Under review as a conference paper at ICLR 2026

RA-SPARC: ROBUST ADAPTATION WITH SPARSE
PLUS LOW-RANK COMPRESSORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameter-Efficient Fine-Tuning (PEFT) methods, such as Low-Rank Adaptation
(LoRA), are widely adopted for their efficiency. However, LoORA assumes model
updates are inherently low-rank, which introduces a restrictive bias that results
in underperformance compared to full fine-tuning. Hybrid approaches, such as
Robust Adaptation (RoSA), improve expressiveness by combining low-rank and
sparse components, but they rely on a manually tuned ratio to balance these com-
ponents, leading to suboptimal parameter allocation across tasks. We introduce
RA-SpaRC (Robust Adaptation with Sparse plus Low-Rank Compressors), a new
initialization strategy that overcomes this limitation. The key idea is an adap-
tive allocation mechanism that automatically balances sparse and low-rank com-
ponents within a given parameter budget. This approach removes the need for
manual rank—sparsity tuning and supports arbitrary parameter budgets. This prin-
cipled and automated design allows RA-SpaRC to consistently outperform LoRA,
its variants, and RoSA in extensive experiments across multiple models, deliver-
ing more effective and flexible adaptation.

1 INTRODUCTION

The rapid advancement of large language models (LLMs) and foundation models has revolutionized
various domains in artificial intelligence, enabling remarkable performance across tasks such as nat-
ural language understanding and generation (Touvron et al., 2023; Radford et al., 2021). However,
the sheer scale of these models, often comprising billions of parameters, poses significant challenges
for fine-tuning on downstream tasks. Full fine-tuning (FFT) of all parameters is computationally in-
tensive and memory-prohibitive. This has driven the need for parameter-efficient fine-tuning (PEFT)
methods, which optimize a small subset of parameters while keeping the original pretrained weights
frozen (Houlsby et al., 2019; Hu et al., 2022).

Among parameter-efficient fine-tuning (PEFT) techniques, Low-Rank Adaptation (LoRA) and
Sparse Adaptation have gained prominence due to their simplicity and effectiveness (Hu et al.,
2022; Sung et al., 2021). LoRA approximates weight updates as the product of two low-rank matri-
ces, while sparse adaptation updates only a small subset of parameters. Both methods significantly
reduce the number of trainable parameters, but can exhibit a performance gap relative to full fine-
tuning (Wang et al., 2024; Sung et al., 2021). This gap stems from their reliance on low-rank or
sparse approximations, which may not fully capture the intrinsic structure of weight updates in pre-
trained models.

To bridge this limitation, hybrid PEFT approaches that combine low-rank and sparse adaptations
have emerged. For instance, Robust Adaptation (RoSA) (Nikdan et al., 2024) jointly trains low-rank
and sparse adapters on top of fixed pretrained weights, drawing inspiration from Robust Principal
Component Analysis (RPCA) (Candes et al., 2011) to decompose updates into low-rank and sparse
components. The key advantage of this approach lies in the complementary nature of the compo-
nents: sparse matrices are typically high-rank, whereas low-rank matrices are typically dense; thus,
integrating them leverages their respective strengths.

The initialization strategy of PEFT methods is critical for both low-rank (Wang et al., 2024; Zhang
et al., 2025; Meng et al., 2024) and sparse adaptations (Sung et al., 2021; Fu et al., 2023). Given
a fixed parameter budget, methods like RoSA (Nikdan et al., 2024) and DSEE (Chen et al., 2021b)
have to pre-define the rank and sparsity for each layer. This fixed allocation is often inefficient and

Under review as a conference paper at ICLR 2026

creates a difficult trade-off. Over-allocating resources to the low-rank components might neglect
important sparse outliers, whereas an excessive sparsity level can compromise the power of adapters
to capture global updates. This dielmma raises a natural and important question:

“Is there an initialization strategy that enables flexible, automatic, and effective budget allocation
for Robust Adaptation?”

In this paper, we introduce RA-SpaRC (Robust Adaptation with Sparse plus Low-Rank
Compressors), an initialization strategy for sparse plus low-rank fine-tuning, which could dynami-
cally assign the ratio of low-rank and sparse parts according to the gradient information of different
tasks and models. Our method provides an efficient, data-driven solution to the static allocation
problem, improving performance without increasing the parameter budget.

Our contributions are summarized as follows:

* We propose a unified framework for initializing PEFT methods based on compressors, and
we show that under proper settings, this initialization indeed guarantees a loss decrease.

* Within this framework, we introduce sparse plus low-rank compressors for Robust Adap-
tation. We formulate the task of getting the compressed results as an optimization problem
and propose an efficient algorithm to solve it.

* We demonstrate the efficacy of RA-SpaRC on both natural language understanding and
natural language generation tasks.

2 RELATED WORK

Parameter Efficient Fine-Tuning: Parameter-Efficient Fine-Tuning (PEFT) methods adapt large
models by training only a small fraction of their total parameters. A prominent example is Low-
Rank Adaptation (LoRA), which approximates the weight updates using low-rank matrices (Hu
et al., 2022) The performance of LoRA is known to be sensitive to its initialization, leading to recent
works on more sophisticated initialization schemes such as LoORA-GA (Wang et al., 2024), LoRA-
One (Zhang et al., 2025) and PiSSA (Meng et al., 2024). To overcome the expressive limits of the
low-rank hypothesis, hybrid methods like DSEE (Chen et al., 2021b) and RoSA (Nikdan et al., 2024)
combine low-rank updates with sparse updates. In contrast to their reliance on a fixed, pre-defined
allocation of the parameter budget, RA-SpaRC determines this allocation dynamically.

Robust Principal Component Analysis: Robust Principal Component Analysis extends classical
PCA to handle data corrupted by outliers or gross errors, decomposing a matrix into a low-rank
component plus a sparse outlier matrix (Wright et al., 2009). The problem can be represented as:

min rank(L) + 7|50
st. ||[S+L— Mg <6é. (1)

Directly solving this optimization problem is NP-hard due to the non-convex nature of the rank func-
tion and the /y-norm. Therefore, a common approach is to consider its convex relaxation (Chan-
drasekaran et al., 2011; Candes et al., 2011), where the rank function is replaced by the nuclear norm
(IIL||+) and the £g-norm by the ¢;-norm (||.S||1). This relaxed convex problem can then be solved
efficiently using Alternating Direction Methods (Tao & Yuan, 2011; Yuan & Yang, 2013).

Compressors: Our initialization framework is built upon operators from the field of compression.
Compressors are developed to reduce communication overhead in distributed training (Li et al.,
2022; Chen et al., 2023), and improve the memory efficiency of optimizers (Modoranu et al., 2024).
There are two prevalent classes of compressors: sparse compressors like TopK, which preserve the k
largest-magnitude elements (Aji & Heafield, 2017; Lin et al., 2017), and low-rank compressors like
SVD, which project the gradient onto a low-rank subspace (Vogels et al., 2019; Wang et al., 2018).
These have been studied extensively, but almost always in isolation. Our primary technical contri-
bution is the formulation of new hybrid compressors designed specifically for model initialization.

