
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ROBUST ADVERSARIAL ATTACKS AGAINST
UNKNOWN DISTURBANCES VIA INVERSE GRADIENT
SAMPLE

Anonymous authors
Paper under double-blind review

ABSTRACT

Adversarial attacks have achieved widespread success in various domains, yet ex-
isting methods suffer from significant performance degradation when adversarial
examples are subjected to even minor disturbances. In this paper, we propose
a novel and robust attack called IGSA (Inverse Gradient Sample-based Attack),
capable of generating adversarial examples that remain effective under diverse
unknown disturbances. IGSA employs an iterative two-step framework: (i) in-
verse gradient sampling, which searches for the most disruptive direction within
the neighborhood of adversarial examples, and (ii) disturbance-guided refinement,
which updates adversarial examples via gradient descent along the identified dis-
ruptive disturbance. Theoretical analysis reveals that IGSA enhances robustness
by increasing the likelihood of adversarial examples within the data distribution.
Extensive experiments in both white-box and black-box attack scenarios demon-
strate that IGSA significantly outperforms state-of-the-art attacks in terms of ro-
bustness against various unknown disturbances. Moreover, IGSA exhibits supe-
rior performance when attacking adversarially trained defense models. Code is
available at https://github.com/nimingck/IGSA.

1 INTRODUCTION

Extensive research demonstrates that deep neural networks (DNNs) are highly vulnerable to adver-
sarial examples Szegedy (2013); Papernot et al. (2017); Kurakin et al. (2018). The emergence of
more threatening adversarial examples has the potential to stimulate advances in secure machine
learning Liu et al. (2016); Leino et al. (2021); Zhu et al. (2023b). To be genuinely threatening in
practice, an adversarial example should satisfy three key properties: (i) transferability, ensuring its
effectiveness in black-box scenarios; (ii) stealthiness, enabling it to evade standard detection mech-
anisms; and (iii) robustness, allowing it to retain attack effectiveness under various disturbances.

A widely studied category of adversarial attacks is the white-box attack Goodfellow et al. (2014);
Carlini & Wagner (2017); Kurakin et al. (2018), which assumes full access to the target model’s
parameters and architecture. While effective in theory, this assumption rarely holds in practice,
limiting their real-world relevance. A more practical alternative is the transfer-based black-box
attack Papernot et al. (2016); Wu et al. (2020), where adversarial examples generated on surrogate
models are applied to unknown target models. Yet, recent evidence Liu et al. (2024); Li et al. (2022);
Xie et al. (2017) suggests that existing transfer attacks are highly brittle: even minor disturbances
can result in the effectiveness of the attack, especially in targeted attacks, as shown in Fig 1. The
fragility of adversarial examples naturally limits their attack success rate in applications.

In this paper, we propose a novel adversarial attack framework designed to enhance the robustness
of adversarial examples against various (including unseen) disturbances. It adopts an iterative two-
step procedure. First, disturbances are sampled from a prior distribution and mapped into a specified
disturbance distribution, which relatively represent diverse and realistic disturbances. Second, the
adversarial example is optimized to maintain its effectiveness under the sampled disturbance.

The design of an appropriate mapping function in our robust attack framework raises three key
challenges. (i) Sampling Coverage Limitation: When the disturbances are insufficiently sampled,
adversarial examples may still fail under unseen disturbances. (ii) Distribution Mismatch: If the
distribution of disturbances used for training differs from the actual distribution of real-world dis-
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Figure 1: Robustness of adversarial attacks under various disturbances. Existing adversarial exam-
ples degrade under unseen disturbances. Our proposed IGSA enhances robustness against both seen
and unseen disturbances.

turbance, adversarial examples may lose their effectiveness in practice. (iii) Transferability Con-
sideration: In black-box scenarios, adversarial examples must remain transferable across models,
necessitating explicit integration of transferability into training.

To address these challenges, we propose the Inverse Gradient Sample-based Attack (IGSA). In con-
trast to prior approaches that rely on random disturbance sampling during training Athalye et al.
(2018), IGSA employs inverse gradient sampling to identify the most disruptive disturbances. This
mechanism effectively mitigates the failure of adversarial examples under unseen or real-world
noise. Theoretical analysis further shows that IGSA achieves over 108 times higher efficiency in
approximating such disturbances compared to random sampling. Moreover, IGSA actively explores
flat regions of the loss landscape, a strategy recently shown Ge et al. (2023) to substantially enhance
transferability of adversarial examples.

