Published as a conference paper at ICLR 2025

THREE MECHANISMS OF FEATURE LEARNING
IN A LINEAR NETWORK

Yizhou Xu', Liu Ziyin>?>

LComputer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne
2Research Laboratory of Electronics, Massachusetts Institute of Technology

3Physics & Informatics Laboratories, NTT Research

ABSTRACT

Understanding the dynamics of neural networks in different width regimes is cru-
cial for improving their training and performance. We present an exact solution for
the learning dynamics of a one-hidden-layer linear network, with one-dimensional
data, across any finite width, uniquely exhibiting both kernel and feature learning
phases. This study marks a technical advancement by enabling the analysis of
the training trajectory from any initialization and a detailed phase diagram under
varying common hyperparameters such as width, layer-wise learning rates, and
scales of output and initialization. We identify three novel prototype mechanisms
specific to the feature learning regime: (1) learning by alignment, (2) learning
by disalignment, and (3) learning by rescaling, which contrast starkly with the
dynamics observed in the kernel regime. Our theoretical findings are substan-
tiated with empirical evidence showing that these mechanisms also manifest in
deep nonlinear networks handling real-world tasks, enhancing our understanding
of neural network training dynamics and guiding the design of more effective
learning strategies.

1 INTRODUCTION

It has been shown that for a neural network under certain types of scaling towards infinite width (or
certain parameters), the learning dynamics can be precisely described by the neural tangent kernel
(NTK) dynamics (Jacot et al., 2018), or the “kernel regime.” We say that a model is in the kernel
regime if the NTK of the model remains unchanged throughout training, and the learning dynamics
is linear in the model parameters. When the learning dynamics is not linear, we say that the model
is in the feature learning regime. Since then, a lot of works have been devoted to the study of how
the kernel evolves during training as it sheds light on nonlinear mechanisms of learning (Liu et al.,
2020; Huang et al., 2020; Huang & Yau, 2020; Chen et al., 2020; Baratin et al., 2021; Atanasov
et al., 2021; Geiger et al., 2021; Bordelon & Pehlevan, 2022; Simon et al., 2023).

Despite this progress, a comprehensive theory that accurately characterizes both the kernel and
feature learning dynamics in finite-width models remains elusive. Most existing works focus on
infinite-width settings, where the behavior of the network simplifies, but do not extend well to finite
configurations. This gap leaves several theoretical and practical questions about the fundamental na-
ture of learning in neural networks unanswered. Specifically, there is a lack of analytically solvable
models that can exhibit both NTK and feature learning dynamics, which are crucial for understand-
ing how real-world neural networks learn and adapt. Our main contributions are

* We analytically solve the evolution dynamics of the NTK for a minimal finite-width model with
arbitrary initialization. The model we analyze is a one-hidden-layer linear network, which, de-
spite its simplicity, has a non-convex loss landscape and strongly coupled dynamics. Prior to our
work, the exact solution for its learning dynamics was unknown.

* Based on our exact solutions, we identify three novel mechanisms of learning that are exclusive
to the feature learning phase of the network.

» Using our exact solutions, we provide phase diagrams that distinguish between the kernel phase
and the feature learning phase, for both finite and infinite width models.

" Authors are listed alphabetically.

Published as a conference paper at ICLR 2025

* We empirically validate the three mechanisms of feature learning and our phase diagrams in
realistic nonlinear networks.

This work is structured as follows. We introduce related literature in Section 2 and Appendix A. Our
model and solution are presented in Section 3.1, followed by three mechanisms of feature learning
in Section 3.2 and 3.3. Section 4 gives the phase diagram that separates feature learning phase and
kernel phase. Proofs are provided in Appendix B. Experimental details are given in Appendix C.

2 RELATED WORK

Kernel and feature learning. Under the NTK scaling, it is shown that NTK remains unchanged in
the infinite-width limit (Jacot et al., 2018; Lee et al., 2019; Arora et al., 2019b), where the network is
asymptotically equivalent to the kernel regression using NTK. Higher order feature learning correc-
tions of the NTK have also been studied (Hanin & Nica, 2019; Dyer & Gur-Ari, 2019; Andreassen
& Dyer, 2020; Roberts et al., 2022). An alternative to the NTK parameterization is the mean-field
(or 1 P) parameterization where features evolve at infinite width (Mei et al., 2018; Yang & Hu, 2020;
Bordelon & Pehlevan, 2022). Within this literature, the works closest to ours are those computing
finite width corrections (Pellegrini & Biroli, 2020; Pham & Nguyen, 2021; Bordelon & Pehlevan,
2024). However, these results are perturbative in nature and applicable when the width is large. Our
study has the same goal of understanding the learning dynamics but with a different approach. We
analytically solve a model that admits analysis both when the model size is finite and infinite.

Linear networks. Linear networks have been extentively used as toy models to understand com-
plex dynamics of nonlinear networks. For example, they provide significant insights into the loss
landscape (Baldi & Hornik, 1989; Ziyin et al., 2022), optimization (Saxe et al., 2013; Huh, 2020;
Tarmoun et al., 2021; Braun et al., 2022), generalization (Lampinen & Ganguli, 2018; Gunasekar
et al., 2018) and learning dynamics (Arora et al., 2018; 2019a; Ziyin et al., 2024) of neural networks.
Closely related to ours are Saxe et al. (2013), Braun et al. (2022), and Atanasov et al. (2021), which
solve the learning dynamics of linear models under special initializations. Mathematically, previ-
ously known results are particular solutions to the differential equation, whereas our solution is a
general solution. A contemporary paper (Kunin et al., 2024) studies the exact solution in case of one
hidden neuron, whereas our result applies to arbitrary number of neurons. Another contemporary
paper (Beneventano & Woodworth, 2025) analyzes the finite stepsize effect for the same model.

3 AN EXACTLY SOLVABLE MODEL

3.1 PROBLEM SETTING AND SOLUTION

Let us consider a two-layer network with power activations f(x) =y Y%, ui(Z;lgl w;jx;)P, where
dy is the input size, d is the network width, « and W are the weight vector/matrix of the second and
the first layer, respectively, and v is a normalization factor. We first show that the learning dynamics
of this network can be reduced to a 1d dynamics for any /3, and then solve the dynamics exactly for
the linear network case where 5 = 1.

We consider the following network trained on the MSE loss:
- d do
L(u,W) =Ez| (v D wi(D) wi;i;)? - y())?|,)]
=1 j=1

where we treated the target y as a function of z. E denotes the averaging over the training set.
The training proceeds with the gradient flow algorithm. We allow the two layers to have different
learning rates, 7,, and 7,,:

dui oL dwij oL

= Nu3> ="Nw7 - 2
dt K 8’&1 dt K awq;j ()

We restrict to when the data lies on a 1d subspace, and the following proposition shows that the
learning dynamics under Eq.(1) is equivalent to that under a simplified loss.
Proposition 1. Let & = an, where a € R is a random variable and n is a fixed unit vector. Let

z=+/E[Z?|nand y = EZv@] Then, the gradient flow of Eq.(1) equals the gradient flow of

VE[Z2]
d do 2
Lu, W) = [v Y u (3 wijz;)’ -y 3)
=1 j=1

Published as a conference paper at ICLR 2025

The following theorem gives a precise characterization of the dynamics of u and W for arbitrary
initialization and hyperparameter choices.

Theorem 1. Let

pi(t) = o5 (V1w 252 wig (D) + /B pui(t)), @
6 (1) = 55 (/M £ wig () =/ Birwpui(t)),
where p = i >0, 2.

1. (Analytic Reduction to 1d Dynamics) The solution of the gradient flow can be given by the
solution of the following ODE

. d
20 _ o /Bt (wﬁ(ﬂnsnm1/2Z(pj(w—cj/pju))(pj(t)+cj/pj<t>>ﬁ—

dt j=1

4)
with p;(t) = F; ' (Ai(t) = Ay(0) + A;(0)) forall i, j = 1,2, -, d, where

)= [_de ©)

x(x +c;fx)P1’
F1 denotes the inverse function of F;, ¢; := p;(0)q;(0). The initial conditions are A;(0) =
Fi(pi(t)).
After solving A;(t), the weight vector/matrix are given by
() = L () 0
u;(t) M(pz(t) ai(t)), N
wig (1) = w3 (0) + (pit) + (1))
where p;(t) = 7 (Ai(1)), 4i(t) = 5%

2. (Exact Solution of Linear Net) Let P := % Z?zlpj(O)Q, Q=1 Zj—l=1 qj(0)% For B=1,if P #0,
the solution is

)

g+ Q- 1/2
pi(t)=pi(0)[%((tt))] ; ®
() = g 0 a++§(t)a_ _1/2
a(t) = ai()[71—&) |
where!
§(t) = eXp(atfte), ©)

te=1/ (\/77u77w'y2p2y2 +4p*(12d)2PQ) (10)

1
= S0y Ve). (n

Remark. Theorem 1 does not impose specific assumptions on the width of the network or the ini-
tialization of the parameters. Moreover, it does not impose more assumptions on the data or labels,
as long as the data lie in a one-dimensional subspace. For the rest of the paper, We focus on the case
B =1 as it admits simpler and more human-interpretable solutions (8), which will be the starting
point of all following results. Some special cases of [, including 8 = 2,3 are also in principle solv-
able, but it is difficult to write the results in a comprehensible form for a large width and we leave
it to a future work to study these cases in detail. Our focus will be on the optimization dynamics of
this network, even though it is also possible to discuss generalization with this solution — we briefly
touch on this in Appendix D.

