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Figure 1. U–ARE–ME provides globally consistent rotation estimates in Manhattan environments across sequences of uncalibrated RGB
images – no camera intrinsics needed. Rotations are estimated using per-pixel predicted surface normals and confidence.

Abstract

Camera rotation estimation from a single image is a
challenging task, often requiring depth data and/or cam-
era intrinsics, which are generally not available for in-
the-wild videos. Although external sensors such as iner-
tial measurement units (IMUs) can help, they often suffer
from drift and are not applicable in non-inertial reference
frames. We present U-ARE-ME, an algorithm that esti-
mates camera rotation along with uncertainty from uncal-
ibrated RGB images. Using a Manhattan World assump-
tion, our method leverages the per-pixel geometric priors
encoded in single-image surface normal predictions and
performs optimisation over the SO(3) manifold. Given a
sequence of images, we can use the per-frame rotation esti-
mates and their uncertainty to perform multi-frame optimi-
sation, achieving robustness and temporal consistency. Our
experiments demonstrate that U-ARE-ME performs compa-
rably to RGB-D methods and is more robust than feature-
based vanishing point and SLAM methods.

1. Introduction

Accurate estimation of camera rotation from a sequence of
monocular images is crucial for many computer vision ap-
plications, including visual odometry [20], image stabili-
sation [37], and augmented reality [46]. Many solutions
have been proposed for a variety of sensor setups. For in-
stance, the recently released Apple Vision Pro operates us-
ing visual-inertial odometry, relying on both the cameras
and the inertial measurement units (IMUs). However, IMUs
are prone to drift, are by design not suitable for non-inertial
frames of reference and simply may not be available along-
side images.

If depth measurements (paired with the input images) are
available, the RGB-D frames can be aligned — based on
photometric and geometric consistency — to recover their
relative camera poses [9]. If the surface normal vectors
in the scene are aligned with a set of principal directions,
the camera rotation can be found by aligning the input nor-
mals (extracted from the depth maps) to those directions
[16, 42, 44]. While such approaches provide drift-free rota-
tion estimates with high accuracy, they cannot be applied to



in-the-wild videos or devices without a depth sensor.
This paper focuses on the most challenging setup in

which only RGB input is available. Previous attempts have
focused on detecting and matching 2D image features. For
instance, ORB-SLAM [38] tracks sparse ORB features,
while methods like [4, 31, 40] group line segments to iden-
tify the vanishing points (VPs) and hence the camera ro-
tation with respect to the principal directions. However,
such methods are sensitive to image degradation (e.g. noise
and motion blur) and perform poorly in textureless environ-
ments. More importantly, many of these methods assume
known camera intrinsics — which are often not available for
in-the-wild videos. While a neural network can be trained
to regress the rotation between consecutive frames [6], such
an approach is prone to overfitting and drift. It is also com-
putationally costly to train such a specialised model.

In this work, we propose to make use of the dense pixel-
wise geometric priors learned by single-image surface nor-
mal estimation models. Surface normal estimation models
are efficient (e.g. [3] runs at ∼70+ fps on an NVIDIA 4090
GPU) and have strong generalisation ability [2, 3]. In re-
cent years, their usefulness has been demonstrated for var-
ious computer vision tasks, including object grasping [51],
vision-language reasoning [35], simultaneous localisation
and mapping [34], and CAD model alignment [28]. We ex-
plore whether such powerful front-end perception can also
be used for rotation estimation.

Similar to previous optimisation-based approaches [16,
42, 44], we assume a certain distribution of surface normal
vectors in world coordinates and optimise for the camera
rotation that would align the predicted normals to the prin-
cipal directions of the scene. While previous methods (1)
used depth sensors to extract the normal vectors and (2)
were only applicable to a single image, we attempt to re-
move both constraints.

Two types of uncertainty arise in the process of remov-
ing these two commonly adopted constraints. First is the
heteroscedastic aleatoric uncertainty [25] in surface normal
predictions. As shown in [3], surface normals predicted by
a neural network — unlike those extracted from a depth
map — are unreliable, especially for the pixels near object
boundaries and on small objects. As these pixels should be
down-weighted in the optimisation objective, we introduce
a new uncertainty-weighted cost function and show how the
uncertainty can be learned in a data-driven manner.