By analyzing the impact of data likelihood on robustness of adversarial examples, we evaluate IGSA
under distribution mismatch. Extensive experiments show that models exhibit high confidence and
robustness on clean samples from the natural distribution Liu et al. (2025). Theoretical analysis
reveals that IGSA preserves a high likelihood of adversarial examples under the natural data dis-
tribution. This enables IGSA to generate adversarial examples that are both robust and resistant to
defenses. Our main contributions are summarized as follows:
• We propose a robust attack framework that iteratively samples disturbances from a prior distri-

bution and refines adversarial examples under these disturbances. The framework can be applied
to any existing attack, enabling effective resilience against diverse disturbances.

• We introduce IGSA to address three key challenges in the robust attack framework. Theoretical
analysis shows that IGSA improves the data likelihood of adversarial examples, enhancing its
robustness against disruptions and defenses.

• Extensive experiments demonstrate that IGSA maintains high data likelihood during training,
generating visually natural adversarial examples with strong attack success. Furthermore, the re-
sults show that IGSA outperforms state-of-the-art methods in both robustness and transferability.

2 RELATED WORK

2.1 BLACK-BOX ADVERSARIAL ATTACK

Black-box adversarial attacks are typically categorized into query-based Cheng et al. (2019); Dong
et al. (2021); Shi et al. (2022) and transfer-based approaches Xie et al. (2019); Wang & He (2021);
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Wang et al. (2021); Jin et al. (2023); Chen et al. (2023); Wang et al. (2024b;a). Query-based meth-
ods estimate gradients by iteratively querying the target model, but they often require excessive
queries, limiting their practicality under query constraints. In contrast, transfer-based methods gen-
erate adversarial examples on surrogate models and transfer them to the target model. To enhance
transferability, prior work has explored diverse strategies, including momentum integration Wang
et al. (2024a), input transformations Xie et al. (2019); Wang et al. (2021), model-specific strategies
Jin et al. (2023); Wang et al. (2024b), and gradient ensembling Chen et al. (2023).

Despite their effectiveness, many of these attacks fail under even basic input transformations Xie
et al. (2017); Xu (2017); Li et al. (2022); Liu et al. (2024), revealing a lack of robustness in real-world
scenarios. To mitigate this issue, researchers have proposed several strategies. The Expectation
over Transformation (EOT) framework Athalye et al. (2018) incorporates data augmentation during
training to simulate distributional disturbances. Other techniques, such as gradient smoothing Wang
et al. (2023), physical-world disturbances Eykholt et al. (2018), affine-invariant estimation Xu et al.
(2020), and margin maximization Luo et al. (2018), further enhance attack stability. Nevertheless,
these methods are largely heuristic, exhibit limited generalization to diverse disturbances, and lack
theoretical performance guarantees.

2.2 DEFENSE METHODS

The number of existing defense methods far exceeds that of adversarial attacks, as stronger attacks
continually motivate the development of more effective defenses. Broadly, defenses can be cat-
egorized into adversarial training-based and input transformation-based approaches. Adversarial
training defenses Tramèr et al. (2017); Liu et al. (2020a); Jiang et al. (2023) enhance robustness by
incorporating adversarial examples during optimization, but are computationally intensive. Input
transformation defenses, on the other hand, attempt to neutralize perturbations before feeding them
into the model through techniques such as JPEG compression Dziugaite et al. (2016), image scaling
Xu (2017); Zheng et al. (2023), or randomized transformations Xie et al. (2017). Some methods
further employ denoising networks to purify inputs while preserving accuracy Hong & Lee (2024);
Ning et al. (2024), though their effectiveness is often restricted to specific attack types. These
methods are attractive in practice, as they do not require modifications to the model architecture or
additional training cost, making them both efficient and easy to deploy.

3 METHODOLOGY

3.1 PRELIMINARY: ROBUST ADVERSARIAL ATTACK FRAMEWORK

Given an original sample x ∈ Rm and a target model f : Rm → Rk, the goal of adversarial attacks
is to find a minimal perturbation δ such that the perturbed sample x+δ is misclassified by the model
into a specified target class t, i.e., f(x+ δ) = t.

