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Abstract

Skeleton-based multi-entity action recognition is a challenging task aiming to
identify interactive actions or group activities involving multiple diverse entities.
Existing models for individuals often fall short in this task due to the inherent
distribution discrepancies among entity skeletons, leading to suboptimal back-
bone optimization. To this end, we introduce a Convex Hull Adaptive Shift based
multi-Entity action recognition method (CHASE), which mitigates inter-entity dis-
tribution gaps and unbiases subsequent backbones. Specifically, CHASE comprises
a learnable parameterized network and an auxiliary objective. The parameterized
network achieves plausible, sample-adaptive repositioning of skeleton sequences
through two key components. First, the Implicit Convex Hull Constrained Adaptive
Shift ensures that the new origin of the coordinate system is within the skeleton
convex hull. Second, the Coefficient Learning Block provides a lightweight param-
eterization of the mapping from skeleton sequences to their specific coefficients
in convex combinations. Moreover, to guide the optimization of this network for
discrepancy minimization, we propose the Mini-batch Pair-wise Maximum Mean
Discrepancy as the additional objective. CHASE operates as a sample-adaptive
normalization method to mitigate inter-entity distribution discrepancies, thereby
reducing data bias and improving the subsequent classifier’s multi-entity action
recognition performance. Extensive experiments on six datasets, including NTU
Mutual 11/26, H2O, Assembly101, Collective Activity and Volleyball, consistently
verify our approach by seamlessly adapting to single-entity backbones and boost-
ing their performance in multi-entity scenarios. Our code is publicly available
at https://github.com/Necolizer/CHASE.

1 Introduction

Multi-entity action recognition, a challenging task derived from action recognition [1, 2, 3, 4, 5, 6, 7,
8, 9], aims to find the optimal estimator of the mapping from multi-entity motions to semantic labels,
where entities involved can range from human bodies [10, 11], hands [12] to various objects [13].
Recent approaches predominantly rely on skeletal data for addressing this challenge [10, 11, 14], given
that skeletons serve as a concise representation of spatiotemporal features [15, 16, 17, 18, 19, 20, 21].
This task has broad applications in human-robot interaction [22, 23], scene understanding [24, 25, 26,
27, 28], human motion analysis [29, 30, 31, 32, 33, 34], etc.

∗Corresponding Authors.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Necolizer/CHASE


(a) Estimated Distributions of Point Clouds from Skeleton Sequences (b) Experimental Results

Top-1 Accuracy
(with CTR-GCN Backbone)

Maximum Mean

Discrepancy

X-Y X-Z Y-ZPoint Cloud of 104 SamplesAn Example

The Higher The Better

Ours

The Lower The Better

Ours

Walk Towards?

Walk Apart?

Inter-entity Distribution Discrepancies

Figure 1: Inter-entity distribution discrepancies in multi-entity action recognition task. (a) We
delineate three distinct settings: Vanilla (a common practice), S2CoM (an intuitive baseline approach),
and CHASE (our proposed method). Column 2 illustrates spatiotemporal point clouds defined by
the skeletons over 104 sequences. Column 3-5 depict the projections of estimated distributions of
these point clouds onto the x-y, z-x, and y-z planes. These projections reveal significant inter-entity
distribution discrepancies when using Vanilla. (b) The discrepancies observed in Vanilla introduce
bias into backbone models, leading to unsatisfactory performance. Although S2CoM can reduce these
discrepancies, it makes the classifiers produce wrong predictions due to a complete loss of inter-entity
information. With the lowest inter-entity discrepancy, our method unbiases the subsequent backbone
to get the highest accuracy, underscoring its efficacy.

Experiments have revealed that network architectures tailored for single-entity actions get unsatis-
factory performance when confronted with multi-entity actions [10, 35]. This inadequacy can be
attributed to a common practice [36, 37, 38, 39, 40] observed in treating interactions: each entity
is encoded independently using the same single-entity backbone, and their features are averaged
for recognition. This practice is based on an empirical assumption that each entity is independent
and identically distributed (i.i.d.). But we demonstrate that different entities depicted by skeletons
exhibit evident non-i.i.d. characteristics. Fig. 1 (a) Row 1 reveals significant inter-entity distribution
discrepancies using estimated distributions of joints from distinct entities. Such discrepancies can
introduce bias into the backbone models, leading to suboptimal optimization and performance. It
explains why multi-entity action modeling usually diverges from the single-entity one.

Using local coordinates for each entity holds promise in rendering them i.i.d., achieved by shifting
individual origins to the per-entity spatiotemporal centers of mass (S2CoM), as depicted in Fig. 1 (a)
Row 2. S2CoM is a straightforward and intuitive baseline to address this problem. However, this
approach exacts a significant toll as it entails a complete loss of inter-entity information. Experimental
results corroborate this notion, as illustrated in Fig. 1 (b), showcasing the detrimental impact of
lacking inter-entity measurements on recognition performance. Nonetheless, this endeavor sparks
an insightful realization: the potential for narrowing distribution gaps through origin shifts, thereby
improving the performance of single-entity backbones in multi-entity scenarios. A natural question
arises: Can we reduce the bias by finding the optimal sample-adaptive shift in R3 that minimizes the
distribution discrepancies among entities?

To address the inter-entity distribution discrepancy problem, we propose a Convex Hull Adaptive
Shift based multi-Entity action recognition method (CHASE). Serving as an additional normal-
ization step, CHASE aims to accompany other single-entity backbones for enhanced multi-entity
action recognition. Our main insight lies in the adaptive repositioning of skeleton sequences to
mitigate inter-entity distribution gaps, thereby unbiasing the subsequent backbone and boosting its
performance. Specifically, CHASE consists of a learnable parameterized network and an auxiliary
objective. The parameterized network can achieve plausible and sample-adaptive repositioning of
skeleton sequences through two crucial components. First, the Implicit Convex Hull Constrained
Adaptive Shift (ICHAS) ensures that the new origin of the coordinate system is within the skeleton
convex hull. Second, the Coefficient Learning Block (CLB) provides a lightweight parameteriza-
tion of the mapping from skeleton sequences to their specific coefficients in ICHAS. Moreover, to
guide the optimization of this network for discrepancy minimization, we propose the Mini-batch

2



Pair-wise Maximum Mean Discrepancy (MPMMD) as the additional objective. This loss function
quantifies pair-wise entity discrepancies using maximum mean discrepancy and integrates mini-batch
sampling strategies to estimate the expectation. In conclusion, CHASE works as a sample-adaptive
normalization method to mitigate inter-entity distribution discrepancies, which can reduce bias in the
subsequent classifier and enhance its multi-entity action recognition performance.

The contributions of this paper are three-fold:

1. To the best of our knowledge, we are the first to investigate the issue of inter-entity distribution
discrepancies in multi-entity action recognition. Our proposed method, Convex Hull Adaptive
Shift for Multi-Entity Actions, effectively addresses this challenge. Our main idea is to adaptively
repositioning skeleton sequences to mitigate inter-entity distribution gaps, thereby unbiasing the
subsequent backbones and boosting their performance.

2. Serving as an additional normalization step for backbone models, CHASE consists of a learnable
network and an auxiliary objective. Specifically, this network is formulated by the Implicit
Convex Hull Constrained Adaptive Shift, together with the parameterization of a lightweight
Coefficient Learning Block, which learns sample-adaptive origin shifts within skeleton convex
hull. Additionally, the Mini-batch Pair-wise Maximum Mean Discrepancy objective is proposed
to guide the discrepancy minimization.

3. Experiments on NTU Mutual 11, NTU Mutual 26, H2O, Assembly101, Collective Activity
Dataset and Volleyball Dataset consistently verify our proposed method by improving performance
of single-entity backbones in multi-entity action recognition task.

