
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

CMT: Co-training Mean-Teacher for Unsupervised Domain
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ABSTRACT
LiDAR-based 3D detection, as an essential technique in multimedia
applications such as augmented reality and autonomous driving,
has made great progress in recent years. However, the performance
of a well trained 3D detectors is considerably graded when deployed
in unseen environments due to the severe domain gap. Traditional
unsupervised domain adaptation methods, including co-training
and mean-teacher frameworks, do not effectively bridge the domain
gap as they struggle with noisy and incomplete pseudo-labels and
the inability to capture domain-invariant features. In this work,
we introduce a novel Co-training Mean-Teacher (CMT) framework
for unsupervised domain adaptation in 3D object detection. Our
framework enhances adaptation by leveraging both source and tar-
get domain data to construct a hybrid domain that aligns domain-
specific features more effectively. We employ hard instance mining
to enrich the target domain feature distribution and utilize class-
aware contrastive learning to refine feature representations across
domains. Additionally, we develop batch adaptive normalization to
fine-tune the batch normalization parameters of the teacher model
dynamically, promoting more stable and reliable learning. Exten-
sive experiments across various benchmarks, including Waymo,
nuScenes and KITTI, demonstrate the superiority of our CMT over
the state-of-the-art approaches in different adaptation scenarios.

CCS CONCEPTS
• Computing methodologies → Computer vision representa-
tions; Semi-supervised learning settings; Scene understand-
ing.

KEYWORDS
Domain Adaptive 3D Detection, Unsupervised Domain Adaptation,
3D Object Detection

1 INTRODUCTION
As a cornerstone of 3D scene understanding in multimedia ap-
plications and multimodal processing, 3D detection from point
clouds has attracted substantial interest. It plays a critical role
in intelligent robotics, augmented reality, and autonomous driv-
ing [1, 11, 20, 24, 25]. The research primarily aims to detect and
localize traffic-related objects within 3D point clouds. With the ad-
vent of deep learning technologies, significant advancements have
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Figure 1: The comparison of our Co-training Mean-Teacher
framework (d) with the 3 previous frameworks (a), (b), (c).

been made [19, 31, 32, 38], significantly improving the accuracy and
efficiency of object detection in complex multimedia environments
in recent years, which however requires costly dense annotations of
point clouds. Despite significant process, some state-of-the-art 3D
detectors still suffer from dramatic performance degradation when
training data and test data are from different environments, i.e.,
domain shift problem [35]. For example, 3D detectors trained on
data collected in American cities showed a 45% performance degra-
dation when evaluated on data from European cities [39]. Various
factors, such as diverse weather conditions [37], object sizes [35],
laser beams [36], lead to substantial discrepancies across different
domains, hindering the transferability of existing LiDAR-based 3D
detectors. Though collecting more training data from different do-
mains could alleviate this problem, but it might be infeasible due
to the multiple real-world scenarios and enormous costs for 3D
annotation [22]. Therefore, the research on unsupervised domain
adaptation (UDA) for LiDAR-based 3D detection is essential.

Although many works have been proposed to deal with the UDA
for image-based detection [3, 6, 9, 15–17, 45, 46], directly applying
these methods to 3D point cloud detection task is insufficient for
tackling the domain shifts. These approaches mainly concentrate
on the gaps of lighting and texture variations, which could not be
obtained from point clouds.

Prior works for UDA on 3D object detection typically start from
pre-training a model on source labeled data with Random Object
Scaling (ROS) [5, 39, 40] and Random Beam Re-Sampling (RBRS) [14,
36] to mitigate domain shifts induced by object sizes and laser
beams. Then, the model is further fine-tuned on unlabeled target do-
main data until convergence is achieved. Specifically, self-training
methods [12, 13, 39] iterate between generating pseudo labels and
training the model on unlabeled target data as shown in figure. 1(a),
which is prone to accumulating errors due to noise in pseudo la-
bels. During the fine-tuning stage, these methods mainly focus

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

on exploiting the unlabeled information in the target domain. Be-
sides, some works like ST3D++ [40] adopt co-training [21] to jointly
optimize source data and pseudo-labeled target data as shown in
figure. 1(b). This method effectively corrects inaccurate gradients
from noisy pseudo labels. Furthermore, With the teacher model
providing supervision to the student outputs of the unlabeled data
as shown in figure. 1(c), the mean-teacher framework [23] effec-
tively mitigates errors introduced by pseudo label noise through
joint optimization.

However, current mainstream adaptation frameworks face sev-
eral clear limitations. (1) Inadequate domain-invariant features:
These frameworks either do not fully utilize the extensively labeled
source domain data for effective cross-domain knowledge transfer
during the fine-tuning phase, such as with self-training methods,
or they simply involve joint training of source and target domain
data, as seen in co-training and mean-teacher methods. In these
methods, the two independent learning branches frequently suffer
from the bias of fully labeled source data, making it challenging for
the model to capture domain-invariant features. (2) Incomplete
labels: The generation of pseudo-labels in the target domain is of-
ten incomplete, resulting in a limited distribution of learned target
domain foreground features. This situation cause the model to focus
on learning simple and similar features while neglecting complex
and diverse ones, thereby undermining the model’s generalization
capabilities and robustness. (3) Noisy labels: Traditional frame-
works typically rely on inaccurate pseudo-labels for training in the
target domain. This reliance leads to an accumulation of incorrect
pseudo-labels, forcing the student model to mistakenly adapt its
detection outcomes to these noisy labels. Over time, these inaccu-
rate predictions become detrimental learning signals, significantly
limiting the model’s performance in the target domain.

