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Analysis of an Idealized Stochastic Polyak Method and its Application to
Black-Box Model Distillation

Anonymous Authors1

Abstract
We provide a general convergence theorem of
an idealized stochastic Polyak step size called
SPS*. Besides convexity, we only assume a lo-
cal expected gradient bound, that includes locally
smooth and locally Lipschitz losses as special
cases. We refer to SPS* as idealized because it
requires access to the loss for every training batch
evaluated at a solution. It is also ideal, in that
it achieves the optimal lower bound for globally
Lipschitz function, and is the first Polyak step
size to have a O(1/

√
t) anytime convergence in

the smooth setting. We show how to combine
SPS* with momentum to achieve the same favor-
able rates for the last iterate. We conclude with
several experiments to validate our theory, and a
more practical setting showing how we can dis-
till a teacher GPT-2 model into a smaller student
model without any hyperparameter tuning.

1. Introduction
Consider the problem

x∗ ∈ argmin
x∈Rd

f(x), f(x) := Eξ∼P [fξ(x)] , (1)

where P is the distribution over data, and we assume there
exists a minimizer x∗ ∈ Rd. We refer to fξ(x) as the loss
function over the data ξ ∼ P under parameters x ∈ Rd.

One of the main costs in developing new machine learning
models is training them, that is, finding an approximate so-
lution to (1). The training of GPT-4 is estimated to have
cost over $40M (Cottier et al., 2024). The elevated cost of
training bigger models, and the success of Adam (Kingma
& Ba, 2015), has sparked an intense research effort into
developing new stochastic optimization methods. Yet the
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performance difference among many newly developed meth-
ods is minimal when the step size is tuned (Schmidt et al.,
2021). Finding a good step size often involves multiple
re-runs on a subset of the data, which adds considerably to
this cost.

Here we advance the theory of an adaptive stochastic Polyak
step size. The Polyak step size uses both the current loss
and gradient norm to compute a step size at each iteration.

We show that if we had access to fξ(x∗), the value of the
loss at the solution for each batch ξ of data, a variant of
the stochastic Polyak step we call SPS* achieves the best
known rates across several subclasses of convex functions.
Specifically, we show that SPS* achieves either the opti-
mal rate when known, or the best known rate, for convex
functions, including Lipschitz, smooth, and strongly convex.
Furthermore we only require that these assumptions hold in
a ball around the solution. This mirrors the same result in
the deterministic setting for the Polyak step size (Hazan &
Kakade, 2019).

We also prove convergence in the finite-sum, convex and
continuous setting, without any additional assumption, for
which we are unaware of any other stochastic method that
provably converges.

We then show how to combine this Polyak step size with
momentum, in such a way that the last-iterate converges
at the optimal (competitive) rate in the Lipschitz (smooth)
setting. For this we use iterate averaging, which is one of
the many equivalent ways of writing momentum (Sebbouh
et al., 2021).

These fast and adaptive convergence results speak to the
strength of the SPS* method. However, they also show
that having access to fξ(x∗) for every ξ is a strong assump-
tion, which we can not expect to hold in general. But we
do consider two settings where fξ(x∗) is known or can
be approximated. The first setting is that of interpolation,
where typically fξ(x∗) = 0 or is relatively easy to com-
pute (Loizou et al., 2021). The second setting is one we call
blackbox model distillation. In this setting, we can query a
teacher (a larger pretrained model) with any input, but we
do not have access to the teachers architecture or weights.
Our objective is to train the student (a smaller model) on one
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of the tasks that the teacher is accomplished. The teacher’s
loss on each input serves as an approximation of fξ(x∗) for
the student. This enables us to use SPS* with momentum
to set the step size for the student, and train it efficiently
without having to tune any hyper-parameters.

1.1. Stochastic Polyak Step Size

Here we analyse the following variant of the SPS (Stochastic
Polyak step size) method

xt+1 = xt−γSPS∗t gt, γSPS∗t :=
(ft(xt)− ft(x∗))+

∥gt∥2
(2)

where ξt ∼ P is sampled i.i.d at each iteration, and gt de-
notes either a gradient (smooth setting) or a subgradient
(non-smooth setting) of ft := fξt evaluated at xt. Through-
out, we use the notation (z)+ := max{z, 0} for z ∈ R. We
refer to (2) as a the SPS* method. We will prove several
anytime convergence rates for SPS*. By anytime, we mean a
proof that the method converges to any predefined tolerance
without prior knowledge of that tolerance.

See Table 1 for a comparison between our rates of conver-
gence, that of other variants of SPS, and the best known
anytime rates for SGD in each setting. For the SGD rates
within each setting, we included rates that rely on the global
problem constants. For instance, to achieve the GD/

√
t

rate in the G-Lipschitz setting, we need to set the step size
as γ = D

G
1√
t
, and we need to project the iterates of SGD

back onto the ball of radius D := ∥x0 − x∗∥. In contrast,
SPS* achieves this rate without without access to G or D,
but with access to fξ(x∗) instead.

The main downside to (2) is that it requires access to ft(x∗).
This is why we refer to SPS* as an idealized variant, both
because of its ideal convergence rates, and this idealized
setting of assuming access to ft(x∗). In this sense, the
comparisons in Table 1 to alternative Polyak type methods
are not entirely fair, because they do not require such access
to ft(x∗). Our message here is not that SPS* is a better
method than SPSmax, NGN or DecSPS, but rather that ft(x∗)
is the object that we should try to approximate, or learn on
the fly.

Despite our claim that SPS* is an idealized method, we do
consider two settings where access to, or approximating,
ft(x∗) is reasonable. One setting where ft(x∗) is often
known is the interpolation setting, where we assume that
there exists a minimizer x∗ ∈ Rd such that the loss over
every data is simultaneously minimized, in other words

fξ(x∗) = inf
x∈Rd

fξ(x), ∀ξ ∈ support (P). (3)

Thus under interpolation, our model has a perfect fit (as
measured by fξ(x)) for every data point. Typically the loss
is a non-negative function and its infimum is zero (Loizou

et al., 2021), that is infx∈Rd fξ(x) = 0. When this is the
case, we have access to every fξ(x∗), which happens to be
zero. Alternatively when inf fξ(x) is close to zero, then us-
ing zero as approximation is reasonable. Finally, even when
inf fξ(x) is far from zero, it can sometimes be efficiently
approximated (Loizou et al., 2021).

The ease of approximating inf fξ(x) is what motivated
SPSmax (Loizou et al., 2021) which uses the step size

γSPSmax
t := min

{
ft(xt)− infx ft(x)

∥gt∥2
, γb

}
, (4)

where γb > 0 is an additional hyperparameter to safe-guard
against excessively large step sizes. Loizou et al. (2021)
present a comprehensive analysis of SPSmax in the non-
smooth, smooth and strongly convex setting. But in all
these cases, SPSmax is only guaranteed to converge when
interpolation holds. Outside of interpolation, SPSmax con-
verges to a neighborhood of the solution. Here we show
that it is not necessary to assume that interpolation holds to
establish convergence of a SPS type method. Having access
to fξ(x∗) is sufficient.

To be clear, assuming access to fξ(x∗) is not the same as
assuming that interpolation holds. Interpolation (3) imposes
constraints on the data and the model, usually requiring the
model to be overparameterized (Ma et al., 2018; Liu et al.,
2022; Gower et al., 2021). In contrast having access to
fξ(x∗) imposes no constraints on the model and data. Fur-
thermore, there are settings outside of interpolation where
fξ(x∗) can be known or reasonably approximated, such as
model distillation which we consider in Section 4.1.

As a secondary objective of our work, we also present IAM
(Iterate Averaging Adaptive method), a variant of SPS* with
momentum. We prove that in the smooth and Lipschitz
setting the last iterate of IAM converges as fast as the average
iterate of SPS*. As the last iterate is usually more relevant
in practice, this is the first time that a version of SPS with
momentum has some theoretical advantage.

Next we describe the related work to ours, and use the
context to detail our specific contributions. See Table 2 for
a high-level resume of our results.

1.2. Related Work and Contributions

Polyak step size. The Polyak step size was first intro-
duced by Polyak (1987) in the deterministic setting, where
he also proved convergence for non-smooth and convex
functions. Hazan & Kakade (2019) revisited the Polyak
step size and showed that for the class of gradient descent
methods (where we can only choose the step size), it has
the optimal convergence rate in the Lipschitz, smooth, and
strongly convex setting. Furthermore, it is optimal without
having access to any of the Lipschitz (G), smoothness (L),
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Table 1. A summary of anytime convergence rates for variants of stochastic Polyak step size. Notation: D = ∥x0 − x∗∥,
σ2
∗ = f(x∗) − E [inf fξ], σpos = E [inf fξ], G2 = maxx Eξ

[
∥∇fξ(x)∥2

]
. We compare to the stochastic Polyak

methods DecSPS
(3)

, SPSmax (Loizou et al., 2021) and NGN (Orvieto & Xiao, 2024). The proof of convergence for SPS*
in the Lipschitz convex and strongly convex setting was first given in (Garrigos & Gower, 2023) and (Pedregosa &
Schaipp, 2023), respectively.

Algorithm Convex
finite sum

G-Lipschitz
problems

L-Smooth
problems

L-Smooth
µ-Convex

G-Lipschitz
µ-Convex

DecSPS
(3)

✗ ✗ ✗
LD2+σ2

∗√
t

✗

SPSmax ✗ ✗ LD2

t + σ2
∗L

(
1− µ

L

)t
D2 +

σ2
∗L
µ ✗

NGN ✗ ✗ L2D2
√
t

+
L(σ2

∗+Lσpos) log(t)√
t

✓(4) ✗

SGD∗(2) ✗ GD√
t

LD2
√
t
+

σ2
∗ log(t)

L
√
t

σ2
∗

µ2
1
t +

L2D2

µ2t2
B2

µ2
1
t

SPS*
GD√

t
(1)

Remark 2.4

GD√
t

Corollary 2.2

LD2

t +
σ2
∗D√
t

Corollary 2.3

σ2
∗

µ2
1
t

Theorem G.1

B2

µ2
1
t

Theorem G.1

IAM (new)
GD√

t
(1)

Remark 2.4

GD√
t

Theorem 3.2

LD2 log(t+1)
t +

√
Lσ2

∗D√
t

Theorem 3.3
✗ ✗

(1) The convex finite sum result assumes Eξ [fξ] =
1
n

∑n
i=1 fi and fi is continuous for i = 1, . . . , n.

(2) SGD∗ denotes SGD where we can use all the global constants D,G,L, σ2
∗ and µ to set the step size. For the left

to right, these results can be found in Thm. 9.12 (Garrigos & Gower, 2023), Thm. 4.1 (Gower et al., 2021), Thm.
3.1 (Gower et al., 2019), Section 3.2 (Lacoste-Julien et al., 2012).

(3) Under the additional assumption that the iterates of DecSPS are bounded, we have from (Orvieto et al., 2022) that
DecSPS converges at a O

(
1/

√
t
)

rate in the G-Lipschitz and L-smooth setting.
(4)

The paper claims an O (log(t)/t) anytime rate is possible, but does not give the explicit proof or constants.

or strong convexity (µ) parameters. Recently, the proof of
convergence in the smooth setting has been generalized to
a broader class of relatively smooth functions (Takezawa
et al., 2024) and locally smooth functions (Richtárik et al.,
2024). In the smooth and strongly convex setting, Barré
et al. (2020) show how to accelerate gradient descent with
the Polyak step size, and without having access to the strong
convexity parameter, but estimating it instead.

The stochastic Polyak step size. The current research
into the stochastic Polyak step size was kick-started by the
ALI-G method (Berrada et al., 2020) and SPSmax (Loizou
et al., 2021). Both ALI-G and SPSmax offered a practical
stochastic variant of the Polyak step size with strong em-
pirical results to support their use. In terms of convergence
theory, for smooth and convex functions, SPSmax was shown
to converge to a neighborhood of the solution (Loizou et al.,
2021). To enforce that SPSmax does converge in the smooth
setting, Orvieto et al. (2022) proposed the DecSPS method
that combines SPSmax with a decreasing step size sequence,
and show that if the stochastic loss functions are strongly
convex and smooth, then suboptimality converges at a rate
of O(1/

√
T ), where T is the number of iterations. This rate

is slower than SGD in the same setting, which is O (1/T ) .

As for SPS*, Garrigos et al. (2023) showed that it converges
with the optimal rate in the Lipschitz non-smooth setting.
Convergence in the smooth setting was shown in (Garrigos
et al., 2023; Gower et al., 2021), but under interpolation.

A proximal version of SPS was introduced in (Schaipp et al.,
2023) in order to handle regularization terms. More recently,
a new variant of SPS called NGN was introduced in (Orvieto
& Xiao, 2024) for specifically non-negative functions. NGN
uses a combination of Gauss-Newton and truncation to intro-
duce a dampened version of the Polyak step sizes. Though
NGN also converges to a neighborhood of the solution for
smooth functions, Orvieto & Xiao (2024) prove a O(1/

√
T )

and O (1/T ) complexity for convex and strongly convex
functions, respectively. Orvieto & Xiao (2024) also give a
O(log(T )/

√
T ) anytime result in the smooth and convex

setting.

