
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RA-SPARC: ROBUST ADAPTATION WITH SPARSE
PLUS LOW-RANK COMPRESSORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameter-Efficient Fine-Tuning (PEFT) methods, such as Low-Rank Adaptation
(LoRA), are widely adopted for their efficiency. However, LoRA assumes model
updates are inherently low-rank, which introduces a restrictive bias that results
in underperformance compared to full fine-tuning. Hybrid approaches, such as
Robust Adaptation (RoSA), improve expressiveness by combining low-rank and
sparse components, but they rely on a manually tuned ratio to balance these com-
ponents, leading to suboptimal parameter allocation across tasks. We introduce
RA-SpaRC (Robust Adaptation with Sparse plus Low-Rank Compressors), a new
initialization strategy that overcomes this limitation. The key idea is an adap-
tive allocation mechanism that automatically balances sparse and low-rank com-
ponents within a given parameter budget. This approach removes the need for
manual rank–sparsity tuning and supports arbitrary parameter budgets. This prin-
cipled and automated design allows RA-SpaRC to consistently outperform LoRA,
its variants, and RoSA in extensive experiments across multiple models, deliver-
ing more effective and flexible adaptation.

1 INTRODUCTION

The rapid advancement of large language models (LLMs) and foundation models has revolutionized
various domains in artificial intelligence, enabling remarkable performance across tasks such as nat-
ural language understanding and generation (Touvron et al., 2023; Radford et al., 2021). However,
the sheer scale of these models, often comprising billions of parameters, poses significant challenges
for fine-tuning on downstream tasks. Full fine-tuning (FFT) of all parameters is computationally in-
tensive and memory-prohibitive. This has driven the need for parameter-efficient fine-tuning (PEFT)
methods, which optimize a small subset of parameters while keeping the original pretrained weights
frozen (Houlsby et al., 2019; Hu et al., 2022).

Among parameter-efficient fine-tuning (PEFT) techniques, Low-Rank Adaptation (LoRA) and
Sparse Adaptation have gained prominence due to their simplicity and effectiveness (Hu et al.,
2022; Sung et al., 2021). LoRA approximates weight updates as the product of two low-rank matri-
ces, while sparse adaptation updates only a small subset of parameters. Both methods significantly
reduce the number of trainable parameters, but can exhibit a performance gap relative to full fine-
tuning (Wang et al., 2024; Sung et al., 2021). This gap stems from their reliance on low-rank or
sparse approximations, which may not fully capture the intrinsic structure of weight updates in pre-
trained models.

To bridge this limitation, hybrid PEFT approaches that combine low-rank and sparse adaptations
have emerged. For instance, Robust Adaptation (RoSA) (Nikdan et al., 2024) jointly trains low-rank
and sparse adapters on top of fixed pretrained weights, drawing inspiration from Robust Principal
Component Analysis (RPCA) (Candès et al., 2011) to decompose updates into low-rank and sparse
components. The key advantage of this approach lies in the complementary nature of the compo-
nents: sparse matrices are typically high-rank, whereas low-rank matrices are typically dense; thus,
integrating them leverages their respective strengths.

The initialization strategy of PEFT methods is critical for both low-rank (Wang et al., 2024; Zhang
et al., 2025; Meng et al., 2024) and sparse adaptations (Sung et al., 2021; Fu et al., 2023). Given
a fixed parameter budget, methods like RoSA (Nikdan et al., 2024) and DSEE (Chen et al., 2021b)
have to pre-define the rank and sparsity for each layer. This fixed allocation is often inefficient and

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

creates a difficult trade-off. Over-allocating resources to the low-rank components might neglect
important sparse outliers, whereas an excessive sparsity level can compromise the power of adapters
to capture global updates. This dielmma raises a natural and important question:

“Is there an initialization strategy that enables flexible, automatic, and effective budget allocation
for Robust Adaptation?”

In this paper, we introduce RA-SpaRC (Robust Adaptation with Sparse plus Low-Rank
Compressors), an initialization strategy for sparse plus low-rank fine-tuning, which could dynami-
cally assign the ratio of low-rank and sparse parts according to the gradient information of different
tasks and models. Our method provides an efficient, data-driven solution to the static allocation
problem, improving performance without increasing the parameter budget.

Our contributions are summarized as follows:

• We propose a unified framework for initializing PEFT methods based on compressors, and
we show that under proper settings, this initialization indeed guarantees a loss decrease.

• Within this framework, we introduce sparse plus low-rank compressors for Robust Adap-
tation. We formulate the task of getting the compressed results as an optimization problem
and propose an efficient algorithm to solve it.

• We demonstrate the efficacy of RA-SpaRC on both natural language understanding and
natural language generation tasks.

2 RELATED WORK

Parameter Efficient Fine-Tuning: Parameter-Efficient Fine-Tuning (PEFT) methods adapt large
models by training only a small fraction of their total parameters. A prominent example is Low-
Rank Adaptation (LoRA), which approximates the weight updates using low-rank matrices (Hu
et al., 2022) The performance of LoRA is known to be sensitive to its initialization, leading to recent
works on more sophisticated initialization schemes such as LoRA-GA (Wang et al., 2024), LoRA-
One (Zhang et al., 2025) and PiSSA (Meng et al., 2024). To overcome the expressive limits of the
low-rank hypothesis, hybrid methods like DSEE (Chen et al., 2021b) and RoSA (Nikdan et al., 2024)
combine low-rank updates with sparse updates. In contrast to their reliance on a fixed, pre-defined
allocation of the parameter budget, RA-SpaRC determines this allocation dynamically.

Robust Principal Component Analysis: Robust Principal Component Analysis extends classical
PCA to handle data corrupted by outliers or gross errors, decomposing a matrix into a low-rank
component plus a sparse outlier matrix (Wright et al., 2009). The problem can be represented as:

min
L,S

rank(L) + τ∥S∥0

s.t. ∥S + L−M∥F ≤ δ. (1)

Directly solving this optimization problem is NP-hard due to the non-convex nature of the rank func-
tion and the ℓ0-norm. Therefore, a common approach is to consider its convex relaxation (Chan-
drasekaran et al., 2011; Candès et al., 2011), where the rank function is replaced by the nuclear norm
(∥L∥∗) and the ℓ0-norm by the ℓ1-norm (∥S∥1). This relaxed convex problem can then be solved
efficiently using Alternating Direction Methods (Tao & Yuan, 2011; Yuan & Yang, 2013).