To address the above issues, we design a novel Co-training Mean-
Teacher (CMT) framework for UDA in 3D object detection, as shown
in Figure. 1 (d). The key idea of the CMT is to apply co-training
across the source and target domains while employing the
mean-teacher learning with both the target domain and a
hybrid domain (constructed from source and target domains).
This approach is designed to mitigate the impact of source domain
data and facilitate the learning of domain-invariant features.

Specifically, we first create a hybrid domain using the source
domain backgrounds and target domain foregrounds, ensuring that
the hybrid domain data integrates knowledge from both domains.
The identical foreground in both the hybrid and target domains
means they share the same supervision signals. To address the
incomplete label issue, we introduce a hard instance mining
module to extract hard instances from labeled source data and
incorporate them into the current target samples, thereby enriching
the diversity of the target domain. Consequently, both the hybrid
and target domains possess a rich set of foreground features for
training the model.

We then feed both the student and teacher models with sam-
ples from the hybrid and target domains in mean-teacher learning.
To minimize the impact of wrong pseudo-labels and encourage
the model to learn domain-invariant features, we develop a class-
aware contrastive learning module. This module is based on objects
predicted by both teacher and student models, offering more reli-
able supervision to address the noisy label issue. Features from

the same category form a positive sample space, while those from
different categories create a negative space, reducing intra-class
distances and increasing inter-class distances in the feature space
to improve feature discrimination for 3D detection.

During the training, the student model is optimized based on
the predictions of the teacher while the weights of the teacher
model are updated by taking the exponential moving average of
the weights of the student model. however,

Additionally, we develop the framework with batch adaptive nor-
malization to adjust the Batch Normalization (BN) layer parameters
of the teacher model with each target training batch, enhancing
adaptation to the target domain distribution. In this way, our CMT
effectively transfers knowledge across domains, achieving state-of-
the-art performance on target data.

To summarize, our contributions are as follows:
• We design a novel Cross-domain Teacher-Student (CMT)
framework for unsupervised domain adaptation. By inte-
grating knowledge from both source and target domains, we
construct a hybrid domain to facilitate knowledge transfer to
the target domain. We develop this architecture using batch
adaptive normalization to adjust the Batch Normalization
(BN) layer parameters of the teacher model with each target
training batch, thereby improving adaptation to the target
domain distribution.

• we design a hard instance augmentation method and a back-
ground replacement module to create hybrid domain data
that combines knowledge from both the source and target
domains. We also implement class-aware contrastive learn-
ing to keep the class-aware consistency between the hybrid
domain and the target domain.

• Experimental results demonstrate our model significantly
outperforms the state-of-the-art methods on three widely
adopted 3D object detection datasets including NuScenes,
KITTI, and Waymo.

2 RELATEDWORK
2.1 LiDAR-based 3D Detection.
LiDAR-based 3D detectors [19, 29, 31, 38] aim to localize and clas-
sify 3D objects from point clouds, which can be broadly grouped
into three categories: voxel-based methods, point-based methods
and point-voxel-based methods. Voxel-based methods [19, 38, 44]
typically convert point clouds into regular 3D voxels, subsequently
compressing them into a bird’s-eye view (BEV) representations.
These methods facilitate efficient computation for feature extrac-
tion through 2D/3D convolutional neural networks (CNNs). Voxel-
Net [44] introduced a voxel-wise encoding layer to extract collec-
tive features from voxels, while SECOND [38] adopted sparse 3D
convolution for efficient feature learning. PointPillars [19] further
proposed a pillar encoding method to voxelise point clouds and
convert them into 2D space to improve the efficiency. On the other
hand, point-based methods [31, 41] directly process the raw point
cloud without voxelization to extract point-wise features through
networks of the PointNet series [26, 27]. However, these methods
are slower in computation. PointRCNN [31] generated coarse pro-
posals for each point and used the point-level features for further
refinement. Point-Voxel-based methods [29, 30] combined voxel
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representations with point representations from the point cloud. PV-
RCNN [29] and PV-RCNN++ [30] proposed to combine voxelization
and point-based set abstraction to learn the representative scene
features comprehensively. Following previous works, we adopt
voxe-based PointPillars [19], SECOND [38] and point-voxel-based
PV-RCNN [29] as our base detectors.

2.2 Domain Adaptive 2D/3D Object Detection.
A variety of solutions have been proposed in 2D vision tasks in-
cluding classification [9], detection [8] and segmentation [46]. In-
spired by Generative Adversarial Networks [7], adversarial learning
methods are leveraged to perform alignment in the feature space.
Additionally, self-training [8, 17] methods have been employed to
generate pseudo labels for unlabeled target domains. Furthermore,
some works adopt the CycleGAN [6] to generate training samples
with styles of source and target domains. This methods aids in im-
proving the learning process and adapting more effectively. While
extensive researches have been conducted on domain adaptation
tasks with 2D image data, only very few approaches have been
proposed to address the domain shift in 3D object detection.