In black-box settings, optimizing δ is particularly challenging because adversarial examples may
be subjected to additional disturbances before being processed by the target model. These distur-
bances can arise from various sources, such as secondary data acquisition, client-side preprocessing,
or built-in defense mechanisms. To enhance the robustness of adversarial examples against distur-
bance, we propose a novel robust attack framework. The framework operates in two stages, aiming
to generate perturbations that remain effective under diverse and potentially unseen disturbances:
Step 1: Sampling disturbance
We first sample a set of initial disturbances ϕ from a prior distribution B. These disturbances are
then translated to h(ϕ, x+δ) by a mapping function h, given the current adversarial example x+δ.
Step 2: Optimizing adversarial examples
We apply the disturbed sample x+ δ + h(ϕ, x+ δ) to a surrogate model g. The task loss is defined
as Ct(x+δ+h(ϕ, x+δ)) := C(g(x+δ+h(ϕ, x+δ)), t), where C denotes the cross-entropy loss.
We then minimize the expected loss over the distribution B: minδ Eϕ∼B [Ct(x+ δ + h(ϕ, x+ δ))] ,
which can be optimized via gradient descent.

Let h(ϕ, x+δ) complies with distribution P . By the Law of the Unconscious Statistician (LOTUS),
we have: Eϕ∼B [Ct(x+ δ + h(ϕ, x+ δ))] = Eη∼P [Ct(x+ δ + η)], which allows us to formulate
the problem of enhancing robustness against various disturbances as the design of a suitable map-
ping function h(ϕ, x + δ). Unlike conventional methods that sample η from a fixed distribution,
function h(ϕ, x + δ) can be designed to adapt both the adversarial example and surrogate models,
enabling it to produce the most destructive disturbances for each specific sample. In the following,
we analyze three key challenges in applying the proposed robust attack framework:
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▷ Limited Sampling Coverage: The estimation of the expected loss typically relies on a limited
number of Monte Carlo samples. This can lead to poor coverage of the disturbance space, resulting
in adversarial examples that generalize poorly to unseen disturbances;
▷ Distribution Mismatch: During application, adversarial examples may encounter real-world dis-
turbance that differs significantly from the distribution of h(ϕ, x+ δ), causing the attack to fail;
▷ Transferability Consideration: Under black-box settings, we also need to account for the trans-
ferability of adversarial examples to ensure their effectiveness on the unseen target models.

3.2 INVERSE GRADIENT SAMPLING

In this section, we first introduce the Inverse Gradient Sampling (IGS) method and then theoretically
analyze how it addresses the first limitation of existing approaches, namely the issue of limited
sampling coverage, as discussed in section 3.1.

Based on the proposed robust attack framework, we define the map function h(ϕ, x+ δ) as h(ϕ, x+
δ) = ϕ+∇ϕC

t(x+ δ + ϕ). The Step 2 is then solved using a two-step iterative approach:

h(ϕj , x+ δ) = ϕj +∇ϕj
Ct(x+ δ + ϕj), ϕj ∼ B (1)

δi+1 = δi − α · ∇δ

 1

N

N∑
j=1

Ct(x+ δi + h(ϕj , x+ δ))

 . (2)

The challenge of limited sampling coverage arises from an insufficient number of training samples,
such that realistic perturbations may deviate substantially from any learned disturbance h(ϕi, x +
δ). As a result, adversarial examples may fail to remain effective under real-world disturbance.
This suggests that robustness fundamentally depends on whether the set of trained disturbances
{h(ϕi, x+ δ)} can sufficiently approximate the most destructive disturbances applied to x+ δ.

To quantitatively evaluate the performance of IGS, we assume that the most destructive disturbance
is given by ϕ∗ = argmax∥ϕ∥<r C

t(x + δ + ϕ), and that ϕ∗ is uniformly distributed within the
neighborhood, i.e., ϕ∗ ∼ B(0, r). Under this assumption, the average loss over sampled disturbances
satisfies 1

N

∑N
i=1 C

t(x+δ+h(ϕi, x+δ)) ≤ Ct(x+δ+ϕ∗).We define the error as the gap between
the upper bound and the empirical average: E := Ct(x+δ+ϕ∗)− 1

N

∑N
i=1 C

t(x+δ+h(ϕi, x+δ)).
During the iterative optimization in Equation (2), the accumulated error in δ is given by:

∆δ=
∑
I

∇δC
t(x+ δ + ϕ∗)−∇δ

 1

N

N∑
j=1

Ct(x+ δ + h(ϕi, x+ δ))

≈∑
I

∇δEϕ∼B(0,r)[E ],

(3)
where I is the iteration number of Equation 2. Assuming that Ct is Lipschitz continuous in the
neighborhood of x + δ , the expected error over the sampling process satisfies Eϕ∼B(0,r)[E ] ≤
Eϕ∼B(0,r)∥h(ϕ, x+δ)−ϕ∗∥. This enables us to compare different sampling strategies by their ability
to minimize Eϕ∼B(0,r)∥h(ϕ, x+ δ)− ϕ∗∥. Since ϕ∗ can appear anywhere within the neighborhood
of x+ δ, we derive the following theorem to compute the expectation when h(ϕ, x+ δ) = ϕ, which
is commonly used in EOT-based approaches Athalye et al. (2018); Hu et al. (2021); Liu et al. (2022).