Under review as a conference paper at ICLR 2026

3 METHOD

This section details our proposed method. We begin by establishing a formal framework that unifies
recent PEFT initialization techniques under the concept of compressors. We then introduce SpaRC
(Sparse Plus Low-Rank Compressors), a novel hybrid operator designed to find an optimal sparse
plus low-rank decomposition of the gradient for a given parameter budget. We present an efficient
algorithm for this decomposition and demonstrate how it is used to initialize the PEFT adapters in a
single step.

3.1 UNIFYING PEFT INITIALIZATION VIA COMPRESSORS

The initialization of many Parameter-Efficient Fine-Tuning (PEFT) methods can be conceptualized
as applying a compressor to the full gradient. We define a compressor as an operator that approxi-
mates a high-dimensional gradient matrix with a low-parameter structure. Formally, we define this
in the space of matrices equipped with the Frobenius norm.

Definition 1 (Compressor). The mapping C : R"™*™ — R™*" js called a compressor if there exists
a constant « € (0, 1] such that for any matrix X € Rm*";

le(x) = X|F < (1= a)l1X |, @
where || - || r denotes the Frobenius norm.

In our context, the matrix X represents the unbiased stochastic gradient of the loss with respect to

the weight matrix Wy, of ¢4, layer, which we denote as g¢ » def Ve, L(Wo; €), where Wy def
(---,Woy,---) represents the parameters of all such layers, £ is the loss function and ¢ is a mini-

batch of data. We also denote g wof (- ,9eu,---) as the whole unbiased stochastic gradient,

def def . def def
g = Elge] = (- ,E[gee), -+)] as the true gradient, and gé = C(ge) = (- ,C(gey),) as

the whole compressed stochastic gradient. Besides, we define a new type of inner product (X,Y) =
>, Tr(X]'Y,) and norm || X ||? = (X, X) for both Wy, g, g¢ and g¢- With this formal definition, we
can now categorize the initialization strategies of popular PEFT methods:

* Low-Rank Compression (SVD): Methods like LoRA-One (Zhang et al., 2025) initialize
the update by computing the best rank-r approximation of g¢ ,. By the Eckart-Young-
Mirsky theorem, this is achieved via Singular Value Decomposition (SVD). This SVDr(+)
operator is a projection onto a lower-dimensional subspace and is a well-known compressor

that satisfies Definition 1 with « = —F——.
min{m,n}

» Sparse Compressors (TopK): Sparse methods like FISH-Mask (Sung et al., 2021) initial-
ize the update by retaining only the & largest-magnitude elements of g¢ ,. This Top,(-)
operator produces a sparse matrix where all other elements are zero. It is also a powerful
compressor that adheres to Definition | with o = #, as it preserves the most significant
components of the gradient signal.

The insight that PEFT initializations can be viewed as compressors allows us to generalize the update
rule. The change in weights, AW, can be expressed as the application of a compressor C to ge:

where 7 is a learning rate or scaling factor. This single equation elegantly encompasses both low-

rank adaptation where C = SVD,.(-) and sparse adaptation where C = Top,(+).

3.2 SPARC: A HYBRID SPARSE PLUS LOW-RANK COMPRESSOR

Framework 3 provides a clear path forward for more complex PEFT structures. For methods like
Robust Adaptation, which require a parameter-efficient update that is simultaneously sparse and
low-rank (AW = Low-Rank + Sparse), we must design a compressor that can extract both types of
information from the gradient.

Under review as a conference paper at ICLR 2026

To this end, we propose SpaRC (Sparse Plus Low-Rank Compressors): For any matrix X € R™*",
let

Cp(X) = arg min HY7X||%“’ S
Y=L+S
(m+n)rank(L)+||S]lo<p

where || - ||o stands for the matrix 0-norm (number of non-zero entries) and p is an integer which
stands for the given parameter budget. The mapping C, is indeed a compressor. Notice that L =
SVD|_»_ (X),S =0and L = 0,5 = Top,(X) are feasible points of the minimization problem.
Therefore, both

_ 2 . 2 . p 1 2
I64(3) = X[< ISVD L () = X1 < (1= L2l Y X,

p
and €, (X) = X[} < |[Top,(X) = X[} < (1= =) [X[}, ©)
verify C,, are compressors.

3.3 A QUALITY METRIC FOR COMPRESSORS

We analyze the single-step loss dynamics of Framework 3. The following theorem provides a bound
on the expected loss after a single update step using a generic compressor C.

Theorem 3.1. Assume the loss function L is L-smooth. For an update W, = Wy — ngé, the expected
loss BE[L(W1)] is bounded as follows:

mawmzﬁmwgcwﬁwu+mmggdﬂ+ww@*i)&>
2
+ LER]g)?) @

def
where 02 = El|\ge — g||?] is the variance of the stochastic gradient and ji > 0 is an arbitrary
constant.

A standard choice of p is 1. Theorem 3.1 reveals the condition for guaranteed loss descent. By se-
lecting a sufficiently small step size 7, the final n? term becomes negligible. A decrease in expected
loss (E[L(W71)] < L(W,)) is then guaranteed under the bounded variance (62 < +00) and bounded
initial gradient (||g||> < +o00) assumption (detailed derivations are in Appendix A.1). This gives us
a sufficient condition for one-step loss decreasing if the following inequality holds:

1
1%%W—a+mmgﬂdﬂ>wmﬁ+0+u)ﬁ. ®)

This inequality provides the crucial insight for our work. The right-hand side represents a fixed
convergence barrier determined by the properties of the full gradient (g) and the stochastic noise
(0?). To satisfy the condition and ensure a decrease in loss, we must choose a compressor C that
maximizes the term on the left-hand side.

This directly motivates our metric for compressor performance. We define the Compressor Quality
Metric M(C) as
def
M(C) = Ee[[|Cge) I — (1 + w)lIC(ge) — gell). 9
For a given parameter budget, the optimal compressor is the one that yields the highest value of
M(C), as it provides the largest ”push” against the descent barrier.

This metric has a clear interpretation related to noise robustness. High gradient variance (c2) is
a primary cause of unstable training and divergence (Karimireddy et al., 2019). Our metric M(C)
evaluates a compressor’s variance-suppression ability by balancing two competing goals: preserving
the gradient signal (maximizing [|C(g¢)||*) while minimizing the compression error (minimizing
IC(g¢) — gel). A high-quality compressor, as measured by M (C), is therefore one that effectively
retains the true gradient signal while being robust to the corrupting influence of stochastic noise.