For 3D object detection, the Statistical Normalization (SN) [35]
method initially highlighted the significance of discrepancies in
object size statistics across different domains and mitigating the size
gap by normalizing the sizes of objects in the source domain lever-
aging the statistics of the target domain. However, SN is incompati-
ble with unsupervised adaptation tasks. ST3D [39] introduced the
Random Object Scaling (ROS) method to normalize source objects
across a broad range, but this method depends on the relative sizes
between different domains. To tackle the above issues, Sailor [28]
leveraged unsupervised anchor calibration to address object size
biases, and SF-UDA3D estimated object size of the target domain
through temporal coherency. PLS [4] further leveraged the size of
pseudo labels to normalize source objects, achieving better results
without relying on target domain statistics.

Other methods focus on generating and enhancing 3D pseudo
labels through self-training [39], mean-teacher [23] paradigm, or
contrastive learning [21]. ST3D++ [40] refined pseudo labels with
a memory bank and introduced Domain Specific Normalization
(DSNorm) to better utilize source data during training. UMT [13]
applied the uncertainty of predictions to generate more precise and
stable pseudo labels. MLC-Net [23] was the first to implement a
mean-teacher paradigm, leveraging multi-level consistency to facil-
itate the 3D cross-domain transfer. DTS [14] developed a density-
insensitive learning framework that randomly resamples point
cloud beams using the mean-teacher framework to mitigate the
domain gap induced by density. 3D-COCO [43] introduced a BEV
transformation module to learn cross-domain features through a
contrastive learning framework. GPA-3D [21] proposed a geometry-
aware prototype alignment, employing a soft contrast loss to bridge
the domain gap. Although these methods have achieved impressive
performance, they often overlook the impacts of insufficient and
inaccurate pseudo-labels in the target domain, and fail to effectively
learn domain-invariant features. In contrast, our CMT framework
introduces hard instance mining and combines co-training with a
mean-teacher framework across hybrid and target domains. This
strategy mitigates these issues and further improve performance.

3 METHODOLOGY
Unsupervised domain adaption for 3D object detection aims to
adapt a detector trained on a source domain 𝐷𝑆 = {(𝑃𝑠

𝑖
, 𝐿𝑠

𝑖
)}𝑛𝑠

𝑖=1 to
an unlabeled target domain 𝐷𝑇 = {𝑃𝑡

𝑗
}𝑛𝑡
𝑗=1, where 𝑛𝑠 and 𝑛𝑡 indi-

cate the number of point clouds in the source and target domains
respectively. Generally, 𝑃𝑠

𝑖
and 𝐿𝑠

𝑖
represent the 𝑖-th source input

point cloud and its corresponding label. Each point cloud scene 𝑃𝑠
𝑖

has the 3-dim spatial coordinates. 𝐿𝑠
𝑖
is in the form of object class 𝑘

and 3D bounding box parameterized by the center location of the
bounding box (𝑐𝑥 , 𝑐𝑦, 𝑐𝑧), the size in each dimension (𝑙,𝑤, ℎ), and
the heading angle 𝜃 . Similarly, 𝑃𝑡

𝑗
denotes the 𝑖-th unlabeled target

point cloud. Note that the superscripts 𝑠 and 𝑡 stand for source and
target domain respectively.

3.1 Co-training Mean-Teacher Architecture
Before transferring knowledge from the source to the target do-
main, a 3D detector must be pre-trained on the annotated source
data 𝐷𝑆 . This pre-training involves the use of standard augmen-
tation techniques: random object scaling (ROS) [42] and random
beam resampling (RBRS) [14]. After the model converges in the
pre-training phase, it serves as the baseline model for establishing
our co-training mean-teacher framework that facilitates knowledge
acquisition from both domains. Our framework consists of two
separate models, a non-trainable teacher model and a trainable
student model, sharing the same architecture.

During our framework learning, we first establish a co-training
step. Following previous works [21, 39], the 3D detector is trained
on the labeled source domain 𝐷𝑆 by minimizing the detection loss
L𝑠
𝑑𝑒𝑡

, which is defined as:

L𝑠
𝑑𝑒𝑡

= L𝑠
𝑟𝑒𝑔 + L𝑠

𝑐𝑙𝑠
(1)

where L𝑠
𝑟𝑒𝑔 and L𝑠

𝑐𝑙𝑠
represent the regression and classification

losses, respectively. We then use the teacher model to generate
pseudo-labels �̂�𝑡

𝑖
. Specifically, predictions from the teacher model

with confidence higher than a threshold 𝑐𝑡ℎ are selected to generate
the pseudo labels as:

�̂�𝑡𝑖 = {𝑙𝑡𝑗 ∈ �̂�T𝑖 |𝑐 𝑗 > 𝑐𝑡ℎ}, (2)

where 𝑙𝑡
𝑗
is the 𝑖-th predicted bounding box in �̂�T

𝑖
and 𝑐 𝑗 is the con-

fidence of 𝑙𝑡
𝑗
. To enhance the foreground feature distribution of the

target domain, we utilize a constructed hard instance bank (Sec. 3.2)
on source domain data, and randomly sample the instances in the
bank to the target domain. The foregrounds of the target domain
now combine the original target domain foregrounds with the en-
riched foregrounds from the hard instance bank. Simultaneously,
the target pseudo labels are updated to include both the pseudo
labels from the teacher model and the corresponding foreground
labels from the hard instance bank.

Under the co-training paradigm, the student detector uses these
target pseudo labels and source labels as supervision for training
as follows:

L𝑐𝑜_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = L𝑠
𝑑𝑒𝑡

+ L𝑡
𝑑𝑒𝑡

, (3)
where L𝑠

𝑑𝑒𝑡
is the detection loss on target data, same as in Eq. (2).