Contributions. We present a unifying anytime convergence
in the smooth and non-smooth setting in Theorem 2.1 for
SPS*. Besides convexity, Theorem 2.1 only makes local
assumptions and thus applies to a broader class of functions
as compared to prior results. We then specialize this re-
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sult into the locally Lipschitz and locally smooth setting
in Corollary 2.2 and Corollary 2.3, respectively. Our proof
also leverages a new trick, where we explicitly invert a con-
vex monotone function (Lemma C.1). We show how this
trick is used in a sketch of the proof of Theorem 2.1 in
Section D.1. Finally, our convergence result in the smooth
setting in Corollary 2.3 is the first O(1/

√
T ) anytime result.

Furthermore, this convergence result is adaptive to interpo-
lation: As we get closer interpolation, σ2

∗ approaches zero,
and the convergence rate in Corollary 2.3 automatically
switches from O(1/

√
T ) to O (1/T ).

Momentum. Polyak (1964) introduced the momentum
method through the heavy-ball viewpoint. In the determin-
istic setting, Polyak (1964) showed that it converges at an
accelerated rate for strongly convex quadratic functions.
Only rather recently, a global convergence was established
for smooth and non-smooth functions without strong con-
vexity (Ghadimi et al., 2015).

In the stochastic setting, there is little to no theoretical ad-
vantage for using momentum for SGD, unless we consider
the specialized setting of minimizing a quadratic (Lee et al.,
2024; Bollapragada et al., 2024). The main theoretical im-
provement from using momentum in the stochastic setting
for general convex functions is that the last iterate xt of
momentum converges at the same favourable rate as the
average iterate of the SGD iterates (Sebbouh et al., 2021;
Defazio & Gower, 2021). The analysis in (Sebbouh et al.,
2021) relies on an equivalent reformulation of momentum
known as the iterate averaging viewpoint, which we also
use in this work. Recent online-to-batch conversion tech-
niques can also achieve the same rate of convergence of the
last iterate of SGD without momentum, albeit with slightly
worse constants (Cutkosky, 2019b). These online-to-batch
techniques rely on monotonic step sizes, and thus are not
applicable to Polyak-type step sizes.

Stochastic Polyak with momentum. In the stochastic
setting, some very recent works have considered different
ways of blending SPS with momentum (Schaipp et al., 2024;
Wang et al., 2023). The first analysis of a variant of SPS
with momentum was developed in Wang et al. (2023). Their
ALR-SMAG method is the result of choosing a learning rate
that minimizes a particular upper bound on ∥xt+1 − x∗∥
for the iterates of momentum or heavy-ball. The current
analysis for ALR-SMAG shows that it has a slower conver-
gence as compared to SPS unless βt = 0, which corresponds
to using no momentum. The same issue holds for the re-
cently introduced MoMomethod (Schaipp et al., 2024), which
empirically reduces the tuning effort for the learning rate
across many tasks, but theoretically has best bounds with no
momentum, that is, when the method is equal to SPS. An-
other recent approach that combines SPS with momentum

is proposed by Oikonomou & Loizou (2024), introducing
MomSPSmax and its variants, MomDecSPS and MomAdaSPS.
These step sizes guarantee convergence in the stochastic set-
ting without relying on the interpolation condition. Instead,
they assume in addition that the iterates remain bounded.
Specifically, MomSPSmax achieves an O(1/t) convergence
rate to a neighborhood of the solution, while MomDecSPS
and MomAdaSPS converge to the exact solution with a rate
of O(1/

√
t).

Contributions. We prove that the last iterate of our mo-
mentum variant of SPS (Algorithm 1) converges anytime in
(i) the convex and locally Lipschitz case (see Theorem 3.2)
and (ii) the locally smooth case (see Theorem 3.3). Fur-
thermore, in the non-smooth setting, the convergence rate
in Theorem 3.2 is at least as fast as the corresponding rate
for SPS* in Corollary 2.2.

Adaptive methods. Historically, line search procedures,
such as Armijo line search (Armijo, 1966), used to be com-
monly employed to estimate the smoothness around the
current point when the exact smoothness constant L was not
known. More recent works have shown that it is also possi-
ble to estimate the value of L using the previously observed
gradients (Malitsky & Mishchenko, 2020; Latafat et al.,
2024). Furthermore, in the last decade, more line-search
(Nesterov, 2014) and bisection (Carmon & Hinder, 2022)
methods have been proposed that adapt simultaneously to
smooth and non-smooth objectives. Unfortunately, most of
the approaches either don’t have strong guarantees in the
stochastic case or require large batch sizes.

In online learning, when the Lipschitz constant of the ob-
jective is known, coin-betting approaches (Orabona & Pál,
2016) can be used to adaptively estimate distances to a so-
lution. When the Lipschitz constant is not known, one can
either use restarts (Mhammedi & Koolen, 2020), which re-
quire a lot of extra work, or use a technique called hints
(Cutkosky, 2019a), but the latter introduces even more hy-
perparameters.

AdaGrad (Streeter & McMahan, 2012; Duchi et al., 2011)
and its variants offer an alternative by estimating the gra-
dient magnitudes instead of estimating smoothness. These
methods can be combined with momentum and achieve
strong complexity results, but they either require bounded
domain (Levy et al., 2018; Kavis et al., 2019) or are only
studied in the deterministic setting (Li & Lan, 2023). Fur-
thermore, most variants use step sizes that can only decrease
over time, meaning they will not adapt if the problem curva-
ture becomes flatter. This has been partially addressed by a
series of new methods that have an increasing estimate of
distances to the solution set (Defazio & Mishchenko, 2023;
Ivgi et al., 2023; Khaled et al., 2023), but their stochastic
guarantees are provided only for large batch sizes (Ivgi et al.,
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2023) or the interpolation setting. We compare to the most
relevant of these works in Table 2.

Contributions. Our theoretical results show that the SPS*
method is adaptive to the following settings and parameters:
smoothness (L), initial distance (D), Lipschitz (G), interpo-
lation (σ2

∗) and strong convexity (µ). The precise definition
of these parameters and constants are given later.

2. Stochastic Polyak Step Size
Before giving our convergence proofs, we first will motivate
SPS* as the step size that minimizes an upper bound on
the distance to a minimizer. Suppose we are at iteration t,
have drawn a batch of data ξt, and let gt := gξt(xt) be the
stochastic (sub)gradient evaluated at xt. For short-hand we
will also use ft := fξt . Consider an iterate of SGD,

xt+1 = xt − γtgt,

where γt > 0 is the step size. The subgradient gt ∈ ∂ft(xt),
by definition satisfies

ft(x) ≥ ft(xt) + ⟨gt, x− xt⟩ , ∀x ∈ Rd. (5)

Now consider the task of choosing γt that brings xt+1 as
close as possible to the solution x∗. In general, this is impos-
sible since we do not know x∗. However, we can minimize
the upper bound

∥xt+1 − x∗∥2 − ∥xt − x∗∥2

= −2γt ⟨gt, xt − x∗⟩+ γ2t ∥gt∥2

≤ −2γt(ft(xt)− ft(x∗)) + γ2t ∥gt∥2, (6)

where we use (5) in the inequality. Minimizing the right-
hand side under the constraint γt ≥ 0 gives the step size

γSPS∗t =
(ft(xt)− ft(x∗))+

∥gt∥2
, (7)

which together with SGD gives the SPS* method (2).

Note that in (7) we divide by the squared norm of the
stochastic gradient, which could be equal to zero. This
is only possible if (ft(xt) − ft(x∗))+ = 0, so we define
γSPS∗t := 0 if gt = 0. That is, if the stochastic gradient is
zero, no step is taken.

2.1. Convergence Theory for Convex Problems

We now give our unifying convergence theorem for SPS*,
that aside from convexity, only assumes in (9) that the ex-
pected norm of the stochastic gradients is bounded within

BD(x∗) := {x ∈ Rd : ∥x− x∗∥ ≤ ∥x0 − x∗∥}.
Later we show how this local bound can be specialized into
a smooth and non-smooth setting. In Appendix G we give
an analogous result for the strongly convex setting.

Theorem 2.1. [Convergence of SPS*] Consider prob-
lem (1) and let the iterates (xt)t≥0 be given by (2), and
let D := ∥x0 − x∗∥. If fξ : Rd → R is convex with prob-
ability one, then the iterates are almost surely monotone:

∥xt+1 − x∗∥2 ≤ ∥xt − x∗∥2 with probability 1. (8)

If there exist A,B > 0 such that for all x ∈ BD(x∗)

Eξ

[
∥gξ(x)∥2

]
≤ A(f(x)− f(x∗)) +B, (9)

then for x̄T := 1
T

∑T−1
t=0 xt we have that

E [f(x̄T )− inf f ] ≤ D2A

T
+

√
D2B

T
, ∀T ∈ N. (10)

Because our proof makes use of a new technical lemma
that may find uses elsewhere, we give a sketch of the proof
in Appendix D.2. The full proof is also in Appendix D.2.

Next we specialize Theorem 2.1 to a non-smooth and
smooth setting, as we show in the next two corollaries.

Corollary 2.2 (Non-smooth setting). Consider the set-
ting of Theorem 2.1 where A = 0 and B = G ≥ 0.
In other words, the following expected locally Lipschitz
assumption holds:

Eξ

[
∥gξ(x)∥2

]
≤ G2, ∀x ∈ BD(x∗). (11)

It follows that

E [f(x̄T )− inf f ] ≤ GD√
T
, ∀T ∈ N. (12)

Corollary 2.3 (Smooth setting). Consider the setting of
Theorem 2.1 where A = 2L and B = σ2

∗ := inf f −
Eξ [inf fξ]. That is, we assume local expected smoothness:

Eξ

[
∥gξ(x)∥2

]
≤ 2L

(
f(x)− inf f+σ2

∗
)
, ∀x ∈ BD(x∗).

(13)
It then follows that

E [f(x̄T )− inf f ] ≤ 4L∥x0 − x∗∥2
T

+

√
2∥x0 − x∗∥σ2

∗√
T

.

(14)

For the non-smooth setting, it is typically assumed that the
loss functions are globally Lipschitz, uniformly with respect
to ξ, which in turn gives a global bound on the stochastic
subgradients. Here instead we require very little: the convex-
ity of our losses entails that fξ is Gξ-Lipschitz on BD(x∗)
(see Corollary 8.41 in (Bauschke & Combettes, 2017)), so
we only need to assume that the expectation Eξ [Gξ] is finite.
An advantage of this local Lipschitz assumption is that it
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always holds true for finite sums (just take the maximum
over Gξ). Another advantage of our local assumption is
that it is compatible with strong convexity. Indeed there is
no function which is both globally Lipschitz and strongly
convex, see e.g. Lemma 9.13 in (Garrigos & Gower, 2023).

Despite this additional generality, we achieve a O(1/
√
T )

convergence rate which is the optimal lower bound for
the class of convex Lipschitz functions (Drori & Teboulle,
2016). Currently this rate can only be achieved by combin-
ing adaptive methods such as AdaGrad (Duchi et al., 2011)
together with knowing and using ∥x0 − x∗∥ to set the learn-
ing rate or a projection radius (Orabona, 2019). In contrast,
our oracle requires knowing fξ(x∗). We note that a weaker
version of Corollary 2.2 was first established in (Garrigos
et al., 2023, Thm. 2.3), where the losses fξ are assumed to
be globally Lipschitz.

As for the smooth setting, it is typically assumed in the
literature that the loss functions fξ are globally smooth,
uniformly with respect to ξ (Gower et al., 2020; 2021; 2019).
This assumption is a sufficient condition for our inequality
(14) to be true, see Garrigos & Gower (2023, Lem. 4.19).
Our result instead requires much less: all we need is that the
losses fξ are locally smooth, and that their local smoothness
constants are uniformly bounded with respect to ξ. We defer
to Proposition B.6 in the appendix for a formal proof that
such local smoothness implies (14). In particular, one can
see that our assumption is always verified if we are dealing
with a finite sum of class C2 losses.

Our smooth result in Corollary 2.3 is, as far as we know, the
first O(1/

√
T ) anytime convergence rate for a stochastic

variant of the Polyak step size, assuming only smoothness
and convexity. Note that SGD has a O (log(T )/T ) anytime
rate in this setting, see Appendix F.

Another interesting aspect of the convergence rate in (12)
is that it is adaptive to interpolation. When there is no
interpolation (σ2

∗ > 0), the convergence is dominated by
the O(1/

√
T ) factor. On the other hand, as σ2

∗ gets closer
to zero, the convergence rate in (12) approaches O(1/T ),
which is the expected accelerated rate of SGD under inter-
polation (Vaswani et al., 2019). We are unaware of prior
work that establishes an anytime rate of convergence that is
adaptive to interpolation. Though we show in Theorem E.1
in the appendix that the complexity of SGD can adapt to in-
terpolation. We further contrast our rate to the best known
anytime rate for SGD and SPSmax in Appendix F.

Remark 2.4 (Finite sum). We emphazise that for finite-
sum minimization f = 1

n

∑n
i=1 fi, our assumptions are

drastically simplified. Assumption (11) in Corollary 2.2 is
automatically true ; and assumption (14) in Corollary 2.3
is true when the fi are locally smooth, for instance if they
are of class C2.