Theorem 1 Let m denotes the dimensionality of the input space, and let n be the number of samples
drawn from B(0, r). Then, Eϕ∗∼B(0,r)

[
Eϕ∼B(0,r)

[
∥ϕ− ϕ∗∥

∣∣∣ϕ∗
]]

= r · Γ
(

1
m

)
· n− 1

m .

Remark 1 Theorem 1 indicates that the expected error decreases with the number of queries n
following a power-law decay of −1/m. To halve the error, the number of queries must increase by
a factor of 2m, which becomes computationally prohibitive in high-dimensional spaces.

To further quantify the advantage of IGS over EOT, we present the following theorem:

Theorem 2 Let Ct be a convex function in a spherical neighborhood of radius r centered at x+ δ,
with a unique extremum point x+δ+ϕ∗. Then, the following relation holds: h(ϕ)−ϕ = γ(ϕ∗−ϕ),
where the scalar coefficient γ is given by γ =

∥∇ϕC
t(x+δ+ϕ)∥

∥ϕ∗−ϕ∥ .
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Let EIGS(E) and EEOT(E) denote the error bounds of IGS and EOT. Based on Theorem 2, we have:

EIGS(E) = Eϕ∼B(0,r)∥h(ϕ, x+ δ)− ϕ∗∥ = (1− γ) · r · Γ
(

1

m

)
· n− 1

m , (4)

EEOT(E) = Eϕ∼B(0,r)∥ϕ− ϕ∗∥ = r · Γ
(

1

m

)
· n− 1

m . (5)

Let nIGS and nEOT denote the number of queries required by IGS and EOT, respectively, to achieve
the same error bound. By equating the two bounds, we obtain:

1 =
1

1− γ
·
(
nEOT

nIGS

)− 1
m

⇒ nEOT

nIGS
=

1

(1− γ)m
. (6)

Remark 2 Equation (6) shows that the efficiency advantage of IGS over EOT scales exponentially
with the data dimensionality m. In typical vision tasks where m > 104, this advantage becomes
particularly pronounced. For example, on ImageNet (m=256×256×3) with γ ≈ 10−4, we estimate:

nEOT

nIGS
≈ 3.5× 108.

This demonstrates that IGS can capture the most destructive disturbance using far fewer samples
than EOT, significantly alleviating the issue of limited sampling coverage. Theoretical extension for
non-convex conditions are detailed in Appendix C.

3.3 ROBUSTNESS AND TRANSFERABILITY UNDER DISTRIBUTIONS MISMATCH

Adversarial examples often encounter disturbances that deviate from the distribution assumed during
training. In this section, we analyze why our method maintains strong performance under such
distribution mismatch and examine how it promotes the transferability of adversarial examples.

3.3.1 WHAT DETERMINES THE ROBUSTNESS OF ADVERSARIAL EXAMPLES?
Our analysis is motivated by the observation that clean samples exhibit significantly greater robust-
ness under disturbance compared to existing adversarial examples. To quantify this, we define the
robustness boundary, denoted as Kτ

S , as the minimum amount of disturbance required to change the
model’s prediction on a given sample set S. Formally: Kτ

S = ∥ argmaxθ [Ex∈S [Zθ] < τ ] ∥, Zθ =
g(x + θ) · 1{i=topk}(g(x)), where θ is random disturbance, τ is a confidence threshold, and
1{i=topk}(·) indicates whether the prediction belongs to the original top-k classes. The robustness
boundary Kτ

S indicates the ability of samples in S to retain their original labels under disturbance.

As shown in Fig. 2, the robustness bounds Kτ
Sori

are consistently larger for clean samples than for
adversarial examples, indicating that clean sam-
ples are more robust to disturbance. This moti-
vates the conjecture that higher likelihood under
the natural data distribution PD correlates with
greater robustness. Clean samples are drawn
from PD, while adversarial examples are typi-
cally deviate from PD Zhu et al. (2022). Since
models are trained to fit PD, they tend to gener-
alize better to samples that are more likely un-
der PD, which explains the superior robustness
of clean samples. However, directly computing
PD(xadv) is generally intractable. The key ques-
tion, therefore, becomes: How can we construct
adversarial samples that maintain a high likeli-
hood under PD? We address this question in the
following section.