2 Related Work

2.1 Skeleton-based Action Recognition

Datasets & Models. Datasets [41, 42, 43, 44] proffering annotated or estimated skeleton sequences
support the development of skeleton-based action recognition. Based on these benchmarks, a
significant body of works focus on the design of artificial neural network architecture for more
effective skeleton-based action recognition. Early models rely on the basic architecture of Recurrent
Neural Network to capture temporal motions [45, 46, 47, 48, 49, 50]. Graph Convolution Network
(GCN) shows predominated popularity as various graph convolution operators being proposed [36,
37, 38, 51, 52, 53, 54, 55, 56, 57, 58]. Recent progress of the model design is largely driven by
adopting self-attention mechanism and transformer architecture [39, 40, 59, 60, 61, 62, 63, 64].

Optimization Objectives. Several works have explored additional optimization objectives beyond
the commonly used cross-entropy (CE) loss to ensure robust recognition [37, 65], address challenging
open-set problems [16], or integrate supplementary natural language descriptions [66, 67].

However, existing methods are usually developed under the empirical assumption that entities are i.i.d.
allowing the backbones to learn representations of actions concerning only one entity [36, 37, 38, 39,
40, 53]. However, when confronted with multi-entity interactions, their common practice of feeding
the backbone separately often proves inadequate. Our proposed approach can seamlessly adapt to
these existing methods, boosting their performance by minimizing the distribution discrepancies.

2.2 Skeleton-based Multi-Entity Action Recognition

Interactive Actions. Addressing datasets featuring two-person actions [41, 42, 68, 69, 70, 71, 72] or
egocentric hand-object interactions [12, 13, 73, 74] necessitates effective interaction modeling. This
spurs the development of various interaction recognition models leveraging human body and hand
graph priors [10, 75]. Notably, the introduction of the general interactive action recognition task [35]
unifies diverse interactions across various entity types, including person-to-person [10, 11, 14, 35, 76,
77], hand-to-hand [12, 35, 78, 79] and hand-to-object [13, 35, 75, 79, 80, 81] interactions.

Group Activities. Another interesting area of study is group activities [82, 83, 84], which involve
more entities and may include irrelevant individual motions [85, 86]. To this end, recent works
usually leverage compositional reasoning from group skeletons, either alone or in combination with
additional modalities, to achieve promising results [87, 88, 89, 90, 91, 92, 93, 94, 95, 96].
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Figure 2: The overall framework of the proposed CHASE for multi-entity action recognition.
Given a skeleton sequence of multi-entity action as input, CHASE executes an implicit convex
hull constrained adaptive shift with the Coefficient Learning Block, implemented as a lightweight
backbone wrapper. CHASE also collects pair-wise shifted skeletons within mini-batches, effectively
alleviating inter-entity distribution discrepancies by introducing an additional objective.

While these works demonstrate satisfactory performance through interaction modelling, some may
encounter model scalability issues when confronted with the factorial growth of inter-entity interac-
tions [10, 13, 35, 75]. Moreover, they usually lack sufficient justification for why multi-entity action
modeling significantly diverges from the single-entity one [10, 35, 79, 81]. In this paper, we delve
into the inter-entity distribution discrepancy problem and introduce CHASE as a solution to minimize
discrepancies. Through our proposed method, we aim to demonstrate that single-entity backbones
can work well in multi-entity settings.

3 CHASE

Fig. 2 presents the framework of our proposed CHASE for skeleton-based multi-entity action
recognition. We begin by presenting the formulation of the implicit convex hull constrained adaptive
shift in Section 3.1, followed by the design of a lightweight Coefficient Learning Block in Section 3.2.
In Section 3.3, we subsequently introduce an additional objective termed Mini-batch Pair-wise
Maximum Mean Discrepancy to further mitigate inter-entity distribution discrepancies.

3.1 Implicit Convex Hull Constrained Adaptive Shift

The observed inter-entity distribution discrepancy in multi-entity skeleton sequences stems from the
initial configuration of the world coordinate system. To mitigate this discrepancy, we propose an
adaptive shift mechanism for each multi-entity skeleton sequence. It guides the origin to a sample-
adaptive location, aiming to render each entity approximately i.i.d.. Moreover, based on the empirical
assumption that the origin should not be far away from the skeletons, we implicitly constrain the new
origin to remain within the skeleton convex hull by proving a simple but crucial proposition.

Consider a scenario where E interactive entities (e.g. persons) engage in purposeful activities over
a duration of T , and the pose of each entity is indicated by J joints with C Cartesian coordinates.
The skeleton sequence of a multi-entity action is defined as X ∈ RC×T×J×E . For clarity we denote
U = T × J ×E. Given points p⃗i ∈ RC×1 in X ∈ RC×U , the subtraction ⃗̂pi = p⃗i − p⃗∗(1 ≤ i ≤ U)

defines a shift of origin for them, where ⃗̂pi, p⃗∗ ∈ RC×1. This can be expressed in matrix form as:

X̂ = X − p⃗∗J1,U , (1)
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where J1,U ∈ R1×U is a matrix of ones, and X̂ is the shifted skeleton sequence. Now the problem is
to make the shift vector p⃗∗ adaptive to X . A naive implementation is the linear combination:

X̂ = X − p⃗∗J1,U = X(I −WJ1,U ), (2)

where I ∈ RU×U and the weight matrix W ∈ RU×1.

However, optimizing W can be challenging without constraints, as p⃗∗ could potentially be any point
in R3. It is therefore reasonable to constrain p⃗∗ by incorporating the definition of the Convex Hull.

Definition 1 (Convex Hull [97]). The convex hull S of a given set X can be defined as: 1) The
(unique) minimal convex set containing X . 2) The set of all convex combinations of points in X .
These definitions are equivalent.

We jump to the formulation of the implicit skeleton convex hull constrained adaptive shift vector by
proving the following proposition:

Proposition 1. The implicit skeleton convex hull constrained adaptive shift vector is formulated as

p⃗∗ = Xsoftmax(W ), (3)

where X ∈ RC×U , W ∈ RU×1, and p⃗∗ ∈ RC×1. p⃗∗ in Eq. 3 is an element in the set of all convex
combinations of points in X . It is also a point that lies in the minimal convex set containing X .

Proof. The first half of this proposition is equivalent to show that the matrix product of X and
softmax(W ) is a convex combination of X . X is a set of points p⃗1, . . . , p⃗U with C Cartesian
coordinates. We denote softmax(W ) as W̃ with component α̃i, which is formulated as

α̃i =
eαi∑U
j=1 e

αj

(1 ≤ i ≤ U), (4)

where αi is a component of W . By applying function softmax : RU 7→ (0, 1)U , each component
α̃i of W̃ will be in the interval (0, 1), and the components will add up to 1. Thus we have p⃗∗ =∑U

i=1 α̃ip⃗i, where all α̃i ∈ R satisfy α̃i > 0 and
∑U

i=1 α̃i = 1. This is sufficient for the definition
of a convex combination, which only requires α̃i ≥ 0. Then the second half of this proposition is
evident with the equivalence of definitions in Def. 1.

Proposition 1 also implies that all possible p⃗∗ constitute a subset S̃ of the convex hull S defined by
the skeleton joints for all entities during the action period:

S̃ =

{
U∑
i=1

α̃ip⃗i

∣∣∣∣∣ p⃗i ∈ X,

U∑
i=1

α̃i = 1, α̃i ∈ (0, 1)

}
⊂ S, (5)

which specifically is the interior of S (i.e., the open convex hull of X). We provide an example of the
feasible p⃗∗ in the interior of S, marked by a green circle in Fig. 2. The center of mass (CoM) ¯⃗p is
also in the set S̃, proven by simply taking all α̃i = 1/U(1 ≤ i ≤ U).