Compressors: Our initialization framework is built upon operators from the field of compression.
Compressors are developed to reduce communication overhead in distributed training (Li et al.,
2022; Chen et al., 2023), and improve the memory efficiency of optimizers (Modoranu et al., 2024).
There are two prevalent classes of compressors: sparse compressors like TopK, which preserve the k
largest-magnitude elements (Aji & Heafield, 2017; Lin et al., 2017), and low-rank compressors like
SVD, which project the gradient onto a low-rank subspace (Vogels et al., 2019; Wang et al., 2018).
These have been studied extensively, but almost always in isolation. Our primary technical contri-
bution is the formulation of new hybrid compressors designed specifically for model initialization.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 METHOD

This section details our proposed method. We begin by establishing a formal framework that unifies
recent PEFT initialization techniques under the concept of compressors. We then introduce SpaRC
(Sparse Plus Low-Rank Compressors), a novel hybrid operator designed to find an optimal sparse
plus low-rank decomposition of the gradient for a given parameter budget. We present an efficient
algorithm for this decomposition and demonstrate how it is used to initialize the PEFT adapters in a
single step.

3.1 UNIFYING PEFT INITIALIZATION VIA COMPRESSORS

The initialization of many Parameter-Efficient Fine-Tuning (PEFT) methods can be conceptualized
as applying a compressor to the full gradient. We define a compressor as an operator that approxi-
mates a high-dimensional gradient matrix with a low-parameter structure. Formally, we define this
in the space of matrices equipped with the Frobenius norm.

Definition 1 (Compressor). The mapping C : Rm×n → Rm×n is called a compressor if there exists
a constant α ∈ (0, 1] such that for any matrix X ∈ Rm×n:

∥C(X)−X∥2F ≤ (1− α)∥X∥2F , (2)

where ∥ · ∥F denotes the Frobenius norm.

In our context, the matrix X represents the unbiased stochastic gradient of the loss with respect to
the weight matrix W0,ℓ of ℓth layer, which we denote as gξ,ℓ

def
= ∇W0,ℓ

L(W0; ξ), where W0
def
=

(· · · ,W0,ℓ, · · · ) represents the parameters of all such layers, L is the loss function and ξ is a mini-

batch of data. We also denote gξ
def
= (· · · , gξ,ℓ, · · · ) as the whole unbiased stochastic gradient,

g
def
= E[gξ]

def
= (· · · ,E[gξ,ℓ], · · · )] as the true gradient, and g′ξ

def
= C(gξ)

def
= (· · · , C(gξ,ℓ), · · · ) as

the whole compressed stochastic gradient. Besides, we define a new type of inner product ⟨X,Y ⟩ =∑
ℓ Tr(XT

ℓ Yℓ) and norm ∥X∥2 = ⟨X,X⟩ for both W0, g, gξ and g′ξ. With this formal definition, we
can now categorize the initialization strategies of popular PEFT methods:

• Low-Rank Compression (SVD): Methods like LoRA-One (Zhang et al., 2025) initialize
the update by computing the best rank-r approximation of gξ,ℓ. By the Eckart-Young-
Mirsky theorem, this is achieved via Singular Value Decomposition (SVD). This SVDr(·)
operator is a projection onto a lower-dimensional subspace and is a well-known compressor
that satisfies Definition 1 with α = r

min{m,n} .

• Sparse Compressors (TopK): Sparse methods like FISH-Mask (Sung et al., 2021) initial-
ize the update by retaining only the k largest-magnitude elements of gξ,ℓ. This Topk(·)
operator produces a sparse matrix where all other elements are zero. It is also a powerful
compressor that adheres to Definition 1 with α = k

mn , as it preserves the most significant
components of the gradient signal.

The insight that PEFT initializations can be viewed as compressors allows us to generalize the update
rule. The change in weights, ∆W , can be expressed as the application of a compressor C to gξ:

∆W = −η · C(gξ), (3)

where η is a learning rate or scaling factor. This single equation elegantly encompasses both low-
rank adaptation where C = SVDr(·) and sparse adaptation where C = Topk(·).

3.2 SPARC: A HYBRID SPARSE PLUS LOW-RANK COMPRESSOR

Framework 3 provides a clear path forward for more complex PEFT structures. For methods like
Robust Adaptation, which require a parameter-efficient update that is simultaneously sparse and
low-rank (∆W = Low-Rank+ Sparse), we must design a compressor that can extract both types of
information from the gradient.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

To this end, we propose SpaRC (Sparse Plus Low-Rank Compressors): For any matrix X ∈ Rm×n,
let

Cp(X)
def
= argmin

Y=L+S
(m+n)rank(L)+∥S∥0≤p

∥Y −X∥2F , (4)

where ∥ · ∥0 stands for the matrix 0-norm (number of non-zero entries) and p is an integer which
stands for the given parameter budget. The mapping Cp is indeed a compressor. Notice that L =
SVD⌊ p

m+n ⌋(X), S = 0 and L = 0, S = Topp(X) are feasible points of the minimization problem.
Therefore, both

∥Cp(X)−X∥2F ≤ ∥SVD⌊ p
m+n ⌋(X)−X∥2F ≤

(
1− ⌊ p

(m+ n)
⌋ 1

min{m,n}

)
∥X∥2F , (5)

and ∥Cp(X)−X∥2F ≤ ∥Topp(X)−X∥2F ≤
(
1− p

mn

)
∥X∥2F , (6)

verify Cp are compressors.

3.3 A QUALITY METRIC FOR COMPRESSORS

We analyze the single-step loss dynamics of Framework 3. The following theorem provides a bound
on the expected loss after a single update step using a generic compressor C.
Theorem 3.1. Assume the loss function L is L-smooth. For an update W1 = W0−ηg′ξ, the expected
loss E[L(W1)] is bounded as follows:

E[L(W1)] ≤ L(W0)−
η

2

(
E[∥g′ξ∥2 − (1 + µ)∥g′ξ − gξ∥2] + ∥g∥2 −

(
1 +

1

µ

)
σ2

)
+

η2L

2
E[∥g′ξ∥2], (7)

where σ2 def
= E[∥gξ − g∥2] is the variance of the stochastic gradient and µ > 0 is an arbitrary

constant.

A standard choice of µ is 1. Theorem 3.1 reveals the condition for guaranteed loss descent. By se-
lecting a sufficiently small step size η, the final η2 term becomes negligible. A decrease in expected
loss (E[L(W1)] < L(W0)) is then guaranteed under the bounded variance (σ2 < +∞) and bounded
initial gradient (∥g∥2 < +∞) assumption (detailed derivations are in Appendix A.1). This gives us
a sufficient condition for one-step loss decreasing if the following inequality holds:

E[∥g′ξ∥2 − (1 + µ)∥g′ξ − gξ∥2] > −∥g∥2 +
(
1 +

1

µ

)
σ2. (8)

This inequality provides the crucial insight for our work. The right-hand side represents a fixed
convergence barrier determined by the properties of the full gradient (g) and the stochastic noise
(σ2). To satisfy the condition and ensure a decrease in loss, we must choose a compressor C that
maximizes the term on the left-hand side.

This directly motivates our metric for compressor performance. We define the Compressor Quality
Metric M(C) as

M(C) def
= Eξ[∥C(gξ)∥2 − (1 + µ)∥C(gξ)− gξ∥2]. (9)

For a given parameter budget, the optimal compressor is the one that yields the highest value of
M(C), as it provides the largest ”push” against the descent barrier.