Figure 2: A comparison of the robustness bounds
Kτ

S across different adversarial examples and
clean samples. The black bars represent the ro-
bustness bounds for clean samples.

3.3.2 ALIGNING GRADIENTS FOR HIGH-LIKELIHOOD ADVERSARIAL SAMPLES

In Equation 2, we perform gradient descent on Ct to push the input toward misclassification. This
process increases the surrogate model’s confidence in the target class, gt(x+ δ). When the gradient

5
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Algorithm 1 Inverse Gradient Sample Adversarial Attack
Input: Original data x; balancing parameter λ; inverse learning rate µ; step size α; perturbation
preset range ϵ; number of sampling points N ; sampling variance σ2; model g; loss function C;
sign function sign(·); target class t.
Output: Robust adversarial example xadv .
Initialize adversarial perturbation δ ← 0 and cumulative update direction dsum ← 0.
repeat
xadv ← x+ δ
for i = 1 to N do

Sample ϕi ∼ N (0, σ2)
Compute loss at ϕi: Ct

ϕi
= C(g(x+ δ + ϕi), t) + λ · |δ|

Gradient update for ϕi: ϕ̂i ← ϕi + µ · sign(∇ϕCt
ϕi
)

Compute loss at ϕ̂i: Ct
ϕ̂i

= C(g(x+ δ + ϕ̂i), t) + λ · |δ|
Compute update direction: dϕ̂i

← Ct
ϕ̂i
· ∇ϕi

logN (x+ δ + ϕi;x+ δ, σ2)

Accumulate dsum: dsum ← dsum + dϕ̂i
.

end for
Update adversarial perturbation: xadv = xadv − α · sign (dsum)
Constrain perturbation magnitude: δ ← clamp[−ϵ, ϵ]

until Loss Ct
ϕi

converges
xadv ← x+ δ
return xadv

of the surrogate model aligns with PD, the update also increases the likelihood of adversarial exam-
ple under PD. To encourage the search for a perturbation δ where such alignment occurs between
the gradients of the surrogate model and PD, we present Theorem 3.
Theorem 3 Let tr(H[·]) denote the trace of the Hessian matrix, and let B(0, r) represent a uniform
distribution over the ball of radius r in Rm. Then:

∇δEB(0,r)

[
(∇δC

t)T · ∇δPD

]
= −∇δEPD

B(0,r)

[
tr(H[Ct])

]
.

Remark 3 Theorem 3 establishes that minimizing the trace of the Hessian of Ct enhances the align-
ment between ∇δC

t and ∇δPD, which in turn increases the likelihood of the resulting adversarial
examples under PD during the iterative process.
We now examine whether the iterative optimization procedure implemented by our proposed IGS
method leads to adversarial examples with reduced Hessian trace.

Theorem 4 Let Ct denote Ct(x+ δ). Suppose the Hessian H[Ct] is bounded in the neighborhood
of x+ δ, such that ∥H[Ct]∥2 ≤ L, the update rule satisfies:

∇δEϕ

[
Ct(x+ δ + ϕ+∇ϕC

t)
]
= ∇δC

t + ∥∇δC
t∥2 + σ2

2
∇δtr(H[Ct]) +O(σ4), σ2 ≪ 1/L

Remark 4 Theorem 4 shows that the proposed IGS method implicitly minimizes tr(H[Ct]) through-
out the iterative process. This contributes to an increased likelihood of adversarial examples under
the data distribution PD, which is verified by Fig. 3. At the same time, IGS also reduces ∥∇δC

t∥2,
promoting smoother loss landscapes. As demonstrated by Ge et al. (2023), such improvements in
smoothness significantly enhance the transferability of adversarial examples across models.
3.4 INVERSE GRADIENT SAMPLE ADVERSARIAL ATTACK

We present the detailed implementation of the IGSA in Algorithm 1. In Algorithm 1, we incorporate
several practical techniques to improve convergence and efficiency:

(1) Sampling Distribution. We sample the disturbance ϕ from a Gaussian distribution, ϕ ∼
N (0, σ2) leads to faster convergence and more stable optimization.