Under review as a conference paper at ICLR 2026

Algorithm 1 Adaptive Rank-Sparsity Search

Algorithm 2 Alternating Projection Method

Require: Matrix M € R™*™, parameter budget p, Mier 1: procedure ALTPROJ(M, 1, 5, niter, U, 3, V)
1! Tmax LminJ g: fi(i-; 00 .
: T : = U, Niter —
2: ol s SVD i (M) 4: if £ = 0 and U is provided then
3: left <— 0, right <— rmax s I b BoiCes
4: while left < right do o else k1 <= Uiir2irir Ve
5: my < left + | (right — left) /2| :
6: mo<+mi+1 Z;i endl’;fkﬂ + SVD,.(M — Sk)
7: s1 ¢+ p—mi(m+n) :
9: S +— T M—-L
8 s24p—ma(m+n) 0. end fl:;l op,(k+1)
9: -, -, loss1 <= ALTPROJ(M, m1, s1,1,U, X, V) 1 T g
10: -, -, lossa <= ALTPROJ(M, ma, s2,1,U, X, V) Linjers © € Mier
11: ifloss; < lossz then 12: loss« ||M — L -S|
12: right < m1 13: return L, S, loss
13: else 14: end procedure
14: left < mo
15: end if
16: end while
17: r* « left

18: s* «—p—r"(m+n)
19: Lfinal, Stinal, - <~ ALTPROJ(M, 7%, 8™, nier)
20: return Lfinai, Stnal

3.4 ALGORITHM FOR SOLVING SPARC

To compress g¢ ¢ with a parameter budget p, we shall solves the following optimization problem by
setting M = ge 4

: a2
min |5+ L — Mz
s.t. (m+n)rank(L) + [|S|o < p, (10)

where S, L € R™*". The parameter budget p is a flexible value, which could represent the total
parameters available for adapters in a linear layer. For simplicity, it can be set relative to a maximum
rank 7'max, €.8., P = Tmax (™ -+ n); Or to @ maximum percentage Syatio» €-8-» P = SratioMN.

As shown in Algorithm 1, we reformulate it as a series of subproblems by fixing the rank budget of
the low-rank component, rank(L) < rp:

i L— M|
min |5+ I

s.t. rank(L) <rp, ||S]lo <p—rr(m+n). (11)

We solve this subproblem using a single iteration of an alternating projection. First, the low-rank
matrix L is found by computing the best rank < 7, approximation of M. Then, the sparse matrix S
is found by taking the largest magnitude entries of the residual M — L.

Crucially, this process is highly efficient. The expensive Singular Value Decomposition (SVD) of
the target matrix M is performed only once as a pre-computation step. For any given rank 7, in the
subproblem, the optimal L is constructed by simply taking a slice of the top r, singular values and
vectors from this pre-computed decomposition. This reduces the SVD overhead to a fixed, one-time
cost. While brute-force enumeration over all possible ranks 7, is computationally prohibitive, we
empirically observe that the reconstruction error from this single-step projection is unimodal with
respect to the rank 7. As detailed in Appendix C.2, the error curve exhibits a single, well-defined
minimum. This property allows us to find the optimal rank, rgn,, using an efficient binary-like
search, as detailed in Algorithm 1.

3.5 RA-SPARC INITIALIZATION

Given the decomposed matrices Lin, and Sjnar, our goal is to initialize trainable adapters that ap-
proximate this update. To properly scale this update for initialization, we introduce a scalar . This

Under review as a conference paper at ICLR 2026

allows us to interpret the process as a single-step compressed SGD, where % serves as the learning
rate 7) in Framework 3.

The sparse adapter is initialized directly. We store the non-zero values of %Sﬁnal as Fy.

The low-rank component requires a more nuanced approach. Inspired by LoRA (Hu et al., 2022)
and SLTrain (Han et al., 2024), we seek to apply a unique scaling A (= % or = %, where « is the

LoRA alpha) to the low-rank component to control its training speed. However, a naive scaling of
the initial matrix (e.g., using A - %Lﬁna]) is not viable, as it would violate the integrity of our initial

gradient approximation.

To resolve this, we employ a reparameterization trick. While the effective update from the low-rank
adapters is AB A, we initialize the trainable matrices By and Ay as:

By = \%U\/i and Ay = %\/EVT, (12)
where ULVT = %Lﬁnal is the SVD decomposition. This design elegantly achieves two simultane-
ous goals. First, at initialization, the total update correctly reconstructs the target: AByA(equals
%Lﬁnal. Second, during training with a base learning rate 7, the effective learning rate for the low-
rank component is precisely scaled to 7, A. This provides explicit control over the learning dynamics
without compromising the initial state. A formal proof of this property is provided in Lemma A.3.

The final initialization result W7 is

1
Wi =Wy —AByAg — Ey = Wy — ;(Sﬁnal + Lfina) = Wo — 11 Cp(ge)-

4 EXPERIMENTS

In this section, we shall evaluate RA-SpaRC from various perspectives. We conduct our primary
experiments on two model families, LLaMA-2-7B (Touvron et al., 2023) and the more recent
Qwen2.5-7B (QwenTeam, 2024), to ensure broad applicability. Our experimental setup (as detailed
in Appendix D), including data preprocessing, follows the way established in LoRA-GA (Wang
et al., 2024). We evaluate our method from the following three aspects:

 Task Performance: We first assess performance of RA-SpaRC on a diverse set of Natural
Language Understanding (NLU) and Generation (NLG) benchmarks.

* Compressor Comparison: Next, we conduct a direct comparison of our SpaRC compressor
against standard SVD and TopK baselines to quantify its effectiveness.

* Resource Cost: Finally, we analyze the computational resource costs to demonstrate the
practical efficiency of our method.

4.1 EXPERIMENTS ON NATURAL LANGUAGE UNDERSTANDING

Table 1 shows the T5-base fine-tuning results on a GLUE subset. All LoRA-based methods use a
rank of » = 8, while our RA-SpaRC uses the parameter budget r,,x = 8.

RA-SpaRC achieves the highest average accuracy (88.75%), outperforming all competitors on the
larger datasets (MNLI, SST-2, QNLI). It trails LoORA-One marginally on the smaller CoLA and
MRPC datasets, which we attribute to the higher complexity of robust adaptation model. The sparse
plus low-rank structure is more challenging to optimize on limited training data. Nevertheless, the
state-of-the-art average score confirms the overall effectiveness of our approach.

4.2 EXPERIMENTS ON NATURAL LANGUAGE GENERATION

We evaluate our method RA-SpaRC on two core capabilities: mathematical reasoning, code genera-
tion. For each task, we fine-tune both the LLaMA-2-7B and Qwen2.5-7B models and evaluate their
performance on standard benchmarks.

Under review as a conference paper at ICLR 2026

Table 1: Accuracy comparison on GLUE subset among typical LoRA based algorithms and our RA-
SpaRC. Results are reported as accuracy (%) with standard deviations over 3 runs (best in bold). The
results marked with (x) are sourced from Zhang et al. (2025) under the same setting.

Method MNLI SST-2 CoLA QNLI MRPC Avg.
LoRA* 85.3040.04 94.041009 72841125 93.021007 68381001 82.72
LoRA+* 85.8110.00 93.851024 77531020 93.141003 74431139 84.95
PiSSA* 85.7510.07 94.0710.06 74271039 93.151014 76311051 84.71
LoRA-GA* 85.70+0.09 94111018 80.571020 93.1840.06 85291004 87.77
LoRA-Pro* 86.03:‘:0.19 94.19i0_13 81.94:|:(]_24 93.42:|:0,()5 86.60:‘:0.14 88.44
LoRA-One* 85.8910408 94.53i0,13 82.04i0,22 93'37i0.02 87.83i0A37 88.73
RoSA 85.7040.14 94.0710.20 79711920 93331011 77294117 86.02
RA—SpaRC 86.07:‘:0.12 94.76:‘:0.38 82.01:&0,33 93.45:|:(),12 87.50:‘:0.40 88.75

Table 2: Comparison of our method against various fine-tuning baselines on LLaMA-2-7B and
Qwen2.5-7B. We report mean accuracy (+ std. dev.) on GSM8K and HumanEval. The upward
arrow (1) indicates higher is better. The best-performing method for each model is highlighted in
bold.

