in (Radford et al., 2018; Zenke and Vogels, 2021). The remaining
hyper-parameters are reported in App. A. Unless explicitly stated, we use Glorot Uniform
initialization. Each experiment is run 4 times and we report mean and standard deviation.
Experiments are run in single Tesla V100 NVIDIA GPUs. We call our metric the mode
accuracy: the network predicts the target at every timestep, and the chosen class is the one
that fired the most for the longest.

3 Results

3.1 Sensitivity to Complexity

3.1.1 Methodology

In order to portray the difficulty of choosing the right SG for the right task and network,
we investigate the SG training sensitivity to task and network complexity. We estimate
the task complexity by the number of classes. Thus, if CT (·) measures task complexity,
CT (sl-MNIST ) < CT (SHD) < CT (PTB). We quantify neural complexity as in (Yin
et al., 2021), and Tab. 1, by the number of operations performed per layer. In essence, if
CM (·) measures model complexity, then CM (LIF ) < CM (ALIF ) < CM (sLSTM). To have
comparable losses across tasks and networks, we normalize their validation values between
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Figure 2: The derivative of the fast-sigmoid outperforms other SG across tasks
and networks. Grid search over SG shapes, learning rates, tasks and networks. Perplexity
is a loss, so, the lower the better. We report lowest validation perplexity after converged
training. Panels a-f) show perplexity (y-axis), against learning rate (x-axis). In a-c) we fix
the LIF network and change task, while in d-f) we fix the SHD task and change network.
Panels g-h) show SG sensitivity (y-axis) against task and neural model (x-axis). Plots b)
and d) are repeated for clarity. a-f) Different SG roughly agree on the best learning rate.
The best loss is achieved by the ∂ fast-sigmoid, also the most resilient to changes in the
learning rate, as shown in (Zenke and Vogels, 2021). g-h) The more complex the task or the
network, the more variance in the performance we see across SG choices and learning rates.

0 and 1. For that, we remove the lowest loss achieved by a network in a task for any seed
and learning rate, and divide by the distance between the highest and lowest loss. We call
the result the post-training normalized loss. We call sensitivity the standard deviation of
the post-training normalized perplexity across SG, for each learning rate. We report mean
and standard deviation across learning rates.

3.1.2 Experiments

We see in Fig. 2, that task and network complexity have a measurable effect on the sensitivity
of training to the SG choice. We run a grid search over learning rates and SG shapes. The
sensitivity to the task is shown in the upper panels, for the LIF network. We see that different
SG agree on the optimal learning rate. We also see that the ∂ fast-sigmoid performs well for
a wider range of learning rates. The rectangular SG is competitive on some tasks, but fails
to learn with most learning rates on PTB. Then we focus on network sensitivity, fixing the
SHD task, lower panels. The triangular SG performs similarly to the exponential on the LIF
network, while it underperforms on ALIF, and fails on sLSTM. The exponential SG matches
the best SG on both the LIF and the sLSTM, but not on the ALIF. All this manifests a
strong sensitivity to the SG choice. Surprisingly, the sLSTM lags behind the LIF and ALIF,
with a comparable number of parameters. The gating mechanism devised to keep the LSTM
representations from exploding exponentially, are not relevant anymore for a Heaviside that
cannot explode exponentially, and might have become a computational burden. Fig. 2, g-h),
confirm that there is a correlation between task and network complexity, and SG sensitivity.

3.2 Orthogonal initialization leads to higher accuracy

In contrast, SG training seems less sensitive to the weights initialization scheme. Fig. 6
App. C, shows the initialization scheme effect on SG training, for the LIF network on the
SHD task. We compare the Glorot (2/V ar[Wl] = nl−1 + nl, (Glorot and Bengio, 2010))
with the He (2/V ar[Wl] = nl−1, (He et al., 2015)) and the Orthogonal initialization (Wrec
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and Win as column orthogonal matrices, (Saxe et al., 2014)). We use three sampling distri-
butions: Uniform, Gaussian and BiGamma, Fig. 1. Orthogonal Uniform is not considered
since after orthogonalization, the distribution was not Uniform anymore. We use the same
initialization for Wrec and Win. The best SG with Glorot Uniform is the ∂ fast-sigmoid,
while with Orthogonal Normal is the exponential. He gives the best outliers, and Orthogonal
Normal gives the best mean accuracy. The BiGamma reduces the result variance. Overall
best mean is achieved by the derivative of the fast-sigmoid and by the exponential SG,
suggesting similar behavior across initializations.