(2) Efficient Gradient Estimation. To reduce the computational cost associated with second-order
derivatives in Equations equation 3 and equation 2, we propose an efficient first-order approximation
based on Theorem 5 in appendix:

∇δEϕ [C
t(x+ δ + ϕ+∇ϕC

t)]

≈ Eϕ∼N (0,σ2) [Ct(x+ δ + ϕ+∇ϕCt) · ∇δ logN (x+ δ + ϕ;x+ δ, σ2)] .
(7)

6
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Table 1: Robustness of various attacks on ImageNet under additive and non-additive disturbances.
ASR (%) VGG19 ResNet34 ViT Avg.

timeDisturbance Types→ Additive Non-additive Additive Non-additive Additive Non-additive
Attacks Types ↓ GSB JPEG RT CB GSB JPEG RT CB GSB JPEG RT CB

PGD Madry et al. (2017) 8.3 2.1 43.8 0.0 0.3 31.3 4.2 0.0 6.5 14.8 8.3 0.0 0.025
MI-FGSM Dong et al. (2018) 66.7 62.5 72.9 0.0 77.1 87.5 16.7 0.0 73.2 77.3 31.3 2.1 0.025

DTA Yang et al. (2023) 70.8 68.8 75.0 2.1 91.7 100.0 18.8 0.0 79.4 77.3 45.8 6.3 0.186
GRA Zhu et al. (2023a) 62.5 64.6 52.1 8.3 89.6 93.8 56.3 12.5 87.8 81.5 75.0 18.8 0.345

PGN Ge et al. (2023) 33.3 41.7 27.1 8.3 72.9 81.3 37.5 8.3 75.3 71.1 66.7 14.6 0.659
SMI-FGRM Han et al. (2023) 66.7 62.5 52.1 12.5 87.5 93.8 39.6 6.3 87.8 89.8 66.7 4.5 0.198

DIM Xie et al. (2019) 87.5 75.0 66.7 29.2 91.7 93.8 39.6 12.5 91.9 87.8 75.0 16.7 0.020
TIM Dong et al. (2019) 68.8 58.3 27.1 12.5 87.5 93.8 8.3 4.2 85.7 83.6 20.8 4.2 0.020

BSR Wang et al. (2024a) 39.6 31.3 83.3 10.4 68.8 68.8 75.0 8.3 73.2 71.1 83.3 12.5 0.203
PGD+EOT Athalye et al. (2018) 87.5 93.8 79.2 27.1 91.7 100.0 40.3 22.9 87.8 89.8 69.8 27.1 0.461

IGSA (ours) 87.5 95.8 96.7 35.4 97.2 100.0 75.0 50.8 94.2 91.9 83.3 27.1 0.423

(3) Gradient Magnitude Control. To ensure stable optimization, we employ a sign-based gradient
update rule. Additionally, an ℓ2-norm constraint is imposed on δ during the computation of the loss
Ct, in order to minimize the magnitude of the perturbation introduced.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Tasks and Models. We evaluate our proposed IGSA on two types of tasks, including image clas-
sification and face recognition. We use two benchmark datasets in the image classification task,
including CIFAR-10 Krizhevsky et al. (2009) and ImageNet Deng et al. (2009). The models on the
ImageNet dataset use the official pre-trained models from torchvision, including VGG19 Simonyan
(2014), ResNet34 He et al. (2016), ResNet101 He et al. (2016), ViT-Base Dosovitskiy et al. (2020),
and Inception-v3 Szegedy et al. (2016). The models on the CIFAR-10 dataset, including VGG19,
ResNet34, and ViT-Base, are trained using the standard cross-entropy loss. In the face recognition
task, we use the CelebA dataset Liu et al. (2015) and perform attacks based on the aggregation mod-
els of the insightface framework Deng et al. (2019). We train these models using a pairwise loss
function. More implementation is detailed in Appendix B.1.

Attack Settings. In our experiments, the attack success rate (ASR) is mainly used to measure
the performance of various attacks. All experiments are conducted using a NVIDIA 4090 GPU.
In various tasks, we first set the adversarial perturbation strength ϵ of various attacks to a unified
value to ensure fairness in comparison. In experiments on the CIFAR-10 and CelebA datasets,
ϵ is set to 8/255; in experiments on the ImageNet dataset, ϵ is set to 16/255. The number of
iterations of various attacks is uniformly set to 100. For our proposed IGSA, the hyperparameter α
for adversarial perturbation update is set to 1.6/255. The number of sampling points N is set to 20.
The hyperparameter λ is set to 0.1 on the ImageNet dataset and 0.03 on the CIFAR-10 dataset. The
hyperparameter µ is set to 0.4 for the ImageNet dataset. For the CIFAR-10 dataset, µ varies across
different models: 0.5 for ResNet, 0.8 for VGG, and 0.3 for ViT.