Model Method Params (%) GSMSK HumanEval
LoRA 0.297% 59.26 £0.99 2585+ 1.75
LoRA-GA 0.297% 5644 +£1.15 26.95+1.30
LoRA-One 0.297% 60.44 +0.17 28.66 + 0.39
RoSA 0.297% 59.51 £0.23 25.20+0.76
LLaMA-2-7B RoSA 1.187% 61.18 £0.76 29.26 £ 1.21
RoSA 4.746% 60.95 £0.76 30.79 + 0.91
RA-SpaRC 0.297% 60.67 +£0.13 29.88 + 0.87
RA-SpaRC 1.187% 61.80 =0.11 31.50 = 0.57
RA-SpaRC 4.746% 62.02 +0.23 35.57 + 1.04
LoRA 0.200% 81.61 £0.71 68.50 & 1.25
LoRA-GA 0.200% 81.99 £0.69 69.92 +1.88
LoRA-One 0.200% 84.43 +£0.13 71.75£0.29
RoSA 0.050% 81.20 £ 0.50 65.65 £ 0.29
Qwen2.5-7B RoSA 0.100% 81.35+£021 66.67 +0.58
RoSA 0.200% 81.65+0.88 67.28 +0.29
RA-SpaRC 0.050% 84.15+0.55 67.27 £0.29
RA-SpaRC 0.100% 84.53 £0.54 68.50 & 1.04
RA-SpaRC 0.200% 85.06 + 0.21 72.35 + 0.29

* Mathematical Reasoning: For the math task, we fine-tune the models on a 100k sample
from the MetaMathQA dataset (Yu et al., 2023). The models are then evaluated on the
GSMSK test set (Cobbe et al., 2021), and we report accuracy as the primary metric.

* Code Generation: For the coding task, we fine-tune the models on a 100k subset of the
CodeFeedback dataset (Zheng et al., 2024). We then test them on the HumanEval bench-
mark (Chen et al., 2021a), reporting the PASS @ 1 metric.

As shown in Table 2, our method consistently outperforms other leading fine-tuning techniques.
This strong performance stems from our novel initialization strategy, which is specifically designed
to unlock the full potential of sparse plus low-rank fine-tuning, surpassing previous initialization
methods.

To demonstrate this, we first compare our method against LoORA-One, the current state-of-the-art
for LoRA initialization. On LLaMA-2-7B, at an identical 0.297% parameter budget, our approach
achieves a GSMS8K score of 60.67 and a HumanEval score of 29.88, outperforming LoRA-One

Under review as a conference paper at ICLR 2026

Table 3: Summary of hyperparameter configurations for equivalent budget comparisons. For a
detailed breakdown of configurations across all parameter budgets, please see Appendix D.1.

Method LLaMA-2-7B (0.297%) Qwen2.5-7B (0.200% , MLP only)

LoRA r=38 r=3=8
RoSA 7 =4, Sratio = 0.0015 7 =4, Spatio = 0.0013
RA-SpaRC Tmax = 8 Tmax = 8

by an absolute margin of +0.23 and +1.22 points, respectively. This advantage is confirmed on
Qwen2.5-7B, where our method, using a targeted MLP-only strategy at a 0.20% budget, scores
85.06 on GSMS8K and 72.35 on HumanEval, yielding improvements of +0.63 and +0.60 points
over LORA-One. Furthermore, we compare our method’s scalability against RoSA, a prior method
that also combines sparse plus low-rank updates. Across various parameter budget, our approach
consistently delivers superior results.

Further details on the adaptive parameter budget allocations that lead to these results are provided
in Appendix C.3. This analysis demonstrates the method’s capability to discover effective configu-
rations, validating the core mechanism of our approach.

4.3 COMPARISON OF DIFFERENT COMPRESSORS

We evaluate our compressor, SpaRC, against SVD and TopK baselines on the CodeFeedback and
MetaMathQA datasets. Performance is measured by our quality metric M(C) with 4 = 1 and
relative reconstruction error at two parameter budgets (0.297% and 1.187%).

Table 4: Comparison of different compressors. Based on LLaMA2-7B in CodeFeedback and Meta-
MathQA dataset. The arrow 1 / | indicates higher/lower is better.

_ 2 _ 2
Method M(Cooge T BN N eote & M T B i
SpaRC (0.297%) 6.9 18.42% 34.98 8.90%
SVD (0.297%) 6.78 18.89% 3475 9.07%
TopK (0.297%) 0.69 31.68% 10.06 26.34%
SpaRC (1.187%) 1169 9.61% 38.11 3.86%
SVD (1.187%) 11.56 9.88% 38.00 3.94%
TopK (1.187%) 378 25.47% 16.11 20.81%

The results in Table 4 reveal a clear performance hierarchy. Both SpaRC and SVD vastly outperform
TopK, achieving a quality metric that is an order of magnitude higher on CodeFeedback and 3-4
times higher on MetaMathQA, along with substantially lower reconstruction error. Furthermore,
SpaRC consistently maintains a slight edge over SVD in all configurations. This relative ranking
(SpaRC > SVD > TopK) holds across both datasets and budgets, confirming the robustness of our
findings and validating SpaRC as the most effective compressor.

4.4 RESOURCE COSTS

Fine-tuning with sparse matrices on GPUs introduces significant computational overhead. For in-
stance, existing methods like RoSA (Nikdan et al., 2024) exhibit a 1.7x to 2x increase in training
time compared to the standard LoRA baseline, a finding we reproduce in our experiments (Fig-
ure 1). To address this bottleneck, our optimized implementation for the sparse adapter (detailed
in Appendix B.1) improves efficiency. As a result, our method’s training time is only 1.05x to
1.35x that of LoRA, depending on the percentage of trainable parameters. This represents a 30-40%
reduction in the training overhead common to prior sparse methods.

Table 5 shows the other resource costs. Our method uses the same peak GPU memory and number
of trainable parameters as LoRA. The only trade-off is a one-time initialization cost. For instance,

Under review as a conference paper at ICLR 2026

= RA-SpaRC RoSA mEE LoRA

LLaMA-2-7B Qwen2.5-7B

(Lower is better) (Lower is better)

10320 10.440

8 7.608

Time (hours)

3.990
3280 3350

0297 1187 4746 0.05 01
Trainable Parameter Percentage (%) Trainable Parameter Percentage (%)

Figure 1: Training time comparison of RA-SpaRC, RoSA, and LoRA (with different initialization
methods).

Table 5: Resource consumption comparison on the GSM8K dataset. Peak GPU memory was mea-
sured during training with a batch size of 1, 32 gradient accumulation steps, a sequence length of
1024, and a rank of 8.

Model Method Params (%) Peak Mem (GB) Init Time (min)
LoRA-One 0.297% 17.5 1.5
LLaMA-2-7B RoSA 0.297% 17.5 14.0
RA-SpaRC 0.297% 17.5 8.0
LoRA-One 0.200% 20.0 2.0
?ﬁi%zoi '17])3 RoSA 0.200% 20.0 10.5
¥ RA-SpaRC 0.200% 20.0 75

on LLaMA-2-7B, our 8-minute setup is significantly faster than RoSA’s 14 minutes. While this is
longer than LoRA-One’s 1.5-minute setup, this cost occurs only once before training.