Let us begin by analyzing each term and clarifying their meanings. In the theorem, we have trans-
formed u; and w;; into an alternative basis p; and ¢;, and £(¢) is the only time-dependent term. Note
that ¢ decays exponentially towards zero at the time scale ¢..

The constants oy v = @/ P are two asymptotic scale factors. In the limit ¢ - oo, we have that
pi(o0) = pi(0)v/ax, gi(o0) = gi(0)/\/a. (12)

"Because a; > 0, £(¢) < 1. So, (8) is well defined. Also, See Appendix B for the case P = 0.

Published as a conference paper at ICLR 2025

This directly gives us the mapping between the initialization to the converged solution. Unlike a
strongly convex problem where the solution is independent of the initialization, we see that the
converged solution for our model is strongly dependent on the initialization and on the choice of
hyperparameters. Perhaps surprisingly, because « in (11) are functions of the learning rates, the
converged solution (12) depends directly on the magnitudes of the learning rates. This directly tells
us the implicit bias of gradient flow for this problem. Another special feature of the solution is that
for any direction orthogonal to z, the model will remain unchanged during training. Let m L =z,
we have that 3 w;;(t)m; = ¥ w;;(0)m;. Namely, the output of the model in the subspace where
there is no data remains constant during training.

In the theorem, what is especially important is the characteristic time scale ¢., which is roughly
the time it takes for learning to happen. Notably, the squared learning speed .2 depends on two
competing factors:

-2 _ 2 2 2 40 2 1\2
te = NulwY"P7Y + 4p (v d)"PQ
———
contribution from feature learning contribution from kernel learning

The first factor depends on the input-output correlation and learning rate, which we will see is
indicative of feature learning. The second term depends only on the input data and on the model
initialization. We will see that when this term is dominant, the model is in the kernel regime. In fact,
this result already invites a strong interpretation: the learning of the kernel regime is driven by the
initialization and the input feature, whereas the learning in the feature learning regime is driven by
the target mapping and large learning rates.’

Using this theorem, one can compute the evolution of the NTK. Note that when different learning
rates are used for different layers, the NTK needs to be defined slightly differently from the conven-
tional definition. For the MSE loss, the NTK is the quantity K that enters the following dynamics:

df;f) =2K(z,2")(f(«’) - y). This implies that for our problem,

K(z,2";t) = 2" (nu W ()" W (&) + nullut)|T)a’, (13)

which follows from Eq. (2) and (3), where W stands for the matrix with elements w;;. w(t) and
W (t) are obtained via Egs. (7) to (11). While the overall formula for the NTK dynamics is quite
complex, we will provide the conditions concerning when it evolves with an O(1) amount in Section
4. When n,, = 1, our definition agrees with the standard NTK.

3.2 LEARNING BY ALIGNMENT AND DISALIGNMENT

Before we discuss the various phase diagrams implied by Theorem 1, we first focus on an interesting
effect predicted by this theorem, which differentiates it from previous results on similar problems.
We first set « to be 1d, because Theorem 1 suggests that the dynamics of GD training has only a rank-
1 effect (i.e. p and q are two effective weight vectors). Numerical results for non-1d x are presented
at the end of this subsection. A quantity of theoretical and practical interest is ¢ (¢) := u” w/||ul|||w]],
which represents the cosine similarity between v and w. Recent works have identified the alignment
between the weight and representation after the training starts as a mechanism for feature learning
(Everett et al., 2024). Studying the evolution of ¢ thus offers a direct clue of how this alignment
happens. This quantity is especially interesting to study because it tells us how well-aligned the two
layers are during training. Notably, this quantity vanishes as d — oo if and only if the model is in the
kernel regime (Theorem 2), so it serves as a great metric for probing how feature learning happens.

ar+la

Letting = = 1 and denoting «(t) = w3

, we have by Theorem 1:

: a(t)P - QJa(t) |
V(@) P+Qfa(t))? - (3 T pig.)?

¢(t) (14)

2 Another pair of important quantities are P and Q, which are essentially the initialization scales of the
model. For 7, = 7y, a small P implies that w;(0) ~ —u;(0) for all 7, which implies that the model is close
to anti-parallel at the start of training. Likewise, a small @ implies that w;(0) ~ wu;(0) for all 7; namely, the
two layers start training when they are approximately parallel. When both P and @ are small, the model is
initialized close to the origin, which is a saddle point. We will also see below that in the kernel regime, we
always have @ = P.

Published as a conference paper at ICLR 2025

kernel phase —— orthogonal init.
—— feature learning phase near orthogonal init.
Linear ReLU Sigmoid Swish Leaky ReLU
1
g
g 0.5 0.54 0.54 0.51
D
=
0.018r 0.0 0 1 0.0 1 0.01
0 1000 O 1000 o 1000 O 1000 0 1000
iteration iteration iteration iteration iteration
= 1.0 1.00 1.00 1.00 1.00
£
2 051 0.75 0.75 0.75
& N 0.95
0 2000 0 2000 0 2000 0 2000 0 2000
iteration iteration iteration iteration iteration

Figure 1: The evolution of ¢ of two-layer networks with different settings. Specifically, we test linear, ReLU,
sigmoid, swish, and leaky ReLU activations for both alignment (upper) and disalignment (lower) cases. For
the linear network, we show the theoretical predictions obtained from (14) as lines and experimental results as
points. The results for nonlinear networks are qualitatively similar.

where 4p;q; = u? — w? = const does not change during training. In general, the angle evolves by

2=
an O(1)? amount during training*. In fact, the angle remains unchanged only in the orthogonal

initialization case or in the kernel phase, where a(t) = 0/1 throughout training (see Appendix C).

For Gaussian initialization, an intriguing fact is that layers tend to align in the feature learning
phase, while the alignment remains asymptotically zero for the kernel phase (see Section 4 for
more formal definitions of the phases). Assuming P ~ @ and Z;izl p;q; ~ 0, which holds for d

2 2
sufficiently large, (14) leads to ((t) ~ 3821 , Z%& In the
feature learning phase, two terms in (10) are of the same order (see Section 4), so we can assume

VTl py > 2K p?>~y2dP without loss of generality, where K is a certain positive constant. This

%. On the other

hand, in the kernel phase, ., ~ 1, and thus ((¢) = o(1). Therefore, in the kernel regime, the two
layers are essentially orthogonal to each other throughout training. This suggests one mechanism
for the failure of the kernel learning phase. For a data point z, the hidden representation is wz, but
predominantly many information in wz is ignored after the the layer . This implies that the model
will have a disproportionately larger norm than what is actually required to fit the data, which could
in turn imply strong overfitting.

which monotonously changes from 0 to

further leads to a non-zero lower bound of the final alignment ((o0) >

When the two layers are initialized in a parallel way. This setting is often called the “orthogonal
initialization” (Saxe et al., 2013). In the orthogonal initialization, u is parallel to w, and so p; = Cg;
for a constant C'. In this case, it is easy to verify that ((¢)? = 1, meaning that u and w remain parallel
or anti-parallel throughout training.

In general, we might be interested in whether the alignment increases or decreases. Our solution

implies a rather remarkable fact: (is always a monotonic function of ¢. To see this, its derivative is
A (P+3)APQ- (5T pia)?) (15)
do [(a(t)P+Q[a(t)? - (3 Lpia;)?]*?

When v and w are parallel, this quantity is zero, in agreement with our discussion about orthogonal

initialization. When they are not parallel, we have that 4PQ) — (% Y pigi)? > 0 by the Cauchy

inequality, and thus d¢/da > 0. Because «(t) monotonically evolves from 1 to a, > 0, the evolution

of { is also simple: {(¢) monotonically increases if «, > 1 or, equivalently, if

2

VY 4 VMY + Q 51 (16)
2vdpP 2vdpP P

and monotonically decreases if o, < 1. ¢ does not change if oy = 1.

*It is because a/(t) changes from 1 to av; during training. In the feature learning phase, o = O(1), so the
angle evolves by O(1). See the proof of Theorem 2 for more details.

‘f(x) = O(g(x)) means thatf(z) = O(g(x)) holds almost surely.

Published as a conference paper at ICLR 2025

09
0.9 layer 1&2
layer 2&3
0.8
0.8 layer 3&4
" [
0.7
layer 1&2 0.7 1w AN S T
06 layer 2&3 06
layer 384
0 200 400 600 800 1000 1 2 3
iteration o
(a) alignment in a 4-layer FCN (b) alignment vs. initialization scale

Figure 2: The alignment angle ¢ between different layers of a four-layer FCN with ReLU activation trained
on MNIST. (b) shows the final alignment for different initialization scale o, while (a) shows training curves
corresponding to o = 1. The dashed lines in (b) show the initial alignment. See Appendix C for experiments
on a six-layer network.