The second type of uncertainty arises when the image
contains a limited number of principal directions. For in-
stance, when a Manhattan World (MW) [7] is assumed, two
(or more) of the six directions (±X,±Y,±Z) should be ob-
served to determine the camera rotation. If only one axis
is visible, any rotation around that axis would result in an
equally valid prediction. To this end, we quantify the uncer-
tainty around each principal axis and use it to enhance the

temporal consistency in the predictions.
To summarise, our framework alternates between two

optimisation steps:
• Single-frame optimisation: We optimise the world-to-

camera rotation matrix such that the rotated principal di-
rections are best aligned with the predicted surface nor-
mals. We improve the accuracy and robustness by intro-
ducing an uncertainty-weighted cost function.

• Multi-frame optimisation: We take the covariance ma-
trix of rotation around each axis — which is readily avail-
able from the Hessian approximation in the second-order
optimisation of the first step — and use it to jointly op-
timise a sliding window of previous frame rotations. We
improve the global consistency of our solution, reject out-
lier rotations and intuitively handle frames that may con-
tain limited information on certain principal axes.
The proposed method runs at ∼60+ fps on an NVIDIA

4090 GPU. Note that, unlike the learning-based models that
can only be used for rotation estimation, the surface nor-
mal predictions — from which we infer the rotation — can
be used for other tasks, reducing the overall computational
overhead.

The main strength of our approach lies in its robustness.
Compared to the methods that rely on sparse feature track-
ing or line segment detection, our approach is more robust
to the presence of image degradation. Unlike SLAM-based
methods, our approach does not require camera intrinsics
and can be applied to a single image or in-the-wild videos,
making it useful in a wider range of scenarios1.

2. Related work
Rotation estimation of a camera from single images has
been extensively studied and is generally based upon the
assumption that indoor scenes exhibit inherent structure,
conforming to the MW assumption. These approaches for
Manhattan Frame (MF) estimation broadly fall into two do-
mains; using RGB images to extract perspective cues, and
using 3D information such as surface normals from RGB-D
images.

Earlier work estimated the MF by considering vanish-
ing points and lines in an image as perspective cues [27].
The work in [29] generated several MF hypotheses from an
image, using line segments to find the best fitting model.
In [14], line segments were extracted onto a hemisphere,
and clustered to identify three orthogonal directions al-
though this method was sensitive to the chosen resolution
of the hemisphere discretisation. The algorithm proposed
by [13] used line clustering to find three vanishing points,
and achieved real-time camera rotation estimation over a
sequence of images in a video. The work in [31] does not

1We encourage the reader to view the supplementary material for fur-
ther details and experiments on the robustness of our approach.



rely on the MW assumption but uses sequential Bayesian
filtering to jointly estimate rotation and vanishing points.
Recently a Hybrid Vanishing Point algorithm (H-VP) [40]
was presented for uncalibrated images, which can extract
the MF by making use of a gravity-direction prior to ro-
bustly extract vanishing points. These RGB methods rely on
the existence of multiple parallel lines and vanishing points,
and are not robust in the presence of noise and outliers, or
in texture-less scenes.

Rotation estimation methods that use RGB-D images are
more accurate and stable as they utilise 3D information in
the scene, whether this is directly through depth camera
data, or by using this data to computing the surface normals
in the scene. The approach in [42] uses point normals and
perspective cues to perform an Exhaustive Search (ES) over
a set of candidate directions and using a scoring heuristic to
estimate the MF, although this incurs a high computational
cost. Depth data from a Kinect camera was used in [47] to
determine the MF of a scene by identifying the ground, and
selecting a perpendicular direction from one of the walls.
This method relies on the presence of a visible floor and
multiple walls in the image, and so is not generalisable. In
[16] the MF is estimated through non-convex optimisation
by considering the sparsity constraints of MF-aligned sur-
face normals.