This metric has a clear interpretation related to noise robustness. High gradient variance (σ2) is
a primary cause of unstable training and divergence (Karimireddy et al., 2019). Our metric M(C)
evaluates a compressor’s variance-suppression ability by balancing two competing goals: preserving
the gradient signal (maximizing ∥C(gξ)∥2) while minimizing the compression error (minimizing
∥C(gξ)− gξ∥2). A high-quality compressor, as measured by M(C), is therefore one that effectively
retains the true gradient signal while being robust to the corrupting influence of stochastic noise.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Adaptive Rank-Sparsity Search

Require: Matrix M ∈ Rm×n, parameter budget p, niter
1: rmax ← ⌊ p

m+n
⌋

2: U,Σ, V ⊤ ← SVDrmax(M)
3: left← 0, right← rmax
4: while left < right do
5: m1 ← left + ⌊(right− left)/2⌋
6: m2 ← m1 + 1
7: s1 ← p−m1(m+ n)
8: s2 ← p−m2(m+ n)
9: , , loss1 ← ALTPROJ(M,m1, s1, 1, U,Σ, V )

10: , , loss2 ← ALTPROJ(M,m2, s2, 1, U,Σ, V )
11: if loss1 < loss2 then
12: right← m1

13: else
14: left← m2

15: end if
16: end while
17: r∗ ← left
18: s∗ ← p− r∗(m+ n)
19: Lfinal, Sfinal, ← ALTPROJ(M, r∗, s∗, niter)
20: return Lfinal, Sfinal

Algorithm 2 Alternating Projection Method
1: procedure ALTPROJ(M, r, s, niter, U,Σ, V )
2: S0 ← 0
3: for k = 0, . . . , niter − 1 do
4: if k = 0 and U is provided then
5: Lk+1 ← U:,:rΣ:r,:rV

⊤
:,:r

6: else
7: Lk+1 ← SVDr(M − Sk)
8: end if
9: Sk+1 ← Tops(M − Lk+1)

10: end for
11: L← Lniter , S ← Sniter

12: loss← ∥M − L− S∥2F
13: return L, S, loss
14: end procedure

3.4 ALGORITHM FOR SOLVING SPARC

To compress gξ,ℓ with a parameter budget p, we shall solves the following optimization problem by
setting M = gξ,ℓ:

min
L,S

∥S + L−M∥2F

s.t. (m+ n)rank(L) + ∥S∥0 ≤ p, (10)

where S,L ∈ Rm×n. The parameter budget p is a flexible value, which could represent the total
parameters available for adapters in a linear layer. For simplicity, it can be set relative to a maximum
rank rmax, e.g., p = rmax(m+ n); or to a maximum percentage sratio, e.g., p = sratiomn.

As shown in Algorithm 1, we reformulate it as a series of subproblems by fixing the rank budget of
the low-rank component, rank(L) ≤ rL:

min
L,S

∥S + L−M∥2F

s.t. rank(L) ≤ rL, ∥S∥0 ≤ p− rL(m+ n). (11)

We solve this subproblem using a single iteration of an alternating projection. First, the low-rank
matrix L is found by computing the best rank ≤ rL approximation of M . Then, the sparse matrix S
is found by taking the largest magnitude entries of the residual M − L.

Crucially, this process is highly efficient. The expensive Singular Value Decomposition (SVD) of
the target matrix M is performed only once as a pre-computation step. For any given rank rL in the
subproblem, the optimal L is constructed by simply taking a slice of the top rL singular values and
vectors from this pre-computed decomposition. This reduces the SVD overhead to a fixed, one-time
cost. While brute-force enumeration over all possible ranks rL is computationally prohibitive, we
empirically observe that the reconstruction error from this single-step projection is unimodal with
respect to the rank rL. As detailed in Appendix C.2, the error curve exhibits a single, well-defined
minimum. This property allows us to find the optimal rank, rfinal, using an efficient binary-like
search, as detailed in Algorithm 1.

3.5 RA-SPARC INITIALIZATION

Given the decomposed matrices Lfinal and Sfinal, our goal is to initialize trainable adapters that ap-
proximate this update. To properly scale this update for initialization, we introduce a scalar γ. This

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

allows us to interpret the process as a single-step compressed SGD, where 1
γ serves as the learning

rate η in Framework 3.

The sparse adapter is initialized directly. We store the non-zero values of 1
γSfinal as E0.

The low-rank component requires a more nuanced approach. Inspired by LoRA (Hu et al., 2022)
and SLTrain (Han et al., 2024), we seek to apply a unique scaling λ (= α

r or = α√
r

, where α is the
LoRA alpha) to the low-rank component to control its training speed. However, a naive scaling of
the initial matrix (e.g., using λ · 1

γLfinal) is not viable, as it would violate the integrity of our initial
gradient approximation.

To resolve this, we employ a reparameterization trick. While the effective update from the low-rank
adapters is λBA, we initialize the trainable matrices B0 and A0 as:

B0 =
1√
λ
U
√
Σ and A0 =

1√
λ

√
ΣV T , (12)

where UΣV T = 1
γLfinal is the SVD decomposition. This design elegantly achieves two simultane-

ous goals. First, at initialization, the total update correctly reconstructs the target: λB0A0 equals
1
γLfinal. Second, during training with a base learning rate ηtr, the effective learning rate for the low-
rank component is precisely scaled to ηtrλ. This provides explicit control over the learning dynamics
without compromising the initial state. A formal proof of this property is provided in Lemma A.3.

The final initialization result W1 is

W1 = W0 − λB0A0 − E0 = W0 −
1

γ
(Sfinal + Lfinal) = W0 − η · Cp(gξ).

4 EXPERIMENTS

In this section, we shall evaluate RA-SpaRC from various perspectives. We conduct our primary
experiments on two model families, LLaMA-2-7B (Touvron et al., 2023) and the more recent
Qwen2.5-7B (QwenTeam, 2024), to ensure broad applicability. Our experimental setup (as detailed
in Appendix D), including data preprocessing, follows the way established in LoRA-GA (Wang
et al., 2024). We evaluate our method from the following three aspects:

• Task Performance: We first assess performance of RA-SpaRC on a diverse set of Natural
Language Understanding (NLU) and Generation (NLG) benchmarks.

• Compressor Comparison: Next, we conduct a direct comparison of our SpaRC compressor
against standard SVD and TopK baselines to quantify its effectiveness.

• Resource Cost: Finally, we analyze the computational resource costs to demonstrate the
practical efficiency of our method.

4.1 EXPERIMENTS ON NATURAL LANGUAGE UNDERSTANDING

Table 1 shows the T5-base fine-tuning results on a GLUE subset. All LoRA-based methods use a
rank of r = 8, while our RA-SpaRC uses the parameter budget rmax = 8.

RA-SpaRC achieves the highest average accuracy (88.75%), outperforming all competitors on the
larger datasets (MNLI, SST-2, QNLI). It trails LoRA-One marginally on the smaller CoLA and
MRPC datasets, which we attribute to the higher complexity of robust adaptation model. The sparse
plus low-rank structure is more challenging to optimize on limited training data. Nevertheless, the
state-of-the-art average score confirms the overall effectiveness of our approach.