1500
.08
Q
@ £ 1000
% — o=1 | 3
206 — 0=5 500
— 0=10
0.4 0
0 50 100 150 200 0 50 100 150 200
epoch epoch

Figure 3: The initialization scale o correlates negatively with the performance of Resnet-18 on the CIFAR-10
dataset. Left: test accuracy. Here, o is a constant multiplier we apply to the initialized weights of the model
under the Kaiming init. Right: the norm of all weights. While all models achieve a 100% training accuracy,
models initialized with a larger scale converge to solutions with higher weight norms, which is a sign that the
layers are misaligned.

When does condition (16) hold? Let us focus on the case y > 0 because the theory is symmetric
in the sign of y. The first observation is that it holds whenever () > P, which is equivalent to
1T (0)w(0) < 0. Namely, if the model is making wrong predictions from the beginning, it will learn
by aligning different layers. Moreover, this quantity also depends on the balance of the two learning
rates. Notably, when the learning rates for the two different layers are the same, the change in ¢
is independent of the learning rate. The dependence on the learning rate becomes significant once
we use different learning rates on the two layers. For example, when 7,, > n,, (or vice versa), this
condition depends monotonically and (essentially) linearly on 7,,, and making n,, close to 7,, has
the effect of making the two layers more aligned.

Why does the alignment effect depend on the ratio @/ P? Because when @ is small, the model layers
are initialized to be aligned and are likely to make predictions that are too large, and the learning
process necessarily involves decreasing the model output on the data points, which can be achieved
in one of the two ways: (1) decrease the scale ||u|/|w|, or (2) decrease the alignment (. When
condition (16) is not satisfied, GD employs both mechanisms for learning. Lastly, it is also worth
noting that for this problem, SGD has been shown to converge to a perfectly aligned distribution of
solutions (Ziyin et al., 2023). This comparison thus shows a qualitative difference between GD and
SGD - using GD, alignment is a strong function of the initialization, whereas in SGD, the alignment
is quite independent of the initialization. The difference between SGD and GD is of order 1 in this
problem, even if the noise is very small.

See Figure 1, where we show that the evolution of { of two-layer networks with d = 10000. It is
trained on a regression task. Similar experimental results are observed for a classification task trained
with the cross-entropy loss (Appendix C). We choose v = 1/ \/d for the kernel phase and v = 1/d
for the feature learning phase. The initial weights are sampled from i.i.d. Gaussian distribution
N(0,1). Therefore, we have P ~ @ and the initial ((0) ~ 0. From (11) we have o, > 1 ify > 0,
so ¢(t) monotonically increases, but the increase is negligible in the kernel phase. Therefore, in this
case, the model learns features by alignment. Meanwhile, the orthogonal initialization remains 1 as
predicted. In the near orthogonal case of Figure 1, we set ((0) ~ 1 and the initial model output to be
large. As predicted, ¢(¢) monotonically decreases. In this case, the model learns by disalignment.
From Figure 1, we also see that this phenomenon holds for all non-linear activation functions.

Published as a conference paper at ICLR 2025

The layer alignment and disalignment effects can be generalized to higher dimensions, deeper net-

works and non-linear activations. Here, we define := %, where U, W are the weight matrices
of two consecutive layers and the L2 norm for matrices is used. See Figure 2 for a four-layer fully
connected network (FCN) with ReLLU activation and different initialization scales trained on MNIST
datasets. Figure 2 (a) shows that the alignment between consecutive layers increases during training,
and Figure 2 (b) demonstrates that layers stop being aligned for large initialization. These results

are consistent with simpler settings, verifying the generality of the discovered mechanism.

3.3 LEARNING BY RESCALING

Learning can also happen by rescaling the output. The evolution of ||u|| and ||w|| are given by

Q d Q d
lull? = d(as P+ =) =23 pigs, |Jw]]* = d(as P+ =) +2 Y pig;,
Qi i-1 ay i=1

and, thus, d‘JZT = d|c|l";“‘+|2 =d(P - a%), which is positive when ¢ > 0, and negative when ¢ < 0.
Thus, the rescaling coincides with the alignment, namely, ||u|| and ||w|| become larger when they
are being aligned (|¢| gets larger), and become smaller when they are being disaligned (|| gets

smaller). More explicitly, (1) P > Q and oy > 1, or P < Q and oy < 1, or P = Q: ||u|| and ||w||
monotonically increase. (2) P> Q and 1> oy >/Q/P,or P < Q and 1 < oy <+/Q/P: ||u|| and

||w|| and monotonically decrease. (3) P > Q and oy < \/Q/P, or P < Q and ay > \/Q/P: ||ul|
and ||w|| first decrease, and then increase. (4) o, = 1: everything keeps unchanged. Again, in the

kernel phase, the scale change of the model vanishes. In the orthogonal initialization, however, this
quantity changes by an O(1) amount. Therefore, the orthogonal initialization essentially learns by
rescaling the magnitude of the output.

3.4 HOW DOES FEATURE LEARNING HAPPEN?

The analysis thus suggests three mechanisms for feature learning, all of which are absent in the
kernel phase. The first two mechanisms are the alignment and disalignment in the hidden layer,
which is driven by the initialization balancing between the two layers. The second mechanism is the
rescaling output, which is a simple operation and is unlikely to be related to learning actual features.
This argument also agrees with the common technique that even if we normalize the layer output,
the performance of the network does not deteriorate (Ioffe & Szegedy, 2015).

The second question is whether we want alignment or disalignment. The intuitive answer seems to
be that alignment should be preferred over disalignment. Because aligned layers require a smaller
model norm to make the same prediction, whereas a disaligned model requires a very large model
norm to make the prediction. Our theory thus offers a mechansism of how relatively smaller initial-
ization is often more preferable in deep learning — when the model has an overly large initialization,
it will learn by disalignment, whereas a small initialization prefers alignment. This is in agreement
with the common observation that a larger initialization variance correlates strongly with a worse
performance (Sutskever et al., 2013; Xu et al., 2019; Zhang et al., 2020). The parameterization in
Yang et al. (2022) ensures that activations are O(1) at initialization, which could avoid disalignment
problems. This is distinct from the NTK/feature-learning explanation, which suggests that larger
initializations push the model towards the kernel regime, as discussed in Section 4.2 of our paper.
In the kernel regime, alignment and disalignment effects are not present. Thus, our explanation is
particularly relevant for cases where the initialization is large but not large enough to push the model
into the kernel regime. While our explanation complements existing theories, it provides a distinct
angle on the role of initialization in training dynamics.

A numerical result is presented in Figure 3, where a larger initialization leads to worse performance.
Note that this example can only be explained through the disalignment effect because (1) the model
achieves 100% train accuracy in all settings, yet (2) a larger initialization leads to a larger norm at
the end of the training, which also correlates with worse performance. Another piece of evidence
is the commonly observed underperformance of kernel models. In the kernel phase, the model
norm diverges and the model alignment is always zero, which could be a hint of strong overfitting.
Therefore, our theory suggests that it would be a great idea for future works to develop algorithms
that maximize layer alignment while minimizing the change in the output scale.

Published as a conference paper at ICLR 2025

4 PHASE DIAGRAMS

Our theory can be applied to study the learning of different scaling limits, where we scale the hyper-
parameters with a scaling parameter k — co. Here, « is an abstract quantity that increases linearly,
and all the hyperparameters including the width are a power-law function of x. Conventionally,
is the model width; however, this excludes the discussion of the lazy training regime in the theory,
where the model width is kept fixed and the scaling parameter is the model output scale ~.

We first establish the necessary and suffi- Table 1: Phases of learning in different scaling limits. For
cient condition for learning to happen: the brevity, the learning rates of the two layers are set to be equal.
learning time ., needs to be of order ©(1). The first block shows that the models can be frozen or unsta-
ble if we do not scale 1 accordingly. The second block shows
that one can always choose 1 such that the model training
. . . . is stable and does not freeze. The third and fourth blocks
dlscrete-tlmg SGD .algorlthm' will be un- show that one can always choose a pair of 1 and v such that
stable, a point that is first pointed out by the model is either in the feature learning phase or the ker-
Yang & Hu (2020). Therefore, we first pe] phase. MF refers to the mean-field scaling in (Mei et al.,
study the condition for t. to be of order 2018) and lazy refers to the scaling in (Chizat et al., 2018).
1, which is equivalent to the condition that

When it diverges, learning is frozen at ini-
tialization. When it vanishes to zero, the

(assuming x, y are order 1) scaling NTK MF Xavier Kaiming lazy
Nunwy? + (Y2d)?PQ =0(1). (17) ca 1 1 1 1 0
T) y 172 -1 0 0 1
For Gaussian initialization u;o ~ N (0,02) Ca 0 0 1 -1 0
and wyp ~ N(0,62), P and Q Cu 0 0 1 0 0
are random variables with expecta- cn 0 0 0 0 0
tion (7,02 + n,02)/4 and variance phase | kernel frozen learning unstable unstable
(Nwo? +n,02)?/8d. Generally, all hy- cn 0 T 0 -1 2
perparameters are powers of x: d oc K%, phase | kernel learning learning kernel kernel
v oo KO, 02 o K%, 02 o KO, o 1 1 0 1 0
cy Cny, S : : c -1 -1 0 -1 0
Nw o< K7 and 1, o< K. For simplic- v
. . . . phase |learning learning learning learning learning
ity, we set the input dimension dj to be a = 0 0) 5)
n
constant. E RV, B Vi 1 0 1
Equation (17) implies phase | kernel kernel kernel kernel kernel
max {2¢y + ¢y, + Cy, s 26y + cq + max{c,, + Cy,Cy, +Cu)} =0. (18)

Whatever choice of the exponents that solves the above equation is a valid learning limit for a neural
network. The phase of the network depends on the relative order of the above two terms.