In [43], the authors argue that real-world scenes contain
a Mixture of Manhattan Frames (MMF), which they simul-
taneously estimate from surface normals calculated from
depth data.

These methods are often sensitive to initial conditions
and cannot guarantee global optimality, unlike the family
of Branch and Bound (BnB) methods which operate in the
rotation search space [5, 19, 39]. These methods guaran-
tee global optimality, but cannot be considered real-time al-
gorithms. Real-time rotation estimation is enabled in [24]
using the BnB method by maximising the consensus set of
inliers over the search space of rotation. Surface normals
are discretised on an equi-rectangular plane to generate the
Extended Gaussian Image (EGI) [21], from which the BnB
approach is used to estimate the MF.

Recently [52] proposed a novel and efficient cost func-
tion of Multiple Normal vectors and Multiple MF Axes
(MNMA) for MF estimation. The cost function makes use
of the vector dot and cross products between the scene sur-
face normals and the axes of the MF leading to an efficient,
accurate and real-time algorithm.

All of the methods considered here have used surface
normals calculated from depth data from RGB-D images,
rather than directly estimating them from an RGB input.
Estimating surface normals has traditionally been computa-
tionally intensive, producing unreliable results.

3. Method

Given a monocular video, our goal is to estimate the per-
frame camera rotation relative to the world coordinates. We
begin by assuming that the scene satisfies the MW assump-
tion [7], which is valid for a wide range of indoor/outdoor
scenes. Note that it is straightforward to extend our ap-
proach to other world assumptions (e.g. Mixture of Man-
hattan Worlds [43], Atlanta World [41], and Hong Kong
World [32]), given that the principal directions in the world
coordinates are known a priori.

Our method is named U-ARE-ME (Uncertainty-Aware
Rotation Estimation in Manhattan Environments), as it can
be used to complement or replace I-M-U sensors. We lever-
age recent advances in single-image surface normal estima-
tion and propose to infer the camera rotation by aligning the
predicted normals to the world assumption. In Sec. 3.1 we
introduce a new uncertainty-aware optimisation objective
and show how the uncertainty can be learned from data. For
real-time video applications, it is important to ensure tem-
poral consistency in the predictions. We explain in Sec. 3.2
the factor graph formulation required for this.

3.1. Uncertainty-aware rotation estimation from a
single image

Suppose that a surface normal vector ni ∈ S2 corre-
sponding to the i-th pixel is aligned with one of the prin-
cipal directions. Then, for any Manhattan axis r ∈
{±X,±Y,±Z}, the angle θ = cos−1(ni · r) should be
{0◦, 90◦, 180◦}. To this end, Zhang et al. [52] introduced a
cost function E(r|ni) = sin2 θ cos2 θ, which is visualised
in Fig. 2. We modify this cost by multiplying it by some
confidence measure κ.

E(r|ni, κi) = κi sin
2 θ cos2 θ (1)

To learn κ in a data-driven manner, we pre-train a neural
network using the following training loss:

L(ngt
i |ni, κi) = C(κi) + κi sin

2 θ cos2 θ (2)

where ngt
i is the ground truth and θ is the angular error of

the predicted normal ni. C(κ) should be a monotonically
decreasing function of κ to prevent the model from estimat-
ing κi = 0 for every pixel. Another thing to note is that
the second term should be defined only for 0◦ ≤ θ < 45◦.
Otherwise, the loss could be minimised by increasing the
error. To satisfy such constraints, we assume that the sur-
face normal probability distribution can be parameterised as
follows:
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Figure 2. (left) Visualisation of the proposed surface normal prob-
ability distribution for different values of κ. As κ increases, the
distribution becomes more concentrated towards the mean direc-
tion. (right) Visualisation of the cost function defined by a single
axis and another one defined by three mutually orthogonal Man-
hattan axes. The optimisation cost is minimised when the pre-
dicted normals are parallel or vertical to the axes.

p(ngt
i |ni, κi) =

{
θ < π

4 ⇒ D(κi) exp(−κi sin
2 θ cos2 θ)

θ ≥ π
4 ⇒ D(κi) exp(−κi

4 )

where C(κi) = − logD(κi).
(3)