4.2 ROBUSTNESS EXPERIMENTS

Evaluation of Attack Robustness: To evaluate the robustness of various attack methods, we con-
duct targeted attacks on the ImageNet dataset under both additive and non-additive disturbances
(Table 1). For additive disturbances, we apply Gaussian blur (GSB) with a kernel size of 5 and
standard deviation 1.0, and JPEG compression at 50%. For non-additive disturbances, we use ro-
tation transformation (RT) with a 10◦ angle and combined transformation (CB), including resizing
(×1.15), rotation (5◦), and perspective distortion (0.15). Additional experiments are detailed in the
Appendix B.2.1.

IGSA Performance Under Disturbances: Without disturbances, most attacks achieve nearly 100%
ASR. Table 1 shows IGSA outperforms existing methods under almost all disturbances. Transfer-
based attacks like MI-FGSM Dong et al. (2018), DTA Yang et al. (2023), and GRA Zhu et al.
(2023a) show significant performance drops under disturbances. Robustness-oriented attacks such
as DIM Xie et al. (2019), TIM Dong et al. (2019), BSR Wang et al. (2024a), and EOT Athalye
et al. (2018) generate more robust adversarial examples, but their effectiveness is limited when the
enhancement strategy mismatches the actual disturbance.
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Table 2: Robustness of various attacks on the Ima-
geNet dataset against defended models.

ASR (%) ResNet50 (Defense) ViT (Defense)

Attack Types un-tar tar un-tar tar

MI-FGSM Dong et al. (2018) 87.12 11.90 71.95 5.60
DTA Yang et al. (2023) 69.72 4.60 81.89 11.20
GRA Zhu et al. (2023a) 94.69 16.10 72.45 4.90

PGN Ge et al. (2023) 96.38 14.60 69.56 4.00
SMI-FGRM Han et al. (2023) 86.89 15.30 73.84 5.80

DIM Xie et al. (2019) 90.40 13.60 72.08 4.30
TIM Dong et al. (2019) 94.01 18.60 62.52 2.90

BSR Wang et al. (2024a) 91.64 18.20 68.43 2.90
IGSA (ours) 91.75 27.30 90.94 23.90

Table 3: Black-box testing of various attacks
on the ImageNet dataset.

ASR (%) ResNet ViTAttacks Types ↓
DIM Xie et al. (2019) 78.0 72.0

DTA Yang et al. (2023) 66.7 64.6
SMI-FGRM Han et al. (2023) 70.8 56.3

ILPD Li et al. (2024) 86.0 84.0
IGSA (ours) 83.0 77.0

DIM Xie et al. (2019) + IGSA 91.0 91.0
DTA Yang et al. (2023) + IGSA 83.0 77.0

SMI-FGRM Han et al. (2023) + IGSA 91.7 79.2
ILPD Li et al. (2024) + IGSA 89.0 87.0

Table 4: Black-box testing of various attacks on the face recognition task using the CelebA dataset.
ASR (%) ResNet50 MBF

Disturbance Types → RS RT PT CB GSB CTRS BRT JPEGAttack Types ↓
MI-FGSM Dong et al. (2018) 66.7 80.0 82.2 84.4 27.3 38.6 50.0 43.2

DTA Yang et al. (2023) 79.5 90.9 88.6 87.8 43.9 58.5 63.4 63.4
GRA Zhu et al. (2023a) 85.4 73.2 87.8 90.2 61.0 47.6 54.8 61.9

PGN Ge et al. (2023) 85.4 92.1 92.7 92.7 56.8 40.5 48.6 59.5
SMI-FGRM Han et al. (2023) 55.3 48.9 61.7 57.4 25.5 23.4 40.4 36.2

DIM Xie et al. (2019) 86.0 83.7 83.7 86.0 58.1 51.2 58.1 62.8
TIM Dong et al. (2019) 63.8 10.6 23.4 23.4 22.9 4.2 6.3 4.2

IGSA (ours) 87.2 92.3 92.7 94.9 61.0 68.3 73.2 70.7

Further Validation on CIFAR-10: We validate IGSA on CIFAR-10; detailed results are in Ap-
pendix B.2.2. Recent works focus on generating adversarial examples resilient to physical-world
distortions like reshooting, rotation, and lighting changes. We benchmark IGSA against state-of-
the-art physical-world attack methods, also detailed in the Appendix B.2.2.