Definition 1. A model is in the kernel phase if (1) Eq. (13) is independent of t as Kk — oo (2)
NTK =0(1)°

When t. = ©(1), a model is said to be in the feature learning phase if it is not in the kernel phase.

Theorem 2. When Eq. (18) holds, a model is in the kernel phase if and only if lim,_, . P/Q =1,
a.s.. and
cq +max{cy, +Cy,Cpn, +Cw} > Cy, +Cy,, - (19)

The necessary condition P ~ () for the model being in the kernel phase is interesting and highlights
the important role of initialization in deep learning. There are three common cases when this holds:

1. d - oo and ug and wy are independent (standard NTK);
2. d is finite and the initial model output is zero: Zle Z‘jﬁl u;w;;z; = 0 (lazy training)
3. dis finite, K = oo and ¢, + ¢y, # Cy + Cp,

The first case is the standard way of initialization, from which one can derive the classic analysis of
the kernel phase by invoking the law of large numbers. The second case is the assumption used in
the lazy training regime (Chizat et al., 2018). (Chizat et al. (2018) assumes ¢, = 1, ¢,,, = ¢;, = —2
and ¢, = ¢, = 0, satisfying the conditions of the exponents (18) and (19).) This case, however,
relies on a special initialization, and thus our results better illustrate the occurrence of the kernel

>Note that the solution in Theorem 1 is invariant under the transform ¢, — ¢y, + 6, ¢y = Cu + 6,¢, —
¢y — 20, ¢y, =y, +20,cy, = cy,, + 20, corresponding to the abc symmetries in Yang & Hu (2020).
SThis requires v2 (9, W W + n|ju||*I) = ©(1).

Published as a conference paper at ICLR 2025

=== mean field
0.55 —— NTK
8 :; W —— Kaiming ~
© NG PR
% 0.50 gl = ===+ Kaiming
2 = -==- Xavier*
0.45 —— Xavier
0 20000 d40000 60000 10? 10° d 10*

Figure 4: A two-layer fully connected ReLU net with d neurons trained on the CIFAR-10 dataset for 10000
epochs with batch size 128. The kernel phase is shown in solid lines and the feature learning phase is shown
in dashed lines. As the theory predicts, both types of initialization can be turned into either the feature learning
or the kernel phase by choosing different combinations of v and 7. Left: the best test accuracy during training.
Right: relative distance from the initialization.

phase for advanced initialization methods where different weights can be correlated. The third case
happens when the learning rate and the initialization are not balanced. This suggests that to achieve
feature learning, one should make sure that the learning rate and the initialization are well balanced:
Cy = Cyp-

In conclusion, the overall phase is (1) kernel phase, if the first term in (18) is strictly smaller than
the second term: 0 = 2¢, + cq + max{cy,, + Cu,Cy, + Cw} > 2y + Cy, + €y, and lim, oo P/Q =1,
(2) feature learning phase if otherwise. A key difference between these two phases is whether the
evolution of the NTK is O(1), or equivalently whether the model learns features.

The following corollaries are direct consequences of Eq. (18).
Corollary 1. For any ¢y, ¢, and ¢, choosing c,, = c,, = min{-c,,-2c, — ¢q — max{cy, ¢y} }
ensures that the model is stable.

Corollary 2. For any ¢, and c,, choosing c,,, = ¢, = ¢y and ¢y = —c, with ¢,y > cq + max{cy, Cy }
leads to a feature learning phase.

Corollary 3. Assume lim,,_,., P/Q = 1. For any ¢, and c,,, choosing c., = —% (cqg + max{cy,cy}+
Cy) and ¢, < cq +max{cy, ¢y } leads to a kernel phase.

They imply two important messages: for every initialization scheme, (1) one can choose an optimal
learning rate such that the learning is stable; (2) one can choose an optimal pair of learning rate and
output scale ~ such that the model is in the feature learning phase. Point (1) agrees with the analysis
in Yang & Hu (2020), whereas point (2) is a new insight we offer. See Table 1 for the classification
of different common scalings. We choose scalings according to Corollary 2 and 3, to turn each
model into the feature learning or the kernel phase. Table 1 is closely related to the Tensor programs
framework (Yang & Hu, 2020; Yang et al., 2022; Yang & Littwin, 2023). The key difference is
that our results apply to finite-width networks with arbitrary initialization, whereas Tensor programs
assume infinite width and Gaussian initialization.

4.1 PHASES DIAGRAM OF INFINITE-WIDTH MODELS

Now, let us focus on the case k = d — oo (cq = 1), corresponding to the infinite width limit in the
NTK and feature learning literature (Jacot et al., 2018; Li et al., 2020; Yang & Hu, 2020).

See Figure 4. We implement a two-layer FCN on the CIFAR-10 dataset with ReLLU activation.
We run experiments with the scalings of the standard NTK, standard mean-field, Kaiming model,
and Xavier model. c, and ¢, are chosen according to Table 1. Here, we use the superscript + to
denote the type of scaling that leads to a feature learning phase, and — denotes the kernel phase.
For the Kaiming and Xavier model, we choose both cf7 and c%, and refer them as Kaiming* and
Xavier®, respectively. The left figure shows that turning the Kaiming model into the feature learning
phase improves the test accuracy by approximately 5%, similar to the gap between the standard
NTK model and the mean-field model. Meanwhile, turning the Xavier model into the kernel phase
decreases the test accuracy by approximately 10%. This is because the fixed kernel restricts the
generalization ability in the kernel phase, and the difference between these models in the kernel
phase might be attributed to their different kernels. The right figure asserts that there is a power

law scaling of the weight evolution le/;/i‘(/)VoH oc d~°, and we can predict that § = 0 for the feature

learning phase, and § = 0.5, 1, 2 for NTK, Xavier~ and Kaiming~, respectively, which are perfectly
consistent with the numerical results (6 = 0.47,1.08,1.93). See Appendix B.4 for details.

Published as a conference paper at ICLR 2025

10 /\ \
., 1o
§0.8 g "
é feature learning | 50 10-4| feature learning TK
®0.6] _ 2
______ -~ 10—7
\\s T TTEEm—
0.4 -
-5 0 5 -5 0 5
Cw Cw

Figure 5: A two-layer FCN with different initialization scales trained on the CIFAR-10 dataset. We see that
finite-width models can also exhibit qualitative differences between the feature learning and the kernel phases
when other hyperparameters are scaled toward infinity. Notably, this scaling is different from the lazy training
scaling, implying that there are numerous (actually infinitely many) ways for the model to enter the kernel
phase, even at a finite width.

Thus, in agreement with the theory, choosing different combinations of the output scale « and 1 can
turn any initialization into the feature learning phase. This insight could be very useful in practice,
as the Kaiming init. is predominantly used in deep learning practice and is often observed to have
better performance at common widths of the network. Our result thus suggests that it is possible to
keep its advantage even if we scale up the network. Further, our results also imply that any valid
learning regimes transfer well when the model gets larger, while in the feature learning phase, a
larger model generally leads to better performance. This is consistent with Yang et al. (2022).

4.2 PHASE DIAGRAM FOR INITIALIZATIONS

Now, we study the case when d is kept fixed (c¢q = 0), while other variables scale with kK — co. In
this case, the phase diagram is also given by Theorem 2. See Figure 5 for an experiment. We set
¢y = max{0, ¢, } and ¢, = min{-¢,,/2,0}. This choice satisfies (18). By Theorem 2, the network
is in the kernel phase if and only if ¢,, > 0.

One important example for this section is the lazy training regime, where ¢, = ¢, = ¢4 = 0, and we
can choose ¢, = 1 and ¢,, = -2 according to Corollary 3, leading to a kernel phase in finite width.
Another example is to consider large initialization, i.e., ¢,, = ¢, = ¢ > 0. In this case, we can choose
¢, = cand ¢, = —c according to Corollary 2, leading to a feature learning phase. Actually, this
choice of the normalization factor v cancels out the scaling of the initialization. On the other hand,
if we choose v = 1 as commonly done, we have to choose ¢, = —c according to Corollary 3, leading
to a kernel space. This might be another possible explanation that larger initialization often leads
to worse performance empirically. Like before, we implement a two-layer fully connected ReLU
network on the CIFAR-10 dataset with d = 2000. We choose x = 10 for illustration purposes. A clear
distinction is observed between the feature learning phase and the kernel phase. (1) In Figure 5(a),
the training accuracy can reach 1.0 in the feature learning phase but not the kernel phase, because the
NTK in the kernel phase is fixed, and thus the best training accuracy is limited by the fixed kernel.
(2) As discussed in the previous section, the test accuracy In Figure 5(a) is about 5% higher in the
feature learning phase due to its trainable kernel. (3) In Figure 5(b), the weight matrices evolve
significantly in the feature learning phase but not the kernel phase.