Then, L(ngt
i |ni, κi) can be interpreted as the negative

log-likelihood of the above distribution. D(κ) is a mono-
tonically increasing function of κ as the distribution should
be normalised. During training, the network is encouraged
to increase the value of κ for the pixels with lower error,
thereby encoding the confidence in the prediction. In Fig. 2,
we visualise the proposed distribution for different values
of κ. As the analytic form for D(κ) could not be found, we
obtain the values numerically for κ ∈ [0, 105] and fit them
using natural cubic splines. We use a lightweight convolu-
tional encoder-decoder architecture [1] and use the training
data of [2]. See the supplementary material for additional
details regarding network training.

Given an image with a set of estimated normals and con-
fidence I = {N = {n}i,K = {κ}i}, the next task is to
determine the optimal rotation R ∈ SO(3) that gives the
relative rotation of the camera to the MW frame. Since nor-
mals are predicted densely, evaluating the cost of a rotation
against all normals in the image is prohibitively expensive.
To avoid this, a single weighted average cost function can
be cheaply calculated for the set of all normals and stays
fixed throughout optimisation.

Therefore, using Eq. (1), the modified cost function for
the optimisation becomes:

E(r|I) = 1

|N| ×
∑

K

|N|∑
i

E(r). (4)

At each stage of optimisation, the cost per X, Y, Z axes
of the rotation matrix R = [rx, ry, rz] is evaluated to give
the total cost:

E(R|I) = E(rx|I) + E(ry|I) + E(rz|I). (5)

We use Levenberg-Marquardt (LM) optimisation to min-
imise Eq. (5) (initialised with the identity matrix I3), rewrit-
ing it in terms of the corresponding residual function f(R)
(using the parameterisation in [52]) to obtain the optimal
rotation R∗.

R∗ = argmin
R

E(R|I) (6)

= argmin
R

f(R)⊺f(R). (7)

During optimisation, the analytical Jacobian of the resid-
ual function, Jf (R), is calculated with respect to a pertur-
bation ∆ϕ on the tangent plane (Lie algebra) at the rotation
matrix R i.e. R ◦ Exp(∆ϕ), where Exp(·) denotes the ex-
ponential map of the SO(3) group. Using the Hessian ap-
proximation from the Jacobian in LM optimisation, we can
acquire an approximate measure of the covariance of the
converged rotation matrix ΣR∗

as:

Jf (R
∗) =

∂f(R∗)

∂∆ϕ
(8)

ΣR∗
= H−1 ≈ (Jf (R

∗)⊺Jf (R
∗))−1 (9)

where H is the Hessian matrix approximation.
Having obtained the optimal MW rotation Rmw = R∗⊺

and the uncertainty about this frame, the estimate can then
be used for further downstream tasks. This could be for
bootstrapping visual odometry systems, correcting drift in
inertial pipelines, rectifying images for CNNs, which are
sensitive to image rotation, as well as camera calibration to
name a few. In the following section we address one such
extension, that being to estimate camera rotation across a
sequence of images to achieve a coherent trajectory.

3.2. Multi-frame rotation estimation for temporal
consistency

When estimating single-frame rotation, our method finds
the optimal rotation relative to Identity. The problem with
applying this method consecutively to a sequence of images
is that there will be no temporal consistency between rota-
tions, and therefore when rotating around any single axis,
several MW configurations could satisfy the normal distri-
bution. It is simple to naively initialise the current rotation
Rt, with the optimised rotation from the previous frame
Rt−1 which removes this ambiguity and speeds up conver-
gence of the optimisation. However, two main problems
arise from this initialisation. Firstly, for frames that are less
Manhattan, we have no way of loosening the MW assump-
tion and therefore a single frame’s rotation is only depen-
dent on its own (potentially poorly defined) cost function.
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Multi-frame optimisation (Sec. 3.2)

to output application

Figure 3. The multi-frame optimisation process. Single-frame ro-
tation and covariance estimates are used to initialise a sliding win-
dow factor graph in order to provide temporal consistency between
frames and reject outlier measurements. Robust factors are shown
along orange edges on measurements. The latest frame is then
used to initialise the rotation estimate for the next frame.