We have shown that SPS* has the optimal rate of conver-
gence in the non-smooth setting, and a fast adaptive anytime
rate in the smooth setting. This motivates us to think of
SPS* as an idealized variant of the stochastic Polyak step
size. In Appendix H we show how several practical variants
of the stochastic Polyak step size, that do not need access to
fξ(x∗), can be viewed as approximations of SPS*.

3. Momentum and the Iterate Moving Average
Method

The SPS* method is missing one important and practical
ingredient, which is momentum. Furthermore, our previous
convergence only holds for the average iterate, whereas the
last iterate is often preferred since it is used in practice.

Momentum is often presented as replacing the gradient with
an exponential moving average of gradients as follows: for
γt > 0 and βt ∈ [0, 1), let

mt = βtmt−1 + gt, xt+1 = xt − γtmt. (15)

To derive our momentum variant of SPS, we will make use
of the equivalent reformulation given by

zt = zt−1 − ηtgt, (16)

xt+1 =
λt+1

1 + λt+1
xt +

1

1 + λt+1
zt, (17)

where ηt > 0 and λt ∈ [0, 1] are hyperparameters. Though
not obvious, the xt iterates in (17) are equivalent to the xt
iterates of Momentum (15) by choosing a particular map-
ping between (βt, γt) and (λt, ηt), see Defazio & Gower
(2021, Thm. 1) and Lemma I.1 for convenience.

Inspired by both Wang et al. (2023) and Schaipp et al.
(2024), we now choose the learning rate ηt in (16) that
minimizes an upper bound on Dt := ∥zt − x∗∥2. We have

Dt = Dt−1 − 2ηt ⟨gt, zt−1 − x∗⟩+ η2t ∥gt∥2.
Using convexity we have that

⟨gt, zt−1 − x∗⟩ = ⟨gt, xt − x∗⟩+ ⟨gt, zt−1 − xt⟩
≥ ft(xt)− ft(x∗) + ⟨gt, zt−1 − xt⟩ .

With this bound we have that

Dt ≤ Dt−1 + η2t ∥gt∥2

− 2ηt
[
ft(xt)− ft(x∗) + ⟨gt, zt−1 − xt⟩

]
.

(18)

We will use this upper bound to choose an adaptive learning
rate. Minimizing the right-hand side over ηt ≥ 0 gives

ηt =

[
ft(xt)− ft(x∗) + ⟨gt, zt−1 − xt⟩

]
+

∥gt∥2
. (19)

We refer to (17) with the learning rate (19) as the Iterate
Averaging Adaptive Method (IAM) method, for which we
give the complete pseudo-code in Algorithm 1.
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Algorithm 1 IAM: Iterate Averaging Adaptive Method.

Input: z−1 = x0 ∈ Rd, λt > 0, for t = 0, . . . , T
for t = 0 to T − 1 do

ηt =

[
ft(xt)− ft(x∗) + ⟨gt, zt−1 − xt⟩

]
+

∥gt∥2
zt = zt−1 − ηt∇ft(xt)
xt+1 =

λt+1

1 + λt+1
xt +

1

1 + λt+1
zt

Return: xT

3.1. Convergence Theorems

Again Dt = ∥zt − x∗∥2. Our proofs all start from plugging
in the step size (19) into (18) giving

Dt ≤ Dt−1 −
(
ft(xt)− ft(x∗) + ⟨gt, zt−1 − xt⟩

)2
+

∥gt∥2
.

Lemma 3.1. Let fξ be convex for every ξ. The distances
of iterates zt of Algorithm 1 to a solution x∗ ∈ Rd de-
creases monotonically, that is, with probability one

∥zt − x∗∥2 ≤ ∥zt−1 − x∗∥2 ≤ · · · ≤ ∥z0 − x∗∥2.

This type of monotonicity for stochastic methods is very
rare, with the only other example that we are aware of
being SPS* (cf. Theorem 2.1). To complete the convergence
proofs, we will telescope the recurrence on Dt and bound
the gradient norm on the denominator.

3.2. Non-smooth Setting

For our first proof we consider the setting where fξ could
be non-smooth, thus gξ denotes a subgradient of fξ .

Theorem 3.2 (Non-smooth setting). Consider the iterates
of IAM in Algorithm 1 with the learning rate (19) and
λt = t. Let fξ be convex for all ξ. Let D := ∥x0 − x∗∥,

G2 := max
x∈BD(x∗)

Eξ∥gξ(x)∥2,

Bf (x, y) := f(x)− f(y)− ⟨∇f(y), x− y⟩ .

The suboptimality of the last iterate xT is bounded by

E [f(xT )− f(x∗)] +
1

T + 1

T∑
t=1

tE [Bf (xt−1, xt)]

≤ GD√
T + 1

. (20)

This rate of convergence (20) is the same as SPS* (Corol-
lary 2.2), with two notable differences: First this rate for IAM
holds for the last iterate, as opposed to the average of the

iterates, and second, this rate for IAM (20) can be faster than
that of SPS* due to the additional Bregman divergences.

Theorem 3.2 restricts the parameter choice of λt = t, which
when translated back (See Appendix I for details) to the
momentum method (15) restricts the parameters (γt, βt) to
βt = t

t+1
ηt−1

ηt
and γt = ηt

t+2 for all t. To allow for other
parameter settings, we provide Thm. J.1 in the Appendix,
which allows for any deceasing (λt)t, but does not establish
a last-iterate convergence.

3.3. Smooth Setting

Here we consider the setting where we assume that the loss
functions fξ satisfy a local expected smoothness condition.

Theorem 3.3 (Smooth setting). Let fξ be convex for all
ξ. Assume local expected smoothness (13) holds. Let xt
be the iterates of Algorithm 1 (IAM) with λt = t. It holds

E [f(xT−1)− f(x∗)] ≤
2L∥x0 − x∗∥2(log(T ) + 1)

T

+

√
2Lσ2∗∥x0 − x∗∥√

T
. (21)

Analogous to the SPS* result in (14), the above shows that
IAM is adaptive to interpolation, since equation (21) gives a
Õ(1/T ) convergence in the case of interpolation (σ2

∗ = 0).

In contrast to the convergence of SPS* in Corollary 2.3
the rate of convergence of IAM in (21) has an additional
log(T + 1) on the non-dominant O( 1

T+1 ) term.

4. Experiments
Here we present several numerical results. First, we test
the extent of our convergence theory for SPS* and IAM. Ac-
cording to Remark 2.4, both SPS* and IAM will converge
for differentiable convex finite-sum problems, even when
the loss is non-smooth and non-Lipschitz. We test this on
Poisson regression in Appendix L.1, where we show that
IAM converges to a loss value comparable to L-BFGS, and
to SGD with the best step size chosen from a grid. In Ap-
pendix L.2 we investigate how IAM behaves when fξ(x∗) is
wrongly specified (or guessed inaccurately). Finally, in Sec-
tion 4.1 we use IAM and an Adam variant of IAM for model
distillation.

4.1. Black-box Model Distillation

Here we consider a variant of knowledge distillation where
the goal is to train a small model (called student) while
having access to a pretrained, large model (called teacher).

The main idea we propose here is that, when training the
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Figure 1. Distilling a teacher GPT2 on three datasets. Adaptive learning rate of IAM and learning rates of SGD (top) and cross-entropy
training loss (bottom). Black line marks the average teacher loss.

student, the loss of teacher model for a given batch ξ can be
used as an approximation of fξ(x∗).

For a given batch ξ ∼ P from the training set of the stu-
dent, denote by fsξ (x) the loss function1 of the student with
weights x for batch ξ. Denote by fτξ the loss of the pre-
trained teacher model for the same batch. Since the teacher
is a significantly larger and more expressive model, we can
assume that even after training the student, its loss will not
fall below fτξ . Thus, we use fsξ (x∗) ≈ fτξ for the IAM
method (Algorithm 1) to train the student.

Many variations of knowledge distillation have been pro-
posed (Hinton et al., 2015; Beyer et al., 2022; Hsieh et al.,
2023). The variant we present here is slightly different to
previous works in that it requires only access to the batch
loss of the teacher model (and not to the logits). We discuss
this relationship in more detail in Appendix L.3.

We use three different datasets, tinyShakespeare, PTB
and Wikitext2. As teacher model we use a pretrained
GPT2 model with 774M parameters (Radford et al., 2019;
Wolf et al., 2020). The student models are much smaller
GPT2 architectures. All details are deferred to Appendix L.3.
Our results are in Figure 1. We compare IAM and IAM-Adam

1This is usually the cross-entropy loss for the language model-
ing tasks we consider.

(IAM with an Adam preconditioner, see Appendix K) to
SGD and Adam with (i) constant learning rate, and (ii)
warmup+cosine-decay schedule; tuning procedures are de-
tailed in Appendix L.3.

We find that both versions of IAM achieve the best resulting
loss on all three problems. Consequently, when we are able
to load a suitable pretrained teacher model, we find that
IAM is able to efficiently train a student model without any
hyperparameter tuning.

5. Limitations
The limitation of our methods is that they require the batch
loss at an optimal point. Because of this, outside of appli-
cations that interpolate, or our model distillation setup, it
could be hard to find an applications for SPS* and IAM.
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Table 2. A summary of related work and conceptual differences to our approach and the
work in AcceleGrad (Levy et al., 2018), UniXGrad (Kavis et al., 2019), AC-FGM (Li &
Lan, 2023), Prodigy (Mishchenko & Defazio, 2024), and USFGM (Rodomanov et al.,
2024).

Algorithm Last
iterate

Smooth
problems

Non-smooth
problems

Unbounded
domain

Stoch.
gradients

Can increase
step size

AcceleGrad ✗ ✗(1) ✓ ✗ ✓ ✗

UniXGrad ✗ ✓ ✓ ✗ ✓ ✗

AC-FGM ✗ ✓ ✓ ✓ ✗ ✓

Prodigy ✗ ✓ ✓ ✓ ✗ ✓

USFGM ✓ ✓ ✓ ✗ ✓ ✗

SPS* (our result) ✗ ✓ ✓ ✓ ✓ ✓

IAM (ours) ✓ ✓ ✓ ✓ ✓ ✓

(1) AcceleGrad’s smooth analysis is for deterministic problems.

I Momentum and Iterate Averaging 29

J Additional Proof for IAM with Decreasing λt 30

K An Adam Variant of IAM 32

L Experiments 32

L.1 Non-Lipschitz Non-smooth Convex Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

L.2 Misspecification of fξ(x∗) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

L.3 Supplementary Material on Distillation Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

A. Comparison of Adaptive Methods
In Appendix A we make a qualitative comparison between our methods SPS* and IAM and other adaptive methods.

B. Convex Analysis and Subgradients
Here we introduce and define some of the more technical bits of convex analysis we need throughout the paper. In particular
we make precise the technical assumptions that we are making on the functions fξ, which correspond to the assumptions
made in the Section 9 of Garrigos & Gower (2023).

Throughout our paper, we consider for every sampled data ξ a loss function fξ : Rd → R taking finite values. We also
always assume that fξ is convex, which implies that it is continuous on Rd (see Proposition 3.5 in (Peypouquet, 2015)).
Nevertheless, we do not always assume that our loss functions fξ are differentiable. For example, fξ(x) could be defined
with an absolute value, such as fξ(x) = |w⊤

ξ x− yξ| where wξ is a sample feature vector and yξ a target value. In general,
instead of using gradients we will making use of subgradients, which play a similar role.

Definition B.1. Let f : Rd → R, and x ∈ Rd. We say that g ∈ Rd is a subgradient of f at x ∈ Rd if

for every y ∈ Rd, f(y)− f(x)− ⟨g, y − x⟩ ≥ 0.

Since our loss functions fξ are convex and continuous, we are guaranteed that at every x ∈ Rd, there exists some
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subgradient that we will note gξ(x) (the existence of such subgradient is stated in [Prop. 3.25](Peypouquet, 2015) and [Cor.
8.40](Bauschke & Combettes, 2017)). In our proofs we will often need to take the expectation of these subgradients gξ(x)
with respect to ξ. To be able to do this, we must formally assume throughout that the function ξ 7→ gξ(x) is measurable for
every x ∈ Rd. This will for instance allow us to say that the expectation of gξ(x) is a subgradient of f at x (see Lemma 9.5
in (Garrigos & Gower, 2023)).

We know give some technical details about locally smooth functions, which is the assumption made in Corollary 2.2.

Definition B.2. We say that f : Rd → R is locally smooth if it is differentiable and if ∇f is locally Lipschitz continuous.

Note that this definition is equivalent to require ∇f to be Lipschitz continuous over any bounded subset of Rd. A simple
example of locally smooth functions are C2 functions: their hessians are locally bounded by continuity, so the mean value
inequality entails that their gradients are locally Lipschitz.

Lemma B.3 (Local descent lemma). If f is locally smooth, then for every bounded set B ⊂ Rd there exists LB ≥ 0 such
that

for all x, y ∈ B, f(y)− f(x)− ⟨∇f(x), y − x⟩ ≤ LB

2
∥y − x∥2. (22)

Proof. This is just a local version of the classic proof of the descent lemma, see e.g. Lemma 1.30 from (Peypouquet, 2015).
Without loss of generality, we can assume that B is convex and compact (simply replace B with its closed convex hull). By
compactness, we know that ∇f is Lipschitz continous on B, for some constant LB ≥ 0. We can then start the proof and fix
x, y ∈ B. Define the auxiliary function g(t) = f((1− t)x+ ty)− t⟨∇f(x), y − x⟩ for t ∈ [0, 1]. It is differentiable and
verifies

g(1)− g(0) =

∫ 1

0

g′(t) dt

which is equivalent, by definition of g, to

f(y)− f(x)− ⟨∇f(x), y − x⟩ =
∫ 1

0

⟨∇f((1− t)x+ ty)−∇f(x), y − x⟩ dt.