With Eq. 1 and Eq. 3, we introduce Implicit Convex Hull Constrained Adaptive Shift as:

X̂ = X(I − softmax(W )J1,U ), (6)

where W is coefficients needed to be optimized. In Eq. 2, the search space for p⃗∗ encompasses the
entire R3. However, in Eq. 6, it’s restricted to the open convex hull S̃. We optimize the weights for
each point under the constraint of the skeleton convex hull, subsequently deriving the adaptive shift
vector for each sample. Applying a softmax function implicitly constrains p⃗∗ to remain within the
convex hull S, while preserving inter-entity measurements. Consequently, the subtraction between
the point set and the shift vector repositions the origin to a specific point in the open convex hull.
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3.2 Parameterized Mapping for Coefficients

In this section, a lightweight Coefficient Learning Block is introduced to parameterize the mapping
from the input skeleton sequence to the weight matrix. This parameterization allows CHASE to
achieve sample-adaptive coefficients beyond sample-adaptive shifts formulated in Section 3.1.

In Eq. 6, we note that the first-order partial derivative of X̂ with respect to X is

∂X̂

∂X
= I − JU,1softmax(WT ), (7)

whose result is constant. This implies that the same learnt weight matrix W is applied to all different
Xs when getting adaptive p⃗∗s. To make the coefficients W dependent on the input X , a mapping
ψ : RC×U 7→ RU×1 is expected to map X to W .

As depicted in Fig. 2, we parameterize the nonlinear mapping ψ as a sequence of learnable layers,
termed the Coefficient Learning Block. This lightweight CLB can be formulated as follows:

W = ψ(X) =W3δ(W2ϕ(W1X + b)), (8)

where W1 ∈ RC1×C ,W2 ∈ RC2×C1 ,W3 ∈ RU×C2 are weight matrices, b is a bias matrix, ϕ :
RC1×U 7→ RC1×1 is a squeeze operator [98] and δ is an activation function. Using a dimensionality-
reduction layer and a dimensionality-increasing layer around the non-linearity is a common gating
mechanism parameterization [98, 99]. Hence, we ensure U ≥ C1 > C2.

3.3 Objective for Inter-entity Distribution Discrepancy Minimization

To facilitate CHASE optimization, we introduce an additional objective aimed at minimizing the
inter-entity distribution discrepancies of the shifted skeleton sequences. This objective quantifies the
pair-wise discrepancies and employs mini-batch sampling strategies to estimate the expectation.

Maximum mean discrepancy is a metric used to measure the distance between distributions, defined
as the distance between their embeddings in the reproducing kernel Hilbert space (RKHS) H:

MMD(P,Q) = sup
∥f∥H≤1

(E[f(x)]− E[f(y)]) , (9)

where sup(·) denotes the supremum. It is equivalent to finding the RKHS function f that maximizes
the difference in expectations between the two probability distributions P (x) and Q(y).

Suppose each entity distribution is denoted as P i(1 ≤ i ≤ E) for E entities, we measure the distance
of all pair-wise distributions using the empirical mean

Er(z)[MMD(z)] =

E−1∑
i=1

E∑
j=i+1

MMD(P i, P j)/C(E, 2), (10)

where z = (P i, P j)(1 ≤ i, j ≤ E, i ̸= j) with the probability density r(z), and C(E, 2) denotes
a combination of E things taken 2 at a time without repetition. We adopt two approximations for
computational efficiency. The first involves estimating E[f(x)] in Eq. 9 using a mini-batch of x.
The second approximation concerns the right-hand side of Eq. 10, which is impractical due to its
complexity of O(n!) in terms of the entity count. Instead, it can be approximated by uniformly
sampling a mini-batch of M entity pairs from all possible C(E, 2) combinations z:

Er(z)[MMD(z)] ≈ 1

M

M∑
m=1

MMD(zm). (11)

We denote Eq. 11 with the above two approximations to be the Mini-batch Pair-wise Maximum Mean
Discrepancy Loss Lmpmmd, thereby we have the total loss function for training:

L = LCLS + λLmpmmd, (12)

where LCLS is the classification loss and λ is the trade-off weight factor for Lmpmmd.
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NTU Mutual 11 & 26 Similar interaction categories, e.g. giving object, shaking hands, high-five, cheers and drink, exchange things and rock-paper-scissors

H2O Three interactive entities (two hands & one object) engage in the interactions

ASB101 Skeleton sequences should be classified into 1,380 fine-grained categories (verb & noun) without object poses

CAD Recognize street group activities from estimated 2D joints in the wild, with number of entities up to 13

VD Recognize volleyball group activities from estimated 2D joints of 12 players and the position of the ball

Figure 3: Visualizations of multi-entity action samples and their skeleton convex hulls.

4 Experiments

4.1 Datasets & Settings

We conduct experiments on six multi-entity action recognition datasets. Fig. 3 presents skeletal
samples in these datasets and their skeleton convex hulls, showcasing their difficulties.

NTU Mutual 11 and NTU Mutual 26, respectively subsets of NTU RGB+D [41] and NTU RGB+D
120 [42], consist of a variety of inter-person mutual actions. NTU Mutual 11 adopts the widely-used
X-Sub and X-View criteria, while NTU Mutual 26 follows the X-Sub and X-Set criteria.

H2O [13] proffers 3D poses of human hands and bounding boxes of the manipulated objects,
facilitating both hand-to-hand and hand-to-object interactions learning. We follow the training,
validation, and test splits outlined in [13] in our experiments.

Assembly101 (ASB101) [12] is a large and challenging 3D manual procedural activity dataset, with
1,380 categories of interactive actions. We follow the training, validation, and test splits described
in [12] for evaluations. Fine-grained actions (verb & noun) are adopted as labels in experiments.

Collective Activity Dataset (CAD) [85] captures people and their behaviors in public using street
cameras, categorizing pedestrian collective activities into 4 groups. We adopt the same categories,
individual labels, train-test split in [95]. Only 2D joint coordinates are used in our experiments.

Volleyball Dataset (VD) [86] consists of video clips from volleyball tournaments and includes 8
group activity classes based on volleyball terminology. We follow the Original split described in [95]
for evaluation. Only estimated 2D joint coordinates are used as input features.

Settings. Experiments are conducted on the GeForce RTX 3070 GPUs with PyTorch. CTR-GCN [36],
InfoGCN [37], STSA-Net [40] and HD-GCN [38] are chosen as our baseline models. To ensure fair
comparisons, we adopt single intra-skeleton modality without multi-modality fusion following [35].
For CTR-GCN in NTU Mutual 26, we adopt input shape X ∈ R3×64×25×2, segment size (1, 1, 1)
and λ = 0.1 in CHASE. SGD optimizer is used with Nesterov momentum of 0.9, a initial learning
rate of 0.1 and a decay rate 0.1 at the 80th and 100th epoch. Batch size is set to 64. More detailed
configurations for each model are provided in the Appendix.