In summary, our method requires a small, affordable increase in training and initialization time com-
pared to LoRA. We argue this cost is justified by the significant performance gains on downstream
tasks. Compared to other sparse methods like RoSA, our approach is a much more practical and
efficient solution that does not use extra memory.

5 CONCLUSION

In this work, we introduce RA-SpaRC, a novel initialization method for robust adaptation. The key
advantage of RA-SpaRC is its principled and automated budget allocation strategy. By analyzing
gradient information, it determines an effective split between sparse and low-rank components to
ensure the most effective use of any given parameter budget.

Our extensive experimental results manifest that this hybrid initialization strategy fully realizes the
potential of robust adaptation, yielding better performance compared to purely low-rank methods.
We also demonstrate that our implementation is highly efficient, for both computational time and
memory overhead. A promising avenue for future research is the development of more sophisticated
algorithms to solve the core compression problem, which could lead to even greater performance.

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

We, the authors of this paper, have read and adhere to the ICLR Code of Ethics. Our work has
been conducted in accordance with its general ethical principles, including contributing to societal
well-being, upholding scientific excellence, avoiding harm, and being honest and transparent.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made comprehensive efforts to document all
necessary details. The complete implementation details, including hyperparameter settings, model
architectures, and dataset sources for all experiments presented in Section 4, are thoroughly de-
scribed in Appendix D. Any assumptions and theoretical claims are formally stated and proven in
Appendix A.

REFERENCES

Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent.
arXiv preprint arXiv:1704.05021, 2017.

Emmanuel J Candes, Xiaodong Li, Yi Ma, and John Wright. Robust principal component analysis?
Journal of the ACM (JACM), 58(3):1-37, 2011.

Venkat Chandrasekaran, Sujay Sanghavi, Pablo A Parrilo, and Alan S Willsky. Rank-sparsity inco-
herence for matrix decomposition. SIAM Journal on Optimization, 21(2):572-596, 2011.

Congliang Chen, Li Shen, Wei Liu, and Zhi-Quan Luo. Efficient-adam: Communication-efficient
distributed adam. IEEE Transactions on Signal Processing, 71:3257-3266, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021a.

Xuxi Chen, Tianlong Chen, Weizhu Chen, Ahmed Hassan Awadallah, Zhangyang Wang, and
Yu Cheng. Dsee: Dually sparsity-embedded efficient tuning of pre-trained language models.
arXiv preprint arXiv:2111.00160, 2021b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai Lam, Lidong Bing, and Nigel Collier. On
the effectiveness of parameter-efficient fine-tuning. In Proceedings of the AAAI conference on
artificial intelligence, volume 37, pp. 12799-12807, 2023.

Andi Han, Jiaxiang Li, Wei Huang, Mingyi Hong, Akiko Takeda, Pratik Kumar Jawanpuria, and
Bamdev Mishra. Sltrain: a sparse plus low rank approach for parameter and memory efficient
pretraining. Advances in Neural Information Processing Systems, 37:118267—-118295, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring Massive Multitask Language Understanding. arXiv preprint
arXiv:2009.03300, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790-2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. International Confer-
ence on Learning Representations (ICLR), 1(2):3, 2022.

10

Under review as a conference paper at ICLR 2026

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes signsgd and other gradient compression schemes. In International conference on machine
learning, pp. 3252-3261. PMLR, 2019.

Xiaoyun Li, Belhal Karimi, and Ping Li. On distributed adaptive optimization with gradient com-
pression. arXiv preprint arXiv:2205.05632, 2022.

Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtérik. Page: A simple and optimal prob-
abilistic gradient estimator for nonconvex optimization. In International conference on machine
learning, pp. 6286-6295. PMLR, 2021.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression: Re-
ducing the communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887,
2017.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. Advances in Neural Information Processing Systems,
37:121038-121072, 2024.

Ionut-Vlad Modoranu, Mher Safaryan, Grigory Malinovsky, Eldar Kurti¢, Thomas Robert, Peter
Richtérik, and Dan Alistarh. Microadam: Accurate adaptive optimization with low space over-
head and provable convergence. Advances in Neural Information Processing Systems, 37:1-43,
2024.

Mahdi Nikdan, Soroush Tabesh, Elvir Crncevi¢, and Dan Alistarh. Rosa: Accurate parameter-
efficient fine-tuning via robust adaptation. arXiv preprint arXiv:2401.04679, 2024.

QwenTeam. Qwen?2 technical report. arXiv preprint arXiv:2407.10671, 2, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PmLR, 2021.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems, 34:24193-24205, 2021.

Min Tao and Xiaoming Yuan. Recovering low-rank and sparse components of matrices from incom-
plete and noisy observations. SIAM Journal on Optimization, 21(1):57-81, 2011.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model,
2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gradient
compression for distributed optimization. Advances in Neural Information Processing Systems,
32,2019.

Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris Papailiopoulos, and Stephen
Wright. Atomo: Communication-efficient learning via atomic sparsification. Advances in neural
information processing systems, 31, 2018.

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation.
Advances in Neural Information Processing Systems, 37:54905-54931, 2024.

John Wright, Arvind Ganesh, Shankar Rao, Yigang Peng, and Yi Ma. Robust principal component

analysis: Exact recovery of corrupted low-rank matrices via convex optimization. Advances in
neural information processing systems, 22, 2009.

11

Under review as a conference paper at ICLR 2026

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023.

Xiaoming Yuan and Junfeng Yang. Sparse and low-rank matrix decomposition via alternating di-
rection methods. Pacific Journal of Optimization, 9(1):167-180, 2013.

Yuanhe Zhang, Fanghui Liu, and Yudong Chen. LoRA-one: One-step full gradient could suffice
for fine-tuning large language models, provably and efficiently. In Forty-second International
Conference on Machine Learning, 2025.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement.
arXiv preprint arXiv:2402.14658, 2024.

12

Under review as a conference paper at ICLR 2026

A SUPPLEMENTARY PROOF

A.1 PROOF OF THEOREM 3.1 AND ITS COROLLARY

Theorem A.1. Assume the loss function L is L-smooth. For an update W, = W —ngg, the expected
loss E[L(W1)] is bounded as follows:

EL(W)] < £(Wp) — (E[llgé||2 — (U)k — g€l + llgll® - <1 * ;) “2>
n’L

+ 5 Ellgel’] (13)

def
where 02 = E[|lge — g||?] is the variance of the stochastic gradient and jn > 0 is an arbitrary
constant.

Corollary A.2. If E[||g} |2~ (1+)[|g; —ge|2] > —||g||2+(1 + 5) 02, 02 < +ooand ||g|| < +oo,
there exists an 1 such that E[L(W1)] < L(W)).