Secondly, not all frames in a sequence may optimise to a
consistent minimum and may give erroneous rotations that
initialise subsequent frames with a bad orientation, poten-
tially poisoning the rest of the sequence. In the following
section, we address these issues in order to extend rotation
estimation to sequences of images.

3.2.1 Sliding window optimisation

To tackle both of these issues, we implement a sliding
window optimisation that jointly considers previously es-
timated frame rotations and acts as a support for the current
rotation estimate. To model this non-linear joint optimisa-
tion, we employ a simple factor graph [11] that consists of
factor nodes f ∈ F and variables X = {xt, . . . , xt−n},
where t refers to the latest variable and n defines the length
of the sliding window. The joint distribution p(X ) is repre-
sented as a product of all factors in the graph which, when
considering a Gaussian factor graph, can be solved by the
following minimisation:

X̂ = argmin
X

∑
i

||hi(Xi)− zi||2Σi
(10)

where Xi represents the clique of variables corresponding
to the factor fi, hi(·) represents a function that predicts a
measurement based on the state of input variables, and zi
represents some observed measurement.

For our problem, each variable xi ∈ X represents an
SO(3) rotation Ri ∈ R, and 3 types of factors exist to con-
strain the problem. Firstly, fz(Ri), is a prior factor on each
variable that is set to the rotation estimated from the single-
frame estimation problem, Zi ∈ SO(3). The second fac-
tor, fs(Ri,Rj), is a smoothness factor which enforces that
adjacent frames should have a similar rotation. Finally, an-
other prior factor fp(Ri) is added to the oldest frame in the
sliding window which represents the marginalised state of
the oldest variable in the previous sliding window optimisa-
tion, Rp. This multi-frame factor graph is shown pictorially
in Fig. 3. The minimisation for our problem is therefore
given by:

R̂ =argmin
R

∑
(i,j)∈Fs

||Ri ⊖Rj ||2Σs
i
+ (11)

∑
i∈Fz

||Ri ⊖ Zi||2Σz
i
+
∑
i∈Fp

||Ri ⊖Rp||2Σp
i

(12)

where ⊖ denotes the vector increment (defined on the tan-
gent space of the right hand variable) between two rotations
via the logarithmic map. For ease of implementation, we
use the popular sensor fusion library GTSAM [10] to opti-
mise the multi-frame factor graph based on the definitions
above.

Once R̂ has been computed, the latest frame’s rotation
can then be fed back into the single frame optimisation as
initialisation for the subsequent frame i.e. Rinit

t+1 = R̂t ∈ R̂

3.2.2 Uncertainty and robust estimation

To address the issue of non-Manhattan frames, the covari-
ance estimate from Eq. (9) can be directly applied to each
measurement factor (Σz in Eq. (11)), since Eq. (8) is de-
fined around the global MF upon which we are optimising.
Subsequently, frames which exhibit strong Manhattan nor-
mals will have a greater influence on the result, stabilising
rotation estimates for non-Manhattan frames.

For the smoothness factors, the covariance Σs is set to
an isotropic covariance λI3, where λ is a tuning parame-
ter that defines how strongly the smoothness constraint is
enforced. The covariance for the prior measurement Σp,
is automatically defined by the marginalisation of the last
variable Rt−n in the previous iterations window.

In order to reduce the influence of outlier measurements
due to dropped frames, poor normal predictions, and incor-
rect local minima from the single frame optimisation pro-
cess, we also apply robust factors to all prior measurement
factors fz . We leverage the Huber cost function which rep-
resents a Gaussian energy for small residuals, but transi-
tions to a linear function for large residuals. This effec-
tively dampens the influence of measurements that grossly
disagree with the smoothness model between variables.



Table 1. Quantitative evaluation on ICL-NUIM and TUM RGB-D [deg]. The best single image RGB method is bold and the second-best
is underlined. Italicised averages don’t include failed runs and are not considered for best accuracy metric.