5 CONCLUSION

Solving minimal models has been a primary approach in natural sciences to understand how con-
trollable parameters are causally related to phenomena. In this work, we have solved the learning
dynamics of a minimal finite-width model of a two-layer linear network. Through a comprehen-
sive analysis of its learning dynamics and phase diagrams, we have uncovered valuable insights into
how feature learning happens and the impact of various scalings on the training dynamics of non-
linear neural networks. Our theory is obviously limited: the analytical results only hold for inputs
lying in a one-dimensional subspace. This limitation arises from the inadequacy of conservation
laws in more general cases (e.g., Marcotte et al. (2023, Corollary 4.4) suggests that the maximal
number of independent conservation laws might be much less than the degrees of freedoms), which
potentially implies the impossibility of solving a more general model than ours. Lastly, our results
only considers a deterministic learning dynamics; feature learning actual models are likely to be
also determined by regularization and noise during training (Ziyin et al., 2025a;b), and it could be
interesting to compare feature learning under noise and without noise.

10

Published as a conference paper at ICLR 2025

REFERENCES

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase property: a
necessary and nearly sufficient condition for sgd learning of sparse functions on two-layer neural
networks. In Conference on Learning Theory, pp. 4782-4887. PMLR, 2022.

Anders Andreassen and Ethan Dyer. Asymptotics of wide convolutional neural networks. arXiv
preprint arXiv:2008.08675, 2020.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
acceleration by overparameterization. In International conference on machine learning, pp. 244—
253. PMLR, 2018.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. Advances in Neural Information Processing Systems, 32, 2019a.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. Advances in neural information processing
systems, 32, 2019b.

Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient descent on
non-convex losses from high-dimensional inference. Journal of Machine Learning Research, 22
(106):1-51, 2021.

Alexander Atanasov, Blake Bordelon, and Cengiz Pehlevan. Neural networks as kernel learners:
The silent alignment effect. arXiv preprint arXiv:2111.00034, 2021.

Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
dimensional asymptotics of feature learning: How one gradient step improves the representation.
Advances in Neural Information Processing Systems, 35:37932-37946, 2022.

Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning from
examples without local minima. Neural networks, 2(1):53-58, 1989.

Aristide Baratin, Thomas George, César Laurent, R Devon Hjelm, Guillaume Lajoie, Pascal Vin-
cent, and Simon Lacoste-Julien. Implicit regularization via neural feature alignment. In Interna-
tional Conference on Artificial Intelligence and Statistics, pp. 2269-2277. PMLR, 2021.

Pierfrancesco Beneventano and Blake Woodworth. Gradient descent converges linearly to flatter
minima than gradient flow in shallow linear networks. arXiv preprint arXiv:2501.09137, 2025.

Alberto Bietti, Joan Bruna, and Loucas Pillaud-Vivien. On learning gaussian multi-index models
with gradient flow. arXiv preprint arXiv:2310.19793, 2023.

Blake Bordelon and Cengiz Pehlevan. Self-consistent dynamical field theory of kernel evolution
in wide neural networks. Advances in Neural Information Processing Systems, 35:32240-32256,
2022.

Blake Bordelon and Cengiz Pehlevan. Dynamics of finite width kernel and prediction fluctuations
in mean field neural networks. Advances in Neural Information Processing Systems, 36, 2024.

Lukas Braun, Clémentine Dominé, James Fitzgerald, and Andrew Saxe. Exact learning dynamics of
deep linear networks with prior knowledge. Advances in Neural Information Processing Systems,
35:6615-6629, 2022.

Shuxiao Chen, Hangfeng He, and Weijie Su. Label-aware neural tangent kernel: Toward better gen-
eralization and local elasticity. Advances in Neural Information Processing Systems, 33:15847—
15858, 2020.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
arXiv preprint arXiv:1812.07956, 2018.

Hugo Cui, Luca Pesce, Yatin Dandi, Florent Krzakala, Yue M Lu, Lenka Zdeborova, and Bruno
Loureiro. Asymptotics of feature learning in two-layer networks after one gradient-step. arXiv
preprint arXiv:2402.04980, 2024.

11

Published as a conference paper at ICLR 2025

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
with gradient descent. In Conference on Learning Theory, pp. 5413-5452. PMLR, 2022.

Yatin Dandi, Florent Krzakala, Bruno Loureiro, Luca Pesce, and Ludovic Stephan. How two-layer
neural networks learn, one (giant) step at a time. arXiv preprint arXiv:2305.18270, 2023.

Ethan Dyer and Guy Gur-Ari. Asymptotics of wide networks from feynman diagrams. arXiv
preprint arXiv:1909.11304, 2019.

Katie Everett, Lechao Xiao, Mitchell Wortsman, Alexander A Alemi, Roman Novak, Peter J Liu,
Izzeddin Gur, Jascha Sohl-Dickstein, Leslie Pack Kaelbling, Jachoon Lee, et al. Scaling expo-
nents across parameterizations and optimizers. arXiv preprint arXiv:2407.05872, 2024.

Mario Geiger, Leonardo Petrini, and Matthieu Wyart. Landscape and training regimes in deep
learning. Physics Reports, 924:1-18, 2021.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent
on linear convolutional networks. Advances in neural information processing systems, 31, 2018.

Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent kernel. arXiv
preprint arXiv:1909.05989, 2019.

Jiaoyang Huang and Horng-Tzer Yau. Dynamics of deep neural networks and neural tangent hier-
archy. In International conference on machine learning, pp. 4542—-4551. PMLR, 2020.

Wei Huang, Weitao Du, and Richard Yi Da Xu. On the neural tangent kernel of deep networks with
orthogonal initialization. arXiv preprint arXiv:2004.05867, 2020.

Dongsung Huh. Curvature-corrected learning dynamics in deep neural networks. In International
Conference on Machine Learning, pp. 4552—4560. PMLR, 2020.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Arthur Jacot, Francois Ged, Berfin Simsek, Clément Hongler, and Franck Gabriel. Saddle-to-saddle
dynamics in deep linear networks: Small initialization training, symmetry, and sparsity. arXiv
preprint arXiv:2106.15933, 2021.

Stanislaw Jastrzebski, Maciej Szymczak, Stanislav Fort, Devansh Arpit, Jacek Tabor, Kyunghyun
Cho, and Krzysztof Geras. The break-even point on optimization trajectories of deep neural
networks. arXiv preprint arXiv:2002.09572, 2020.

Dayal Singh Kalra and Maissam Barkeshli. Phase diagram of early training dynamics in deep
neural networks: effect of the learning rate, depth, and width. Advances in Neural Information
Processing Systems, 36, 2024.

Dayal Singh Kalra, Tianyu He, and Maissam Barkeshli. Universal sharpness dynamics in neural
network training: Fixed point analysis, edge of stability, and route to chaos. arXiv preprint
arXiv:2311.02076, 2023.

Daniel Kunin, Allan Raventés, Clémentine Dominé, Feng Chen, David Klindt, Andrew Saxe, and
Surya Ganguli. Get rich quick: exact solutions reveal how unbalanced initializations promote
rapid feature learning. arXiv preprint arXiv:2406.06158, 2024.

Andrew K Lampinen and Surya Ganguli. An analytic theory of generalization dynamics and transfer
learning in deep linear networks. arXiv preprint arXiv:1809.10374, 2018.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32:8572-8583, 2019.

12

Published as a conference paper at ICLR 2025

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The large
learning rate phase of deep learning: the catapult mechanism. arXiv preprint arXiv:2003.02218,
2020.

Yuanzhi Li, Tengyu Ma, and Hongyang R Zhang. Learning over-parametrized two-layer neural
networks beyond ntk. In Conference on learning theory, pp. 2613-2682. PMLR, 2020.

Chaoyue Liu, Libin Zhu, and Misha Belkin. On the linearity of large non-linear models: when
and why the tangent kernel is constant. Advances in Neural Information Processing Systems, 33:
15954-15964, 2020.

Philip M Long. Properties of the after kernel. arXiv preprint arXiv:2105.10585, 2021.

Noel Loo, Ramin Hasani, Alexander Amini, and Daniela Rus. Evolution of neural tangent kernels

under benign and adversarial training. Advances in Neural Information Processing Systems, 35:
11642-11657, 2022.

Sibylle Marcotte, Rémi Gribonval, and Gabriel Peyré. Abide by the law and follow the flow: Con-
servation laws for gradient flows. 2023.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-
layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665-E7671,
2018.

Gabin Maxime Nguegnang, Holger Rauhut, and Ulrich Terstiege. Convergence of gradient descent
for learning linear neural networks. arXiv preprint arXiv:2108.02040, 2021.