4.2 Experimental Results

Table 1 shows the experimental results on different benchmarks, reporting the averaged top-1 accuracy
and its standard deviation in runs with several seed initializations. We compare CHASE with vanilla
counterparts (light red background) and the state-of-the-art multi-entity action recognition methods
(light yellow background). By adopting our proposed CHASE, we can boost the vanilla counterparts’
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Table 1: Comparisons with Skeleton-based Methods on Multi-Entity Action Datasets

Method Venue
NTU Mutual 26(%) NTU Mutual 11(%)

X-Sub X-Set X-Sub X-View
GDCN [11] TPAMI’23 85.80 92.10 - -
SkeleTR [76] ICCV’23 87.80 88.30 94.80 97.70

ISTA-Net [35] IROS’23 90.56(±0.08) 91.72(±0.30) - -
AHNet-Large [83] PR’24 86.43 86.64 90.85 93.38

me-GCN [77] arXiv’24 90.00 90.00 95.50 98.20

CTR-GCN [36] ICCV’21 89.32(±0.06) 90.19(±0.17) 95.94(±0.36) 98.32(±0.29)

+ CHASE (Ours) - 91.30↑1.98
(±0.22) 92.34↑2.15

(±0.10) 96.45↑0.51
(±0.05) 98.83↑0.51

(±0.13)

InfoGCN [37](k=1) CVPR’22 90.22(±0.13) 91.13(±0.16) 95.51(±0.10) 97.76(±0.22)

+ CHASE (Ours) - 91.86↑1.64
(±0.05) 92.41↑1.28

(±0.34) 96.35↑0.84
(±0.18) 98.25↑0.49

(±0.25)

STSA-Net [40] Neuro.’23 88.41(±0.01) 90.19(±0.11) 95.96(±0.09) 98.47(±0.09)

+ CHASE (Ours) - 89.77↑1.36
(±0.18) 91.54↑1.35

(±0.12) 96.63↑0.68
(±0.10) 98.73↑0.26

(±0.08)

HD-GCN [38](CoM=1) ICCV’23 88.25(±0.44) 90.08(±0.12) 95.58(±0.10) 97.93(±0.07)

+ CHASE (Ours) - 90.81↑2.56
(±0.13) 92.06↑1.97

(±0.21) 96.22↑0.64
(±0.05) 98.31↑0.38

(±0.07)

Method Venue H2O(%) ASB101(%) CAD(%) VD(%)
AT [26] CVPR’20 - - - 92.30

ISTA-Net [35] IROS’23 89.09(±1.21) 28.01(±0.06) 87.16(±2.55) 91.40(±0.23)

H2OTR [80] CVPR’23 90.90 - - -
EffHandEgoNet [81] arXiv’24 91.32 - - -
AHNet-Large [83] PR’24 - - 89.32 84.31

CTR-GCN [36] ICCV’21 81.68(±0.85) 27.83(±0.45) 80.45(±2.29) 92.66(±0.21)

+ CHASE (Ours) - 91.05↑9.37
(±1.98) 28.03↑0.21

(±0.30) 89.61↑9.16
(±0.20) 92.89↑0.24

(±0.15)

InfoGCN [37](k=1) CVPR’22 76.24(±3.93) 27.18(±0.10) 83.07(±0.46) 91.77(±0.15)

+ CHASE (Ours) - 83.47↑7.23
(±2.89) 27.36↑0.18

(±0.12) 84.18↑1.11
(±2.91) 92.00↑0.23

(±0.15)

STSA-Net [40] Neuro.’23 92.29(±0.52) 27.70(±0.19) 80.20(±3.60) 92.52(±0.52)

+ CHASE (Ours) - 94.77↑2.48
(±1.36) 27.81↑0.11

(±0.13) 85.93↑5.73
(±2.46) 92.78↑0.26

(±0.41)

HD-GCN [38](CoM=1) ICCV’23 72.73(±0.41) 27.31(±0.36) 76.93(±4.38) 91.32(±0.02)

+ CHASE (Ours) - 81.61↑8.88
(±1.03) 27.50↑0.19

(±0.24) 82.39↑5.46
(±1.61) 92.00↑0.68

(±0.07)

performance by a noticeable margin in most settings. It yields varying degrees of accuracy improve-
ment across different baseline models and benchmarks, owing to differences in model parameter
count, training objective, data scale, etc. Compared to models with complicated interaction designs,
CHASE can help single action backbones achieve the state-of-the-art performance in interaction
recognition by outperforming ISTA-Net [35], AHNet-Large [83], etc. In group activities recognition
task, which is more challenging for single-entity backbones, CHASE can help achieve competitive
performance. Fig. 4 visualizes that CHASE can effectively alleviate the potential inter-entity distri-
bution discrepancies across a range of data scales, thereby ensuring robust backbone optimization
and inference. UMAP [100] visualization in Fig. 5 demonstrates our proposed CHASE differentiate
similar multi-entity actions better by assisting backbones to learn more distinctive representations.

Table 2: Comparison with Other Alternatives
Method Acc (%) ∆ (%)
Vanilla 89.32(±0.06) -
S2CoM 88.66(±0.26) −0.67
BatchNorm 89.06(±0.16) −0.27
ER [35] 89.34(±0.15) +0.02
Aug 89.72(±0.04) +0.40
S2CoM†/STD 90.29(±0.06) +0.97
S2CoM† 90.79(±0.10) +1.47
CHASE (Ours) 91.30(±0.22) +1.98

4.3 Ablation Study

In this section, we conduct ablation studies on the
widely-adopted benchmarks NTU Mutual 26 and
NTU Mutual 11 with only joint modality.

Comparison with other alternatives. We com-
pare our proposed CHASE with several alterna-
tives as follows: 1) Vanilla: Use the raw world
coordinates or pixel coordinates. 2) S2CoM: Shift

8



V
a

n
ill

a
C

H
A

S
E

(O
u

rs
)

More (104)Fewer (102) Samples More (104)Fewer (102) Samples

Figure 4: Qualitative results of CHASE. Different entity distributions are denoted by blue and
orange. CHASE effectively mitigates inter-entity distribution discrepancies, demonstrating its clear
effectiveness across a range of data scales, from small to large.

Table 3: Analysis of Inter-entity Distribution Discrepancies

Set Method Avg KLD ↓ JSD ↓ BD ↓ HD ↓ MMD ↓
I Vanilla 1.07(±0.25) 0.19(±0.04) 0.25(±0.06) 0.46(±0.06) 0.94(±0.54)

CHASE (Ours) 0.39(±0.09) 0.08(±0.02) 0.10(±0.02) 0.30(±0.03) 0.05(±0.02)

II Vanilla 1.00(±0.23) 0.18(±0.04) 0.23(±0.05) 0.45(±0.05) 1.03(±0.60)

CHASE (Ours) 0.45(±0.08) 0.10(±0.02) 0.11(±0.02) 0.32(±0.03) 0.07(±0.02)

III Vanilla 0.72(±0.14) 0.14(±0.02) 0.17(±0.03) 0.39(±0.04) 1.25(±0.60)

CHASE (Ours) 0.41(±0.08) 0.08(±0.02) 0.10(±0.02) 0.30(±0.03) 0.05(±0.04)

IV Vanilla 0.75(±0.14) 0.14(±0.03) 0.17(±0.03) 0.40(±0.04) 1.15(±0.56)

CHASE (Ours) 0.41(±0.07) 0.08(±0.01) 0.09(±0.02) 0.30(±0.03) 0.04(±0.03)

the individual origins to the spatiotemporal centers of mass for each entity. 3) BatchNorm: Apply an
additional BatchNorm operation immediately when batches of samples are fed into the model. 4) ER
(Entity Rearrangement [35]): A technique aims to eliminate the orderliness of entities for interaction
modelling. 5) Aug: Apply an additional data augmentation by randomly shifting the skeleton se-
quences. 6) S2CoM†: Shift the origin to the spatiotemporal center of mass. 7) S2CoM†/STD: Scale
according to the channel-wise standard deviations after applying S2CoM†. Results in Table 2 indicate
that CHASE can outperform these alternatives by bringing the largest accuracy improvement to the
vanilla CTR-GCN.