Now we use the Cauchy-Schwarz inequality, together with the Lipschitzness of ∇f (note that z := (1− t)x+ ty) belongs
to B which is convex!), to obtain

f(y)− f(x)− ⟨∇f(x), y − x⟩

≤
∫ 1

0

∥∇f((1− t)x+ ty)−∇f(x)∥∥y − x∥ dt

≤
∫ 1

0

LB∥(1− t)x+ ty)− x∥∥y − x∥ dt

=

∫ 1

0

LBt∥y − x∥2 dt

=
LB

2
∥y − x∥2.

Locally smooth functions verify locally the following useful bound:

Proposition B.4. If f : Rd → R is locally smooth and bounded from below, then for every bounded set B ⊂ Rd there
exists LB ≥ 0 such that

for all x ∈ B,
1

2LB
∥∇f(x)∥2 ≤ f(x)− inf f.
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Proof. This proof is just an adaptation of a classical result (see e.g. Lemma 2.28 from (Garrigos & Gower, 2023)) by
making use of additional local arguments. Here again, without loss of generality, we can assume that B is compact. Let LB

be the local smoothness constant provided by the local descent lemma B.3. Let T : Rd × R → Rd be the map defined by

T (x, γ) = x− γ∇f(x).

Because ∇f is supposed continuous, we know that T is continuous. Now we define

K := {x− γ∇f(x) | x ∈ B, γ ∈ [0, 1
LB

]} ⊂ Rd.

From our definitions it is clear that K = T (B × [0, 1
LB

]). In other words, it is the image of a compact set by a continuous
function, which means that K is compact. It is also clear that K contains B (simply take γ = 0). Now we can use again
the local descent lemma B.3 to obtain that f verifies (22) with a constant LK . Without loss of generality, we can assume
that LK ≥ LB (simply replace LK with max{LK , LB}). Now we can end the proof. Let x ∈ B be fixed, and define
y := x− 1

LK
∇f(x). By construction, x ∈ B ⊂ K and y = T (x, 1

LK
) ∈ K. So we can use the descent lemma inequality

on K to obtain
f(x− 1

LK
∇f(x))− f(x)− ⟨∇f(x),− 1

LK
∇f(x)⟩ ≤ Lk

2
∥ 1
LK

∇f(x)∥2.

Rewriting and reorganizing terms, we obtain further

f(x− 1
LK

∇f(x))− f(x) ≤ − 1

2LK
∥∇f(x)∥2.

We obtain the desired result by observing that f(x− 1
LK

∇f(x)) ≥ inf f .

Definition B.5. We say that the family (fξ) is uniformly locally smooth if, for every bounded set B ⊂ Rd, there exists a
constant LB ≥ 0 independent of ξ such that each fξ is LB-smooth on B.

It is easy to see that any finite family of locally smooth functions is uniformly locally smooth: simply take the maximum of
the local smoothness constants. In particular, any finite sum of C2 functions is uniformly locally smooth.

Proposition B.6. Suppose that the family of functions (fξ) is uniformly locally smooth and bounded from below. Then,
for every bounded set B ⊂ Rd, there exists LB ≥ 0 such that

for all x ∈ B, E
[
∥∇fξ(x)∥2

]
≤ 2LB(f(x)− E [inf fξ]).

Proof. By definition of uniformly locally smooth functions, there exists LB ≥ 0 such that each function fξ is LB-smooth
on B, which means that we can use Proposition B.4 to write

for all x ∈ B,
1

2LB
∥∇fξ(x)∥2 ≤ fξ(x)− inf fξ.

The conclusion follows after taking expectation with respect to ξ.

C. Auxiliary Lemmas
Lemma C.1. Let A,B ≥ 0 which are not simultaneously zero. Let ψ(t) = t2

At+B be defined for t ≥ 0. Then ψ is convex
and increasing over [0,+∞), and its inverse is ψ−1(s) = 1

2 (sA+
√
s2A2 + 4sB).

Proof. The function ψ is twice differentiable over [0,+∞), and we can compute

ψ′(t) =
At2 + 2Bt

(At+B)2
and ψ′′(t) =

(2At+ 2B)(At+B)2 − 2(At2 + 2Bt)(At+B)A

(At+B)4
=

2B2

(At+B)3
.

It is immediate to see that ψ′ and ψ′′ are positive, from which we deduce that ψ is convex and increasing.
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Next, consider two cases. If At+B = 0, this implies t = 0 and ψ(0) = 0, thus ψ−1(0) = 0. If, however, At+B ̸= 0, for
s ≥ 0 it holds

ψ(t) = s⇐⇒ t2

At+B
= s⇐⇒ t2 −Ast−Bs = 0.

The last equation has a unique nonnegative solution which is t = 1
2 (sA +

√
s2A2 + 4sB), from which we deduce the

expression for ψ−1.

We will use the following lemma which is often used to study methods AdaGrad type methods.

Lemma C.2. Let c0, . . . , ck ≥ 0 be some non-negative numbers with c0 > 0, and denote St =
∑t

i=0 ci, then

√
St ≤

t∑
k=0

ck√
Sk

. (23)

Proof. The proof of the lemma can be found in various sources, for instance in the Appendix A of Levy et al. (2018),
but since it is very short, we will provide it here for completeness as well. Observe that for any α ∈ [0, 1], it holds
α ≥ 1−

√
1− α. Substituting α = ck/Sk ∈ [0, 1], we get

ck
Sk

≥ 1−
√
1− ck

Sk
=⇒ ck√

Sk

≥
√
Sk −

√
Sk − ck =

√
Sk −

√
Sk−1.

Summing the last inequality from k = 1 to k = t and using
√
S0 = c0√

S0
, we get the claim.

We also rely on the following result.

Lemma C.3 (Extended Titu’s Lemma). For any random variable X and positive-valued random variable Y , it holds

E
[
(X)2+
Y

]
≥ (E [X])

2
+

E [Y ]
. (24)

In addition, for any numbers a0, . . . , ak and positive numbers b0, . . . , bk, we have

k∑
t=0

(at)
2
+

bt
≥
(∑k

t=0 at
)2
+∑k

t=0 bt
. (25)

Proof. The proof follows from applying Jensen’s inequality to the function φ(x, y) = (x)2+/y. To prove that φ is convex
takes some work, and it is given in Lemma A.4 in Garrigos & Gower (2023). We also provide a different proof that φ(x, y)
is convex in the following Lemma C.4 by viewing φ(x, y) as a perspective function. The discrete result (25) follows from
applying (24) with uniform distribution over {a0, . . . , ak} and {b0, . . . , bk}.

Lemma C.4. Consider the function φ : R× R → R, (x, y) 7→ φ(x, y), where

φ(x, y) :=


(x)2+
y if y > 0,

0 if (y = 0) ∧ (x ≤ 0),

+∞ else.

(26)

Then, φ is closed, proper and convex on R× R.

Proof. Define the convex function h(x) := (x)2+. From Combettes (2017, Def. 2.1), it follows that φ(x, y) defined as in (26)

is the perspective function of h, that is, for y > 0 we have φ(x, y) = yh(x/y); for y = 0, we compute limα→∞
(αx)2+

α = 0
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if x ≤ 0 and +∞ otherwise. The perspective functions of closed, proper, convex functions is convex itself (Combettes,
2017, Prop. 2.3).

Here we show that the expected smoothness bound (13) is a consequence of assuming that fξ is almost surely L–
smooth.

Lemma C.5. Let fξ be L–smooth for every ξ, that is let

fξ(y) ≤ fξ(x) + ⟨∇fξ(x), y − x⟩+ L

2
∥y − x∥2. (27)

As a consequence we have that
E
[
∥∇fξ(x)∥2

]
≤ 2L

(
f(x)− inf f + σ2

∗
)
, (28)

where

σ2
∗ := f(x∗)− E [inf fξ] ≥ 0.

The proof can be found in Garrigos & Gower (2023, Lem. 4.19).

D. Missing Proofs
D.1. Sketch proof of Theorem 2.1

Here we give a sketch of the proof of Theorem 2.1 so that we can better highlight the main ideas behind the proof, and the
main novelty.

Theorem 2.1. [Convergence of SPS*] Consider problem (1) and let the iterates (xt)t≥0 be given by (2), and let D :=
∥x0 − x∗∥. If fξ : Rd → R is convex with probability one, then the iterates are almost surely monotone:

∥xt+1 − x∗∥2 ≤ ∥xt − x∗∥2 with probability 1. (8)

If there exist A,B > 0 such that for all x ∈ BD(x∗)

Eξ

[
∥gξ(x)∥2

]
≤ A(f(x)− f(x∗)) +B, (9)

then for x̄T := 1
T

∑T−1
t=0 xt we have that

E [f(x̄T )− inf f ] ≤ D2A

T
+

√
D2B

T
, ∀T ∈ N. (10)

Proof Sketch. Plugging the SPS* step size (7) into (6) and re-arranging gives

(ft(xt)− ft(x∗))2+
∥gt∥2

≤ ∥xt − x∗∥2 − ∥xt+1 − x∗∥2.

Taking expectation conditioned on xt, and using that the map (z1, z2) 7→ (z1)
2
+/zz is jointly convex on R × R≥0 (cf.

Lemma C.4) together with Jensen’s inequality, we get

(f(xt)− f(x∗))2+
Et [∥gt∥2]

≤ ∥xt − x∗∥2 − Et

[
∥xt+1 − x∗∥2

]
.

We can then use our main assumption (9) to bound the denominator of the left hand side giving

(f(xt)− f(x∗))2

A(f(xt)− f(x∗)) +B
≤ ∥xt − x∗∥2 − Et

[
∥xt+1 − x∗∥2

]
.
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Taking expectation again, and averaging both sides over t = 0, . . . , T − 1 and telescoping we have that

1

T

T−1∑
t=0

E
[

(f(xt)− f(x∗))2

A(f(xt)− f(x∗)) +B

]
≤ ∥x0 − x∗∥2

T
− E [∥xT − x∗∥]2

T
≤ ∥x0 − x∗∥2

T
.

The final step of the proof, and the main technical novelty, follows by defining the function ψ(r) = r2

Ar+B for r ≥ 0,

and noting that the left hand side of the above is equal to 1
T

∑T−1
t=0 E [ψ(f(xt)− f(x∗))]. We then apply Lemma C.1 in

the appendix that shows that ψ is a convex monotone function. Being convex, we can bring the average over t and the
expectation inside ψ giving

ψ(E [f(x̄t)− f(x∗)]) ≤
∥x0 − x∗∥2

T
.

Finally, Lemma C.1 also proves that ψ has an inverse given by

ψ−1(s) = 1
2 (sA+

√
s2A2 + 4sB).

Applying this inverse to both sides and using that ψ−1 is monotone, gives the result. End proof sketch.

Next we give the complete and detailed proof of Theorem 2.1.

D.2. Proof of Theorem 2.1
Theorem 2.1. [Convergence of SPS*] Consider problem (1) and let the iterates (xt)t≥0 be given by (2), and let D :=
∥x0 − x∗∥. If fξ : Rd → R is convex with probability one, then the iterates are almost surely monotone:

∥xt+1 − x∗∥2 ≤ ∥xt − x∗∥2 with probability 1. (8)

If there exist A,B > 0 such that for all x ∈ BD(x∗)

Eξ

[
∥gξ(x)∥2

]
≤ A(f(x)− f(x∗)) +B, (9)

then for x̄T := 1
T

∑T−1
t=0 xt we have that

E [f(x̄T )− inf f ] ≤ D2A

T
+

√
D2B

T
, ∀T ∈ N. (10)

Proof. For short-hand we use ft := fξt to be the stochastic function sampled at iteration t. Expanding the squares, using
the definition of the algorithm and using the convexity of fξ, we have that

∥xt+1 − x∗∥2 − ∥xt − x∗∥2 = 2γSPS∗t ⟨gt, x∗ − xt⟩+ (γSPS∗t )2∥gt∥2
≤ −2γSPS∗t (ft(xt)− ft(x∗)) + (γSPS∗t )2∥gt∥2.

If gt = 0, then by definition we have that γSPS∗t = 0, thus the right-hand side of the above is zero, and (8) holds. Suppose
instead that gt ̸= 0. Substituting in γSPS∗t gives

∥xt+1 − x∗∥2 − ∥xt − x∗∥2 ≤ −2
(ft(xt)− ft(x∗))+

∥gt∥2
(ft(xt)− f(x∗)) +

(ft(xt)− ft(x∗))2+
∥gt∥2

= − (ft(xt)− ft(x∗))2+
∥gt∥2

,

where in the last equality we use the identity z(z)+ = (z)2+. Note that in both cases we obtained a nonpositive right-hand
side, from which we deduce that (8) holds, that is, (xt)t≥0 is Fejér monotone.