Sequences Ours RGB Single Image Methods RGB VO RGB-D Methods
RMFE*[15] RTMF*[44] ES*[42] H-VP[40] H-VP†[40] ORB[38] GOME[24] Compass[26] E-Graph[33]

Office 0 4.99 4.99 4.97 5.21 1.24 1.00 0.60 5.12 0.37 0.11
Office 1 3.87 89.18 44.59 3.90 3.45 4.79 × × 0.37 0.22
Office 2 2.38 3.35 2.36 41.99 0.91 0.97 0.69 6.67 0.38 0.39
Office 3 2.72 2.84 41.98 2.87 3.69 3.20 2.53 5.57 0.38 0.24
Living 0 8.43 8.36 8.25 11.53 × × 0.35 × 0.31 0.44
Living 1 3.58 91.95 3.81 14.04 7.10 6.37 × 8.56 0.38 0.24
Living 2 2.39 2.45 2.50 2.44 4.17 3.84 0.57 8.15 0.34 0.36
Living 3 5.38 5.64 5.58 57.62 7.23 6.56 0.84 × 0.35 0.36

ICL-NUIM Avg. 4.22 26.10 14.25 17.45 3.97§ 3.82§ 0.85§ 6.81§ 0.36 0.30

Struc notex 4.61 4.55 4.94 7.96 19.10 20.82 × 4.07 1.96 4.46
Struc tex 3.03 3.10 3.18 3.14 11.13 8.25 0.37 4.71 2.92 0.60
Large cabinet 4.54 4.30 4.60 5.20 7.57 6.82 1.13 3.74 2.04 1.45
Cabinet 5.41 40.15 6.27 70.39 33.38 20.90 × 2.59 2.48 2.47
Long office 5.62 5.78 5.98 46.74 14.49 12.73 7.86 × 1.75 -
Nostruc notex 6.93 54.46 27.52 30.77 × × × × × -
Nostruc tex 28.94 24.16 63.62 11.58 31.21 27.81 17.42 × × -

TUM RGBD Avg. 8.44 19.50 16.59 25.11 19.48§ 16.22§ 6.70§ 3.78§ 2.12§ 2.25
*Reimplemented using our predicted normals †Hybrid VP without the gravity prior §Averages excluding failure sequences

However, by maintaining these measurements in the factor
graph, a genuine large change in rotation will be properly
estimated after a few frames of consistent measurements.

4. Experiments

Following previous methods [17, 26, 33], we evaluate the
accuracy and robustness of our method on ICL-NUIM [18]
and TUM RGB-D [45] which cover synthetic and real in-
door scenes, respectively. To assess the wider performance
in challenging real-world scenarios, we also evaluate the
performance on ScanNet [8]. ScanNet images have a signif-
icant amount of noise and blur as they were captured using
hand-held cameras in poorly lit environments. The scenes
are also cluttered with many objects that violate the Man-
hattan World assumption. We do not discard such scenes
and evaluate on all 100 test sequences.

We then also show how our method can be used for up-
vector estimation and compare against methods specifically
designed for this purpose. Further discussion surrounding
using U–ARE–ME for ground segmentation as well as hori-
zon estimation can be found in the supplementary material.

To measure accuracy, each frame is fed into the algo-
rithm sequentially and the estimated rotation is recorded
after each frame. The rotations are then aligned with the
relevant ground truth so that methods that do not estimate
a specific world alignment can also be compared with the
MW-based methods. The metric used for accuracy is the

average rotation error (ARE) and is given by

ARE = cos−1

(
tr(R−1

gt R̂)− 1

2

)
(13)

where R̂ is the rotation estimate and Rgt is the ground truth.
We compare our approach to various monocular rotation

estimation methods. Since we are the first method to di-
rectly use learnt normals from monocular images, we com-
pare against other normal optimisation methods designed
for RGB-D sensors replacing depth with our predicted nor-
mals: RMFE [15], RTMF [44], ES [42]. This is to show the
value of our novel cost function.