Proof. According to Lemma 2 in Li et al. (2021), we derive the following result:

n 2 1 L 2, My 2
< _u (= _ = Tl —
£ < £07%) ~ Pl ~ (-~ Slngkl* + 2l ol

7 7 Ln? 7
= L(Wo) = 5ll9” = 5 ll9ell” + =~ llgell* + 5 llge — g¢ + 9¢ — g1I”

n n Li? (1+p)n
< LWo) = S llall* = llgel® + = llgell” + == llge — gell”
(141
+ 5 llge —g|1% (14)
n n Ln? (1+p)n
E[L(W1)] < L(Wo) — 5”9”2 - §E||92H2 + TEIIgQIIQ + TEH% — g¢l)?
1
N (1 +2;)7702
n 1
< L(Wo) — §E[Ilgéll2 — (L4 wllge — gell> + llglI> — (1 + p)ff?]
L 2
+ =-Ellg % 1)

Let G = 20% + 2||g* < +00, E[l|ge|*] = Elllge — g + gll*] < 20 + 2|lg|* = G,

Elllg¢l®) = Elllge — ge + g¢ll*) < E[2]lge — gell* + 2ll9¢1*] = 2(2 —)E[[lgel’] < 2(2 -)G
Denote D = E[]|g¢[|* — (1 + u)llgé — g¢ll”> + llgll* — (1 + -;)o®], based on inequality 15, we can
find n € (0, %) such that E[L(W1)] < L(Wp). O
A.2 PROOF OF DIFFERENTIATED LEARNING RATE

Lemma A.3 (Effective Learning Rate Scaling). Let the low-rank adapter matrices B and A be

initialized as By = \%B{) and Ay = \%Ag, where BjA) = %Lﬁ,ml. When training with an

optimizer using a learning rate 1, the effective learning rate applied to the conceptual matrices B’
and A’ is exactly n).

Proof. The effective update to the model weights from the low-rank adapter is given by the product
AWLora = ABA. At initialization, the parameters are By and Aj.

13

Under review as a conference paper at ICLR 2026

First, we establish the relationship between the gradients. Let the loss be £. The gradient of the loss
with respect to the trainable parameter B is computed via the chain rule.

oL 9J(ABA)
O(ABA) 0B

Vel = = Vawl - (AAT).

Now, consider the gradient with respect to the conceptual matrix B’.
oL O(B'A)

Vek = d(B'A) OB

— Vpal (A)T.

Since AByAy = B{A|, the gradient of the loss with respect to the output product is the same
NVaw, L=V B, ABL)' We can therefore relate the gradients of the parameters at initialization:

T
1
Vgoﬁ =)\(VAWO»C)Ag =)‘(VAWO»C) (\EAB) = \5 ((VAWO,C)(AB)T) = \&VB(/)ﬁ.
Similarly, it can be shown that V 4, £ = VAV A{)E.
During an optimizer step, the trainable parameters B and A are updated as:

Bi =By —nVp,L, A1 =A—nVa,L (16)

To understand the effect of this update on the conceptual matrices, we define the updated conceptual
matrices, B} and A}, in terms of the updated trainable parameters, maintaining the relationship

B! = v/ABj. By substituting the update rule for B; and the gradient relationship, we get:
B = VAB; = VA(By — 1V, L) = VABy —)V AV 3, L
= By —nVA(VAV g L) = By — nA\Vp L. (17)
The same derivation holds for A/:
AL = VAL = VA(Ag — V4, L) = Aj — nAV 4, L.

These equations show that the update rule for the conceptual matrices B’ and A’ is precisely that of
a gradient descent step with a learning rate of nA. This proves that our reparameterization scales the
effective learning rate for the low-rank component by the factor A exactly, without any approxima-
tion. This completes the proof.

14

Under review as a conference paper at ICLR 2026

B SYSTEM IMPLEMENTATION

B.1 SYSTEM IMPLEMENTATION

Our implementation must efficiently compute the output for the composed weight matrix Wy +
Mat(E) + ABA and its gradients. The primary challenge is avoiding the materialization of dense
matrices, particularly the full gradient tensor for the sparse component.

Forward Pass Like RoSA (Nikdan et al., 2024), we handle the sparse component by adding it to
the pre-trained weights W,. However, our implementation uses a different data structure. While
RoSA uses the Compressed Sparse Row (CSR) format, we found this less efficient for the scattered,
non-row-concentrated sparsity patterns learned by our method. We therefore represent E with its
non-zero values (F,4;) and their indices (F;4,,) and apply them to a copy of W, using an optimized
torch.scatter_add. operation. This approach is faster for our specific use case. The final
output is then computed by summing the low-rank path (x A7) BT and the output from the updated
weights.

Backward Pass The main efficiency gain comes from our custom backward kernel for the sparse
component. A standard autograd approach would first materialize the entire dense gradient ma-
trix VgL = (VyL)Ta:, and then gather the values corresponding to the non-zero indices,
(VMat(E)ll) F,4.- This intermediate dense tensor is prohibitively memory-intensive.

To circumvent this, we implement a custom kernel that computes the gradient vector Vg, £ di-
rectly, bypassing the dense matrix. For each non-zero element E,,;[i] located at matrix coordinates
(r, ¢), our kernel computes its gradient as the inner product of the corresponding columns of the
upstream gradient and the input, which can be executed in parallel for all non-zero elements:

vaal ['L]E = <(Vy£):7T7 ',I::’C>'

By fusing the gradient calculation and indexing into a single block-parallelizable kernel, we elimi-
nate the primary memory and computational bottleneck of the backward pass, achieving significant
speedups over naive implementations.

15

Under review as a conference paper at ICLR 2026

C SUPPLEMENTARY EXPERIMENTS

C.1 INSTRUCTION FOLLOWING RESULTS

To evaluate performance on general knowledge and problem-solving, we fine-tune the models on the
Alpaca dataset (Taori et al., 2023). We then measure the zero-shot accuracy on the Massive Multitask
Language Understanding (MMLU) benchmark (Hendrycks et al., 2021). While a five-shot setting
is commonly used for MMLU, we specifically use a zero-shot approach. This is because our goal
is to test the model’s core instruction-following ability gained from the Alpaca fine-tuning itself. A
five-shot evaluation tests how well a model can learn from examples given in the prompt (in-context
learning), which would make it difficult to isolate the direct impact of our fine-tuning method. The
zero-shot setting provides a clearer measure of the model’s generalized capabilities.

The results in Table 6 show different outcomes for the two models. For LLaMA-2-7B, all fine-tuning
methods provide a clear improvement over the base model. Our method, RA-SpaRC, achieves the
highest accuracy at 46.14%, showing it is very effective at improving the model’s general problem-
solving skills.

For Qwen2.5-7B, however, the improvements are very small. A likely reason is that the base
Qwen2.5-7B model is already excellent at following instructions. It is also possible that its orig-
inal training data already contained the Alpaca dataset or something very similar. If so, fine-tuning
on Alpaca offers little new information, which would explain the small gains. Even with these small
improvements, RA-SpaRC still achieves the highest score, showing it provides a consistent, if minor,
benefit.

Table 6: Comparison of fine-tuning methods on LLaMA-2-7B and Qwen2.5-7B. Models are fine-
tuned on Alpaca and evaluated with zero-shot accuracy on MMLU. We report the mean accuracy
(£ std. dev.). The upward arrow (7) indicates higher is better. The best method for each model is in
bold.