Analysis of inter-entity distribution discrepancies. Table 3 presents metrics evaluating the inter-
entity distribution discrepancies on test sets, including Averaged Kullback-Leibler Divergence (Avg
KLD), Jensen-Shannon Divergence (JSD), Bhattacharyya Distance (BD), Hellinger Distance (HD)
and MMD. We measure the pair-wise distributions of sampled data points from different entities
in test sets of NTU Mutual 11 X-Sub (I), X-View (II) and NTU Mutual 26 X-Sub (III), X-Set
(IV). Table 3 demonstrates that CHASE significantly minimizes discrepancies across all evaluation
metrics, thereby benefiting backbone learning for each entity in multi-entity actions.

Table 4: Analysis of Key Components in CHASE
ICHAS CLB MPMMD lr Acc (%) ∆ (%)AS CHC
! ! ! ! 0.1 91.30(±0.22) -
! ! ! 0.1 22.65(±0.35) −68.65

! ! ! 0.01 86.99(±0.16) −4.32

! ! ! 0.1 91.20(±0.13) −0.10

! ! 0.1 22.75(±0.12) −68.56

! ! 0.01 23.51(±0.38) −67.79

! ! ! 0.1 20.42(±0.09) −70.88

! ! ! 0.1 91.17(±0.18) −0.13
0.1 89.50(±0.14) −1.81

Analysis of Key Components. We
validate the effectiveness of each key
component in Table 4. When remov-
ing the skeleton convex hull constraint
(CHC), there is a significant drop in
accuracy, exceeding 60%, for initial
learning rates (lr) of 0.1 and 0.01.
This substantial decline highlights
the importance of CHC as a critical
constraint for learning the adaptive
shift. Additionally, replacing Adap-
tive Shift (AS) with X̂ = XWJ1,U
results in a dramatic decrease in accu-
racy, indicating that simply adding an equivalent number of trainable parameters without an adaptive
shift formulation is ineffective. Table 4 further shows CHASE also benefits from CLB and MPMMD.
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Vanilla CHASE (Ours)

Figure 5: UMAP [100] visualizations of multi-entity skeleton sequence representations on the
test split of NTU Mutual 26 X-Sub. Compared with Vanilla, our proposed CHASE differentiate
similar multi-entity actions better by assisting backbones to learn more distinctive representations.

Table 5: Mixed Recognition on NTU RGB+D 120
Method X-Sub (%) X-Set (%)
CTR-GCN [36] 84.95(±0.05) 86.90(±0.03)

+ CHASE 85.36(±0.05) 86.95(±0.10)

Evaluations on Mixed Recognition of Single- & Multi-Entity Actions. Table 5 shows a 0.41%
improvement in X-Sub accuracy on the entire NTU RGB+D 120. This implies that although CHASE
is proposed for multi-entity actions, it is also effective in mixed recognition settings.

Table 6: CHASE Trainable Parameters
Method # Param. (M)
CTR-GCN [36] 1.44

+ CHASE 1.46↑1.83%

STSA-Net [40] 4.13

+ CHASE 4.16↑0.60%

Analysis of Efficiency. As illustrated in Table 6, the
number of trainable parameters of CHASE in NTU Mutual
26 configurations is about 26.37 k, resulting in a mere
1%-2% parameter increase. For computational complexity,
FLOPs of CHASE is approximately 2.50 M. These metrics
demonstrate that CHASE is both efficient and lightweight.

5 Conclusion

This paper proposes the Convex Hull Adaptive Shift for Multi-Entity Action Recognition (CHASE)
to address the inter-entity distribution discrepancies. To the best of our knowledge, we are the first
to investigate this problem and leverage discrepancy minimization to unbias the classifiers. Our
approach can seamlessly adapt to existing backbone architectures and demonstrate performance
improvements across six multi-entity action recognition datasets.
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Appendix

The appendix is organized as follows:

A. Supplementary Analysis of CHASE

B. Code for CHASE

C. Details of Multi-Entity Action Recognition Datasets

D. Evaluation Metrics

E. Implementation & Configuration Details

F. Supplementary Experimental Results

G. Limitations & Broader Impacts

H. Licenses for Used Assets

A Supplementary Analysis of CHASE

A.1 Preliminaries

Here we clarify some crucial definitions in the skeleton-based multi-entity action recognition task as
follows.

Definition 2 (Skeleton Sequence of A Multi-Entity Action). Suppose that E interactive entities (e.g.
persons) engage in a purposeful act during a period of time T , and the pose of each entity is indicated
by J joints with C Cartesian coordinates. We can define the skeleton sequence of a multi-entity
action as X ∈ RC×T×J×E .

Definition 3 (Skeleton-based Multi-Entity Action Recognition). We define the task as finding the
optimal estimator Eθ of the mapping E : X 7→ Y , where X is the skeleton sequence of a multi-entity
action and Y is its corresponding label.

Definition 4 (Joints & Bones). A joint within a skeleton is a point in the Cartesian coordinate system,
which can also be viewed as a vector p⃗i(1 ≤ i ≤ J). A bone within a skeleton is a differential vector
of two joints p⃗i and p⃗j (1 ≤ i, j ≤ J), if and only if the two joints are connected or the same one
according to a prior graph (e.g. the bone connection of the human body).

GCN / Transformer Backbone

for Single Entity Action

Stack along 

Batch Dimension

[N*E, C, T, J]

Avg among

All Entities
[N, C’, T, J]

GAP+FC

Figure 6: The common practice in single-entity action recognition models to recognize multi-
entity actions. This late fusion strategy is used in many recent works [36, 37, 38, 39, 40].

We illustrate the common practice [36, 37, 38, 39, 40] when single-entity action recognition models
meet multiple entities using Fig. 6. With vanilla world coordinates as input, they usually concatenate
each entity along batch dimension, and extract high-dimensional features of each entity separately
using GCN or transformer backbone. Subsequently, the individual features get averaged before
undergoing global average pooling and full connection layers. Notably, this common practice is
based on an empirical assumption that each entity is independent and identically distributed.

A.2 Adaptive Shift Analysis Under Bone Representation

Most existing research uses Def. 4 for the bone modality definition [36, 53, 54, 56]. In this context,
the learned adaptive shift is ineffective because shifting the origin does not affect the Euclidean
distance between any two points. However, the adaptive shift could still prove effective if bones are
defined differently.
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Table 7: Statistics of Multi-Entity Action Recognition Datasets
Datasets Annotation #Actions #Joints #Clips #Valid Frames #Entities #ParticipantsBody Hand Object
NTU Mutual 11 [41] ! 11 25 10,347 69.18 2.00 40
NTU Mutual 26 [42] ! 26 25 24,732 59.36 2.00 106
H2O [13] ! ! 36 21 933 97.29 3.00 4
Assembly101 [12] ! 1,380 21 85,252 105.91 2.00 53
CAD [85] ! 4 17 2,511 10.00 5.22 -
VD [86] ! ! 8 17 4,830 10.00 13.00 -

Definition 5 (k-hop Bones [37]). We denote Xt as the joints at the moment t in a skeleton sequence.
The k-hop Bone X̃(k)

t at moment t can be formulated as

X̃
(k)
t = (I − P k)Xt, (13)

where k ≥ 1, and P ∈ RJ×J is a binary adjacency matrix of a directed graph without bi-directional
edges.

In the context of human body skeletons, Def. 5 uses the joint jr, representing the center of the spine,
as the root to construct the directed graph. If k = maxvd(v) + 1, where maxvd(v) means the max
hop of all joints to the root, then the k-hop Bone X̃(k)

t aligns with the joint definition in Def. 4.
However, when k = 1, this equivalence doesn’t necessarily hold for the bone definition in Def. 4.
The reason is that some joints (such as the root) may have no in-degree, causing them to retain their
original joint coordinates in Def. 5. Therefore, the k-hop bones may still contain joint information
that can be modified through adaptive shift.