We also compare against a recent hybrid vanishing point
method (H-VP) for uncalibrated images [40], which uses a
gravity prior to extract more potential VPs (tested with and
without the prior). As in the original paper, since H-VP only
extracts the Manhattan VPs with no specific X,Y,Z assign-
ment, rotation axes are assigned based on the nearest axis
to the ground truth rotation (which we don’t rely on). This
would not normally be possible on in-the-wild data, giving
H-VP perfect temporal consistency across the sequence –
thus is comparable to our multi-frame approach.

Furthermore, direct comparisons are drawn with the pop-
ular monocular SLAM system ORB-SLAM [38]. Whilst
this is not a single image rotation estimation method and re-
quires accurate intrinsics, it is still one of the most widely
used methods for obtaining accurate real-time odometry
and provides a challenging benchmark from which to draw
conclusions of our work.
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Figure 4. (Top left) U–ARE–ME accuracy comparison on 100 sequences from the ScanNet dataset. Lines show cumulative number of
runs below a certain accuracy threshold. Percentage pass rate is shown for ORB-SLAM, whereby at least X% of frames per sequence must
contain a valid rotation estimate (this includes any initialisation and loss of tracking). (Top middle) ablation study experiments. The blue
line shows the results of the full pipeline. ’single’ means that multi-frame optimisation is disabled and ’no κ’ means that the uncertainty
weighting in the cost function is removed. (Top right) example blurred low-texture image from ScanNet, indicative of the challenging
scenes contained within. (Bottom row) example output from U–ARE–ME and H-VP. Estimated MW rotation from each algorithm are
shown centrally, and in the bottom-middle image white indicates a high confidence.

Lastly, several RGB-D methods (GOME [24], Compass
[26] and E-Graph [33]) are also used in our comparisons
so that we can give context on how accurate our system is
compared to methods that require a depth map.

4.1. Results from ICL-NUIM and TUM RGB-D

The overall results for both the ICL-NUIM and TUM RGB-
D datasets are shown in Tab. 1. U–ARE–ME can accu-
rately estimate a valid trajectory of rotations in 14/15 se-
quences and has on average the best accuracy of the non-
SLAM based monocular methods. Whilst RTMF, RMFE
and ES sometimes show the same accuracy as the proposed
method, the lack of temporal consistency means that they
often shift into a globally inconsistent MF and in many of
the sequences show large errors.

In some sequences the presence of strong line features
mean that VP methods retrieve very accurate results (e.g.
office scenes due to ceiling tiles), however in less textured
scenes and with lower quality images, the line segment de-
tectors of VP methods struggle to acquire enough features
to perform RANSAC reliably. As we use a dense normal
predictor we don’t suffer in these texture-less scenes.

Comparing to the RGB-D methods, the proposed method

is often better than GOME despite only using RGB images,
and whilst we are worse than Compass and E-Graph for the
synthetic ICL-NUIM sequences (which have perfect depth),
we achieve comparable accuracy in some real-world TUM
sequences.

Comparing to ORB-SLAM, for the ICL-NUIM se-
quences in which ORB-SLAM does not fail, we find that
ORB-SLAM is significantly better than all the RGB meth-
ods and is even on par with the RGB-D methods. How-
ever, ORB-SLAM may be unable to initialise or lose track-
ing in texture-less scenes. Such sparse feature-based ap-
proaches also suffer from image degradation. To provide a
further analysis on how different approaches would perform
in challenging, real-world scenarios, we provide the results
on ScanNet in the following section.

4.2. Results from ScanNet

The ScanNet suite provides a large set of real-world se-
quences from which we can draw better conclusions about
the generalisability of our system. We therefore further test
U–ARE–ME on all 100 test sequences and compare again
to H-VP and ORB-SLAM. We then also perform an abla-
tion study on the proposed method.



Fig. 4 (top left) shows the cumulative number of runs
where the mean angular accuracy for a particular sequence
is below a threshold. Since ORB-SLAM is a multi-view
system and therefore will never produce rotation estimates
for every single frame, we show the results of ORB-SLAM
at different success rates e.g. 70% defines that at least 70%
of frames per sequence need valid rotation estimates (the
missing frames being from either initialisation or loss of
tracking). In this regard, we allow ORB-SLAM to lose
tracking and do not consider this an outright failure.