Subsequently, we construct the hybrid domain (Sec. 3.2) using
the background from the source domain and the foreground from
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Figure 2: Our proposedCo-trainingMean-teacher (CMT) framework. This figure displays the components of theCMT framework:
(1) Hard Instance Mining module extracts hard instances to enhance the diversity of target domain; (2) Hybrid Domain
Generation merges source background with target foreground to minimize domain discrepancies; (3) Class-Aware Contrastive
Learning improves feature discrimination through a mean-teacher setup that contrasts class features. (4) Batch Adaptive
Normalization adjusts the Batch Normalization layer parameters of the teacher model to better adapt to the target domain data.

the target domain, as shown in Figure. 2 (Left). We then feed both
hybrid domain data and target domain data into the student and
teacher models for mean-teacher learning, which outputs �̂�S

𝑖
and

�̂�T
𝑖
. The student detector is supervised using these target pseudo

labels and source labels as follows:

L𝑚𝑒𝑎𝑛−𝑡𝑒𝑎𝑐ℎ𝑒𝑟 = Lℎ
𝑑𝑒𝑡

+ Lℎ
𝑐𝑜𝑛𝑠 (4)

where Lℎ
𝑑𝑒𝑡

is the detection loss on hybrid data as in Eq. (2) and
Lℎ
𝑐𝑜𝑛𝑠 is the consistency loss from class-aware contrastive learning

between the teacher and the student models, which will be further
elaborated in Section 3.3. The overall loss L is calculated as:

L = L𝑐𝑜−𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 + L𝑚𝑒𝑎𝑛−𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (5)

To further improve the quality of the pseudo labels, we also
deploy the exponential moving average (EMA) technique to update
the weight of the teacher detector as:

𝜃 ’ = (1 − 𝛼)𝜃 ’ + 𝛼𝜃 (6)

where 𝛼 is a smoothing coefficient hyperparameter. The moving
average in Eq. (6) makes 𝜃 T evolve more smoothly than 𝜃S . As a
result, the teacher can aggregate information after every step and
generate stable predictions of the input.

The significant distribution differences between the source and
target domains can lead to inconsistencies in Batch Normalization
(BN) layer parameters, affecting the quality of pseudo-label genera-
tion and the model’s performance on the target domain. To address

this issue, we introduce Batch Adaptive Normalization (BAN), a
method that dynamically adjusts the BN layer parameters of the
teacher model to better adapt to the target domain’s data distribu-
tion, which will be further elaborated in Section 3.5.

3.2 Hybrid Domain Construction
Considering the substantial domain gap between the source and
target domains, naive co-training often struggles to capture domain-
invariant features and is instead adversely influenced by the dis-
tribution of the source domain. To mitigate this issue, we have
devised a strategy that utilizes data from both the source and target
domains to construct a hybrid domain, facilitating more effective
learning within the target domain. We have developed two key
modules: Hard Instance Mining and Hybrid Domain Generation to
achieve this.

Hard Instance Mining. Although high-scoring pseudo la-
bels are more likely to correctly represent the target domain’s fore-
ground, this operation might result in a collection of pseudo labels
that contain objects with similar patterns. This issue can prevent
the model from learning the target domain’s diverse distribution. To
learn more representative features of the target domain and ensure
a gradual and stable adaptation across the significant domain gap,
inspired by the ground truth (GT) sampling augmentation proposed
by [38], we suggest injecting foreground objects from the source
domain into the target domain to enrich its distribution. We cut
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out bounding boxes from labeled source domain scenes to create a
source instances bank B𝑆 = {𝑏𝑠

𝑖
}𝑛𝑔𝑡
𝑖=1 . 𝑛𝑔𝑡 is the number of ground

truth boxes in all labeled source data and 𝑏𝑠
𝑖
denotes the 𝑖-th ground

truth sample. For 𝑏𝑠
𝑖
, it consists of the corresponding point clouds

in labeled data and its ground truth bounding box.
Considering that hard samples often exhibit a more diverse dis-

tribution, we propose to categorize sample difficulty based on the
number of points within an object. We select hard samples using a
quantile threshold 𝛾 determined by the number of points in current
target objects. Specifically, we construct the hard instance bank
B by selecting hard samples from B𝑆 as follows:

B = {𝑏𝑠𝑖 ∈ B𝑆 | |𝑏𝑠𝑖 | < 𝛾} (7)

Here, |𝑏𝑠
𝑖
| represents the number of points within 𝑏𝑠

𝑖
. During the

training stage, we will randomly select ground truth samples from
B and paste them into the current target training frame. The range
for 𝛾 is from 0 to 100, where 𝛾 = 0 indicates that the hard instance
bank contains no samples, and𝛾 = 100means that the hard instance
bank is identical to the source instance bank. We perform collision
detection during the insertion process to ensure that the inserted
boxes do not overlap with existing objects in the scene. However,
since ground truth bounding boxes are unavailable for unlabeled
scenes, we rely on prediction results for collision detection in these
cases. Finally, we achieve a merged instances that includes both
target pseudo instances and source hard instances. This approach
ensures a sufficient number of foreground objects in each scene
while enhancing the diversity of objects in the target domain.