Model Method Params (%) MMLU Accuracy (%) T
Base Model None 40.79
LoRA 0.297% 42.84 +£0.12

LLaMA-2-7B LoRA-One 0.297% 45.52 +0.31
RoSA 0.297% 44.03 £ 0.28
RA-SpaRC 0.297 % 46.14 + 0.14
Base Model None 70.50
LoRA 0.200% 70.53 £ 0.04

Qwen2.5-7B LoRA-One 0.20% 70.59 + 0.09
RoSA 0.200% 70.53 +0.22
RA-SpaRC 0.200% 70.62 £+ 0.10

C.2 UNIMODALITY ASSUMPTION

This section provides the empirical evidence for the general unimodal behavior that underpins Al-
gorithm 1. We demonstrate that for a fixed parameter budget, the one-step alternative projection loss
for stochastic gradients exhibits a single, well-defined minimum.

Experimental Setup. Our validation procedure was executed with the following precise settings:

e Model: We used the LLaMA-2-7B model.

* Datasets: Stochastic gradients are estimated on three distinct fine-tuning datasets: Meta-
MathQA, CodeFeedback, and Alpaca.

* Gradient Estimation: For each dataset, a single stochastic gradient is computed using a
mini-batch of 8 samples. This gradient matrix is the target for our decomposition.

* Decomposition Parameters: The decomposition is constrained by a fixed parameter bud-
get equivalent to a dense low-rank approximation with a maximum rank of r,,x = 8. We

16

Under review as a conference paper at ICLR 2026

enumerated all integer ranks r € [0, ri,ax]- The corresponding number of sparse elements,
s, was calculated to maintain the budget, following the relation s = (rypax — 7)(m + n),
where m and n are the dimensions of the gradient matrix.

* Loss Metric: For each (r, s) pair, we computed the single-step alternating projection error.

Results and Analysis. To demonstrate the robustness of this property across the model’s depth,
we analyzed the gradients from multiple layers. For simplicity and generality, Figure 2 & 3 show
the results for three representative layers: an early layer (0), a middle layer (15), and a late layer
31).

Crucially, each visualized loss landscape represents the one-step projection loss from all linear mod-
ules within that specific layer. This includes the gradients from the four attention projections (query,
key, value, output) and the three MLP projections (gate, up, down). This aggregation confirms that
the unimodal property is not specific to a single module but is a general characteristic of the layer’s
entire gradient structure.

C.3 BUDGET ALLOCATION RESULTS

We visualize the allocation results of RA-SpaRC over different models and datasets in Figure 4.
Only the rank distribution of the low-rank component for each layer is shown, as the number of
non-zero elements of the sparse component can be computed by subtracting the corresponding pa-
rameters of low-rank component from the total parameter budget. One typical feature is that when
the parameter budget is stringent, the solution of RA-SpaRC coincides with direct SVD in many
situations. But when the parameter budget is relaxed, more patterns of the combinations of low-rank
and sparse adapters are found.

17

Under review as a conference paper at ICLR 2026

Layer 0- q_proj Layer 15 - _proj Layer 31- q_proj
o
ooto]
ooz
o00s .
ooss
8 oo | % 8
| 3]
£ 2 on 5
ooos
b 0030
soot1
I A R I T I A I
Rank Rank Rank
Layer 0- k proj Layer 15 - k proj Layer 31 - k proj
an 00475
ootz
- a0
2] £ 00425
2 2o 3
H g § oowo
§ oooe | § ous B ooms
& & gunann
a0
acos
aons
aoss
soos aox0
L S S S S S S B I I A I
Rank Rank Rank
Layer 0-v_proj Layer 15 - v proj Layer 31 - v proj
034 e
020
o o0
o]
y o161 P 12 008
3 3 -
§ ores g o= g
H B Soe
& on] § o §
& o101 i & oo
oo |
oz ™
0o |
™
Rank Rank Rank
Layer 0- 0 proj Layer 15 - o proj Layer 31- 0 proj

0z

Recanstruction Loss
Reconstruction Loss

£ £ § & &8 g8 ¢
Reconstruction Loss

I R T I A I SR I S S
Rank Rank Rank
Layer 0 - up_proj Layer 15 - up_proj Layer 31 - up_proj
o -
L oo . .
8 g nam FEEY
200t £ £
& oos H g
022 s
003 |
0
0
Rank
Layer 0 - down_proj Layer 15 - down_proj Layer 31 - down_proj
0161 032 oeo
030 L
Bou K &
T onl £ o Bow
E H £
§ony § o g oss
onl
o0
Rank Rank Rank
Layer 0 - gate_proj Layer 15 - gate_proj Layer 31 - gate_proj
aze

005+

o1

Reconstruction Loss
Reconstruction Loss
g 2 2 4
Reconstruction Loss

Figure 2: Loss curve for gradient decomposition on the MetaMathQA dataset.

Under review as a conference paper at ICLR 2026

Layer 0- q proj Layer 15 - _proj Layer 31.- q_proj
0070 — 003¢
asoss T
k| g §
H 3 oo 3
£ oo 2 2 ooze
& oo & & s
o040 0022
T 0070 0020
L2 S SR SR S S A F 2 S T S S S S T 2 S S S N S S A
Rank Rank Rank
Layer 0- I proj Layer 15 - k proj Layer 31- k_proj
00055 L
oors
ooso
H Baoms § oo
5 oonss s H
< g oom £
& & 2 002
pres ooss
0oz
00030 e
e
L2 S S SR S S P2 S S S S SR S T S S S T S S S
Rank Rank Rank
Layer 0-v_proj Layer 15 - v_proj Layer 31-v_proj
oo o2t
. N oo
g oor g o g
£ £ o g
 aoe D £ ooss
“ i “ o050
o0s
016 ooss
015 000
Rank Rank Rank
Layer0-0_proj Layer 15 - 0 _proj Layer 31- 0 proj
oors
o 2
g 2 2 0oss
3 2o 3
£ £ £ oo
H H £
§ o £ £ ooss
a0 T
o e 0045
T
LI S S SR S S S A P S S ST P 2 S S S S S S S
Rank Rank Rank
Layer 0- up_proj Layer 15 - up_proj Layer 31- up_proj
0z
pres 01s
02e
El 3 S
e o
e 01s o0
Rank Rank Rark
Layer 0 - down_proj Layer 15 - down_proj Layer 31 - down_proj
0108 I
o108
& o &on 3
5 g 5 o
S : g
] g o Z 036
e 02
01
oosz o
Rank Rank Rank
Layer 0 - gate proj Layer 15 - gate proj Layer 31 - gate_proj
ooso oo aus
a1ss 0140
o0sn
4 4 010 g o
£ oo § o155 §oin
H £ o1s0 Bous
& oom £ s 2 o120
o140 0113
ooz
o1ss 010
Rank Rank Rank

Figure 3: Loss curve for gradient decomposition on the CodeFeedback dataset.