A.3 Analysis of Gradient

Consider the expectation Er(z)[gθ(z)] in Eq. 11, where gθ denotes the composition of MMD (Eq. 9)
and ICHAS (Eq. 6) with CLB (Eq. 8). We assume that the gradient of gθ with respect to the parameters
θ exists. Since it adopts uniform sampling, we note that the discrete probability density function r(z)
of z is independent of the parameters θ. Thus we have

∇θEr(z)[gθ(z)] = ∇θ[
∑
z

r(z)gθ(z)]

=
∑
z

r(z)[∇θgθ(z)]

= Er(z)[∇θgθ(z)],

(14)

which indicates that the gradient of the expectation ∇θEr(z)[gθ(z)] is equivalent to the expectation
of the gradient Er(z)[∇θgθ(z)]. The latter can be approximated using Monte Carlo methods.

B Code for CHASE

CHASE is implemented as a wrapper for various skeleton-based action backbones, as illustrated in
Algorithm 1. Line 18 indicates input of batch size N , channel C, number of frames T , number of
joints V , number of entity M . Line 19 represents Eq. 8, which is to map X to W with function ψ.
Line 21 represents the formulation of p⃗∗ in Eq. 3. Line 25 indicate the subtraction in Eq. 1. Line
26-27 are mini-batch sampling strategy for the Mini-batch Pair-wise Maximum Mean Discrepancy
Loss. Line 28 represents the single-entity backbone. Our code is publicly available at https:
//github.com/Necolizer/CHASE with MIT license.

C Details of Multi-Entity Action Recognition Datasets

We conduct experiments on a range of datasets, including NTU Mutual 11 (a subset of NTU
RGB+D [41]), NTU Mutual 26 (a subset of NTU RGB+D 120 [42]), H2O [13], Assembly101
(ASB101) [12], Collective Activity Dataset (CAD) [85], and Volleyball Dataset (VD) [86]. Table 7
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Algorithm 1 CHASE Wrapper: PyTorch-like Pseudo Code
1: class CHASEWrapper(nn.Module):
2: def __init__(self, backbone, in_channels, num_frame, num_point, pooling_seg, num_entity,

c1, c2):
3: super(CHASEWrapper, self).__init__()

4: out_channel = num_frame * num_point * num_entity
5: self.pooling_seg = pooling_seg
6: self.seg = self.pooling_seg[0]*self.pooling_seg[1]*self.pooling_seg[2]
7: self.seg_num_list = [(num_frame//self.pooling_seg[0]), (num_point//self.pooling_seg[1]),

(num_entity//self.pooling_seg[2])]
8: self.seg_num = self.seg_num_list[0] * self.seg_num_list[1] * self.seg_num_list[2]
9: self.shift = nn.Sequential(

10: nn.Conv3d(in_channels=in_channels, out_channels=c1, kernel_size=1),
11: nn.AdaptiveAvgPool3d((self.pooling_seg[0], self.pooling_seg[1], self.pooling_seg[2])),
12: nn.Conv3d(c1, c2, 1, bias=False),
13: nn.ReLU(inplace=True),
14: nn.Conv3d(c2, out_channel, 1, bias=False),
15: )
16: self.backbone = backbone

17: def forward(self, x):
18: N, C, T, V, M = x.size()
19: sf = self.shift(x).view(N, T*M*V, -1)
20: tx = rearrange(x, ’n c t v m -> n c (t v m)’, t=T, m=M, v=V).contiguous()
21: sf = (tx @ sf.softmax(dim=1)).unsqueeze(-1).expand(-1, -1, self.seg, self.seg_num)
22: sf = rearrange(sf, ’n c (T V M) (t v m) -> n c (T t) (V v) (M m)’,
23: T=self.pooling_seg[0], V=self.pooling_seg[1], M=self.pooling_seg[2],
24: t=self.seg_num_list[0], v=self.seg_num_list[1], m=self.seg_num_list[2]).contiguous()
25: x = x - sf
26: if self.training:
27: pairs = MiniBatchSampling(x)
28: out = self.backbone(x)

29: if self.training:
30: return out, pairs
31: else:
32: return out

provides details about each dataset, including their annotation types, numbers of action categories,
numbers of joints, numbers of clips (samples), averaged counts of valid frames, counts of entities
engaging in a multi-entity action, and numbers of participants in data collection. For CAD [85]
and VD [86], which both capture videos in the wild with a variety of individuals, it is difficult to
determine the exact number of participants.

D Evaluation Metrics

In this section, we provide the detailed formulation for metrics in ablation study. Given two discrete
probability distributions P and Q defined on the same sample space X , we can define the following
metrics:

Averaged Kullback-Leibler Divergence (Avg KLD):

Avg DKL =
1

2
[DKL(P∥Q) +DKL(Q∥P )]

=
1

2
[
∑
x∈X

P (x) log(
P (x)

Q(x)
) +

∑
x∈X

Q(x) log(
Q(x)

P (x)
)].

(15)
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Figure 7: Implementation details for different models and benchmarks. CHASE can be adapted
to various backbones including CTR-GCN [36], InfoGCN [37], STSA-Net [40], and HD-GCN [38].
We implement linear classification heads for all the models and benchmarks, except for InfoGCN [37].
Individual labels are utilized as an auxiliary classification objective to further improve the group
action recognition performance in CAD [85] and ASB101 [12].

Jensen-Shannon Divergence (JSD):

JSD(P∥Q) =
1

2
D(P∥M) +

1

2
D(Q∥M), (16)

where M = 1
2 (P +Q) is a mixture distribution of P and Q.

Bhattacharyya Distance (BD):

DB(P,Q) = − ln
∑
x∈X

√
P (x)Q(x). (17)

Hellinger Distance (HD):

H(P,Q) =
1√
2

√∑
x∈X

(
√
P (x)−

√
Q(x))2. (18)

Maximum Mean Discrepancy (MMD):

MMD(P,Q) = sup
∥f∥H≤1

(E[f(X)]− E[f(Y )]) , (19)

where E[f(·)] is the expectation of any function f in the RKHS H.

When adopting these metrics in our experiments, the distributions are generated by the kernel density
estimation (KDE). We sample the points 30 times with different seed initializations and report the
averaged measurements.

E Implementation & Configuration Details

In this section, we provide more details of our experimental setup and model implementation for
each benchmark. Experiments are conducted with 8 GeForce RTX 3070 GPUs (GPU Memory:
8GB), using torch version 1.9.0+cu111, torchvision version 0.10.0+cu111, and CUDA version 11.4.
CTR-GCN [36], InfoGCN [37], STSA-Net [40] and HD-GCN [38] are chosen as our baseline models.
To ensure fair comparisons, we adopt single intra-skeleton modality without multi-modality fusion,
following [35]. Our implementation details are illustrated in Fig. 7.
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E.1 Dataset-related Configurations

NTU Mutual 11 [41] & NTU Mutual 26 [42]. X-Sub and X-View criteria [41] are adopted in NTU
Mutual 11, while X-Sub and X-Set criteria [42] are used in NTU Mutual 26. We evaluate models with
only 3D joint inputs, applying data augmentations such as random rotation and spatial shift. During
training and testing, we employ temporal cropping and resizing, adjusting based on the number of
valid frames. Notably, we use distinct percentage intervals for training (0.5,1) and testing (0.95). For
experiments conducted on the entire NTU-RGB+D 120 dataset, we maintain identical settings as
those used for NTU Mutual 26.

H2O [13]. We follow the training, validation, and test splits described in [13]. To maintain consistency
in GCNs, we use the hand graph structure, originally designed for human hands, for both hand entities
and object entities. Models are evaluated with only 3D joint inputs. The same augmentations as NTU
Mutual 26 are adopted in this benchmark.