Hybrid Domain Generation. To generate hybrid domain
data, we first use the 3D bounding boxes from the source domain
to remove all foreground point clouds, thereby obtaining a clean
source domain background. Next, we extract the target domain
foreground point clouds from the target domain data using pseudo-
labels. It is important to note that the target domain foreground
includes enriched foreground features provided by the hard instance
bank, and the pseudo-labels also include corresponding annotations.
Finally, we combine the source domain background point clouds
with the target domain foreground point clouds to create the hybrid
domain data. By this design, we integrate knowledge from both
the source and target domains to construct the hybrid domain.
Compared with the original source domain scenarios, this method
significantly enhances the adaptability and effectiveness of the
domain transfer.

3.3 Class-aware Contrastive Learning
In addition to supervision at the final prediction level, we introduce
class-aware contrastive learning to better utilize pseudo-labels for
feature refinement. Inspired by previous studies [21, 43], Bird’s
Eye View (BEV) features are more transferable than low-level 3D
features since they have grid structures similar to images. There-
fore, we first map the pseudo labels 𝑙𝑡

𝑖
from the teacher model onto

the BEV feature map from either the hybrid or target domain to
extract BEV features 𝐹M

𝑖
∈ R𝐻×𝑊 ×𝐶 , where M ∈ {S,T } repre-

sents the student and teacher models respectively, 𝐻 ,𝑊 , and 𝐶

denote the height, width, and number of channels of the feature
map respectively, as shown in Figure. 2 (right). Drawing inspira-
tion from supervised contrastive learning, we use the teacher’s

predicted classes to leverage learning signals from pseudo-labels.
The contrastive loss is formulated as follows:

L𝑐𝑜𝑛𝑠 =
𝜆

𝑁

∑︁𝑁

𝑖=1
−1

|P(𝑖) |
∑︁

𝑝∈P(𝑖 ) 𝑙𝑜𝑔
𝑒𝑥𝑝 (𝐹 S

𝑖
𝐹 T
𝑝 /𝜏)∑𝑁

𝑗=1 𝑒𝑥𝑝 (𝐹
S
𝑖
𝐹 T
𝑗
/𝜏)

(8)

where the positive pair set P(𝑖) = {𝑃 |𝐶𝑃 = 𝐶𝑖 , 𝑝 ∈ {1, · · ·, 𝑁 }}
includes all objects of the same predicted class as object i. The
balancing weight 𝜆 and temperature 𝜏 are hyperparameters.

3.4 Batch Adaptive Normalization
Batch Adaptive Normalization (BAN) uses target domain data to
update the BN layer parameters of the teacher model within each
training batch. Specifically, for the data in each batch, we calculate
the batch mean 𝜇 and variance 𝜎2 as:

𝜇 =
1
𝑚𝑝

𝑚∑︁
𝑖=1

𝑝∑︁
𝑗=1

𝑓𝑖 𝑗 , 𝜎2 =
1
𝑚𝑝

𝑚∑︁
𝑖=1

𝑝∑︁
𝑗=1

(𝑓𝑖 𝑗 − 𝜇)2, (9)

where𝑚 is the total number of domain specific samples in a mini-
batch, 𝑓 is the input feature of one feature channel, and 𝑝 is the
number of elements (e.g., pixels or points) in this feature channel.
Here, we ignore the channel index 𝑐 for simplicity, and the above
process is performed on each channel separately. Meanwhile, since
the transformation parameters 𝛾 and 𝛽 are domain agnostic and
transferable across domains, the two domains shares the learnable
scale and shift parameters as:

𝑓𝑖 =
𝑓 𝑑
𝑖
− 𝜇

𝜎2 + 𝜖
, 𝑔𝑖 = 𝛾 𝑓𝑖 + 𝛽, (10)

where 𝑓 is the normalized value and 𝑔 is the transformed feature.
During training, the batch mean 𝜇 and variance 𝜎 are used to up-
date the running statistics at every iteration as Eq. 6. We argue
that this modification closes the gap caused by domain mismatch.
We empirically demonstrate the effectiveness by comparing the
performance under different BN settings in Section 4.3.

4 EXPERIMENTS
4.1 Experimental Settings
Datasets. We conduct experiments on three widely used au-
tonomous driving datasets: KITTI [10],Waymo [33], and nuScenes [2].
The KITTI dataset is collected with 64-beam Velodyne LiDAR. The
Waymo dataset is collected with five LiDAR sensors, 𝑖 .𝑒 . , one 64-
beam LiDAR and four 200-beam LiDARs. The nuScenes dataset
is collected with a 32-beam roof LiDAR. These datasets exhibit
significant diversities in foreground patterns and LiDAR beams.
Following previous works [12, 39, 43], we evaluate our CMT by
adapting across domains (Waymo→ nuScenes, Waymo → KITTI
and nuScenes→ KITTI).

Evaluation metrics. We follow [35] and adopt the KITTI
evaluation metric for evaluating our methods on the commonly
used car category (also named vehicle in Waymo). In detail, we
follow the official KITTI evaluation metric and use the average
precision (AP) for both the 3D IoUs and the bird’s eye view (BEV)
under an IoU threshold of 0.7 over 40 recall positions. We also
adopt the domain adaptation metric ( 𝑖 .𝑒 . , Closed Gap) [39] to
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Table 1: Performance comparison of various methods in cross domain adaptation tasks. W, N, and K denote the Waymo,
nuScenes, and KITTI datasets, respectively. Methods that require additional information from the target domain are marked
with † and labeled as weakly-supervised. "Source Only" indicates that the model trained on the source dataset is directly tested
on the target dataset. "Oracle" indicates that the model is trained with labeled target data. We report APBEV and AP3D over 40
recall positions of the car category at IoU = 0.7.