Now, let at := ft(xt)− ft(x∗) and bt := ∥gt∥2, and define the function

ϕ(a, b) =

{
(a)2+
b if a ∈ R, b > 0,

0 if a ≤ 0, b = 0,
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so that the previous inequality can be rewritten as

ϕ(at, bt) ≤ ∥xt − x∗∥2 − ∥xt+1 − x∗∥2. (29)

Note that ϕ(at, bt) is well-defined even in the case that gt = 0. Indeed, the convexity of ft implies in this case that xt
minimizes ft, which means that at ≤ 0 while bt = 0. Our main trick is to use Jensen’s inequality with regard to the function
ϕ which is convex (see Lemma C.4 or the Appendix in Garrigos & Gower (2023) for a proof):

ϕ(E [at] ,E [bt]) ≤ E [ϕ(at, bt)] ≤ E
[
∥xt − x∗∥2

]
− E

[
∥xt+1 − x∗∥2

]
. (30)

We can compute E [at] = E [fξt(xt)− fξt(x∗)] = E [f(xt)− inf f ] and E [bt] = E
[
∥gt∥2

]
.

For the rest of the proof, we are going to use the fact that there exist two constants A,B ≥ 0, which are not simultaneously
zero, and such that (9) holds, that is

E
[
∥gξ(x)∥2

]
≤ A(f(x)− inf f) +B, for every x ∈ B(x∗, D). (31)

We are now going to inject this inequality (31) into (30). If E
[
∥gt∥2

]
̸= 0, using the fact that f(xt)− inf f ≥ 0 we obtain

E [f(xt)− inf f ]
2

AE [f(xt)− inf f ] +B
≤ ϕ(E [at] ,E [bt]) ≤ E

[
∥xt − x∗∥2

]
− E

[
∥xt+1 − x∗∥2

]
. (32)

Recall that we defined ψ(r) = r2

Ar+B for any r ≥ 0. Let rt := E [f(xt)− inf f ]. With this notation, the inequality (32) can
be rewritten as

ψ(rt) ≤ E
[
∥xt − x∗∥2

]
− E

[
∥xt+1 − x∗∥2

]
. (33)

We observe that (33) remains true when E
[
∥gt∥2

]
= 0. Indeed in this case, from the variance bound we have that

0 = E
[
∥gt∥2

]
≥ ∥E [gt] ∥2.

Furthermore it follows that Et [gt] is a subgradient of the full loss f(xt) (see Lemma 9.5 in (Garrigos & Gower, 2023)).
Consequently xt minimizes f , meaning in this case that we would have rt = 0, and so ψ(rt) = 0 = ϕ(0, 0).

For the last part of this proof, we sum over t = 0, . . . , T − 1 and divide by T to obtain, after telescoping terms:

1

T

T−1∑
t=0

E [ψ(rt)] ≤
1

T
E
[
∥x0 − x∗∥2

]
− 1

T
E
[
∥xT − x∗∥2

]
≤ D2

T
.

We now lower-bound the left-hand side term by using Jensen’s inequality twice

1

T

T−1∑
t=0

E [ψ(rt)] ≥ ψ

(
E

[
1

T

T−1∑
t=0

rt

])
= ψ

(
E

[
1

T

T−1∑
t=0

(f(xt)− inf f)

])
≥ ψ (E [f(x̄T )− inf f ]) ,

where in the first inequality we use the convexity of ψ, and in the second we use the convexity of f together with the fact
that ψ is increasing, and we note the average of the iterates x̄T := 1

T

∑T−1
t=0 xt. The reader can look at Lemma C.1 for a

proof that ψ is convex and monotone. Combining the two previous inequalities, we obtain

ψ (E [f(x̄T )− inf f ]) ≤ D2

T
.

Since ψ is increasing on [0,+∞), it has an inverse which is also increasing. Applying the inverse of ψ on both sides gives

E [f(x̄T )− inf f ] ≤ ψ−1

(
D2

T

)
.

From Lemma C.1 we know that ψ−1(s) = 1
2 (sA+

√
s2A2 + 4sB), and using the sublinearity of the square root we further

have
ψ−1(s) ≤ 1

2 (sA+
√
s2A2 +

√
4sB) = sA+

√
sB. (34)

From this we finally obtain (10).

D.3. Proof of Corollary 2.2
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Corollary 2.2 (Non-smooth setting). Consider the setting of Theorem 2.1 where A = 0 and B = G ≥ 0. In other words,
the following expected locally Lipschitz assumption holds:

Eξ

[
∥gξ(x)∥2

]
≤ G2, ∀x ∈ BD(x∗). (11)

It follows that
E [f(x̄T )− inf f ] ≤ GD√

T
, ∀T ∈ N. (12)

Proof. Observing that by assuming (11) we have that (9) holds with A = 0 and B = G2. Thus the result follows by
plugging in these constant into (10).

D.4. Proof of Corollary 2.3
Corollary 2.3 (Smooth setting). Consider the setting of Theorem 2.1 where A = 2L and B = σ2

∗ := inf f − Eξ [inf fξ].
That is, we assume local expected smoothness:

Eξ

[
∥gξ(x)∥2

]
≤ 2L

(
f(x)− inf f + σ2

∗
)
, ∀x ∈ BD(x∗). (13)

It then follows that

E [f(x̄T )− inf f ] ≤ 4L∥x0 − x∗∥2
T

+

√
2∥x0 − x∗∥σ2

∗√
T

. (14)

Proof. From the assumption in equation (13), we have that (9) holds with A = 4L and B = 2σ2
∗ . Thus the result follows by

plugging in these constant into (10). Furthermore, note that (13) is a consequence of smoothness, see the variance transfer
Lemma in [Section 4.3.3](Garrigos & Gower, 2023).

D.5. Preliminary Lemmas for IAM

Our proofs all start from the following Lemma.

Lemma D.1. Consider the iterates of Algorithm 1 with λt > 0. Assume that gt ̸= 0 for all t ≥ 0. Let g(x) denote the
subgradient of f(x). Denote by Ft the filtration generated by ξ0, . . . , ξt−1. If fξ is convex for every ξ, then:

(i) (Almost sure boundedness). With probability one, we have ∥zt − x∗∥ ≤ ∥x0 − x∗∥ and ∥xt − x∗∥ ≤ ∥x0 − x∗∥ for
all t ≥ 0.

(ii) (Single recurrence) It holds for any t ≥ 0

E
[
∥zt − x∗∥2 | Ft

]
≤ ∥zt−1 − x∗∥2 −

(
f(xt)− f(x∗) + ⟨g(xt), zt−1 − xt⟩

)2
+

E [∥gt∥2 | Ft]
. (35)

(iii) (Summed recurrence) It holds for any k ≥ 0

E
[
∥zk − x∗∥2

]
≤ ∥z0 − x∗∥2 −

(∑k
t=0 E [f(xt)− f(x∗) + ⟨g(xt), zt−1 − xt⟩]

)2
+∑k

t=0 E [∥gt∥2]
. (36)

Proof. Substituting (19) back into the bound (18) gives

∥zt − x∗∥2 ≤ ∥zt−1 − x∗∥2 −
(
fξt(xt)− fξt(x∗) + ⟨gt, zt−1 − xt⟩

)2
+

∥gt∥2
.

This shows that ∥zt − x∗∥ ≤ ∥z0 − x∗∥ = ∥x0 − x∗∥ almost surely for all t ≥ 0. Since xt+1 is a convex combination of xt
and zt (see line 5 in Algorithm 1) this also shows by a straightforward induction that ∥xt − x∗∥ ≤ ∥x0 − x∗∥ almost surely
for all t ≥ 0.
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To prove (ii), we apply conditional expectation on the above inequality and using Lemma C.3, (24) we obtain

E
[
∥zt − x∗∥2 | Ft

]
≤ ∥zt−1 − x∗∥2 −

(
f(xt)− f(x∗) + ⟨E [gt | Ft] , zt−1 − xt⟩

)2
+

E [∥gt∥2 | Ft]
.

Using that the expectation with respect to this filtration is independent of xt, we have that the stochastic subgradient
E [gt | Ft] is a subgradient of f(xt), see Lemma 9.5 in Garrigos & Gower (2023) for details2. Thus we can write
g(xt) = E [gt | Ft] .

Now, define at := f(xt)− f(x∗) + ⟨g(xt), zt−1 − xt⟩ and bt = E
[
∥gt∥2 | Ft

]
. Using (35) subsequently for t = 0, . . . , k

and using the tower property, we obtain

E
[
∥zk − x∗∥2

]
≤ ∥z0 − x∗∥2 − E

[
k∑

t=0

(at)
2
+

bt

]
.

Now using Lemma C.3, (25) yields
k∑

t=0

(at)
2
+

bt
≥
(∑k

t=0 at
)2
+∑k

t=0 bt
,

which implies, using (24), that

E

[
k∑

t=0

(at)
2
+

bt

]
≥ E

(∑k
t=0 at

)2
+∑k

t=0 bt

 ≥
(∑k

t=0 E [at]
)2
+∑k

t=0 E [bt]
.

Altogether, we obtain (iii), that is

E
[
∥zk − x∗∥2

]
≤ ∥z0 − x∗∥2 −

(∑k
t=0 E [f(xt)− f(x∗) + ⟨g(xt), zt−1 − xt⟩]

)2
+∑k

t=0 E [∥gt∥2]
.

For our forthcoming proofs we will also make use of a Bregman viewpoint of the IAM step size.

Lemma D.2 (Bregman View). For any xt, xt−1, x∗ ∈ Rd and λt ≥ 0 it holds

f(xt)− f(x∗) + ⟨g(xt), zt−1 − xt⟩
= (1 + λt)(fξt(xt)− fξt(x∗))− λt(fξt(xt−1)− fξt(x∗)) + λtBfξt

(xt−1, xt),
(37)

where Bfξ(x, y) is the Bregman divergence

Bfξ(x, y) := fξ(x)− fξ(y)− ⟨gξ(y), x− y⟩ .

Proof. By re-arranging (17) at time t− 1 we have that

zt−1 − xt = −λt(xt−1 − xt). (38)

Consequently
f(xt)− f(x∗) + ⟨g(xt), zt−1 − xt⟩ = f(xt)− f(x∗)− λt ⟨g(xt), xt−1 − xt⟩ .

The proof follows by adding and subtracting λtfξt(xt−1) as follows

fξt(xt)− fξt(x∗)− λt ⟨gt, xt−1 − xt⟩
= (1 + λt)fξt(xt)− fξt(x∗)− λtfξt(xt−1) + λt (fξt(xt−1)− fξt(xt)− ⟨gt, xt−1 − xt⟩)
= (1 + λt)(fξt(xt)− fξt(x∗))− λt(fξt(xt−1)− fξt(x∗)) + λtBfξt

(xt−1, xt).

2Very formally, here we need to assume the subgradients gξ(x) are measurable in ξ so that this expectation is well defined.
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Lemma D.3. Consider the iterates of Algorithm 1 with λt = t and assume that fξ is convex for every ξ, with subgradients
gξ. Let g(x) be subgradients of f(x). It holds

k∑
t=0

f(xt)− f(x∗) + ⟨g(xt), zt−1 − xt⟩ = (k + 1)[f(xk)− f(x∗)] +
k∑

t=1

λtBf (xt−1, xt),

where Bf is defined as in Lemma D.2. In particular, it holds Bf (xt−1, xt) ≥ 0.

Proof. Note that for this proof, we need an additional, and artificial iterate x−1 = x0. Summing over t = 0, . . . , k in (37)
we have that

k∑
t=0

(f(xt)− f(x∗) + ⟨g(xt), zt−1 − xt⟩)

(37)
=

k∑
t=0

(1 + λt)(f(xt)− f(x∗))− λt(f(xt−1)− f(x∗)) +
k∑

t=0

λtBf (xt−1, xt)

=
k∑

t=0

λt+1(f(xt)− f(x∗))− λt(f(xt−1)− f(x∗)) +
k∑

t=0

λtBf (xt−1, xt)

= (k + 1)[f(xk)− f(x∗)] +
k∑

t=1

λtBf (xt−1, xt),

where the second step used 1 + λt = 1 + t = λt+1 , and the last step we used telescoping and the fact that λ0 = 0.

D.6. Proof of Theorem 3.2
Theorem 3.2 (Non-smooth setting). Consider the iterates of IAM in Algorithm 1 with the learning rate (19) and λt = t.
Let fξ be convex for all ξ. Let D := ∥x0 − x∗∥,

G2 := max
x∈BD(x∗)

Eξ∥gξ(x)∥2,

Bf (x, y) := f(x)− f(y)− ⟨∇f(y), x− y⟩ .

The suboptimality of the last iterate xT is bounded by

E [f(xT )− f(x∗)] +
1

T + 1

T∑
t=1

tE [Bf (xt−1, xt)]

≤ GD√
T + 1

. (20)

Proof. We start by applying Lemma D.1, which states that xt ∈ D and zt ∈ D almost surely for all t ≥ 0. Further,
Lemma D.1, (ii) implies that

E
[
∥zt − x∗∥2 | Ft

]
≤ ∥zt−1 − x∗∥2 −

(
f(xt)− f(x∗) + ⟨g(xt), zt−1 − xt⟩

)2
+

E [∥gt∥2 | Ft]
. (39)

For the denominator of (39), we can therefore estimate

E
[
∥gt∥2 | Ft

]
≤ G2.