Courtney Paquette, Kiwon Lee, Fabian Pedregosa, and Elliot Paquette. Sgd in the large: Average-
case analysis, asymptotics, and stepsize criticality. In Conference on Learning Theory, pp. 3548—
3626. PMLR, 2021.

Franco Pellegrini and Giulio Biroli. An analytic theory of shallow networks dynamics for hinge loss
classification. Advances in Neural Information Processing Systems, 33:5356-5367, 2020.

Huy Tuan Pham and Phan-Minh Nguyen. Limiting fluctuation and trajectorial stability of multilayer
neural networks with mean field training. Advances in Neural Information Processing Systems,
34:4843-4855, 2021.

Daniel A Roberts, Sho Yaida, and Boris Hanin. The principles of deep learning theory, volume 46.
Cambridge University Press Cambridge, MA, USA, 2022.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynam-
ics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

Inbar Seroussi, Gadi Naveh, and Zohar Ringel. Separation of scales and a thermodynamic descrip-
tion of feature learning in some cnns. Nature Communications, 14(1):908, 2023.

James B Simon, Maksis Knutins, Liu Ziyin, Daniel Geisz, Abraham J Fetterman, and Joshua Al-
brecht. On the stepwise nature of self-supervised learning. arXiv preprint arXiv:2303.15438,
2023.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139-1147. PMLR, 2013.

Salma Tarmoun, Guilherme Franca, Benjamin D Haeffele, and Rene Vidal. Understanding the
dynamics of gradient flow in overparameterized linear models. In International Conference on
Machine Learning, pp. 10153-10161. PMLR, 2021.

Zhichao Wang, Andrew Engel, Anand D Sarwate, [oana Dumitriu, and Tony Chiang. Spectral evolu-

tion and invariance in linear-width neural networks. Advances in Neural Information Processing
Systems, 36, 2024.

13

Published as a conference paper at ICLR 2025

Zhi-Qin John Xu, Yaoyu Zhang, and Yanyang Xiao. Training behavior of deep neural network in
frequency domain. In Neural Information Processing: 26th International Conference, ICONIP
2019, Sydney, NSW, Australia, December 12—15, 2019, Proceedings, Part I 26, pp. 264-274.
Springer, 2019.

Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020.

Greg Yang and Etai Littwin. Tensor programs ivb: Adaptive optimization in the infinite-width limit.
arXiv preprint arXiv:2308.01814, 2023.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ry-
der, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural
networks via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.

Yaoyu Zhang, Zhi-Qin John Xu, Tao Luo, and Zheng Ma. A type of generalization error induced
by initialization in deep neural networks. In Mathematical and Scientific Machine Learning, pp.
144-164. PMLR, 2020.

Liu Ziyin, Botao Li, and Xiangming Meng. Exact solutions of a deep linear network. In Advances
in Neural Information Processing Systems, 2022.

Liu Ziyin, Hongchao Li, and Masahito Ueda. Law of balance and stationary distribution of stochastic
gradient descent. arXiv preprint arXiv:2308.06671, 2023.

Liu Ziyin, Mingze Wang, Hongchao Li, and Lei Wu. Parameter symmetry and noise equilibrium
of stochastic gradient descent. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Liu Ziyin, Isaac Chuang, Tomer Galanti, and Tomaso Poggio. Formation of representations in neural
networks. International Conference on Learning Representations, 2025a.

Liu Ziyin, Yizhou Xu, Tomaso Poggio, and Isaac Chuang. Parameter symmetry breaking and
restoration determines the hierarchical learning in ai systems. arXiv preprint arXiv:2502.05300,
2025b.

14

Published as a conference paper at ICLR 2025

A ADDITIONAL RELATED WORK

There are also other recent studies focusing on feature learning beyond the kernel regime. Li
et al. (2020) demonstrates that two-layer networks outperform kernel methods, while Damian et al.
(2022); Abbe et al. (2022) highlight functions learnable by gradient descent in two-layer networks
but not by kernel methods. Moreover, several studies (Ba et al., 2022; Dandi et al., 2023; Cui et al.,
2024) show that a few gradient steps help neural networks adapt to dataset features, improving gen-
eralization. Our work aims to provide new insights into feature learning through an analytically
solvable model.

Another critical regime for feature learning involves large learning rates. Jastrzebski et al. (2020);
Long (2021); Lewkowycz et al. (2020); Wang et al. (2024) reveal that large learning rates offer bene-
fits such as better conditioning of kernel and Hessian matrices and improved generalization. Notably,
while the catapult (uv) model (Lewkowycz et al., 2020) shares some similarity with our model, their
focus is completely different. Lewkowycz et al. (2020) uses the NTK scaling, and shows that neural
networks can escape the kernel regime with sufficiently large learning rates. On the other hand,
we show that how different scalings influence the phases of neural networks with sufficiently small
learning rates. Therefore, the mechanisms of feature learning proposed in this paper do not appear
in Lewkowycz et al. (2020). Moreover, although Kalra et al. (2023); Kalra & Barkeshli (2024) try to
extend the catapult (uv) model to finite-width settings with different parameterizations, their results
remain qualitative, perturbative, or focus solely on fixed points without deriving a complete analytic
solution. In contrast, our work provides a fully solvable model with exact dynamics, even for fi-
nite widths, under more general initialization and parameterization settings. It is a promising future
work to extend our gradient flow solutions to finite learning rates and adaptive optimizers, which
can influence the regime (Yang & Littwin, 2023; Wang et al., 2024).

The concept of “alignment” is explored in many works. For instance, Lewkowycz et al. (2020)
discusses alignment between feedforward activations and backpropagated gradients in the catapult
mechanism, a feature of the large learning rate regime, absent in our model. Seroussi et al. (2023)
investigates alignment between backpropagation and weight matrices in neural network Gaussian
processes. Some studies (Baratin et al., 2021; Atanasov et al., 2021; Loo et al., 2022; Wang et al.,
2024) examine alignment effects between models and data. Our definition of alignment differs from
them. However, we note that our definition of alignment is inherently equivalent with the alignment
ratio” measured in a recent work (Everett et al., 2024), which focuses on how alignment across
layers influences model scaling and supports the importance of analyzing how alignment changes
along training.

Finally, while many studies analyze the convergence (Nguegnang et al., 2021; Bietti et al., 2023) or
dynamics (Jacot et al., 2021; Arous et al., 2021; Paquette et al., 2021) of gradient descent without
exact solutions, they typically prove limited properties or asymptotic results. We believe an exactly
solvable model offers a deeper understanding of gradient descent dynamics.

B THEORETICAL CONCERNS

B.1 PROOF OF PROPOSITION 1
Proof. To make the analysis more concrete, we consider the standard loss function

~ 1 N d do 9
L(u,w) = N S (Y wi (> wigEin)? - i), (20)
k=1 =1 1

j=

where [V is the size of the training set.

Data points lie in a 1d-subspace, meaning that ;3 = axn; for a constant unit vector 1. Due to the
1d nature of the data, the training dynamics on this loss function is completely identical to training

on the following loss L(u,w) = (yX%, ui(Z?gl wijz;)? - y), where z; = \/Yr, aiﬁnj and

15

Published as a conference paper at ICLR 2025

Table 2: Varibles used for Theorem 1.

variables explanation
ueRY W e R0 weight vector/matrix
xR yeR, pi=1/ i Z;'ifo x? effective data point and signal strength
Ny Nws Y learning rates and normalization factor

generalized coordinates

pi(t) = (\/n_uZ 2 wi () +/Bnwpui(t))
qi (t) = 20 (\/W_uz -1 Wij (t)xj \V B1w puti (t))

=g L snd G1Dj (0)%, Q:= 3 Lsd =1) (0)? sufficient statistics of generalized coordinates
te:=1/ (\/nunw'y?'p?y2 + 4p4(72d)2PQ) characteristic learning time
Qg = W (Viumwypy £t2) characteristic learning scale
E(t) = igj exp (—4t/t.) characteristic learning curve
Y= Lﬁi’; This is because
Zk 1

do

} N d
L(u7w):(;ai6)(7;uz Z l]nj B 2(2‘%%@)(’72“1(2“&]”]))+ zyk

N (21
= L(U,’LU) + Z yl% -
k=1

Therefore, without loss of generality, the training on the standard loss L is identical to the training
on L because the difference is only by a constant that does not affect gradient descent training.
This setting is thus equivalent to the case when the dataset contains only a single data point (x,).’
As is clearly shown from this example, using the notation in terms of x and y is much simpler to
understand than using Z;; and y;. We believe that this notation is necessary and greatly facilitates
the later discussions once the readers accept it.

Finally, all these notations can also be written in terms of E,, := % Z,Ic\il, which is the notation we
chose for introducing the lemma. O

B.2 PROOF OF THEOREM 1

Proof. We summarize the definitions of all variables in Table 2.