3.3 High initial firing rate can promote generalization with low final
firing rate

3.3.1 Methodology: Sparsity and Binarity Roles in Generalization

In order to propose our theoretical method for SG choice, we want to make sure that
high initial firing rates are not pernitious neither for learning nor for final sparsity. This
is so, because in the neuromorphic literature training success is judged by (1) training
performance and (2) activity sparsity. We show in Sec. 3.3.2, that low initial sparsity can
improve generalization in synergy with a sparsity encouraging loss term (SELT). However,
the energy gains of spiking networks also come from their binary activity. A matrix-vector
multiplication, with a Rm×n matrix, has an energy cost of mnEMAC for a real vector, and
of mnpEAC for a binary vector, where p is the Bernouilli probability of the binary vector,
and in our case the neuron firing rate, and EAC , EMAC are the energies of an accumulate
and a multiply-accumulate operation (Yin et al., 2021; Hunger, 2005). We quantify the
sparsity of a binary vector as 1 − p. Since MAC are more costly than AC, 31 times on
a 45nm complementary metal–oxide–semiconductor (Yin et al., 2021; Horowitz, 2014), we
have energy savings with any p, e.g., when all neurons fire (p = 1) and when they fire half
of the time steps (p = 1/2). This gain does not depend on the simulation speed, since it
compares a spiking and an analogue computation, at the same computation speed.

We measure the Pearson correlation of initial and final firing rate pi, pf with test loss after
training, in two settings, with and without a SELT. The SELT is a mean squared error
between a target firing rate pt = 0.01 and the layer firing rate. To achieve different pi, we
pre-train bl on the dataset of interest, holding the other parameters untrained, using only
the SELT without the classification loss. The coefficient to multiply the loss term is chosen
to make all losses comparable only when the task is learned, to let the network focus first
on the task and then on the sparsity. We therefore chose as the multiplicative factor the
minimal training loss achieved without SELT, since the SELT takes values between zero
and one. We switch on the SELT gradually during training. The switch starts as zero, and
moves linearly to one between 1/5 and 3/5 of training. We focus on the ∂ fast-sigmoid and
the SHD task in the main text, but we show different SG and tasks in App. H.

3.3.2 Experiments

We can see in Fig. 3 that with and without a SELT, higher pi correlates with performance.
Correlations are bold when p-value ≤ 0.05. Notice that SELT achieved worse final train
loss (not shown). However, the high pi combined with SELT resulted in better test loss,
thus, better generalization. However, this is not consistent across SG shapes, Fig. 7, but
is consistent across tasks, Fig. 8 App. H. In fact, the triangular SG prefers low pi and the
exponential SG does not show a clear trend. Incidentally, the lower layer always reaches
higher sparsity, across seeds (Fig. 3), SG shapes (Fig. 7) and tasks (Fig. 8).

3.4 Our theoretical method for SG choice improves experimental
performance

Keeping in mind that we can exploit a low initial sparsity as a regularization mechanism, we
propose a method for SG design in spiking recurrent networks inspired by FFN initializations
(Glorot and Bengio, 2010; He et al., 2015), that keeps stable gradients with time. We propose
four conditions, as four hypothesis to test, that result in a SG that depends on the network
and the task. We present the mathematical equivalent in each subsection
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Figure 3: High initial firing rate can pro-
mote generalization with low final fir-
ing rate. We use SHD task and the ∂ fast-
sigmoid SG. Bold correlation means p-value
≤ 0.05. On the two left panels, learning starts
from different pi without a SELT, while on the
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I Each neuron has to fire half of the timesteps.

II Recurrent and input variances should match.

III Gradients must have equal maxima across time.

IV Gradients must have equal variance across time.