Applying expectation, and summing from t = 0, . . . , k (recall that z−1 = x0), we get

k∑
t=0

E
[(
f(xt)− f(x∗) + ⟨g(xt), zt−1 − xt⟩

)2
+

]
≤ G2

[
∥x0 − x∗∥2 − E

[
∥zk − x∗∥2

] ]
. (40)
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Now, applying (25) with bt = 1 we get for any a0, . . . , ak that
∑k

t=0(at)
2
+ ≥ 1

k+1

(∑k
t=0 at

)2
+

. Therefore, we conclude

k∑
t=0

(
f(xt)− f(x∗) + ⟨g(xt), zt−1 − xt⟩

)2
+
≥ 1

k + 1

( k∑
t=0

f(xt)− f(x∗) + ⟨g(xt), zt−1 − xt⟩
)2
+

≥ 1

k + 1

(
(k + 1)[f(xk)− f(x∗)] +

k∑
t=1

λtBf (xt−1, xt)
)2
+

=
(√

k + 1[f(xk)− f(x∗)] +
k∑

t=1

λt√
k + 1

Bf (xt−1, xt)
)2
,

where we used Lemma D.3 in the second step, and non-negativity of all terms in the third step. Define B̄k :=∑k
t=1 λtBf (xt−1, xt) ≥ 0. Plugging this into (40), we get

E
[(√

k + 1[f(xk)− f(x∗)] +
1√
k + 1

B̄k

)2]
≤ G2

[
∥x0 − x∗∥2 − E

[
∥zk − x∗∥2

] ]
.

Now, using Jensen’s inequality E [X]
2 ≤ E

[
X2
]
, taking the square-root, and dividing by

√
k + 1, we finally obtain

E [f(xk)− f(x∗)] +
1

k + 1
E
[
B̄k

]
≤ G∥x0 − x∗∥√

k + 1
.

D.7. Proof of Theorem 3.3
Theorem 3.3 (Smooth setting). Let fξ be convex for all ξ. Assume local expected smoothness (13) holds. Let xt be the
iterates of Algorithm 1 (IAM) with λt = t. It holds

E [f(xT−1)− f(x∗)] ≤
2L∥x0 − x∗∥2(log(T ) + 1)

T

+

√
2Lσ2∗∥x0 − x∗∥√

T
. (21)

Proof. We start the proof by applying Lemma D.1, (iii), which yields

E
[
∥zk − x∗∥2

]
≤ ∥z0 − x∗∥2 −

(∑k
t=0 E [f(xt)− f(x∗) + ⟨∇f(xt), zt−1 − xt⟩]

)2
+∑k

t=0 E [∥gt∥2]
.

For the nominator of the last term, use Lemma D.3 and the fact that (·)2+ is monotonic to obtain

( k∑
t=0

E [f(xt)− f(x∗) + ⟨∇f(xt), zt−1 − xt⟩]
)2
+
≥
(
E [(k + 1)(f(xk)− f(x∗)]

)2
+

= (k + 1)2E [f(xk)− f(x∗)]
2
.

For the denominator, observe that E
[
∥gt∥2

]
≤ 2LE

[
(f(xt)− f(x∗) + σ2

∗)
]
. Thus, using z0 = x0, we get

E
[
∥zk − x∗∥2

]
≤ ∥x0 − x∗∥2 −

(k + 1)2E [(f(xk)− f(x∗))]
2

2L
∑k

t=0 E [(f(xt)− f(x∗) + σ2∗)]
.

Let ct = E[f(xt)− f(x∗)] + σ2
∗ and Sk =

∑k
t=0 ct, then we can rewrite the above as

E [(f(xk)− f(x∗))]
2

Sk
≤ 2L

(k + 1)2
(∥x0 − x∗∥2 − E

[
∥zk − x∗∥2

]
) ≤ 2L∥x0 − x∗∥2

(k + 1)2
.
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Taking the square-root yields

E [f(xk)− f(x∗)]√
Sk

≤
√
2L∥x0 − x∗∥
k + 1

. (41)

Finally, notice that E [f(xk)− f(x∗)] = ck − σ2
∗, so we arrive at the inequality

ct√
St

≤
√
2L∥x0 − x∗∥
t+ 1

+
σ2
∗√
St

.

Summing this from t = 0 to k and then applying
∑k

t=0
1

t+1 ≤ log(k + 1) + 1 and St ≥ (t+ 1)σ2
∗ gives

√
Sk

(23)
≤

k∑
t=0

ct√
St

≤
k∑

t=0

√
2L∥x0 − x∗∥
t+ 1

+

k∑
t=0

σ2
∗√
St

≤
√
2L∥x0 − x∗∥(log(k + 1) + 1) +

k∑
t=0

√
σ2∗√
t+ 1

.

Furthermore, it holds
∑k

t=0
1√
t+1

≤ 2
√
k + 1, so we finally get√

Sk ≤
√
2L∥x0 − x∗∥(log(k + 1) + 1) +

√
σ2∗

√
k + 1.

Using the above inequalities in (41) gives

E [f(xk)− f(x∗)] ≤
√
2L∥x0 − x∗∥

√
Sk

k + 1
≤ 2L∥x0 − x∗∥2(log(k + 1) + 1)

k + 1
+

√
2Lσ2∗∥x0 − x∗∥√

k + 1
.

E. Complexity of SGD with Adaptivity to Interpolation
Theorem E.1 (Complexity of SGD). Let f = 1

n

∑n
i=1 fi where each fi : Rd → R is convex and L-smooth, and assume

that f admits a minimizer, noted x∗. Let x0 ∈ Rd, and note D := ∥x0 − x∗∥ and σ2
∗ = E

[
∥∇fi(x∗)∥2

]
. Let T ≥ 1, let

γ = γ0√
σ2
∗T+1

where γ0 ≤ 1
4L , and let (xt)Tt=0 be the sequence generated by the SGD algorithm with constant stepsize γ.

Then

E [f(x̄T )− inf f ] ≤ D2

γ0T
+

σ2
∗√
T

(
D2

γ0
+ 2γ0

)
,

where x̄T = 1
T

∑T−1
t=0 xt.

The above theorem shows that SGD enjoys a O
(
1/T + σ2

∗/
√
T
)

complexity, which is similar to the result of SPS*
in Corollary 2.3. But there are some important differences. First, SPS* has an anytime convergence rate valid for every T ,
while SGD has a complexity rate: it is a "finite horizon" rate where the horizon must be known before setting the stepsize.
The other difference is that for SGD to achieve this complexity, we need access to both the smoothness constant L and the
interpolation constant σ∗. Whereas SPS* adapts to both smoothness and non-smoothness. Though to achieve this SPS*
requires access to fξ(x∗),

Proof. We are using the complexity rate of SGD with convex functions from (Garrigos & Gower, 2023). To be able to use
this result, we need the stepsize γ to verify γ < 1/2L. Here we have γ ≤ γ0 ≤ 1/4L so we are good to go. From (Garrigos
& Gower, 2023, Thm. 5.5) we get

(1− 2γL)E [f(x̄T )− inf f ] ≤ D2

2γT
+ γσ2

∗.
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Now it is just a matter of cleaning the constants. First, use again the fact that γ ≤ 1/4L to see that (1 − 2γL) ≥ 1/2.
Second, write

1

γ
=

√
1 + σ2∗T

γ0
≤ 1 + σ2

∗
√
T

γ0
and γσ2

∗ =
γ0σ

2
∗√

1 + σ2∗T
≤ γ0σ

2
∗√
T
.

It remains to combine all the above inequalities to conclude that

E [f(x̄T )− inf f ] ≤ D2

γT
+ 2γσ2

∗ ≤ D2(1 + σ2
∗
√
T )

γ0T
+ 2

γ0σ
2
∗√
T

=
D2

γ0T
+
D2σ2

∗
γ0
√
T

+ 2
γ0σ

2
∗√
T
.

F. Detailed Comparison of SPS* Convergence in Smooth Case
In the smooth setting, our result in Corollary 2.3 relies on the expected smoothness bound, which is a generalization over
assuming that the fξ is almost surely L–smooth, see Gower et al. (2020; 2019), and Lemma C.5. In the smooth setting,
proofs of convergence for SGD hold by assuming that (13) holds globally (Gower et al., 2021; 2019).

Our smooth result in Corollary 2.3 is, as far as we know, the first O
(
1/
√
T
)

anytime convergence rate for a stochastic
variant of the Polyak stepsize. To contrast our result, both [Thm. 3.4](Loizou et al., 2021) and [Thm. 8.3](Garrigos &
Gower, 2023) establish a O (1/T ) convergence up to a distance to the solution proportional to σ2

∗ . For example, in [Theorem
8.3](Garrigos & Gower, 2023) the authors show that

E [f(x̄T )− f(x∗)] ≤
2L

T + 1
∥x0 − x∗∥2 + σ2

∗

where x̄T = 1
T

∑T−1
t=0 xt. Because of this constant factor of σ2

∗ cannot be controlled, the above result cannot be converted
into a complexity result. This is in contrast to recent work on the NGN variant (Orvieto & Xiao, 2024), which does establish
a O(1/

√
T ) complexity.

Another interesting aspect of the convergence rate in (12) is that it is adaptive to interpolation. To see this, consider the case
that σ2

∗ > 0 (no interpolation). In this case, have a O(1/
√
T ) anytime rate which is compared to the O(log(T )/

√
T ) rate of

SGD. On the other hand, as σ2
∗ gets closer to zero, the convergence rate in (12) approaches O(1/T ), which is the expected

accelerated rate of SGD under interpolation (Vaswani et al., 2019). We are unaware of prior work that establishes an anytime
rate of convergence that is adaptive to interpolation.

We can also compare Theorem 3.3 to the best anytime convergence of SGD. That is, consider the iterates given by (15) when
β = 0. For SGD with a learning rate of ηt = η/

√
t+ 1 where η ≤ 1

2L , the average iterate converges according to Garrigos
& Gower (2023, Thm. 5.5):

E [f(x̄T )− f(x∗)] ≤
∥x0 − x∗∥2
2η

√
T + 1

+
η log(T + 1)√

T + 1
σ2
∗. (42)

where x̄T :=
∑T−1

t=0 pT,txt, with pT,t :=
ηT (1−2ηTL)∑t−1
i=0 ηi(1−2ηiL)

. In comparison to (42) the analysis in (21) of the IAM method

has two advantages: First, there is no additional log(T + 1) term multiplying the dominating O(1/
√
T + 1) term, and it

is adaptive to L. That is, IAM does not need access to L to achieve this same anytime convergence. Furthermore (42) is
not adaptive to interpolation, in that when σ2

∗ = 0, the resulting rate of convergence is O(1/
√
T + 1), as opposed to the

O(1/(T + 1)) rate that can be achieved under interpolation (Ma et al., 2018; Gower et al., 2021).

G. Convergence in (Locally) Strongly Convex Case
If we assume our loss functions is (locally) strongly convex, then we can improve the rate of convergence of SPS* from
O
(
1/

√
t
)

to O (1/t).

Theorem G.1. [Convergence of SPS*] Consider (1) and let the iterates (xt)t≥0 be given by (2), and let D := ∥x0 − x∗∥.
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Assume that fξ is convex for any ξ. Let f(x) be convex and satisfy the µ–quadratic growth bound

µ

2
∥x− x∗∥2 ≤ f(x)− inf f, for every x ∈ B(x∗, D) (43)

and the expected smoothness bound

Eξ

[
∥gξ(x)∥2

]
≤ A(f(x)− inf f) +B, for every x ∈ B(x∗, D). (44)

Let T0 := 4A
µ log

(
D2µ2

16B

)
. It follows that

E∥xt − x∗∥2 ≤ 16B

µ2

1

t+ 1− T0
, ∀t ≥ 2A

µ

(
2 log

(
D2µ2

16B

)
+ 1

)
. (45)

In the non-smooth setting where A = 0 and B = G2 we get

E
[
∥xt − x∗∥2

]
≤ 16G2

µ2

1

t+ 1
, for t ≥ 0. (46)

This matches the rate given by Pedregosa & Schaipp (2023) for the finite sum setting upto a factor of 4.

In the smooth setting where A = 4L and B = σ2
∗ we get

E
[
∥xt − x∗∥2

]
≤ 64σ2

∗
µ2

1

t+ 1− T0
, for t ≥ 8L

µ

(
2 log

(
D2µ2

16σ2∗

)
+ 1

)
. (47)

Proof. Let δt := E
[
∥xt − x∗∥2

]
. We start the proof from (33), which we repeat here for convenience:

ψ(rt) ≤ δt − δt+1, (48)

where rt = E [f(xt)− f(x∗)] and ψ(r) := r2

Ar+B for r ≥ 0. Due to the monotonicity of the iterates (8) we have that
δt − δt+1 ≥ 0. Applying Lemma C.1 together with (34) gives

E [f(xt)− f(x∗)] ≤ ψ−1(δt − δt+1)

≤ A(δt − δt+1) +
√
B(δt − δt+1).