Task Method SECOND-IoU PV-RCNN PointPillars
APBEV / AP3D Closed Gap APBEV / AP3D Closed Gap APBEV / AP3D Closed Gap

W → K

Source Only 67.64/27.48 -/- 61.2/22.0 -/- 47.8/11.5 -/-
SN† [CVPR’20] 78.96/59.20 +72.33%/+69.00% 79.8/63.6 +66.9%/+68.7% 27.4/6.4 -55.1%/-8.5%

UMT 77.79/64.56 +64.86%/+80.66% -/- -/- -/- -/-
3D-CoCo [NIPS’21] -/- -/- -/- -/- 76.1/42.9 +76.5%/+52.2%
ST3D [CVPR’21] 82.19/61.83 +92.97%/+74.42% 84.10/64.8 +82.4%/+70.7% -/- -/-

ST3D++ [TPAMI’22] 80.78/65.64 +83.96%/+83.01% -/- -/- -/- -/-
GPA-3D [ICCV’23] 83.79/70.88 +103.19%/+94.41% -/- -/- 77.29/50.84 +79.70%/+65.46%
AttProto [WACV’24] -/66.86 -/+85.66% -/- -/- -/- -/-

Ours 85.19/72.07 +112.14%/+97.00% 85.93/74.53 +88.96%/+86.83% 77.74/54.38 +80.92%/+71.35%
Oracle 83.29/73.45 -/- 89.0/82.5 -/- 84.8/71.6 -/-

N→ K

Source Only 51.8/17.9 -/- 68.2/37.2 -/- 22.8/0.5 -/-
SN† [CVPR’20] 78.96/59.20 +25.1%/+35.4% 60.5/49.5 +36.8%/+27.1% 39.3/2.0 +26.6%/+2.1%

UMT 72.33/47.91 +65.17%/+53.97% -/- -/- -/- -/-
3D-CoCo [NIPS’21] -/- -/- -/- -/- 77.0/47.2 +87.4%/+65.7%
ST3D [CVPR’21] 75.9/54.1 +76.6%/+59.5% 78.4/70.9 +49.0%/+74.3% 60.4/11.1 +60.6%/+14.9%

ST3D++ [TPAMI’22] 80.5/62.4 +91.1%/+80.0% -/- -/- -/- -/-
AttProto [WACV’24] -/56.51 -/ +63.08% -/- -/- -/- -/-

Ours 82.40/69.98 +97.14%/+93.67% 84.79/72.55 +80.14%/+78.04% 80.07/53.86 +92.37%/+75.05%
Oracle 83.3/73.5 -/- 88.9/82.5 -/- 84.8/71.6 -/-

W → N

Source Only 32.9/17.2 -/- 34.5/21.5 -/- 27.8/12.1 -/-
SN† [CVPR’20] 33.2/18.6 +1.7%/+7.5% 34.2/22.3 -1.5%/+4.8% 28.3/13.0 +2.4%/+4.7%

UMT 35.10/21.05 +11.54%/+21.61% -/- -/- -/- -/-
3D-CoCo [NIPS’21] -/- -/- -/- -/- 33.1/20.7 +25.0%/+44.8%
ST3D [CVPR’21] 35.9/20.2 +15.9%/+16.7% 36.4/23.0 +10.3%/+8.8% 30.6/15.6 +13.2%/+18.2%

ST3D++ [TPAMI’22] 35.7/20.9 +14.7%/+20.9% -/- -/- -/- -/-
GPA-3D [ICCV’23] 37.25/22.54 +22.88%/+30.06% -/- -/- 35.47/21.01 +36.18%/+46.41%
AttProto [WACV’24] -/20.38 -/17.97% -/- -/- -/- -/-

Ours 41.08/23.98 +43.05%/+38.31% 41.49/26.30 +37.58%/+28.07% 38.04/21.09 +48.30%/+46.82%
Oracle 51.9/34.9 -/- 53.1/38.6 -/- 49.0/31.3 -/-

demonstrate the effectiveness on domain adaption, which is defined
as 𝐶𝑙𝑜𝑠𝑒𝑑 𝐺𝑎𝑝 =

𝐴𝑃𝑚𝑜𝑑𝑒𝑙−𝐴𝑃𝑠𝑜𝑢𝑟𝑐𝑒
𝐴𝑃𝑜𝑟𝑎𝑐𝑙𝑒−𝐴𝑃𝑠𝑜𝑢𝑟𝑐𝑒 × 100%.

Implementation details. We validate the proposed CMT on
three base detectors, including SECOND-IoU [38], PV-RCNN[29]
and PointPillars [19]. We adopte the training settings of the popular
point cloud detection codebase OpenPCDet [34] to pre-train our
detectors on the source domain. For the following fine-tuning stage,
we use Adam [18] and one cycle scheduler to fine-tune the detectors
for 50 epochs. The learning rate is set to 1.5 × 10−3 . The EMA
smoothing coefficient hyperparameter 𝛼 is set to 0.999 . We set the
confidence threshold 𝑐𝑡ℎ of pseudo labels to 0.6 and the quantile
threshold 𝛾 of hard instance bank to 25. The hyperparameters of
the contrastive loss 𝜆 and 𝜏 is set to 0.05 and 0.07, respectively.