To begin with, the gradient flow reads

du; oL do d &
=Ny = _2771/7(2 wijxj)ﬁ Y Zuz(z wz‘jxj)ﬂ -v),
dt Ou; =1 =1 j=1 22)
dwij oL do B-1 d do Jé;
= Nwy — :—2/5’%7%(2%]‘%) Lj VZui(Zwijxj) AR
dt aw,;j j=1 i=1 j=1
which implies the following two conservation laws
d & 2
7 (e 25wy = Bnw) =0, (23)
j=1
i Wijr 1 dwi; 1 dwy
4 (wig _wig) L dwy L dwy (24)
dt l‘j xj’ 117]‘ dt Ij/ dt

"Essentially, this is because we only need two points to specify a line. Also, it is trivial to extend to the case
when y is a vector that spans only a one-dimensional subspace.

16

Published as a conference paper at ICLR 2025

From Eq. (22), we can denote < ” = Az, which leads to

d & 2 2
dt j;wij do (Z wzjl‘])

DIRE Jd (25)
do Z do
=4 (221%-:5]- Z)
J=1 J 21 J =1
According to the definitions p;(t) := (\/U_uzj Lwii(B)z; + /Bnwpui(t)) and ¢;(t) =
2%(@ Z?ﬁl wij (t)x; =/ Pnwpui(t)), we have
2
& i) = | dt(z (%)’ ﬂnwui)
" (26)

1d

4dt(nuzw _ﬁnw):

Further, substituting (22) into the definition of p; and g;, we have

dp; ((pi + Qi)p)ﬁ_l L pi-g ((pj + qj)p)ﬁ
=-2 uTlwPi - . (27)
0 YV Bnuwpip N ;ﬂm N y

If we denote ¢; := p;(t)q;(t), we have

— = —= 28
pipi+ cfp)P L dt py(py +eifp)P) dt 28
which gives
Fi(pi(t)) - Fi(pi(0)) = Fj(p;(t)) - F;(p;(0)). (29)
where J
x
Fi(z) = [e T (30)
Therefore, (27) reduces to a differential equation of p;
dpi(t) _ o (i) +eifpi)p)
dt —_2’7 Bnunwpz(t)p(\/77_14) (31)
S palt) — eafps (1) ((pj(t) + cj/pju))p)ﬂ)
-1 VB V1
Now we denote A;(t) := F;(p;(t)). Then we have
dA; . Ly &
dt(t) = =29\ B " p® (wﬂ(ﬁnfnw) Y2 (0 (1) = ¢ i (1) (s (8) + ¢ /p; (1)) -
(32)
where
pi(t) = F; ' (Ai(t) - As(0) + A;(0)). (33)

(32) is an ODE with only one unknown function A,(¢). However, it is in general not possible to
solve (32), and this is why we only focus on /3 = 1.

For the special case 3 = 1, (31) reduces to

dpi(t) ¢ 2 2y P
= =29/Nunuwpi(®)p |), (ps(t j -y (34)
dt ©) Z:: yoal))\/nunw
For 3 = 1, we also have F;(x) = log = with its inverse F; ! () = €%, and thus (33) reduces to
pi(t)
pi(t) = p:(0 (35)

17

Published as a conference paper at ICLR 2025

p;(0)
p; ()"

forall é,j = 1,2,---,d. Then according to (26), we also have ¢;(t) = ¢;(0) Substituting them

into (34), and we obtain a differential equation with only one variable p;

dpi (Vd)p*P 5 (v*d)p*Qpi(0)?
=-2 i i - ullw | 5 36
I D (i(0)? i P YPYN/ NuT) (36)
where
13 9 18)
P:EZpi(O) ,Q:ngi(O)- (37)
i=1 i=1

This differential equation is analytically solvable by integration

p; d¢
t== [o TrCE0EE (38)
P2 4 (DL — yay i - (12d)p2Qpi(0)?)
Because the denominator as a quadratic polynomial has two different roots c, the result of the
integration is
te . pi(t)*/pi(0)* - ay

t=—-—1log + const, 39)
4 " pi(t)2/pi(0)2 - a
leading to
(1) /pi(0)2 -, 1-
PP e Loon w0
pi(t)?/pi(0)? -a- 1-a-
which gives (8). O]
Proposition 2. Under the condition in Theorem 1, if P = 0 and Q) + 0, the result becomes
pi(t) =0 (41)
g (t)
i(t) =q:(0 —_— 42
(1) q()\’l—f’(t))
where)
¢'(t) = oo &P CAinaeyt). (43)
and
o i VITTPY 44)
(2d)PQ

Specially, if P = Q = 0, we have p;(t) = q(t) = 0, so the gradient flow will be stuck at the trivial
saddle point.

Its proof is similar to the proof of Theorem 1, because we can similarly obtain

dg; (V’d)p*Q »

— =-2¢ | —————q; + NGB 45
a (1 (0)2 4; T YPYN Nl (45)
Its solution gives Proposition 2.

We note that the behavior of the solution is quite different from P # 0: when y < 0, we can obtain
a solution with zero loss in the end, but when y > 0, the gradient flow will converge to the trivial
saddle point p; = ¢; = 0.

B.3 PROOF OF THEOREM 2

ay—Eo_ _ og—ao
1-¢ 1-¢

it evolves from 1 to c; monotonously. Then according to Equation (13), lim,_,., K (z,z")(t) =

limy;, 00 K (x, 2")(0) if and only if lim, e vy = 1, which holds if and only if lim,_, . P/Q = 1 and

(19) holds, when we have

Proof. By definition, £(t) is a monotonic function. As + c— is monotonous to &,

: 202 (Y2 d)VPQ
;{h}}olo g = F}LHOL W =1.a.s. (46)

18

Published as a conference paper at ICLR 2025

From Equation (18), Equation (19) also implies
2¢y + cq + max{cy,, + Cy,Cy, + Cw} =0. 47)
Therefore, we can see that the NTK remains O (1) because
V2o, P = © (k20 earmax{cn, tewen, teaty Z (1), (48)
The proof is complete. O

B.4 SCALING OF WEIGHT EVOLUTION

This section aims to quantitatively analyze the power-law scaling of the right side of Figure 4. (7)
and (8) indicate that

wij(+00) ~wij(0) _ pi(too) +qi(+e0) | Vo i(0) +¢:(0) /o
wi; (0) pi(0) +¢:(0) pi(0) +4¢:(0)

In the feature learning regime, |y — 1| = O(1), and thus the weights evolve in an O(1) amount. In
the kernel regime, by using (11), (18) and Theorem 2, we can find that

1. (49)

11—, o e (2evFen,ten,)2, (50)

When ¢y, + ¢, /2 = ¢, + €y [2, We have % = 0(1) and thus

wij(+00) —wii(0) | 11— | o £+ enen)/2, 51)
wi; (0)
When ¢, + ¢, /2 # ¢ + ¢4 [2, We have
ij (+00) —w;; (0
’LUJ(00) wj() %\/a+1/\/0é_+—2%|1—04+|20<I€267+C7”“+C71/w- (52)
wi; (0)

In conclusion, we have ||V‘[‘/I;/‘;[ﬁOH oc £79. In the feature learning regime ¢ = 0. In the kernel regime
6= -2(2cy + ¢y, +0y,) if cw+cuf2=cy+cyf2and § = —(2cy + ¢y, +¢y,) if Cu + 0o f2 %

Cu + Cyu/2. Using the values in Table 1, we can verify that § = 0.5,1,2 for NTK, Xavier~ and
Kaiming™ parameterization, respectively.

19

Published as a conference paper at ICLR 2025

0.9 j% L layer 182
f 0.9 layer 2&3
0.8 — layer 1&2 —— layer 384
" —— layer 2&3 [08 layer 4&5
0.7 — layer 3&4 0.7 layer 5&6
e layer 4&5
0.6 layer 586 0.6
0 100 200 300 400 1 2 3
iteration [+
(a) alignment in a 6-layer FCN (b) alignment vs. initialization scale

Figure 6: The alignment angle ¢ between different layers of a six-layer FCN trained on MNIST, with the same
settings as Figure 2.

ReLU Sigmoid Swish Leaky ReLU
o 0.5
g
2 02 0.2 0.2
g |
= 3 o =
0.0l | 0.0/ | 0.0} J 001l , 22388
0 1000 0 1000 0 2000 0 2000 s®5%2
iteration iteration iteration iteration z % T s
| g
= 1.0 =100 10 1.00 223
B 8
% os 0.98 0.9 -
o
0 2000 0 2000 0 2000 0 2000
iteration iteration iteration iteration

Figure 7: The evolution of the alignment angle ¢ between u and v across two-layer ReLU, sigmoid, swish,
and leaky ReLU networks with d = 10000. The task is to classify two Gaussian distributions.

C ADDITIONAL EXPERIMENTAL CONCERNS

C.1 ADDITIONAL EXPERIMENTS IN SECTION 3.2

In Figure 1, we choose x = 1,y = 2, and for others we randomly sample 100 points from A/(0, 1)
as data points x, and set y = 2z + A/(0,1)/10 as the target. The learning rates are chosen such that
the model converges well within given iterations. For the orthogonal initialization, we initialize the
model as u ~ N'(0,101;) and w ~ u + N'(0,0.11,).