Using the quadratic growth bound µ
2 ∥xt − x∗∥2 ≤ f(xt)− f(x∗) gives

µ

2
δt ≤ A (δt − δt+1) +

√
B (δt − δt+1). (49)

Our proofs will consider two cases by comparing the two terms on the right hand side of (49). To this end, note that

A (δt − δt+1) ≤
√
B (δt − δt+1) ⇐⇒ δt − δt+1 ≤ B

A2
. (50)

The remainder of the proof is divided into two parts. First we show that for t0 := ⌈ 4A
µ log

(
D2µ2

16B

)
⌉, we have that δt ≤ 16B

µ2 .

For the second part we prove by induction that for t ≥ t0 δt+1 ≤ 16B
µ2

1
t+1 , where the first part will serve as the base case of

the induction.

Base case: First we prove that for all t ≥ 4A
µ log

(
D2µ2

16B

)
we have that δt ≤ 16B

µ2 . We divide this proof also into two cases

based on the comparison (50). If δt − δt+1 ≤ B
A2 for any t < 4A

µ log
(

D2µ2

16B

)
then by (49) and (50) we have that

µ

2
δt ≤ A (δt − δt+1) +

√
B (δt − δt+1) ≤ 2

√
B (δt − δt+1) ≤ 2

√
Bδt =⇒

δt ≤
16B

µ2
, (51)
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which would prove our result.

Alternatively, suppose that δt − δt+1 ≥ B
A2 for every t ≤ 4A

µ log
(

D2µ2

16B

)
. By (49) and (50) we have that

µ

2
δt ≤ A (δt − δt+1) +

√
B (δt − δt+1) ≤ 2A (δt − δt+1) . (52)

Re-arranging the above gives
δt+1 ≤

(
1− µ

4A

)
δt. (53)

Unrolling this for every t ≤ 4A
µ log

(
D2µ2

16B

)
gives

δt ≤
(
1− µ

4A

)t
δ0. (54)

It now follows by taking logarithm and using standard techniques (for example Lemma A.2 in Garrigos & Gower (2023))
that

t ≥ 4A

µ
log

(
D2µ2

16B

)
=⇒ δt ≤

(
1− µ

4A

)t
δ0 ≤ 16B

µ2
.

Induction step: Now, for ease of notation, let us re-name our iterates so that δ0 is the first iterate for which δ0 ≤ 16B
µ2 .

If δt − δt+1 ≤ B
A2 then by (49) and (50) we have that

µ

2
δt ≤ A (δt − δt+1) +

√
B (δt − δt+1) ≤ 2

√
B (δt − δt+1) ⇔

µ2

4
δ2t ≤ 4B (δt − δt+1) ⇔

δt+1 ≤ (1− µ2

16B
δt)δt. (55)

Let at = µ2

16B δt. Multiplying both sides of (55) by µ2

16B and using the induction hypothesis

at =
µ2

16B
δt ≤

µ2

16B

16B

µ2

1

t+ 1
=

1

t+ 1

gives

at+1 ≤ (1− at)at ≤ max
x∈[0,

1
t+1 ]

(1− x)x =

(
1− 1

t+ 1

)
1

t+ 1
≤ 1

t+ 2
.

Alternatively if δt − δt+1 ≥ B
A2 then by (49) and (50) we have that

µ

2
δt ≤ A (δt − δt+1) +

√
B (δt − δt+1) ≤ 2A (δt − δt+1) . (56)

Re-arranging the above gives
δt+1 ≤

(
1− µ

4A

)
δt.

Using the induction hypothesis and t ≥ 2A
µ we have that

δt+1 ≤
(
1− µ

4A

)
δt ≤

(
1− µ

4A

) 16B

µ2

1

t+ 1
≤ 16B

µ2

1

t+ 2

where the last inequality follows from(
1− µ

4A

) 1

t+ 1
≤ 1

t+ 2
⇔ t ≥ 2A

µ
− 2 ⇐ t ≥ 2A

µ
.
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H. Approximating SPS* and Safe-guards
In practice, outside of the interpolation regime, it is unlikely that we would have access to fξ(x∗). To derive a practical
method that is more generally applicable, we would need to estimate fξ(x∗). Let us call this estimate ℓ∗ξ , and consider the
step size

γSPSt :=
(fξ(xt)− ℓ∗ξ)+

∥gt∥2
. (57)

The estimates ℓ∗ξ would have to be underestimates, otherwise the resulting method would stop early. Indeed, as xt → x∗ we
have that fξ(xt) → fξ(x∗), and the step size (57) would be zero before reaching convergence.

There are two natural underestimates for fξ(x∗). The first is to use inf fξ. This is the approach used in SPSmax (Loizou
et al., 2021). The advantage of using inf fξ is that it often can be computed, indeed if no weight decay is being used (no L2
regularization), then often inf fξ = 0. Which brings us to the second approach, which is to simply use 0 as an underestimate
, which holds for the ubiquitous case of having a positive loss (Berrada et al., 2020; Orvieto & Xiao, 2024).

An issue with using an underestimate is that the step size (57) can become too large, potentially even being unbounded if
∥gt∥ → 0, which could lead to divergence.

To safeguard against taking exceeding large step sizes, we can use clipping (Loizou et al., 2021), dampening (Orvieto &
Xiao, 2024), or a combination of both (Berrada et al., 2020). By clipping, we mean to take the minimum between the
stepsize in (57) and a hyperparameter γb > 0 as is done in Loizou et al. (2021) in the SPSmax method3

γSPSmax
t := min

{
(fξ(xt)− ℓ∗ξ)+

∥gt∥2
, γb

}
. (58)

We refer to dampening by adding an additional constant ϵ to the denominator, as is done in Orvieto & Xiao (2024), Gower
et al. (2022) and Berrada et al. (2020):

γSPSdamt :=
(fξ(xt)− ℓ∗ξ)+

∥gt∥2 + ϵ
. (59)

In particular in Orvieto & Xiao (2024), this dampening parameter depends in the iteration and is proportional to fξ(xt).

Thus we can view several practical variants of SPS as approximations of SPS*, where fξ(x∗) is replaced by an underestimate,
and a further safeguard is included to avoid large step sizes. These safeguards can also be motivated through a variational
viewpoint based on solving relaxations of the interpolation condition (Gower et al., 2022).

I. Momentum and Iterate Averaging
Here we detail the relationship between momentum and iterate averaging, which hinges on the following lemma.

Lemma I.1. (Garrigos & Gower (2023, Lemma 7.3) and Defazio & Gower (2021, Theorem 1)) The iterates (xt)t≥0

generated by (15) and the iterate-moving-average (IAM) are equivalent to if z−1 = x0, m−1 = 0 and the (γt, βt)
parameters of momentum and the IAM parameters (ηt, λt) satisfy

βt =
λt

1 + λt

ηt−1

ηt
, and γt =

ηt
1 + λt+1

, ∀t ≥ 0. (60)

As an example of using the above lemma, a constant learning rate ηt ≡ η and λt = t in the IAM method (16–17) corresponds
to a decreasing learning rate γt = η

1+t and an increasing momentum βt =
t

1+t in the momentum method (15).

Proof. The proof is by induction. Our induction hypothesis is that xt iterates in (17) and (15) are equivalent upto step t and
that the zt iterates in (16) and mt in (15) satisfy

zt = xt − (1 + λt+1)γtmt. (61)

3Though SPSmax has an additional constant c in
(fξ(xt)−ℓ∗ξ)+

c∥gt∥2
.
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For the base case t = 0 we have from (16) that

z0 = z−1 − η0g0

= x0 − (1 + λ1)γ0g0,

where in the second equality we used z−1 = x0 and (60). Since m−1 = 0, we have from (15) that m0 = g0, which
proves (61) for the base case. As for the xt iterates in (17) and (15) being equivalent for t = 0 from (17) and (61) we have
that

x1 =
λ1

1 + λ1
x0 +

1

1 + λ1
z0

=
λ1

1 + λ1
x0 −

1

1 + λ1
(x0 − (1 + λ1)γ0m0)

= x0 − γ0m0,

which is equivalent to the first step of (15).

Suppose now that xt iterates in (17) and (15) are equivalent and (61) holds upto time t. From (16) at step t+ 1 we have that

zt+1 = zt − ηt+1gt+1

= xt − (1 + λt+1)γtmt − ηt+1gt+1. Using (61)
= xt − (1 + λt+1)γtmt − (1 + λt+2)γt+1gt+1 Using (60)

= xt − γtmt + (1 + λt+2)γt+1

(
λt+1

1 + λt+2

γt
γt+1

mt + gt+1

)
= xt+1 − (1 + λt+2)γt+1 (βt+1mt + gt+1) Using (17) and (60)
= xt+1 − (1 + λt+2)γt+1mt+1 Using (15) ,

which shows that (61) holds at time t+ 1. Finally t+ 1 step. From (17) and (16) we have that

xt+1 =
λt+1

1 + λt+1
xt +

1

1 + λt+1
zt

=
λt+1

1 + λt+1
xt +

1

1 + λt+1
(xt − (1 + λt+1)γtmt)

= xt − γtmt,

which is equivalent to (15), and thus concludes the proof.

J. Additional Proof for IAM with Decreasing λt

Theorem J.1. Consider the setting of Theorem 3.2, except that λ0 = 0 and (λt)
k
t=1 is any decreasing sequence of

nonnegative reals starting. It follows that

E[f(xk)− f(x∗)] +
1

k + 1

k∑
t=0

λtE[Bf (xt−1, xt)] ≤
G∥x0 − x∗∥√

k + 1
+

λ1
k + 1

E[f(x0)− f(x∗)].

The advantage of this result is that it holds for any constant λt = λ. Translating this to the momentum method (15), this
allows for other parameter setting of (γt, βt). In particular the setting λt = λ = 0 which corresponds to no momentum. In
this setting we retrieve the exact same rate as the SPS* method in Corollary 2.2. However, as mentioned earlier the price we
need to pay for this, is that this result holds for the Cesaro average and not of the last iterate.

Proof. Starting from Lemma D.1:

∥zt − x∗∥2 ≤ ∥zt−1 − x∗∥2 −
(
f(xt)− f(x∗) + ⟨gt, zt−1 − xt⟩

)2
+

∥gt∥2
. (62)

30



1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704

Taking expectation, and using our extended Titu’s Lemma C.3 and Bregman viewpoint Lemma D.2 to get

E∥zt − x∗∥2 ≤ E∥zt−1 − x∗∥2 −
E[f(xt)− f(x∗) + ⟨g(xt), zt−1 − xt⟩]2+

E∥gt∥2

≤ E∥zt−1 − x∗∥2 −
E[(1 + λt)[f(xt)− f(x∗)]− λt[f(xt−1)− f(x∗)] + λtBf (xt−1, xt)]

2
+

E∥gt∥2

≤ E∥zt−1 − x∗∥2 −
E[(1 + λt)[f(xt)− f(x∗)]− λt[f(xt−1)− f(x∗)] + λtBf (xt−1, xt)]

2
+

G2
.

Multiplying through by G2 gives

E[(1 + λt)[f(xt)− f(x∗)]− λt[f(xt−1)− f(x∗)] + λtBf (xt−1, xt)]
2
+ ≤ G2E∥zt−1 − x∗∥2 −G2E∥zt − x∗∥2.

Now let ∆t = (1 + λt)[f(xt)− f(x∗)]− λt[f(xt−1)− f(x∗)] + λtBf (xt−1, xt). Averaging both sides of the above over
t = 0, . . . , k, telescoping terms, and using Jensen’s inequality with respect to the convex function x 7→ (x+)

2 gives

G2∥x0 − x∗∥2
k + 1

≥ G2

k + 1

(
E∥x0 − x∗∥2 − E∥zk+1 − x∗∥2

)
≥ 1

k + 1

k∑
t=0

E[∆t]
2
+

≥
(

1

k + 1

k∑
t=0

E[∆t]

)2

+

.

Taking the square root gives (
1

k + 1

k∑
t=0

E[∆t]

)
+

≤ G∥x0 − x∗∥√
k + 1

. (63)

Now since (λt) is decreasing and using Jensen’s inequality with respect to x 7→ f(x) we have that

k∑
t=0

E[∆t] =

k∑
t=0

(1 + λt)E[f(xt)− f(x∗)]− λtE[f(xt−1)− f(x∗)] + λtE[Bf (xt−1, xt)]

=

k∑
t=0

λtE[Bf (xt−1, xt)] +

k∑
t=0

E[f(xt)− f(x∗)] +
k∑

t=0

λtE[f(xt)− f(x∗)]−
k∑

t=0

λtE[f(xt−1)− f(x∗)]

=

k∑
t=0

λtE[Bf (xt−1, xt)] +

k∑
t=0

E[f(xt)− f(x∗)] +
k∑

t=1

λtE[f(xt)− f(x∗)]−
k∑

t=1

λtE[f(xt−1)− f(x∗)]

=

k∑
t=0

λtE[Bf (xt−1, xt)] +

k∑
t=0

E[f(xt)− f(x∗)] +
k−1∑
t=1

(λt − λt+1)E[f(xt)− f(x∗)]

+ λkE[f(xk)− f(x∗)]− λ1E[f(x0)− f(x∗)]

≥
k∑

t=0

λtE[Bf (xt−1, xt)] +

k∑
t=0

E[f(xt)− f(x∗)]− λ1E[f(x0)− f(x∗)]

≥
k∑

t=0

λtE[Bf (xt−1, xt)] + (k + 1)E[f(xk)− f(x∗)]− λ1E[f(x0)− f(x∗)],

where we used that λ0 = 0 and λt − λt+1 ≥ 0 since (λt) is a decreasing sequence. Dividing through by (k + 1) gives

1

k + 1

k∑
t=0

E[∆t] ≥
1

k + 1

k∑
t=0

λtE[Bf (xt−1, xt)] + E[f(xk) − f(x∗)]−
λ1
k + 1

E[f(x0)− f(x∗)].
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Using the above and (63) gives(
1

k + 1

k∑
t=0

λtE[Bf (xt−1, xt)] + E[f(xk)− f(x∗)]−
λ1
k + 1

E[f(x0)− f(x∗)]

)
≤
(

1

k + 1

k∑
t=0

E[∆t]

)
+

≤ G∥x0 − x∗∥√
k + 1

.