3.4.1 Recurrent matrix mean sets the firing rate (I)

As previously seen, high pi can generalize better with a lower pf . Moreover, notice that
SG curves reach their highest when the neuron fires, Fig. 1. Thus, if the voltage stays close
to firing, the gradient is stronger, which is always so if Median[v] = 0 and V ar[v] = 0.
However, V ar[v] = 0 turns off all higher moments, thus, we only assume Median[v] = 0
as the mathematical equivalent of our desiderata. When (I) is applied to a LIF network,
see App. E.1, the mean of the recurrent weight matrix fixes pi, further assuming win = 0,
b = 0, the approximation Mean[v] ≈ Median[v], and constant it over time, we find

wrec =
1

nl − 1

(
2− αdecay

)
ϑ (I)

The assumptionMean[v] ≈ Median[v], can be justified by noticing that if v is sampled from
a unimodal distribution with the first two moments defined, then |Mean[v]−Median[v]| ≤√
0.6V ar[v] is true (Basu and DasGupta, 1997). Experimentally, we observe always uni-

modal distributions, that verify |Mean[v]−Median[v]| ≤
√
cVar[v], with c = 10−4 for the

SHD task, c = 3× 10−2 for sl-MNIST, and c = 10−3 for PTB, with and without (I).

3.4.2 Recurrent matrix variance can make recurrent and input
contribution to voltage comparable (II)

Also pertaining the forward pass, we want the neuron to be as sensitive to the network
history as it is to new input at initialization, when the structure of the task is unknown. We
describe it mathematically as V ar[Wrecxt−1] = V ar[Winzt]. In a LIF network, it sets the
variance of the recurrent matrix that makes both contributions equal, see App. E.2, further
assuming Ex = 1/2, win = 0, and computing V ar[zt] and zt on the train set, we obtain

V ar[wrec] = 2(V ar[zt] + z2t )
nl−1

nl − 1
V ar[win]−

1

2
w2

rec (II)

3.4.3 Dampening and sharpness set gradient maximum and variance (III, IV)

Instead, to control the backward pass, we want stable gradients with time. We describe
mathematically (III) as Max[ ∂

∂θyt] = Max[ ∂
∂θyt−1] and (IV) as V ar[ ∂

∂θyt] = V ar[ ∂
∂θyt−1].

On a LIF network, they set the dampening and the second moment of the SG that keep the
maximum and variance of the gradient stable with time, see App. E.3, E.4. Sharpness and
tail-fatness are linked to the SG second moment, see App. E.5. Assuming σ′ and ∂

∂θyt−1 as
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Figure 4: Our theoretical method for
SG choice improves experimental
performance. Simulations are run on
the SHD task for a LIF network. We
propose 4 conditions to select a SG for
a LIF networks. (I) requires spiking half
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ble presynaptic and input contribution to
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and upper panels show validation and test
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theory of SG design can reduce the need
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independent, and zero mean gradients at initialization, we find

γ =
1

(nl − 1)ŵrec

(
1− αdecay

)
(III)

σ′2 =
1− 1

2
α2
decay

(nl − 1)w2
rec

(IV)

3.4.4 Experiments

Fig. 4 shows training results with our conditions for the LIF network on the SHD task, with
exponential SG, against the unconditioned baseline. (II) improves accuracy the most when
applied on its own, but the best performance is achieved with all conditions together. When
all conditions are applied, a LIF network achieves a 92.7± 1.5 validation and 75.8± 3.1 test
accuracy, compared to 87.3±1.4 validation and 69.0±5.8 test accuracy without conditions.

3.5 The conditions predict best empirical dampening, sharpness and
tail-fatness on the LIF network

We compare experimentally the performance of a range of values of dampening, sharpness
and tail-fatness and we assess how they compare to the theoretical prediction. Fig. 5 shows
the accuracy of the LIF network on the sl-MNIST task. Each SG has its tail decay: inverse
quadratic for the ∂ fast-sigmoid, no tail for the triangular and rectangular, and exponential
decays for the rest. Low dampening and high sharpness are preferred by all SG. Interestingly,
the accuracy of the ∂ fast-sigmoid degrades less with suboptimal γ, β. The vertical dashed
lines are predicted by our theoretical method, condition (III) for the dampening and (IV) for
the sharpness of an exponential SG. We observe that they find γ, β with high experimental
accuracies. This supports the claim that to reduce hyper-parameter search of dampening and
sharpness is possible. We use our q-PseudoSpike SG to study the dependence with the tail-
fatness, panel (c) Fig. 5. All tail-fatness values perform reasonably well, with a maximum at
q = 1.56, smaller than the q = 2 of the ∂ fast-sigmoid. Interestingly our theoretical solution
gives a q = 1.898± 0.002, surprisingly close to the experimental optimum.