4.2 EXPERIMENTS ON NATURAL LANGUAGE GENERATION

We evaluate our method RA-SpaRC on two core capabilities: mathematical reasoning, code genera-
tion. For each task, we fine-tune both the LLaMA-2-7B and Qwen2.5-7B models and evaluate their
performance on standard benchmarks.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Accuracy comparison on GLUE subset among typical LoRA based algorithms and our RA-
SpaRC. Results are reported as accuracy (%) with standard deviations over 3 runs (best in bold). The
results marked with (∗) are sourced from Zhang et al. (2025) under the same setting.

Method MNLI SST-2 CoLA QNLI MRPC Avg.
LoRA∗ 85.30±0.04 94.04±0.09 72.84±1.25 93.02±0.07 68.38±0.01 82.72
LoRA+∗ 85.81±0.09 93.85±0.24 77.53±0.20 93.14±0.03 74.43±1.39 84.95
PiSSA∗ 85.75±0.07 94.07±0.06 74.27±0.39 93.15±0.14 76.31±0.51 84.71
LoRA-GA∗ 85.70±0.09 94.11±0.18 80.57±0.20 93.18±0.06 85.29±0.24 87.77
LoRA-Pro∗ 86.03±0.19 94.19±0.13 81.94±0.24 93.42±0.05 86.60±0.14 88.44
LoRA-One∗ 85.89±0.08 94.53±0.13 82.04±0.22 93.37±0.02 87.83±0.37 88.73
RoSA 85.70±0.14 94.07±0.29 79.71±0.20 93.33±0.11 77.29±1.17 86.02

RA-SpaRC 86.07±0.12 94.76±0.38 82.01±0.33 93.45±0.12 87.50±0.40 88.75

Table 2: Comparison of our method against various fine-tuning baselines on LLaMA-2-7B and
Qwen2.5-7B. We report mean accuracy (± std. dev.) on GSM8K and HumanEval. The upward
arrow (↑) indicates higher is better. The best-performing method for each model is highlighted in
bold.

Model Method Params (%) GSM8K HumanEval

LLaMA-2-7B

LoRA 0.297% 59.26 ± 0.99 25.85 ± 1.75
LoRA-GA 0.297% 56.44 ± 1.15 26.95 ± 1.30
LoRA-One 0.297% 60.44 ± 0.17 28.66 ± 0.39

RoSA 0.297% 59.51 ± 0.23 25.20 ± 0.76
RoSA 1.187% 61.18 ± 0.76 29.26 ± 1.21
RoSA 4.746% 60.95 ± 0.76 30.79 ± 0.91

RA-SpaRC 0.297% 60.67 ± 0.13 29.88 ± 0.87
RA-SpaRC 1.187% 61.80 ± 0.11 31.50 ± 0.57
RA-SpaRC 4.746% 62.02 ± 0.23 35.57 ± 1.04

Qwen2.5-7B

LoRA 0.200% 81.61 ± 0.71 68.50 ± 1.25
LoRA-GA 0.200% 81.99 ± 0.69 69.92 ±1.88
LoRA-One 0.200% 84.43 ± 0.13 71.75± 0.29

RoSA 0.050% 81.20 ± 0.50 65.65 ± 0.29
RoSA 0.100% 81.35 ± 0.21 66.67 ± 0.58
RoSA 0.200% 81.65 ± 0.88 67.28 ± 0.29

RA-SpaRC 0.050% 84.15 ± 0.55 67.27 ± 0.29
RA-SpaRC 0.100% 84.53 ± 0.54 68.50 ± 1.04
RA-SpaRC 0.200% 85.06 ± 0.21 72.35 ± 0.29

• Mathematical Reasoning: For the math task, we fine-tune the models on a 100k sample
from the MetaMathQA dataset (Yu et al., 2023). The models are then evaluated on the
GSM8K test set (Cobbe et al., 2021), and we report accuracy as the primary metric.

• Code Generation: For the coding task, we fine-tune the models on a 100k subset of the
CodeFeedback dataset (Zheng et al., 2024). We then test them on the HumanEval bench-
mark (Chen et al., 2021a), reporting the PASS@1 metric.

As shown in Table 2, our method consistently outperforms other leading fine-tuning techniques.
This strong performance stems from our novel initialization strategy, which is specifically designed
to unlock the full potential of sparse plus low-rank fine-tuning, surpassing previous initialization
methods.

To demonstrate this, we first compare our method against LoRA-One, the current state-of-the-art
for LoRA initialization. On LLaMA-2-7B, at an identical 0.297% parameter budget, our approach
achieves a GSM8K score of 60.67 and a HumanEval score of 29.88, outperforming LoRA-One

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Summary of hyperparameter configurations for equivalent budget comparisons. For a
detailed breakdown of configurations across all parameter budgets, please see Appendix D.1.

Method LLaMA-2-7B (0.297%) Qwen2.5-7B (0.200%, MLP only)
LoRA r = 8 r = 8
RoSA r = 4, sratio = 0.0015 r = 4, sratio = 0.0013
RA-SpaRC rmax = 8 rmax = 8

by an absolute margin of +0.23 and +1.22 points, respectively. This advantage is confirmed on
Qwen2.5-7B, where our method, using a targeted MLP-only strategy at a 0.20% budget, scores
85.06 on GSM8K and 72.35 on HumanEval, yielding improvements of +0.63 and +0.60 points
over LoRA-One. Furthermore, we compare our method’s scalability against RoSA, a prior method
that also combines sparse plus low-rank updates. Across various parameter budget, our approach
consistently delivers superior results.

Further details on the adaptive parameter budget allocations that lead to these results are provided
in Appendix C.3. This analysis demonstrates the method’s capability to discover effective configu-
rations, validating the core mechanism of our approach.

4.3 COMPARISON OF DIFFERENT COMPRESSORS

We evaluate our compressor, SpaRC, against SVD and TopK baselines on the CodeFeedback and
MetaMathQA datasets. Performance is measured by our quality metric M(C) with µ = 1 and
relative reconstruction error at two parameter budgets (0.297% and 1.187%).

Table 4: Comparison of different compressors. Based on LLaMA2-7B in CodeFeedback and Meta-
MathQA dataset. The arrow ↑ / ↓ indicates higher/lower is better.