Under review as a conference paper at ICLR 2026

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035 s
0.25
06
1036 .
4 05 0.20
1037 A
503 §o04 2015
1038 % g &
:%02 203 Eom
1039 02
1040 01 041 I 00 .
U | | [E -
1041 a,o_—- e R OODN@SN&Qe\(\\@@@&&@&&&
Rank Rank Rank
1042
1043 06
05
1044 05 020
04
1045 s éo.A §0,15
Zo03 5 g
1046 : o [
1047 o2 02
0.05
1048 o I [| un
PEE———— | 0,00 e . e N e
1049 00 —— mmmm B > TR E e E e S DS L e PSP
Rank Rank Rank
1050
0.45
1051 oo 030 04175
1 052 0.35 025 0.150
0.125
1053 0% 50.20 s
%0_25 'g §0.100
1054 né‘_o.zo gots Eoors
1 055 Z:Z 0.10 0.050
1056 s o * wlusnalataaltalll;
- mB [] oo MRAREERREREnNunilnn
1057 000l -R o TR TR S B S SOOI SRS
an an
1058
1059
06 0.30

Proportion
o 5

(S

Proportion

o o o o
5 & £ &
°

3

°

1060 '

05 0.25
1061

04 £ 020
1062 | . 5

. 3015

1063 , £
1064 . o oo I II
1065 N — M,__--_ll - 00,,........Illllll |

- ™ Py © A ® o > © PN N

L OIS AANAN &&@@0@$&§$

1066 R LR AL S o
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 4: Rank distribution across different models and datasets using RA-SpaRC. From top to
bottom: LLaMA-2-7B on CodeFeedback, LLaMA-2-7B on MetaMath, Qwen2.5-7B on CodeFeed-
back, and Qwen2.5-7B on MetaMath. Each row shows results with maximum ranks 8, 32, and 128
(left to right).

20

Under review as a conference paper at ICLR 2026

D EXPERIMENTAL SETTINGS

D.1 PARAMETER BUDGET CONFIGURATIONS

This section details the hyperparameter configurations used to achieve equivalent trainable parame-
ter counts for the different fine-tuning methods on LLaMA-2-7B and Qwen2.5-7B.

Table 7: Hyperparameter configurations for different methods on LLaMA-2-7B. The configurations
are set to match the parameter counts benchmarked against LoRA with ranks r» = 8, 32, 128.

Method 0.297 % 1.187 % 4.746 %
LoRA & Variants r=28 r =232 r =128
r=4 r=16 r =64
RoSA Sratio = 0.0015 Sy = 0.006 Spaio = 0.024
RA-SpaRC Tmax = & Tmax = 32 Tmax = 128

Table 8: Hyperparameter configurations for different methods on Qwen2.5-7B. The configurations
are set to match the parameter counts benchmarked against LoRA with ranks » = 2,4, 8.

Method 0.050% 0.100% 0.200%
LoRA & Variants r=2 r=4 r=28
r=1 r=2 r=4
RoSA Srio = 00013 Spaio = 0.0026 S = 0.0052
RA-SpaRC Tmax = 2 Tmax = 4 Tmax = 8

D.2 HYPERPARAMETER CONFIGURATIONS

This section details the hyperparameter configurations for our experiments. To ensure fair compar-
isons, we adapt our hyperparameter search strategy from Zhang et al. (2025).

Implementation Details. All fine-tuning experiments run on a single NVIDIA A100 40G SXM4
GPU. We load the T5-base model in its original FP32 precision, while the LLaMA-2-7B and
Qwen2.5-7B models are loaded in BF16 precision.

NLU Tasks (T5-base). For the Natural Language Understanding (NLU) tasks, we fine-tune the
T5-base model using our RA-SpaRC method. The common hyperparameters for this setup are
in Table 9. We optimize the learning rate by performing a grid search over the set {1 x 10725 x
1074,2x 107%,1x 10~*}. The final, task-specific learning rates and RA-SpaRC scaling parameters
(7y) are presented in Table 10.

NLG Tasks (LLaMA-2 & Qwen2.5). For the Natural Language Generation (NLG) tasks, we
fine-tune LLaMA-2-7B and Qwen2.5-7B. The common hyperparameters for these models are in
Table 11. For these tasks, we conduct a more extensive search. We search the learning rate over
{2 x 10741 x 107%,5 x 1075,2 x 10~} and the per-device batch size over {16, 32,128}. The
final, optimal hyperparameters for each model and dataset are presented in Table 12.

21

Under review as a conference paper at ICLR 2026

Table 9: Common hyperparameters for RA-SpaRC fine-tuning on the T5-base model for NLU tasks.

Epoch Optimizer (51, B2) € Precision Weight Decay
1 AdamW (0.9, 0.999) 1x1078 FP32 0
Warm-up Ratio LoRA « LR Scheduler Max Length #Runs Gradient Batch Size
0.03 16 cosine 128 3 8

Table 10: Final selected hyperparameters for NLU tasks on T5-base with RA-SpaRC.

Dataset Learning Rate Batch Size Scaling ~

MNLI 5x 1074 32 128
SST-2 5x 1074 32 32
CoLA 5x 1074 32 16
QNLI 5x 1074 32 16
MRPC 1x1073 32 128

Table 11: Common hyperparameters for fine-tuning LLaMA-2-7B and Qwen2.5-7B on NLG tasks.

Epoch Optimizer (81, B2) € Precision Weight Decay
1 AdamW (0.9, 0.999) 1x1078 FP32 0
Warm-up Ratio LoRA a LR Scheduler Max Length #Runs Gradient Batch Size
0.03 16 cosine 1024 3 8

Table 12: Final selected hyperparameters for NLG tasks with RA-SpaRC.

Model Dataset Learning Rate Batch Size Scaling ~
MetaMathQA 2 x 1074 32 16

LLaMA-2-7B CodeFeedback 5x 1074 32 16
Alpaca 2x 1074 32 16
MetaMathQA 2x 1074 32 16

Qwen2.5-7B CodeFeedback 2 x 107* 32 32
Alpaca 2x 1074 32 32

22

Under review as a conference paper at ICLR 2026

E LLM USAGE STATEMENT

In the preparation of this paper, Large Language Models (LLMs) serve as a writing assistance
tool. Their primary function is for proofreading and language refinement, which includes correcting
grammatical errors, improving sentence structure, and enhancing the overall clarity and readability
of the text.

The authors employ these models specifically for polishing the writing in the Introduction, Related
Work, and Experiments sections.

Crucially, LLMs do not contribute to any aspect of research ideation, formulation of hypotheses,
experimental design, data analysis, or the generation of core scientific conclusions. The conceptual
framework and all intellectual contributions of this work are developed exclusively by the human
authors. The authors have reviewed, edited, and take full responsibility for all content presented in
this paper.

23

	Introduction
	Related Work
	Method
	Unifying PEFT Initialization via Compressors
	SpaRC: A Hybrid Sparse plus Low-Rank Compressor
	A Quality Metric for Compressors
	Algorithm for Solving SpaRC
	RA-SpaRC Initialization

	Experiments
	Experiments on Natural Language Understanding
	Experiments on Natural Language Generation
	Comparison of different compressors
	Resource Costs

	Conclusion
	Supplementary Proof
	Proof of Theorem 3.1 and Its Corollary
	Proof of Differentiated Learning Rate

	System Implementation
	System Implementation

	Supplementary Experiments
	Instruction Following Results
	Unimodality Assumption
	Budget Allocation Results

	Experimental Settings
	Parameter Budget Configurations
	Hyperparameter Configurations

	LLM Usage Statement