Compared Methods. As shown in Table 1, CMT is first com-
pared with the Source Only method, which indicates directly eval-
uating the source domain pre-trained model on the target domain.
Next, 7 existing works are included in the comparison, namely,

SN [35], UMT [13], 3D-CoCo [43], ST3D [39], ST3D++ [40], GPA-
3D [21], and AttProto [12]. SN utilizes target domain statistical
object size as extra information to normalize the foreground objects
on the source domain. UMT utilizes a mean-teacher framework
and leverages model uncertainty to refine pseudo-labels, employing
Monte Carlo dropout for uncertainty estimation. 3D-CoCo focuses
on learning object-level transferable features to enhance gener-
alization. ST3D and ST3D++ adopt a memory bank to produce
high-quality pseudo-labels. GPA-3D leverages the intrinsic geo-
metric relationship from point cloud objects to reduce the feature
discrepancy. AttProto introduces an attentive prototype mecha-
nism using self-attention via transformers to learn distinctive class
features, especially effective in handling label noise in source-free
unsupervised domain adaptation. Additionally, we also compare
CMT with the Oracle, which trains the model on the labeled target
data, serving as an upper bound for performance.
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Table 2: Main ablation results. BAN represents batch adap-
tive normalization. HIM represents hard instance augmen-
tation. BRM represents background replacement module.
CCL represents class-aware contrastive learning.

Setting BAN HIM BRM CCL APBEV AP3D

(a) 80.77 65.12
(b) ✓ 83.26 67.14
(c) ✓ ✓ 83.33 69.28
(d) ✓ ✓ ✓ 83.48 70.08
(e) ✓ ✓ ✓ 84.59 71.35
(f) ✓ ✓ ✓ 82.96 67.70
(g) ✓ ✓ ✓ ✓ 85.19 72.07

4.2 Comparison with State-of-the-art Methods
Main Results. As summarized and reported in Tabel 1, our CMT
outperforms all compared methods by large margins on all 3D do-
main adaptation settings. Especially on the nuScenes → KITTI
and Waymo → KITTI tasks using the Second-iou [38] backbone,
our CMT reduces the 𝐶𝑙𝑜𝑠𝑒𝑑 𝐺𝑎𝑝 in AP3D by around 93% to 97%
and in APBEV by about 97% to 112%, indicating that APBEV for
CMT also surpasses that of the Oracle method. With the 3D de-
tector PV-RCNN [29], our CMT outperforms the previous SOTA
ST3D [39], by 9.73% in AP3D. Furthermore, in adaptation tasks
between the large-scale datasets Waymo and nuScenes, our CMT
achieves remarkable improvements, reducing the 𝐶𝑙𝑜𝑠𝑒𝑑 𝐺𝑎𝑝 in
APBEV by approximately 41% to 48%. The overall results validate
the transferability of our CMT on different unsupervised domain
adaptation benchmarks, and its ability to generalize to different
detection networks.

4.3 Ablation Studies
Following previous works [21, 39, 40], all ablation studies are con-
ducted on Waymo → KITTI, using SECOND-IoU as the base detec-
tor.

Main ablation results.We assess the effectiveness of each com-
ponent within the CMT framework, as detailed in Table 2. Baseline
(a) utilizes mean-teacher training with labeled source data and
pseudo-labels from the target domain. As illustrated in (b), inte-
grating our proposed Batch Adaptive Normalization (BAN) into
the pre-training phase of the mean-teacher framework enhances
performance by 2.03% in AP3D and 2.49% in APBEV, respectively.
Furthermore, the inclusion of Hard Instance Augmentation (HIM),
Background Replacement Module (BRM) and Class-aware Con-
trastive Learning (CCL) significantly boosts the results for (c), (d),
and (g), thereby demonstrating the efficacy of each component.

Additionally, we explore the importance of each module by re-
moving them individually. By comparing (f) and (g), we observe
substantial declines in AP3D and APBEV by 4.37% and 2.23%, respec-
tively, highlighting the critical role of dynamically adjusting the
statistical distribution of the teacher model. Comparisons between
(e) and (g) confirm that hard samples from the source domain ef-
fectively enrich the target domain’s sample distribution. Similarly,
the comparison between (d) and (g) shows that the CCL module
largely enhances performance in APBEV.

Table 3: Ablation study of the exponential moving average
(EMA) updatemechanisms for the BN layer parameters of the
teacher model. Disabled: No update to the teacher model’s
BN parameters. Baseline: Updates the teacher model’s BN
parameters using the student model’s via EMA. Neural Sta-
tistics Consistency: Uses the parameters from the student
model’s BN layers for updating the teacher model during
training. Ours: Updates the teacher model’s BN parameters
with each training batch.

Method APBEV AP3D

Disabled - -
Baseline 82.96 67.70

Neural Statistics Consistency 82.90 67.92
Ours 85.19 72.07

Analysis of Batch Adaptive Normalization. The ablation
study evaluates the impact of various batch normalization (BN)
updating strategies on the performance of a teacher model. Table 3
illustrates the importance of updating the teacher model’s BN layer
parameters; without these updates, the model’s training may col-
lapse. By involving Neural Statistics Consistency, the performance
of the model is similar to that achieved using the student model’s
BN parameters updated via EMA. This circumstance likely stems
from inconsistencies between the BN layer parameter updates and
other learnable parameters of the teacher model, leading to poorer
training outcomes.With ourmethod, the teachermodel’s BN param-
eters are dynamically updated using training data, which ensures
timely adjustments to the correct feature distribution statistics and
achieves optimal performance.