4 Discussion and Conclusions

Surrogate Gradients have reduced the gap between Spiking Neuromorphic Computing and
Deep Learning, with the consequent energy efficiency gains. Different SG can achieve similar
performance, at the expense of potentially costly hyper-parameter search. Our goal was to
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Figure 5: Low dampening, high sharpness and low tail-fatness, lead to higher
accuracy on the LIF network. Analysis done on the LIF network over the sl-MNIST
task. Panel (a) shows performance for different values of dampening, sharpness set to 1,
and viceversa on (b). Dampenings higher than 1 worsen performance while the pattern
is the opposite for sharpness. Dashed vertical lines are our theoretical prediction for the
exponential SG, (III) for the dampening (γ = 0.20 ± 0.02) and (IV) for the sharpness
(β = 1.02±0.17), which agree with the experiments. Panel (c) shows tail-fatness sensitivity
of the q-PseudoSpike SG, for β = γ = 1. The theoretical prediction gives a close to optimal
q = 1.898± 0.002, where the best experimentally was q = 1.56.

reduce the need of such search in the future, with experimental and theoretical insights.
We saw that best SG across networks and tasks was the derivative of the fast-sigmoid, also
known as SuperSpike, and the SG sensitivity increase with task and network complexity.
Incidentally, we reached spiking state-of-the-art on the PTB task with the triangular SG.
Best average over 12 seeds had 122.8± 10.7 validation and 114.2± 9.2 test perplexity, and
best seed had 117.2 validation and 109.5 test perplexity. Previous spiking SOTA on PTB
was 137.7 test perplexity (Woźniak et al., 2020). Then, we saw the Orthogonal Normal as
the best initialization across SG, on the LIF network and the SHD task, and our BiGamma
weight distribution reduced final variance. We saw that for some SG, a high initial firing
rate, combined with a sparsity encouraging loss term, can improve generalization.

The literature on optimal SG is growing in activity (Neftci et al., 2019; Zenke and Vogels,
2021; Yin et al., 2021). However, a theoretical framework was needed. We provide a
principled method for initialization and SG design, in the form of four conditions. All
of them apply to any architecture. We derived the implications on the LIF, and we saw
experimentally improved training. The dampening, sharpness and tail-fatness predicted
were among the best empirically, Fig. 5. We saw a preferrence for low dampening, high
sharpness and low tail-fatness, making the ideal SG close to a delta, with heavy tails. Also,
passing gradients for voltages far from zero, could allow the network learn from outliers.
Therefore, our method can help reduce the costly hyper-parameter grid search. Conditions
(II), (III) and (IV) are not restricted to spiking neurons. (I) was introduced to find the SG
maxima, but all deep learning activations, have their regime of interest around zero. So, (I)
is also universal. Even if not stated, (Glorot and Bengio, 2010; He et al., 2015) use (I) in
the form Mean[vl] = 0, to determine that Mean[Wl] = Mean[bl] = 0 at initialization. Our
theoretical solution applies to convolutional Win and Wrec. Take V ar[Win] = nkV ar[win]
where nk is the number of presynaptic neurons for each postsynaptic neuron. In our case
nk was equal to nl−1. For rD convolutions, nk = krnf , where k is the kernel size, nf the
number of filters and typically the convolution dimension is r = 1, 2. Our conditions also
apply to different reset methods, App. F. Notice that our conditions could fix γ, β, and q,
which turns them into tools for SG design. This leads to a new theoretical understanding of
the roles played by dampening and sharpness. The dampening keeps the maximal gradients
stable through time, while the sharpness keeps the gradient variances stable through time.
In summary, this work is in response to the call made by (Zenke and Vogels, 2021) for a
theory of SG choice, and it is a first step in that direction.
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