The results show that U–ARE–ME has a much higher
robustness to the ScanNet sequences and will estimate ro-
tations with an accuracy < 10◦ in 80% of the sequences.
Comparing this to ORB-SLAM with a 95% frame thresh-
old which only successfully achieves < 10◦ in 17% of the
sequences. For higher accuracy < 3◦, we find that ORB-
SLAM is more capable in some sequences (10%) whereas
the proposed method achieves at best 3◦. We argue that
this is primarily caused by the accuracy of the surface nor-
mal predictions, e.g. the state of the art [2] reports a mean
normal error of 16.2◦ on ScanNet, and therefore as normal
predictions improve so should our results.

H-VP similarly struggles on ScanNet and is actually hin-
dered by the gravity prior – most likely due to the wide
range of rotations that violate the gravity assumption. Most
of the ScanNet sequences are indoor scenes containing
many blank walls which do not provide strong line features
or point features. VP methods struggle in these scenes, as
shown in Fig. 4 where shadow lines are mistakingly classed
as MW vanishing points. Our normal network however pre-
dicts these regions as planar and also predicts a low con-
fidence (shown in black) so robustly ignores these regions
during optimisation. More generally, in low-texture scenes
normal prediction networks can rely on subtle lighting cues
at the intersection of walls to determine the orientation of
these large planar surfaces.

The ablation study Fig. 4 (top middle), shows that the
overall reliability of the system improves as firstly, the
uncertainty-weighted normals reject non-Manhattan pixels
within the image, and more so secondly, the multi-frame op-
timisation provides a consistent global MF which anchors
the solution across the sequence.

4.3. Up-vector Estimation

Estimating the ‘upward’ direction of a given image is a task
that has been tackled by many recent works and can natu-
rally also be extracted from our method by simply dropping
the yaw component of the rotation matrix. Recent neural
network approaches have shown success in estimating cam-
era parameters such as the up-vector. CTRL-C [30] pro-
poses an end-to-end transformer approach to combine de-
tected vanishing points with learned features. Perspective
Fields (PF) [23] predicts the per-pixel information about

Table 2. Accuracy of the estimated up-vector [◦]. Note that
PF [23] and CTRL-C [30] were trained specifically to estimate
the up-vector.

Sequence U–ARE–ME PF CTRL-C

Living 0 7.53 9.90 12.14
Living 1 2.67 3.17 13.74
Living 2 1.77 4.67 9.71
Living 3 4.01 10.84 7.67
Office 0 3.95 5.52 18.87
Office 1 3.50 4.65 22.32
Office 2 1.61 3.80 15.95
Office 3 2.13 3.95 18.47

the camera parameters, and demonstrated the use of the up-
vector for AR effects such as compositing rainfall and 3D
objects into the scene.

We compare our method against these baselines on the
ICL-NUIM dataset and report the angular difference of the
up-vector in Table 2. As these baseline methods only op-
erate on single RGB images, we perform single frame ro-
tation estimation in our method for a fair comparison. Our
method outperforms the baselines which were trained on
feature-rich image datasets, and is able to more accurately
estimate camera rotation in the relatively texture-less scenes
from the ICL-NUIM dataset.

5. Conclusion

Motivated by the need to provide extrinsic rotation esti-
mates from in-the-wild images and sequences, we have pre-
sented U-ARE-ME, an accurate and robust camera rotation
estimator that operates on uncalibrated RGB images. The
system is capable of outputting estimates for single images
and has also been extended to reliably handle multi-frame
scenarios. An extensive evaluation has been performed and
it has been shown that our method is capable of providing
globally consistent multi-frame rotation estimates which ri-
vals the performance of similar methods that leverage ac-
curate depth maps – all whilst remaining real-time. By ac-
counting for the uncertainty and inherent ambiguity of the
common MW assumption, we are also capable of providing
accurate results on scenes that superficially appear to not
contain structural regularities, and where other 2D feature-
based methods often fail.
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