In Figure 2, to avoid the implicit bias of SGD to make layers aligned (Ziyin et al., 2024), we consider
full-batch GD with batch size 2000 and constant learning rate. The learning rates are chosen sepa-
rately for each model such that the model converges well in 1000 iterations, with training accuracy
above 95%. All models use the standard Kaiming initialization, but we scale each layer by o. The
results in Figure 2 also extend to deeper networks, although the training dynamics of deeper FCNs
are less stable, as shown in Figure 6.

Moreover, we observe qualitatively the same phenomenon for all kinds of activation functions in
the classification task in Figure 7, where the task is to classify training samples from A (0,1) and
N(4,1). Initialization is the same as in Figure 1, but the binary cross-entropy loss is used. From
Figure 7 we can also see that layers tend to align in the feature learning regime when they are
initialized to be disaligned, and vice versa. Note that because of the binary cross-entropy loss, ¢
keeps decreasing even after the loss converges. Further, because of the binary cross-entropy loss, ¢
deviates from one for non-linear activation functions other than ReL.U.

20

Published as a conference paper at ICLR 2025

C.2 ADDITIONAL EXPERIMENTS CONCERNING THE ALIGNMENT EFFECT

Figure 8 verifies that the influence of dataset size N and input dimension d on the alignment effect
is not significant. This is consistent with theoretical results, because Theorem 1 characterizes the
training dynamics without assumptions on the training set size, distribution, or input dimensions.

Figure 9 includes more detailed ablation experiments, including the influence of large learning rate,
data not lying in a 1D subspace and a three-layer linear network. Together with other figures (e.g.
Figure 2), all ablation experiments indicate that our results are not significantly weakened by the
following constraints: 1. 1-hidden layer vs multiple hidden layers, 2. linear vs nonlinear activations,
3. single example (or examples in a 1-dimensional subspace) vs examples distributed through space,
4. gradient flow training vs discrete-time gradient descent or stochastic gradient descent.

mmm e ——— 0.8
0751 [o
. { .
[} 0.6 I/
x 0.50 : kernel phase " ll kernel phase'
: feature learning phase 0.4 ! feature learning phase
1

0.25 : 0.21 "
|

0.00{ bmmmmmm e 00 F=mmm e
0 250 500 750 1000 0 250 500 750 1000

iteration iteration

Figure 8: The alignment effect of a ReLU network for different dataset sizes and input dimensions. Left:
the dashed line represents dataset size 10 and the solid line represents dataset 100. Right: the dashed line
represents input dimension do = 10 and the solid line represents input dimension dop = 1. The target is chosen
tobe y = aTx + N'(0,1)/10, where « is a Gaussian vector. Other settings are the same as Figure 1.

large learning rate data not in 1D subspace three layer | |
T3
.1 1 0.75 1 |23
g / 22
2 0.50 | Tz
.gﬁ 0 / ElR
= 0.25 // U.E
1 0 — E4
0 200 0 1000 0)] 100 | °
iteration iteration iteration
_ 10 1 1.000 [m==———=====
¥
5 05 s &
& 0.975 2%
3 0 €53
. S 3
0 200 0 1000 0 100 2 °
iteration iteration iteration 2

Figure 9: More ablation experiments on linear networks. Results about non-linear activation are similar, as in
Figures 1 and 2. Left: Learning rate 15 times that of Figure 1. The network jumps out of the kernel regime
as predicted by Lewkowycz et al. (2020), but the alignment and disalignment effects still exist. Middle: x is a
Gaussian vector with do = 10, so the data are not in a 1-dimensional subspace. For the orthogonal initialization,
the first column of W is the same as u and the others are zero. Right: a three-layer linear network with v = 1/ d?
and d = 300. The solid line refers to the alignment between the first two layers, and the dashed line refers to
the alignment between the last two layer. For the orthogonal initialization, the first row of the second layer is
the same as the first layer and the others are zero. The last layer is the same as the first column of the second
layer. Other settings are the same as Figure 1. This figure, together with Figures 1 and 2, shows that our results
are robust to all factors.

C.3 EXPERIMENTS IN SECTION 3.3

In Figure 3, we train a Resnet18 network on the CIFAR-10 dataset with hyperparameters borrowed
from https://github.com/kuangliu/pytorch-cifar. The only difference is that we scale each layer by o
and record the test accuracy together with the sum of the norm of all layers.

C.4 EXPERIMENTS IN SECTION 4.1

In Section 4.1, we utilize a two-layer FCN with the ReL.U activation and d hidden units. The input
is vectorized and normalized, so the input dimension is dy = 3072. The cross-entropy loss and the

21

Published as a conference paper at ICLR 2025

stochastic gradient descent without moment or weight decay are used during training. We use a
batch size of 128 and report the best training and test accuracy among all epochs.

We choose vy = % and 7 = 0.05 for the standard NTK model, v = m and learning rate 1 = 0.05d,/100

for the standard mean-field model, v = 1 and 1 = 0.05d/100 for the Kaiming™ model, v = 100 and
1 = 0.05d/100 for the Kaiming® model, v = 1 and n = 0.05 for the Xavier" model, v = O 01d
and 1 = 0.05(100/d)? for the Xavier~ model. The choice of hyperparameters guarantees that the
standard NTK model and the standard mean-field model, the Kaiming®™ and Kaiming™ model, and
the Xavier™ and Xavier™ model are the same for d = 100, respectively.

C.5 EXPERIMENTS IN SECTION 4.2

The experiment in Section 4.2 is similar to that in 4.1. The only difference is that we fix d = 2000
and change the initialization scale. More specifically, we set x = 10, 03 = K°, 03] = gmax{c.0} gnd
7y = k= min{0,-¢/2} We also fix 7 = 0.005.

D TRAINING AND GENERALIZATION DYNAMICS

This section aims to present the evolution of empirical and population loss.

From the definition of p; and ¢; in Theorem 1, we have

Vil ZO (DD, = i () - (1) (53)
Consequently, we have
d_ do oz++§(t)oz_] [a++f(t)a_]_l
i i P - _— . 54
’Y;;U(twj t)z; = ’_77u77w([1-€(t) Q 1-¢(t) 54

a+E(t)a
1-¢(t)
Y4, zjgl u; (t)w;;(t)x; monotonously evolves from the initial value \/%(P - Q) to the fi-

As &(t) is monotonous, monotonously evolves from 1 to a. Therefore, the model

nal value p p
P P
(e P = Qo) = (ay+a)P =y, (55)
NG I i

where we use the definition of oy, «_ and oy = -Q/P.
In conclusion, the empirical loss (see Appendix A.1)

~ d do N,

L(va) 72 Zuz(t)w” (t] Z Y- Y (56)

i=1j= k=1

evolves from its initial value to its minimal value ZkN=1 y? — y*> monotonously. Notably, the above
conclusion does not rely on the choice of all hyperparameters and initialization.

In terms of the population loss, we note that when the data = := an lies in a one-dimensional
subspace, the model output can be written as a linear function f(an) =: as(t), where s is a scalar
parameter. The population loss is thus a quardratic function of s: E[(as —)], which takes the
minimal at

E[ag]

E[a?]’

In reality, however, s(¢) evolves monotonously from its initial value to

N ~
k=1 %Yk
N 2
Yk-1af,
According to the initial value of ¢ and the dataset ay, ¥, there are three cases. The population loss
might monotonously decrease, monotonously increase, or first decrease and then increase. The time

22

Published as a conference paper at ICLR 2025

—— feature learning phase 8 ‘\‘ —— feature learning phase
15 —— kernel phase N\ —— kernel phase

6
w
wv
=

4

R ——— 2

0.6 0.8 0.0 0.2 0.4 0.6 0.8
t
(a) 1 training data point (b) 10 training data points

Figure 10: The evolution of the training loss (solid lines) and the generalization error (dashed lines) for a
linear network. We choose z =1,y =2+ N'(0,1).

scale of the population loss is also t., so there is no grokking for this simple model. Finally, as N
Tier ok, E[ag]
T ap E[a?]

increases, , and the population loss converges to its minimum as expected.

See Figure 10 for numerical verification. The results include two possibilities of the generalization
error: monotonously decrease, or first decrease and then increase, as predicted theoretically. The
time scales of the training loss and the generalization error are also the same. Moreover, we can
see that for different initialization and parameterization, the networks converge to the same MSE.
Therefore, our main focus is the training dynamics (e.g., whether NTK evolves), and our main con-
tribution lies in analyzing how these dynamics unfold rather than in the final convergence point. The
results also indicate that the number of samples has no significant impact on the training dynamics
but will influence the generalization dynamics.

23

	Introduction
	Related Work
	An Exactly Solvable Model
	Problem Setting and Solution
	Learning by Alignment and Disalignment
	Learning by Rescaling
	How does feature learning happen?

	Phase Diagrams
	Phases Diagram of Infinite-Width Models
	Phase Diagram for Initializations

	Conclusion
	Additional Related Work
	Theoretical Concerns
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Theorem 2
	Scaling of Weight Evolution

	Additional Experimental Concerns
	Additional Experiments in Section 3.2
	Additional Experiments Concerning the Alignment Effect
	Experiments in Section 3.3
	Experiments in Section 4.1
	Experiments in Section 4.2

	Training and Generalization Dynamics