Sensitivity Analysis of Hard Instance Mining. As shown
in the figure 3, we evaluated the impact of different parameters 𝛾
on the HIM module. Setting the parameter 𝛾 to 0 means the HIM
module is not used. Setting the parameter 𝛾 to 5 results in a 1.6%
increase in APBEV and 0.72% in AP3D. When set to 25, both APBEV
and AP3D reach their performance peaks. However, setting the
parameter too high leads to a slight decline in performance, which
we attribute to an excess of simple samples affecting the model’s
generalization ability.

Sensitivity Analysis of Class-aware Contrastive Learning.
As shown in the figure 4, we evaluate different 𝜆 to control the
weights of the contrastive loss. When 𝜆 changed, the overall per-
formance remains relatively stable.

Analysis of Hybrid Domain Construction. As shown in the
Table 4, we tested various methods for constructing hybrid do-
mains using foregrounds and backgrounds from the source and
target domains. By mixing the source domain foreground with both
source and target domain backgrounds (configurations (b) and (c)),
we observed a remarkable performance decrease compared to the
baseline model when the target domain foreground is not used
in the hybrid domain. This decline is likely because the ultimate
goal is to recognize foregrounds in the target domain, and merely
learning from the source domain foreground does not sufficiently
enhance model performance. Excessive training on source domain
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Figure 3: Hyperparameter sensitivity of 𝛾 . Baseline refers
to HIM[0]. HIM[𝛾] indicates that we use 𝛾 as the quantile
threshold for selecting hard samples.

Figure 4: Hyperparameter sensitivity of 𝜆. Baseline refers
to CCL[0]. CCL[𝜆] indicates that we use 𝜆 as the balancing
weight of the contrastive loss.

foreground samples can adversely affect the model due to the influ-
ence of the source domain distribution, which hinders performance
in the target domain.

By mixing the target domain foreground with both source and
target domain backgrounds (configurations (d) and (e)), the combi-
nation of target domain foreground and source domain background
achieved optimal results. We attribute this to the effective use of rel-
evant features from both domains, minimizing domain discrepancy.
However, for the combination of target domain foreground and
background, the performance is compromised. This is analyzed to
be due to the pseudo-labels generated by the teacher model, which
may include unrecognized foreground objects within the target
background, thereby deteriorating the performance. Additionally,
this configuration does not mitigate the influence of the source
domain distribution effectively.

Component Analysis in our framework. We compare our
proposed Cross-domain Teacher-Student (CMT) framework with
several established adaptation frameworks, as shown in Table 5.
The results clearly demonstrate that CMT significantly outperforms
traditional frameworks such as self-training, mean-teacher, and co-
training. This improvement emphasizes the effectiveness of our
CMT in leveraging cross-domain knowledge.

Furthermore, we conducted a detailed analysis of each compo-
nent within the CMT training pipeline. Notably, removing self-
training from the target domain led to a significant 5.1% drop in
AP3D, underscoring the importance of this component in adapting

Table 4: Comparative Experiment Results for Hybrid Do-
main Construction. Here, "Src" denotes Source domain, "Tgt"
denotes Target domain, "Fg" denotes Foreground, and "Bg"
denotes Background. The combinations (e.g., Src.Fg + Tgt.Bg)
represent hybrid domains constructed using foreground (Fg)
and background (Bg) components from specified domains.

Setting Method APBEV AP3D

(a) Baseline 83.33 69.28
(b) Src.Fg + Src.Bg 82.96 65.37
(c) Src.Fg + Tgt.Bg 80.89 65.00
(d) Tgt.Fg + Tgt.Bg 83.33 70.19
(e) Tgt.Fg + Src.Bg 85.19 72.07

Table 5: Comparative Experiment Results for Training
Frameworks

Training Framework APBEV AP3D

Self-Training 82.25 65.95
Mean-Teacher 80.77 65.12
Co-Training 83.47 66.53

Ours w/o Self-T. 81.91 66.99
Ours w/o Mean-T. 83.68 69.76
Ours w/o Co-T. 83.30 69.04

Ours 85.19 72.07

the model effectively to the target domain. Direct exposure to tar-
get domain data crucially enhances the model’s adaptability and
accuracy.

Additionally, eliminating mean-teacher and co-training com-
ponents caused performance degradation, primarily due to the
accumulation of incorrect pseudo-labels. These components are
crucial for stabilizing the learning process by providing refined and
reliable pseudo-labels, which help mitigate error propagation dur-
ing training. Without these components, the model’s generalization
under domain shift conditions is severely impaired, highlighting
the importance of their inclusion for optimal performance.

5 CONCLUSION
In this work, we presented the Co-training Mean-Teacher (CMT)
framework for unsupervised domain adaptation in 3D object de-
tection. We address the limitations of current domain adaptation
methods by incorporating a hybrid domain that blends source and
target domain data, which helps in mitigating the domain discrep-
ancy and enhancing model robustness. Our framework leverages
hard instance mining to enrich the target domain with hard ex-
amples and employs a class-aware contrastive learning strategy to
refine feature representation across domains. By dynamically up-
dating the batch normalization parameters through Batch Adaptive
Normalization, our method adapts more effectively to the target do-
main. Our experimental results demonstrate that CMT outperforms
existing state-of-the-art methods on various benchmark datasets.
Future research will focus on bridge the gap between synthetic and
real-world domains, enhancing the transferability and effectiveness
of 3D detection models across simulated and actual environments.
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