Method M(C)code ↑ E[∥C(gξ)−gξ∥2

∥gξ∥2 ]code ↓ M(C)math ↑ E[∥C(gξ)−gξ∥2

∥gξ∥2 ]math ↓

SpaRC (0.297%) 6.99 18.42% 34.98 8.90%
SVD (0.297%) 6.78 18.89% 34.75 9.07%
TopK (0.297%) 0.69 31.68% 10.06 26.34%

SpaRC (1.187%) 11.69 9.61% 38.11 3.86%
SVD (1.187%) 11.56 9.88% 38.00 3.94%
TopK (1.187%) 3.78 25.47% 16.11 20.81%

The results in Table 4 reveal a clear performance hierarchy. Both SpaRC and SVD vastly outperform
TopK, achieving a quality metric that is an order of magnitude higher on CodeFeedback and 3-4
times higher on MetaMathQA, along with substantially lower reconstruction error. Furthermore,
SpaRC consistently maintains a slight edge over SVD in all configurations. This relative ranking
(SpaRC > SVD ≫ TopK) holds across both datasets and budgets, confirming the robustness of our
findings and validating SpaRC as the most effective compressor.

4.4 RESOURCE COSTS

Fine-tuning with sparse matrices on GPUs introduces significant computational overhead. For in-
stance, existing methods like RoSA (Nikdan et al., 2024) exhibit a 1.7x to 2x increase in training
time compared to the standard LoRA baseline, a finding we reproduce in our experiments (Fig-
ure 1). To address this bottleneck, our optimized implementation for the sparse adapter (detailed
in Appendix B.1) improves efficiency. As a result, our method’s training time is only 1.05x to
1.35x that of LoRA, depending on the percentage of trainable parameters. This represents a 30-40%
reduction in the training overhead common to prior sparse methods.

Table 5 shows the other resource costs. Our method uses the same peak GPU memory and number
of trainable parameters as LoRA. The only trade-off is a one-time initialization cost. For instance,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 1: Training time comparison of RA-SpaRC, RoSA, and LoRA (with different initialization
methods).

Table 5: Resource consumption comparison on the GSM8K dataset. Peak GPU memory was mea-
sured during training with a batch size of 1, 32 gradient accumulation steps, a sequence length of
1024, and a rank of 8.

Model Method Params (%) Peak Mem (GB) Init Time (min)

LLaMA-2-7B
LoRA-One 0.297% 17.5 1.5
RoSA 0.297% 17.5 14.0
RA-SpaRC 0.297% 17.5 8.0

Qwen-2.5-7B
(MLP Only)

LoRA-One 0.200% 20.0 2.0
RoSA 0.200% 20.0 10.5
RA-SpaRC 0.200% 20.0 7.5

on LLaMA-2-7B, our 8-minute setup is significantly faster than RoSA’s 14 minutes. While this is
longer than LoRA-One’s 1.5-minute setup, this cost occurs only once before training.

In summary, our method requires a small, affordable increase in training and initialization time com-
pared to LoRA. We argue this cost is justified by the significant performance gains on downstream
tasks. Compared to other sparse methods like RoSA, our approach is a much more practical and
efficient solution that does not use extra memory.

5 CONCLUSION

In this work, we introduce RA-SpaRC, a novel initialization method for robust adaptation. The key
advantage of RA-SpaRC is its principled and automated budget allocation strategy. By analyzing
gradient information, it determines an effective split between sparse and low-rank components to
ensure the most effective use of any given parameter budget.

Our extensive experimental results manifest that this hybrid initialization strategy fully realizes the
potential of robust adaptation, yielding better performance compared to purely low-rank methods.
We also demonstrate that our implementation is highly efficient, for both computational time and
memory overhead. A promising avenue for future research is the development of more sophisticated
algorithms to solve the core compression problem, which could lead to even greater performance.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

We, the authors of this paper, have read and adhere to the ICLR Code of Ethics. Our work has
been conducted in accordance with its general ethical principles, including contributing to societal
well-being, upholding scientific excellence, avoiding harm, and being honest and transparent.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made comprehensive efforts to document all
necessary details. The complete implementation details, including hyperparameter settings, model
architectures, and dataset sources for all experiments presented in Section 4, are thoroughly de-
scribed in Appendix D. Any assumptions and theoretical claims are formally stated and proven in
Appendix A.

REFERENCES

Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent.
arXiv preprint arXiv:1704.05021, 2017.

Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component analysis?
Journal of the ACM (JACM), 58(3):1–37, 2011.

Venkat Chandrasekaran, Sujay Sanghavi, Pablo A Parrilo, and Alan S Willsky. Rank-sparsity inco-
herence for matrix decomposition. SIAM Journal on Optimization, 21(2):572–596, 2011.

Congliang Chen, Li Shen, Wei Liu, and Zhi-Quan Luo. Efficient-adam: Communication-efficient
distributed adam. IEEE Transactions on Signal Processing, 71:3257–3266, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021a.

Xuxi Chen, Tianlong Chen, Weizhu Chen, Ahmed Hassan Awadallah, Zhangyang Wang, and
Yu Cheng. Dsee: Dually sparsity-embedded efficient tuning of pre-trained language models.
arXiv preprint arXiv:2111.00160, 2021b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai Lam, Lidong Bing, and Nigel Collier. On
the effectiveness of parameter-efficient fine-tuning. In Proceedings of the AAAI conference on
artificial intelligence, volume 37, pp. 12799–12807, 2023.

Andi Han, Jiaxiang Li, Wei Huang, Mingyi Hong, Akiko Takeda, Pratik Kumar Jawanpuria, and
Bamdev Mishra. Sltrain: a sparse plus low rank approach for parameter and memory efficient
pretraining. Advances in Neural Information Processing Systems, 37:118267–118295, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring Massive Multitask Language Understanding. arXiv preprint
arXiv:2009.03300, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. International Confer-
ence on Learning Representations (ICLR), 1(2):3, 2022.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes signsgd and other gradient compression schemes. In International conference on machine
learning, pp. 3252–3261. PMLR, 2019.

Xiaoyun Li, Belhal Karimi, and Ping Li. On distributed adaptive optimization with gradient com-
pression. arXiv preprint arXiv:2205.05632, 2022.

Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. Page: A simple and optimal prob-
abilistic gradient estimator for nonconvex optimization. In International conference on machine
learning, pp. 6286–6295. PMLR, 2021.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression: Re-
ducing the communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887,
2017.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. Advances in Neural Information Processing Systems,
37:121038–121072, 2024.

Ionut-Vlad Modoranu, Mher Safaryan, Grigory Malinovsky, Eldar Kurtić, Thomas Robert, Peter
Richtárik, and Dan Alistarh. Microadam: Accurate adaptive optimization with low space over-
head and provable convergence. Advances in Neural Information Processing Systems, 37:1–43,
2024.

Mahdi Nikdan, Soroush Tabesh, Elvir Crnčević, and Dan Alistarh. Rosa: Accurate parameter-
efficient fine-tuning via robust adaptation. arXiv preprint arXiv:2401.04679, 2024.

QwenTeam. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems, 34:24193–24205, 2021.

Min Tao and Xiaoming Yuan. Recovering low-rank and sparse components of matrices from incom-
plete and noisy observations. SIAM Journal on Optimization, 21(1):57–81, 2011.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model,
2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gradient
compression for distributed optimization. Advances in Neural Information Processing Systems,
32, 2019.

Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris Papailiopoulos, and Stephen
Wright. Atomo: Communication-efficient learning via atomic sparsification. Advances in neural
information processing systems, 31, 2018.

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation.
Advances in Neural Information Processing Systems, 37:54905–54931, 2024.

John Wright, Arvind Ganesh, Shankar Rao, Yigang Peng, and Yi Ma. Robust principal component
analysis: Exact recovery of corrupted low-rank matrices via convex optimization. Advances in
neural information processing systems, 22, 2009.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023.

Xiaoming Yuan and Junfeng Yang. Sparse and low-rank matrix decomposition via alternating di-
rection methods. Pacific Journal of Optimization, 9(1):167–180, 2013.

Yuanhe Zhang, Fanghui Liu, and Yudong Chen. LoRA-one: One-step full gradient could suffice
for fine-tuning large language models, provably and efficiently. In Forty-second International
Conference on Machine Learning, 2025.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement.
arXiv preprint arXiv:2402.14658, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A SUPPLEMENTARY PROOF

A.1 PROOF OF THEOREM 3.1 AND ITS COROLLARY

Theorem A.1. Assume the loss function L is L-smooth. For an update W1 = W0−ηg′ξ, the expected
loss E[L(W1)] is bounded as follows:

E[L(W1)] ≤ L(W0)−
η

2

(
E[∥g′ξ∥2 − (1 + µ)∥g′ξ − gξ∥2] + ∥g∥2 −

(
1 +

1

µ

)
σ2

)
+

η2L

2
E[∥g′ξ∥2], (13)

where σ2 def
= E[∥gξ − g∥2] is the variance of the stochastic gradient and µ > 0 is an arbitrary

constant.

Corollary A.2. If E[∥g′ξ∥2−(1+µ)∥g′ξ−gξ∥2] > −∥g∥2+
(
1 + 1

µ

)
σ2, σ2 < +∞ and ∥g∥ < +∞,

there exists an η such that E[L(W1)] < L(W0).

Proof. According to Lemma 2 in Li et al. (2021), we derive the following result:

L(W1) ≤ L(W0)−
η

2
∥g∥2 − (

1

2η
− L

2
)∥ηg′ξ∥2 +

η

2
∥g′ξ − g∥2

= L(W0)−
η

2
∥g∥2 − η

2
∥g′ξ∥2 +

Lη2

2
∥g′ξ∥2 +

η

2
∥g′ξ − gξ + gξ − g∥2

≤ L(W0)−
η

2
∥g∥2 − η

2
∥g′ξ∥2 +

Lη2

2
∥g′ξ∥2 +

(1 + µ)η

2
∥g′ξ − gξ∥2

+
(1 + 1

µ )η

2
∥gξ − g∥2, (14)

E[L(W1)] ≤ L(W0)−
η

2
∥g∥2 − η

2
E∥g′ξ∥2 +

Lη2

2
E∥g′ξ∥2 +

(1 + µ)η

2
E∥g′ξ − gξ∥2

+
(1 + 1

µ )η

2
σ2

≤ L(W0)−
η

2
E[∥g′ξ∥2 − (1 + µ)∥g′ξ − gξ∥2 + ∥g∥2 − (1 +

1

µ
)σ2]

+
Lη2

2
E∥g′ξ∥2. (15)

Let G = 2σ2 + 2∥g∥2 < +∞, E[∥gξ∥2] = E[∥gξ − g + g∥2] ≤ 2σ2 + 2∥g∥2 = G,

E[∥g′ξ∥2] = E[∥g′ξ − gξ + gξ∥2] ≤ E[2∥g′ξ − gξ∥2 + 2∥gξ∥2] = 2(2− α)E[∥gξ∥2] ≤ 2(2− α)G.

Denote D = E[∥g′ξ∥2 − (1 + µ)∥g′ξ − gξ∥2 + ∥g∥2 − (1 + 1
µ )σ

2], based on inequality 15, we can
find η ∈ (0, D

2LG(2−α) ) such that E[L(W1)] < L(W0).

A.2 PROOF OF DIFFERENTIATED LEARNING RATE

Lemma A.3 (Effective Learning Rate Scaling). Let the low-rank adapter matrices B and A be
initialized as B0 = 1√

λ
B′

0 and A0 = 1√
λ
A′

0, where B′
0A

′
0 = 1

γLfinal. When training with an
optimizer using a learning rate η, the effective learning rate applied to the conceptual matrices B′

and A′ is exactly ηλ.

Proof. The effective update to the model weights from the low-rank adapter is given by the product
∆WLoRA = λBA. At initialization, the parameters are B0 and A0.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

First, we establish the relationship between the gradients. Let the loss be L. The gradient of the loss
with respect to the trainable parameter B is computed via the chain rule.

∇BL =
∂L

∂(λBA)

∂(λBA)

∂B
= ∇∆WL · (λAT ).

Now, consider the gradient with respect to the conceptual matrix B′.

∇B′L =
∂L

∂(B′A′)

∂(B′A′)

∂B′ = ∇B′A′L · (A′)T .

Since λB0A0 = B′
0A

′
0, the gradient of the loss with respect to the output product is the same

(∇∆W0
L = ∇B′

0A
′
0
L). We can therefore relate the gradients of the parameters at initialization:

∇B0L = λ(∇∆W0L)AT
0 = λ(∇∆W0L)

(
1√
λ
A′

0

)T

=
√
λ
(
(∇∆W0L)(A′

0)
T
)
=

√
λ∇B′

0
L.

Similarly, it can be shown that ∇A0L =
√
λ∇A′

0
L.

During an optimizer step, the trainable parameters B and A are updated as:

B1 = B0 − η∇B0
L, A1 = A0 − η∇A0

L (16)

To understand the effect of this update on the conceptual matrices, we define the updated conceptual
matrices, B′

1 and A′
1, in terms of the updated trainable parameters, maintaining the relationship

B′
1 =

√
λB1. By substituting the update rule for B1 and the gradient relationship, we get:

B′
1 =

√
λB1 =

√
λ(B0 − η∇B0L) =

√
λB0 − η

√
λ∇B0L

= B′
0 − η

√
λ(
√
λ∇B′

0
L) = B′

0 − ηλ∇B′
0
L. (17)

The same derivation holds for A′
1:

A′
1 =

√
λA1 =

√
λ(A0 − η∇A0L) = A′

0 − ηλ∇A′
0
L.

These equations show that the update rule for the conceptual matrices B′ and A′ is precisely that of
a gradient descent step with a learning rate of ηλ. This proves that our reparameterization scales the
effective learning rate for the low-rank component by the factor λ exactly, without any approxima-
tion. This completes the proof.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B SYSTEM IMPLEMENTATION

B.1 SYSTEM IMPLEMENTATION

Our implementation must efficiently compute the output for the composed weight matrix W0 +
Mat(E) + λBA and its gradients. The primary challenge is avoiding the materialization of dense
matrices, particularly the full gradient tensor for the sparse component.