ASB101 [12]. We follow the training, validation, and test splits outlined in [12] for evaluations. 1,380
Fine-grained actions (verb & noun) are adopted as labels in experiments. We evaluate models with
only 3D joint inputs. The same augmentations as NTU Mutual 26 are adopted in this dataset, except
that the training percentage interval of the temporal cropping and resizing is set to (0.75,1).

CAD [85]. We adopt the same data augmentations, group action categories, individual labels and
train-test split in [95]. But different from [95], only 2D joint coordinates are used in our experiments.
Individual labels are used as an auxiliary classification objective, as presented in Fig. 7.

VD [86]. We follow the same data augmentations, group action categories, individual labels and
Original train-test split in [95]. But different from [95], only 2D joint coordinates are used as
input features in experiments. Besides, individual labels are leveraged as an auxiliary classification
objective to further improve the group action recognition performance, as shown in Fig. 7. The
volleyball position is represented asX ∈ RT×C . To ensure inter-entity consistency, we apply padding
to fit the shape X ∈ RC×T×J×1. To maintain consistency in GCNs, we employ human body graph
structure for both human body entities and volleyball entities.

E.2 Model-related Configurations

CHASE. We set default segment size (1, 1, 1), C1 = 64, C2 = 8, M = 1 and λ = 0.1 in
CHASE. In all experiments, we maintain consistent configurations for baseline models to ensure
fair comparisons between models incorporating CHASE and their respective vanilla counterparts.
To avoid unnecessary verbosity, we present implementation specifics solely for NTU Mutual 26.
For training details pertaining to other benchmarks, please refer to the code repository at https:
//github.com/Necolizer/CHASE.

CTR-GCN [36]. Cross entropy is used as the recognition loss function. SGD optimizer is used with
Nesterov momentum of 0.9, a initial learning rate of 0.1 and a decay rate 0.1 at the 80th and 100th
epoch. Batch size is set to 64. With the first 5 warm-up epochs, the training process is terminated
after 110 epochs.

InfoGCN [37]. By taking k = 1, InfoGCN adopts their definition of 1-hop Bones [37] as input.
Cross entropy is used as the loss function with label smoothing factor 0.1 and temperature factor 1.0.
The information bottleneck objective [37] is also employed as the auxiliary loss. Following [37], we
set λ1 = 0.1, λ2 = 0.0001, and the µr(z|y) of each action class as random orthogonal vectors with a
scale of 3. Diverging from conventional backbones, we substitute the standard classification head
with the InfoGCN head, depicted in Fig. 7. SGD optimizer is used with Nesterov momentum of 0.9,
a weight decay of 0.0005, a initial learning rate of 0.1 and a decay rate 0.1 at the 90th and 100th
epoch. Batch size is set to 120. With the first 5 warm-up epochs, the training process is terminated
after 110 epochs.

STSA-Net [40]. Cross entropy is used as the loss function with label smoothing factor 0.1 and
temperature factor 1.0. SGD optimizer is used with Nesterov momentum of 0.9, a initial learning
rate of 0.1 and a decay rate 0.1 at the 60th and 90th epoch. Batch size is set to 64. With the first 5
warm-up epochs, the training process is terminated after 110 epochs.

HD-GCN [38]. We set CoM = 1 in the hierarchy graph generation and evaluate on this setting.
Cross entropy is used as the loss function. SGD optimizer is used with Nesterov momentum of 0.9, a
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Figure 8: Qualitative results on multi-entity action recognition datasets. For visual clarity, we
display 2 or 3 estimated entity distributions for each test set. Each subplot shows the projection of the
multi-variant normal distributions generated by mean vectors and covariance matrices. Different entity
distributions are denoted by distinct colors. CHASE effectively mitigates inter-entity distribution
discrepancies while preserving potential entity orderliness in these datasets.

initial learning rate of 0.1 and a decay rate 0.1 at the 80th and 100th epoch. Batch size is set to 64.
With the first 5 warm-up epochs, the training process is terminated after 110 epochs.

F Supplementary Experimental Results

More Analysis on Table 1. In Table 1, we observe that CHASE yields varying degrees of accuracy
improvement across different baseline models and benchmarks. The performance gains are influenced
by both the backbone models and the datasets, as CHASE functions as an additional normalization
step that mitigates data bias introduced by inter-entity distribution discrepancies. For baseline
backbones, this is owing to differences in their backbone architecture design, parameter count and
training objective. For example, STSA-Net [40] is a relatively large backbone based on transformer
architecture, which does not rely the prior definition of the skeleton graphs. Its adaptability to
different graph structures makes it outweigh GCN-based backbones in H2O benchmark. Another
example is InfoGCN [37], which leverages an auxiliary information bottleneck objective in its training.
Though this method is proven more effective than the other backbones in some person-to-person
interaction settings, it doesn’t ensure better performance in hand-to-object interaction and group
activity benchmarks. For different benchmarks, it is owing to differences in data scale and label
space (see Table 7). For example, ASB101 is an extremely challenging benchmark for its over 80,000
samples and 1,380 target categories. Therefore the accuracy improvement is modest compared with
the other benchmarks.

More Qualitative Results. Fig. 8 visualizes how CHASE works with multi-entity skeletal sequences.
By integrating CHASE, different entity distributions become more similar in both aspects of mean
and covariance. It demonstrates that CHASE can lower the inter-entity distribution discrepancy,
especially obviously in NTU Mutual 11, NTU Mutual 26, CAD, whose entities have no orderliness.
For H2O, ASB101 and VD, whose entities are characterized by an intrinsic order (e.g. left hands,
right hands, left-side volleyball players, right-side volleyball players, and objects), CHASE can also
preserve their orderliness by letting the distributions be similar but different.

Evaluations on Mixed Recognition of Single-Entity & Multi-Entity Actions. Table 5 concludes
the action recognition results on the entire NTU RGB+D 120 [42]. By integrating CHASE, the
baseline model gets accuracy improvement by 0.41% and 0.05% on X-Sub and X-Set, respectively.

23



(a) Confusion Matrix (Vanilla) (b) Confusion Matrix (CHASE) (c) Comparison of Category Accuracy

Figure 9: Confusion Matrices & Comparison of Category-level Accuracy on NTU Mutual 26
X-Sub. (a) Confusion matrix of the vanilla CTR-GCN. (b) Confusion matrix of CTR-GCN with
CHASE. (c) We present a detailed comparison of the category-level accuracy between the vanilla
CTR-GCN (blue) and CTR-GCN with CHASE (orange). These results demonstrate the effectiveness
of CHASE by improving recognition accuracy for most categories.
This suggests that CHASE is effective even in mixed recognition settings. However, the improvement
is modest because single actions are the dominant category in this dataset.

Table 8: CHASE Trainable Parameters
Method # Param. (M)
CTR-GCN [36] 1.44

+ CHASE 1.46↑1.83%

InfoGCN [37] 1.54

+ CHASE 1.57↑1.96%

STSA-Net [40] 4.13

+ CHASE 4.16↑0.60%

HD-GCN [38] 1.65

+ CHASE 1.68↑1.60%

Analysis on Efficiency. We analyse CHASE’s efficiency
on NTU Mutual 26 configurations. Our proposed CHASE
is implemented as a backbone wrapper, adaptable to a
variety of single-entity action models. As presented in Ta-
ble 8, the number of trainable parameters is about 26.37 k,
which only increases number of backbone’s parameters by
1%-2%. We can approximate that the number of trainable
parameters is increased by (U + 1+C2)×C1 +C2 ×U .
For computational complexity, the FLOPs of CHASE is
approximately 2.50 M. This analysis proves that CHASE
is both efficient and lightweight for benefiting multi-entity
action learning.