Re-arranging gives the result.

K. An Adam Variant of IAM
Following an analogous reasoning used in Section 3, we can derive variants of IAM that use preconditioning. This is
particularily important for models such as Transformers, where using an Adam preconditioner is required to achieve a
reasonable performance.

To arrive at a preconditioned version of IAM, let Dt ∈ Rd×d be our positive definite symmetric preconditioner, and let
∥z∥2Dt

:= ⟨Dtz, z⟩ be the norm induced by this preconditioner. Now consider the iterative averaging method with this
preconditioner:

zt = zt−1 − ηtD
−1
t gt, (64)

xt+1 =
λt+1

1 + λt+1
xt +

1

1 + λt+1
zt. (65)

Now we upper bound the distance between zt and a solution x∗ under the preconditioned norm via

∥zt − x∗∥2Dt
= ∥zt−1 − x∗∥2Dt

− 2ηt
〈
D−1

t gt, zt−1 − x∗
〉
Dt

+ η2t ∥gt∥2D−1
t

= ∥zt−1 − x∗∥2Dt
− 2ηt ⟨gt, zt−1 − x∗⟩+ η2t ∥gt∥2D−1

t

≤ ∥zt−1 − x∗∥2Dt
− 2ηt

(
fξt(xt)− fξt(x∗) + ⟨gt, zt−1 − xt⟩

)
+ η2t ∥gt∥2D−1

t
,

where in the inequality we used that fξt is convex. Minimizing the right-hand side with respect to ηt now gives the step size
given in line 3 in Algorithm 2. To arrive at our IAM-Adam method, we simply set Dt to be the preconditioner used by Adam,

Algorithm 2 IAM-Adam

1: Input: z−1 = x0 ∈ Rd, λt > 0
2: for t = 0 to T − 1 do

3: ηt =

[
fξt(xt)− ℓ∗ξt + ⟨gt, zt−1 − xt⟩

]
+

∥gt∥2D−1
t

,

4: zt = zt−1 − ηtD
−1
t gt

5: xt+1 =
λt+1

1 + λt+1
xt +

1

1 + λt+1
zt

6: Return: xT

that is Dt = diag(
√
vt + ϵ) where

vt+1 = β2vt + (1− β2)gt ⊙ gt.

L. Experiments
L.1. Non-Lipschitz Non-smooth Convex Problem

To model discrete events with a Poisson regression, we need to solve

min
w∈Rd

1

n

∑
i=1

(
ℓ(w⊤xi)− yi log

(
ℓ(w⊤xi)

))
, (66)
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where ℓ : R 7→ R is called the link function. One of the most commonly used link functions is the exponential function
ℓ(z) = exp z. With this link function (66) becomes

min
w∈Rd

1

n

∑
i=1

(
exp(w⊤xi)− yiw

⊤xi
)
. (67)

We fit two different data sets. The first data set is on diabetes patients sourced from (Efron et al., 2004), which is a medical
dataset containing information on 442 patients (n), each described by 10 physiological and lifestyle features (d). The second
data set is a bike sharing records (Fanaee-T & Gama, 2014) in Washington, D.C., over a two-year period (2011-2012). It
includes a total of 17,379 data points, and 12 features such as weather conditions, seasonal information, and temporal data.
The target variable is the count of total bike rentals on an hourly basis.

As a baseline, we ran L-BFGS (Liu & Nocedal, 1989) in full batch mode, and SGD with constant learning rate tuned across

γ ∈ 0.001 · {0.01, 0.1, 0.5, 1.0, 2.0, 5.0, 20, 50}.

Each method was given the same budget in terms of epochs. To highlight how important the choice of the learning rate is, in
Figure 3 we plot the resulting loss (y-axis) of the last iterate of each method for different learning rates (x-axis). We find that
the IAM method converges to a loss that is comparable to LBFGS and SGD with the best possible learning rate. Furthermore,
IAM is the only method guaranteed to converge on this non-smooth and non-Lipschitz objective.
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Figure 1. Bike Sharing Data, 7 epochs
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Figure 2. Diabetes Data, 15 epochs

Figure 3. Sensitivity to learning rate for each method. Larger learning rates diverged.

L.2. Misspecification of fξ(x∗)

In numerous machine learning applications a lower bound of fξ(x∗) is known a priori, because loss functions are typically
non-negative. We study the following three versions of IAM:

• theoretical version where we specify correctly fξt(x∗) in every iteration t, computed from the oracle values f∗i , i ∈ [n],

• averaged version, where we specify fξt(x∗) with f(x∗) in every iteration,

• lower-bound version, where we specify fξt(x∗) with zero.

Description of experimental setup. Consider the following problem setup, which is adopted from (Orvieto et al., 2022):
solve

min
x∈Rd

1

n

n∑
i=1

fi(x), fi(x) := (x− xi∗)
THi(x− xi∗) + f∗i ,

where Hi ∈ Rd×d are symmetric positive definite matrices and xi∗ ∈ Rd. This is clearly an instance of (1), where D is the
uniform distribution over [n] and fξ(x) = fi(x), and it holds f(x) = 1

n

∑n
i=1 fi(x).
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We consider two cases, (i) the interpolated case with xi∗ = x̄ for all i ∈ [n], and (ii) xi∗ = x̄ + 0.05εi, where εi ∈ Rd

is standard normal. Following (Orvieto et al., 2022), we generate Hi = AT
i Ai/(3d) where the entries of Ai ∈ R3d×d

are standard normal. We generate f∗i from a uniform distribution with mean 0.5 and standard deviation ν, followed by
truncation at zero to make sure all f∗i are non-negative.

Note that in case (i) x̄ is the minimizer of f and of each fi. Further, fi(x∗) = infx∈Rd fi(x) = f∗i , and f(x∗) =
1
n

∑n
i=1 f

∗
i = infx∈Rd f(x). In the other case (ii), we compute the solution x∗ by solving a linear system, and then compute

fi(x∗). We always compute fξ(x∗) by averaging fi(x∗) over the corresponding mini-batch.

We vary the standard deviation ν ∈ {0.01, 0.1} and the batch size b ∈ {4, 16}.

We run all versions of IAM with λt = 9 for all t ≥ 0, as suggested by our convergence Theorems 3.3 and 3.2. As a baseline,
we compare to SGD-M with constant learning rate and momentum β = 0.9. We set the learning rate to the theoretical value

1
4Lmax

(cf. Sebbouh et al. (2021)), where Lmax := maxi=1,...,n Li and Li := 2λmax(Hi) denotes the smoothness constant
of fi (here λmax denotes the largest eigenvalue).4 We further compare to MoMo that has access to fξ(x∗), cf. (Schaipp et al.,
2024, Eq. 17).

Discussion. In the interpolated case, see Figure 4, the theoretical version of IAM matches the rate of SGD-M without any
tuning. However, if fξ(x∗) is mis-specified, the convergence stales. This effect is more pronounced if the noise is large, or
the batch size is small. In the non-interpolated case, see Figure 5, we observe that the theoretical version of IAM obtains
a smaller final loss than SGD-M. This matches our theoretical result in the smooth setting, where we showed that we get
convergence even if σ2

∗ > 0.

Compared to MoMo, we observe roughly the same convergence behaviour, with IAM typically having a slightly bigger slope.
As a side note, we observe that MoMo also converges without interpolation, even though this case is not covered by the theory
of Schaipp et al. (2024).
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Figure 4. Interpolation true: IAM with the correct fξt(x∗) converges as fast as SGD-M with the theoretical step size 1
4Lmax

. When ν is
small (left), the initial progress of IAM with the average f(x∗) is equally good, before it stales. For ν large, the convergence stales earlier
(midlle). Increasing the batch size (right) slightly increases the gap between IAM with fξt(x∗) = 0 and fξt(x∗) = f(x∗).

L.3. Supplementary Material on Distillation Experiment

Here we provide the complete details of our distillation experiments in Section 4.1, together with some additional plots.

Datasets and models. The datasets we consider are below. We used the GPT2Tokenizer from the Transformers library.

• tinyShakespeare (Karpathy, 2015): 40 000 lines from Shakespeare plays. The dataset has 303 688 tokens.

Source: https://huggingface.co/datasets/karpathy/tiny_shakespeare

4Note that in Pytorch this requires setting dampening=0.9.
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Figure 5. Interpolation false: see caption of Figure 4.

• PTB (Penn Treebank) (Marcus et al., 1993): The dataset contains 1 094 404 tokens.

Source: https://huggingface.co/datasets/ptb-text-only/ptb_text_only

• Wikitext2 (Merity et al., 2016): This is a subset of a 100 million token large collection of featured articles from
Wikipedia. The dataset contains 2 389 828 tokens.

Source: https://huggingface.co/datasets/Salesforce/wikitext

We use the module GPT2LMHeadModel from the HuggingFace transformers library (Wolf et al., 2020) to define our GPT2
models [link]. The teacher model we use for tinyShakespeare and Wikitext2 is the gpt2-large configuration within
this module, which has 774 million parameters, and was pretrained by a team from OpenAI (Radford et al., 2019). We use
the same tokenizer from the teacher model for the student model. For the PTB dataset, we use a different teacher model, as
we found that gpt2-large had a poor fit, with the loss being above 5.0 on this dataset. So instead, we used the GPT-J-6B
model (Wang, 2021), which has 6 billion parameters [link].

For the student model, we specify the configuration in Table 3.

Table 3. Parameters of the Student GPT2 model
Dataset Embedding size Number of layers Number of attention heads

tinyShakespeare 768 2 4
PTB 768 2 4

Wikitext2 1200 12 12

Hyperparameter tuning. For our methods IAM (Algorithm 1) and IAM-Adam (Algorithm 2) we set λt = 9, which
corresponds to using momentum β = 0.9 if the learning rates were constant, see Lemma I.1. Note that there is no
hyperparameter tuning at all for IAM and IAM-Adam.

For the baseline methods SGD and Adam, we do the following tuning: we run bot SGD and Adam with constant learning rate
and with a warmup+cosine decay schedule (Loshchilov & Hutter, 2017). This schedule does a linear warmup over the first
20% of iterations to a peak learning-rate γ, then performs a cosine decay to 0 over the remaining steps. For Adam, we set
the learning rate to its default value of 10−3 for the constant schedule, and we set γ = 1.5× 10−3 for the warmup+cosine
decay schedule.

For SGD the learning rate needs to be tuned to get a reasonable performance: for the constant schedule, we chose the
best-performing learning rate from the set

γconstant ∈ {0.0001, 0.001, 0.01, 0.05, 0.1, 0.2}.
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When using a scheduler with SGD, we take the best-performing value γconstant and then independently tune the peak learning
rate within the set

γconstant · {1.2, 1.5, 2, 3, 5}.
For SGD we use a momentum parameter of 0.9. In the Pytorch implementation of SGD, we also set the dampening
parameter to 0.9 to ensure comparability of the tuned learning rate to the one of IAM.

Relationship to existing distillation techniques. In this paragraph, we aim to give a short overview over various
distillation techniques which often vary in terms of their general setup and loss function. However, as model distillation is
not the main focus of this paper, we point to the references below for additional background. In their seminal work, Hinton
et al. (2015) propose to minimize the KL divergence between the teacher and student output probabilities. Follow-up works
use a loss function that combines KL divergence and the standard loss for the student task (e.g., cross-entropy loss for
classification, squared loss for regression) (Romero et al., 2015). On the other hand, Hsieh et al. (2023) propose to use the
teacher output as surrogate labels in case of unavailable labeled training data for the students. We also refer to Beyer et al.
(2022) for an overview of training techniques that improve the distillation performance.

The distillation setup that we propose in this paper is slightly different: we use only the final batch loss of the teacher model.
The reason for this is that the IAM methods we investigate rely on an accurate guess of the optimal batch loss fξ(x∗). In the
distillation setting, we can leverage the pretrained teacher model in order to approximate the optimal batch loss values. The
notion of distillation we use here might of independent interest, as it only needs access to the final batch loss value, but not
the output probabilities of the model (the logits) nor its weights.

Additional plots. In Figure 6 we give the full plot of our distillation experiments, including the evolution of the learning
rates for IAM and IAM-Adam.

In Figure 7 we give the distillation of several different small GPT2 models for the tinyShakespeare data set.
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Figure 6. Full display of Figure 1. Adaptive learning rate of IAM-Adam compared to Adam (top), of IAM compared to SGD (middle), and
the cross-entropy training loss (bottom). Black line marks the average teacher loss.
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Figure 7. Distilling gpt2-medium into successively larger student models for the tinyShakespeare dataset.
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