Forward Pass Like RoSA (Nikdan et al., 2024), we handle the sparse component by adding it to
the pre-trained weights W0. However, our implementation uses a different data structure. While
RoSA uses the Compressed Sparse Row (CSR) format, we found this less efficient for the scattered,
non-row-concentrated sparsity patterns learned by our method. We therefore represent E with its
non-zero values (Eval) and their indices (Eidx) and apply them to a copy of W0 using an optimized
torch.scatter add operation. This approach is faster for our specific use case. The final
output is then computed by summing the low-rank path (xAT )BT and the output from the updated
weights.

Backward Pass The main efficiency gain comes from our custom backward kernel for the sparse
component. A standard autograd approach would first materialize the entire dense gradient ma-
trix ∇Mat(E)L = (∇yL)Tx, and then gather the values corresponding to the non-zero indices,
(∇Mat(E)L)Eidx

. This intermediate dense tensor is prohibitively memory-intensive.

To circumvent this, we implement a custom kernel that computes the gradient vector ∇Eval
L di-

rectly, bypassing the dense matrix. For each non-zero element Eval[i] located at matrix coordinates
(r, c), our kernel computes its gradient as the inner product of the corresponding columns of the
upstream gradient and the input, which can be executed in parallel for all non-zero elements:

∇Eval[i]L = ⟨(∇yL):,r, x:,c⟩.

By fusing the gradient calculation and indexing into a single block-parallelizable kernel, we elimi-
nate the primary memory and computational bottleneck of the backward pass, achieving significant
speedups over naive implementations.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C SUPPLEMENTARY EXPERIMENTS

C.1 INSTRUCTION FOLLOWING RESULTS

To evaluate performance on general knowledge and problem-solving, we fine-tune the models on the
Alpaca dataset (Taori et al., 2023). We then measure the zero-shot accuracy on the Massive Multitask
Language Understanding (MMLU) benchmark (Hendrycks et al., 2021). While a five-shot setting
is commonly used for MMLU, we specifically use a zero-shot approach. This is because our goal
is to test the model’s core instruction-following ability gained from the Alpaca fine-tuning itself. A
five-shot evaluation tests how well a model can learn from examples given in the prompt (in-context
learning), which would make it difficult to isolate the direct impact of our fine-tuning method. The
zero-shot setting provides a clearer measure of the model’s generalized capabilities.

The results in Table 6 show different outcomes for the two models. For LLaMA-2-7B, all fine-tuning
methods provide a clear improvement over the base model. Our method, RA-SpaRC, achieves the
highest accuracy at 46.14%, showing it is very effective at improving the model’s general problem-
solving skills.

For Qwen2.5-7B, however, the improvements are very small. A likely reason is that the base
Qwen2.5-7B model is already excellent at following instructions. It is also possible that its orig-
inal training data already contained the Alpaca dataset or something very similar. If so, fine-tuning
on Alpaca offers little new information, which would explain the small gains. Even with these small
improvements, RA-SpaRC still achieves the highest score, showing it provides a consistent, if minor,
benefit.

Table 6: Comparison of fine-tuning methods on LLaMA-2-7B and Qwen2.5-7B. Models are fine-
tuned on Alpaca and evaluated with zero-shot accuracy on MMLU. We report the mean accuracy
(± std. dev.). The upward arrow (↑) indicates higher is better. The best method for each model is in
bold.

Model Method Params (%) MMLU Accuracy (%) ↑

LLaMA-2-7B

Base Model None 40.79
LoRA 0.297% 42.84 ± 0.12
LoRA-One 0.297% 45.52 ± 0.31
RoSA 0.297% 44.03 ± 0.28
RA-SpaRC 0.297% 46.14 ± 0.14

Qwen2.5-7B

Base Model None 70.50
LoRA 0.200% 70.53 ± 0.04
LoRA-One 0.20% 70.59 ± 0.09
RoSA 0.200% 70.53 ± 0.22
RA-SpaRC 0.200% 70.62 ± 0.10

C.2 UNIMODALITY ASSUMPTION

This section provides the empirical evidence for the general unimodal behavior that underpins Al-
gorithm 1. We demonstrate that for a fixed parameter budget, the one-step alternative projection loss
for stochastic gradients exhibits a single, well-defined minimum.

Experimental Setup. Our validation procedure was executed with the following precise settings:

• Model: We used the LLaMA-2-7B model.
• Datasets: Stochastic gradients are estimated on three distinct fine-tuning datasets: Meta-

MathQA, CodeFeedback, and Alpaca.
• Gradient Estimation: For each dataset, a single stochastic gradient is computed using a

mini-batch of 8 samples. This gradient matrix is the target for our decomposition.
• Decomposition Parameters: The decomposition is constrained by a fixed parameter bud-

get equivalent to a dense low-rank approximation with a maximum rank of rmax = 8. We

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

enumerated all integer ranks r ∈ [0, rmax]. The corresponding number of sparse elements,
s, was calculated to maintain the budget, following the relation s = (rmax − r)(m + n),
where m and n are the dimensions of the gradient matrix.

• Loss Metric: For each (r, s) pair, we computed the single-step alternating projection error.

Results and Analysis. To demonstrate the robustness of this property across the model’s depth,
we analyzed the gradients from multiple layers. For simplicity and generality, Figure 2 & 3 show
the results for three representative layers: an early layer (0), a middle layer (15), and a late layer
(31).

Crucially, each visualized loss landscape represents the one-step projection loss from all linear mod-
ules within that specific layer. This includes the gradients from the four attention projections (query,
key, value, output) and the three MLP projections (gate, up, down). This aggregation confirms that
the unimodal property is not specific to a single module but is a general characteristic of the layer’s
entire gradient structure.

C.3 BUDGET ALLOCATION RESULTS

We visualize the allocation results of RA-SpaRC over different models and datasets in Figure 4.
Only the rank distribution of the low-rank component for each layer is shown, as the number of
non-zero elements of the sparse component can be computed by subtracting the corresponding pa-
rameters of low-rank component from the total parameter budget. One typical feature is that when
the parameter budget is stringent, the solution of RA-SpaRC coincides with direct SVD in many
situations. But when the parameter budget is relaxed, more patterns of the combinations of low-rank
and sparse adapters are found.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 2: Loss curve for gradient decomposition on the MetaMathQA dataset.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 3: Loss curve for gradient decomposition on the CodeFeedback dataset.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