Table 9: Ablation on Segment Sizes
(T ′, J ′, E′) Acc (%)

(1,1,1) 91.30(±0.22)

(1, 1, 2) 91.28(±0.19)

(2, 1, 1) 91.20(±0.04)

(4, 1, 1) 91.03(±0.09)

(1, 5, 1) 91.23(±0.05)

Segment Size of Squeeze Operator. In CLB, which is
also the mapping ψ to weight matrix, the squeeze oper-
ator squeezes the tensor to a specific shape, denoted as
(T ′, J ′, E′). This segment size determines the point set
in a multi-entity action sequence to which ICHAS ap-
plies. For example, the segment size (1, 1, 1) indicates that
ICHAS applies to all the points, and (1, 1, 2) means two
different ICHAS apply to two entities separately. Table 9
evaluates various segment sizes of the squeeze operator, demonstrating that the global ICHAS with
the segment size (1, 1, 1) achieves the best performance compared with the other settings. Therefore,
we choose the default segment size as (1, 1, 1) in all the experiments. Besides, the reduction ratio
between C1 and C2 is determined according to the experimental results in [98].
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Figure 10: Ablation study on
different λs for MPMMD.

Weight λ for MPMMD. Fig. 10 evaluates different values of the
trade-off weight factor λ in Eq. 12, varying from 10−2 to 100. On
NTU Mutual 26, it achieve the best performances when adopting λ =
0.1 for MPMMD loss. It corresponds to our claim that MPMMD is
an auxiliary objective to guide discrepancy minimization, additional
to the recognition task objective. We also conduct experiments
with MPMMD across a variety of M values but find insignificant
differences in performance. Hence, we set M = 1 for computational
efficiency.

Analysis on Confusion Matrix & Category-level Accuracy. We
present the confusion matrices of the vanilla CTR-GCN and CTR-
GCN with CHASE in Fig. 9 (a) & (b). It indicates that our proposed
CHASE is able to assist the backbone to differentiate similar multi-
entity actions better. Fig. 9 (c) reports the category-level accuracy for 26 kinds of person-to-person
interactions. We observe that in very few categories, their performance slightly drops. One possible
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Table 10: Analysis of Performances with Test-Time Skeleton Noises and Masking

Test-Time + Noise (%) + Mask (%)
σ = 10−3 σ = 10−2 pm = 10−2 pm = 10−1

CTR-GCN [36] 88.55(±0.03) 80.72(±0.03) 81.15(±0.13) 56.37(±0.13)

+ CHASE 91.24(±0.01) 82.53(±0.08) 88.57(±0.03) 60.65(±0.07)

reason is that these actions, like point finger, rely heavily on cues from the individual movements of
one of the entities, instead of the multi-entity interactions. This might not be addressed by mitigating
inter-entity distribution discrepancies. But it could still conclude from Fig. 9 (c) that adopting CHASE
can achieve accuracy improvement for most of the categories, e.g. wield knife (+8.50%), shoot with
gun (+8.00%), whisper (+5.39%), and punch/slap (+4.37%).

Analysis of Performances with Test-Time Skeleton Noises and Masking. To evaluate the robust-
ness, we intentionally corrupt the multi-entity skeleton sequences with noise and masking during the
inference phase. This aims at resembling possible skeleton occlusions or estimation errors during
the test time. The noises Xn ∼ N (µ, σ2) used in this experiment are normally distributed with
mean µ = 0 and standard deviations σ = 10−3, 10−2. Masking strategies are randomly masking the
multi-entity skeleton sequences with probabilities pm = 10−2, 10−1. Table 10 reports the averaged
top-1 accuracy and its standard deviation in runs with several seed initializations for noises and masks.
For recognizing multi-entity actions with corrupted test-time inputs, CTR-GCN integrating with
CHASE consistently outperforms the vanilla counterpart, showcasing its robustness.

G Limitations & Broader Impacts

This work proposes the Convex Hull Adaptive Shift for Multi-Entity Action Recognition to resolve
the inter-entity distribution discrepancies. Although CHASE offers a generic framework for various
types of multi-entity actions, such as person-to-person interactions, hand-to-object interactions,
hand-to-hand interactions and group activities, its application to single-entity actions warrants further
investigation. One potential approach is to consider different parts as multiple entities, such as treating
different limbs of a human body as distinct entities. Moreover, it’s promising to apply CHASE-like
designs to the recently-developed human-centric foundation models [17, 29, 30, 31, 32, 33, 34] to
enhance their performances on multi-entity skeletal data. These areas of exploration are left for future
research.

This paper focuses on multi-entity action recognition, a field with broad applications in physical
human-robot interaction, social scene understanding, multi-agent systems, surveillance, healthcare
monitoring, etc [24, 22, 25, 26, 27, 28, 23]. Our work contributes to advancements in these domains
by enhancing efficient and effective skeleton-based learning of multi-entity actions. Although the use
of human-centered data can pose privacy concerns, our study utilizes only skeletal data estimated
from sensors or RGB videos, thus mitigating potential privacy and ethical issues.

H Licenses for Used Assets

Datasets:

• NTU Mutual 11 / NTU RGB+D [41]): Custom (research-only, non-commercial, attribu-
tion) 2

• NTU Mutual 26 / NTU RGB+D 120 [42]: Custom (research-only) 3

• H2O [13]: Custom (research-only, non-commercial) 4

• Assembly101 [12]: Creative Commons Attribution-NonCommercial 4.0 International Li-
cense 5

• Collective Activity Dataset [85]: Unknown

2http://rose1.ntu.edu.sg/Datasets/requesterAdd.asp?DS=3
3http://rose1.ntu.edu.sg/Datasets/actionRecognition.asp
4https://h2odataset.ethz.ch/
5http://creativecommons.org/licenses/by-nc/4.0/
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• Volleyball Dataset [86]: BSD 2-Clause license 6

Models:

• CTR-GCN [36]: Creative Commons Attribution-NonCommercial 4.0 International License 7

• InfoGCN [37]: Unknown
• STSANet [40]: MIT License 8

• HD-GCN [38]: MIT License 9

6https://github.com/mostafa-saad/deep-activity-rec/blob/master/LICENSE
7https://github.com/Uason-Chen/CTR-GCN/blob/main/LICENSE
8https://github.com/heleiqiu/STTFormer/blob/main/LICENSE
9https://github.com/Jho-Yonsei/HD-GCN/blob/main/LICENSE
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect this
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work, provided in Appendix G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide a proof of our proposition 1 in Section 3.1.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe our proposed CHASE clearly and fully in Section 3.1, Section 3.2
and Section 3.3. We illustrate our experimental setting and details in Section 4.1 and
Appendix E. Our code is publicly available at https://github.com/Necolizer/CHASE.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our code is publicly available at https://github.com/Necolizer/CHASE.
We have provided sufficient instructions to reproduce the main experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We illustrate our experimental setting and details in Section 4.1 and Appendix E.
We also provide all the configuration files in our code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Table 1 shows the experimental results on different benchmarks, reporting the
averaged top-1 accuracy and its standard deviation in runs with several seed initializations.
In Table 3, we sample the points 30 times with different seed initializations and report the
averaged measurements with standard deviations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided sufficient information on the computer resources in Appendix E.
Experiments are conducted with 8 GeForce RTX 3070 GPUs (GPU Memory: 8GB), using
torch version 1.9.0+cu111, torchvision version 0.10.0+cu111, and CUDA version 11.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research conforms in every respect with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive societal impacts and negative societal
impacts of our work, provided in Appendix G.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We carefully cited the original papers for existing assets and included their
licenses in Appendix H.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our code is publicly available at https://github.com/Necolizer/CHASE
with MIT license.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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