4 5 6 7 8
Rank

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n

21 24 25 26 27 28 29 30 31 32
Rank

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
op

or
tio

n

11
0 11

1
11

4
11

5
11

6
11

7
11

8
12

0
12

1
12

2
12

3
12

4
12

5
12

6
12

7

Rank

0.00

0.05

0.10

0.15

0.20

0.25

Pr
op

or
tio

n

5 6 7 8
Rank

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n

20 21 25 26 27 28 29 30 31 32
Rank

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
op

or
tio

n

11
1

11
3

11
7

11
8

11
9

12
0

12
1

12
2

12
3

12
4

12
5

12
6

12
7

Rank

0.00

0.05

0.10

0.15

0.20

Pr
op

or
tio

n

3 4 5 6 7 8
Rank

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Pr
op

or
tio

n

18 21 22 23 24 25 26 27 28 29 30 31
Rank

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
op

or
tio

n

64 74 81 87 88 90 94 95 9710
0
10

4
10

5
10

6
11

2
11

3
11

4
11

5
11

6
11

7
11

8
11

9
12

0
12

1
12

2
12

3
12

4
12

5

Rank

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
Pr

op
or

tio
n

4 5 6 7 8
Rank

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
op

or
tio

n

22 24 25 26 27 28 29 30 31 32
Rank

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n

96 98 10
2

10
3

10
5

10
6

11
2

11
3

11
4

11
6

11
7

11
8

11
9

12
0

12
1

12
2

12
3

12
4

12
5

12
6

12
7

Rank

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
op

or
tio

n

Figure 4: Rank distribution across different models and datasets using RA-SpaRC. From top to
bottom: LLaMA-2-7B on CodeFeedback, LLaMA-2-7B on MetaMath, Qwen2.5-7B on CodeFeed-
back, and Qwen2.5-7B on MetaMath. Each row shows results with maximum ranks 8, 32, and 128
(left to right).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D EXPERIMENTAL SETTINGS

D.1 PARAMETER BUDGET CONFIGURATIONS

This section details the hyperparameter configurations used to achieve equivalent trainable parame-
ter counts for the different fine-tuning methods on LLaMA-2-7B and Qwen2.5-7B.

Table 7: Hyperparameter configurations for different methods on LLaMA-2-7B. The configurations
are set to match the parameter counts benchmarked against LoRA with ranks r = 8, 32, 128.

Method 0.297% 1.187% 4.746%
LoRA & Variants r = 8 r = 32 r = 128

RoSA r = 4 r = 16 r = 64
sratio = 0.0015 sratio = 0.006 sratio = 0.024

RA-SpaRC rmax = 8 rmax = 32 rmax = 128

Table 8: Hyperparameter configurations for different methods on Qwen2.5-7B. The configurations
are set to match the parameter counts benchmarked against LoRA with ranks r = 2, 4, 8.

Method 0.050% 0.100% 0.200%
LoRA & Variants r = 2 r = 4 r = 8

RoSA r = 1 r = 2 r = 4
sratio = 0.0013 sratio = 0.0026 sratio = 0.0052

RA-SpaRC rmax = 2 rmax = 4 rmax = 8

D.2 HYPERPARAMETER CONFIGURATIONS

This section details the hyperparameter configurations for our experiments. To ensure fair compar-
isons, we adapt our hyperparameter search strategy from Zhang et al. (2025).

Implementation Details. All fine-tuning experiments run on a single NVIDIA A100 40G SXM4
GPU. We load the T5-base model in its original FP32 precision, while the LLaMA-2-7B and
Qwen2.5-7B models are loaded in BF16 precision.

NLU Tasks (T5-base). For the Natural Language Understanding (NLU) tasks, we fine-tune the
T5-base model using our RA-SpaRC method. The common hyperparameters for this setup are
in Table 9. We optimize the learning rate by performing a grid search over the set {1 × 10−3, 5 ×
10−4, 2×10−4, 1×10−4}. The final, task-specific learning rates and RA-SpaRC scaling parameters
(γ) are presented in Table 10.

NLG Tasks (LLaMA-2 & Qwen2.5). For the Natural Language Generation (NLG) tasks, we
fine-tune LLaMA-2-7B and Qwen2.5-7B. The common hyperparameters for these models are in
Table 11. For these tasks, we conduct a more extensive search. We search the learning rate over
{2 × 10−4, 1 × 10−4, 5 × 10−5, 2 × 10−5} and the per-device batch size over {16, 32, 128}. The
final, optimal hyperparameters for each model and dataset are presented in Table 12.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 9: Common hyperparameters for RA-SpaRC fine-tuning on the T5-base model for NLU tasks.

Epoch Optimizer (β1, β2) ϵ Precision Weight Decay

1 AdamW (0.9, 0.999) 1× 10−8 FP32 0

Warm-up Ratio LoRA α LR Scheduler Max Length #Runs Gradient Batch Size

0.03 16 cosine 128 3 8

Table 10: Final selected hyperparameters for NLU tasks on T5-base with RA-SpaRC.

Dataset Learning Rate Batch Size Scaling γ

MNLI 5× 10−4 32 128
SST-2 5× 10−4 32 32
CoLA 5× 10−4 32 16
QNLI 5× 10−4 32 16
MRPC 1× 10−3 32 128

Table 11: Common hyperparameters for fine-tuning LLaMA-2-7B and Qwen2.5-7B on NLG tasks.

Epoch Optimizer (β1, β2) ϵ Precision Weight Decay

1 AdamW (0.9, 0.999) 1× 10−8 FP32 0

Warm-up Ratio LoRA α LR Scheduler Max Length #Runs Gradient Batch Size

0.03 16 cosine 1024 3 8

Table 12: Final selected hyperparameters for NLG tasks with RA-SpaRC.

Model Dataset Learning Rate Batch Size Scaling γ

LLaMA-2-7B
MetaMathQA 2× 10−4 32 16
CodeFeedback 5× 10−4 32 16
Alpaca 2× 10−4 32 16

Qwen2.5-7B
MetaMathQA 2× 10−4 32 16
CodeFeedback 2× 10−4 32 32
Alpaca 2× 10−4 32 32

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E LLM USAGE STATEMENT

In the preparation of this paper, Large Language Models (LLMs) serve as a writing assistance
tool. Their primary function is for proofreading and language refinement, which includes correcting
grammatical errors, improving sentence structure, and enhancing the overall clarity and readability
of the text.

The authors employ these models specifically for polishing the writing in the Introduction, Related
Work, and Experiments sections.

Crucially, LLMs do not contribute to any aspect of research ideation, formulation of hypotheses,
experimental design, data analysis, or the generation of core scientific conclusions. The conceptual
framework and all intellectual contributions of this work are developed exclusively by the human
authors. The authors have reviewed, edited, and take full responsibility for all content presented in
this paper.

23


	Introduction
	Related Work
	Method
	Unifying PEFT Initialization via Compressors
	SpaRC: A Hybrid Sparse plus Low-Rank Compressor
	A Quality Metric for Compressors
	Algorithm for Solving SpaRC
	RA-SpaRC Initialization

	Experiments
	Experiments on Natural Language Understanding
	Experiments on Natural Language Generation
	Comparison of different compressors
	Resource Costs

	Conclusion
	Supplementary Proof
	Proof of Theorem 3.1 and Its Corollary
	Proof of Differentiated Learning Rate

	System Implementation
	System Implementation

	Supplementary Experiments
	Instruction Following Results
	Unimodality Assumption
	Budget Allocation Results

	Experimental Settings
	Parameter Budget Configurations
	Hyperparameter Configurations

	LLM Usage Statement