Performance Against Defended Models: We evaluate IGSA against defended models, including
ResNet50 and ViT models trained using defense method of adversarial training Liu et al. (2025)
within the ARES 2.0 framework Dong et al. (2020) (Table 2). Results show IGSA maintains sig-
nificantly higher robustness than existing attacks, especially under targeted settings where other
approaches largely fail.

4.3 TRANSFERABILITY EXPERIMENTS

Evaluation Setup for Transferability: We evaluate the transferability of various attacks on im-
age classification (ImageNet) and face recognition (CelebA), as shown in Table 3 and Table 4.
Inception-v3 is used as the surrogate model. For black-box evaluation, adversarial examples are
tested on ResNet34 and ViT-base for image classification, and ResNet50 and MBF for face recogni-
tion. We apply IGSA to enhance state-of-the-art transfer attack methods in image classification and
test robustness under black-box settings in face recognition. Additional implementation details are
provided in Appendix B.1.

Transfer Performance of IGSA: Experimental results show that IGSA achieves higher ASR than
existing transfer attacks. When applied to DIM Xie et al. (2019), DTA Yang et al. (2023), SMI-
FGRM Han et al. (2023), and ILPD Li et al. (2024), the ASR against ResNet34 increases by 13.0%,
16.3%, 20.9%, and 3.0%, respectively; against ViT, improvements are 19.0%, 12.4%, 22.9%, and
3.0%. Under black-box robustness tests, IGSA consistently outperforms all baseline attacks across
disturbance types.

4.4 HYPERPARAMETER ANALYSIS AND ABLATION STUDY

Hyperparameter analysis. We conducted a hyperparameter analysis of IGSA using the ResNet101
model. The results are shown by Table 5. It can be seen that IGSA achieves an ASR above 90%
when the number of iterations exceeds 50. The parameter λ has a negative impact on ASR, as it
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constrains the magnitude of perturbations during iterations. The number of sampling points, tnum,
significantly boosts ASR from 94.4% at 5 points to 100% at 25 points by providing richer neigh-
borhood information. The learning rate, α, exhibits an optimal range, with ASR peaking at 99%
for α = 1.6/255 and slightly decreasing for higher values. The parameter µ has a relatively minor
effect on ASR, varying from 96.0% to 98.7%.

Ablation analysis of IGS. As discussed in Sec-
tion 3.2, IGS enhances adversarial example ro-
bustness by approximating the most disruptive
disturbance. To evaluate its impact, we compare
IGSA with various EOT-based attacks. Figure 2
shows that under strong disturbance (SNR=10),
IGSA achieves over 80% attack success rate with
only 5 sampling iterations, while EOT-based at-
tacks reach only about 60% with 50 samples.
This demonstrates that IGS significantly im-
proves both efficiency and effectiveness in gen-
erating robust adversarial examples.
Likelihood Analysis. As discussed in Section
3.3, our IGS enhances robustness by aligning the

Table 5: Hyperparameter analysis of our pro-
posed IGSA, where the shaded values are used
in comparative experiment.

λ 0.02 0.05 0.10 0.20 0.30
ASR (%) 100.00 100.00 97.22 69.44 5.56

µ 0.02 0.04 0.10 0.20 0.50
ASR (%) 96.00 97.22 97.22 97.37 98.68
iteration 10 20 50 100 200
ASR (%) 11.11 56.00 94.44 97.22 100.00

N 5 10 15 20 25
ASR (%) 94.44 97.22 97.22 99.00 100.00

α 0.4/255 0.8/255 1/255 1.6/255 3.2/255
ASR (%) 88.00 96.00 97.22 99.00 97.22

likelihood of adversarial examples with the original data distribution. We validated this using an
energy-based out-of-distribution detection method Liu et al. (2020b). Results show that IGSA-
generated samples achieve in-distribution scores comparable to clean data, whereas those from other
attacks show significantly lower scores. This demonstrates that IGSA produces more realistic and
distribution-aware adversarial examples, improving both robustness and stealth.

Figure 4: Comparison of attack success rates be-
tween IGSA and EOT as the number of samples
increases.

Figure 3: Distribution of the Energy OOD scores
Liu et al. (2020b) for the clean samples, CIFAR-
10, and the adversarial examples.

5 CONCLUSION AND LIMITATION DISCUSSION

In this paper, we propose a robust adversarial attack framework to address the vulnerability of
transfer-based attacks under various disturbances. Within this framework, we introduce IGSA to
tackle three key challenges: sampling coverage limitation, distribution mismatch, and transferabil-
ity. Extensive experiments show that IGSA significantly outperforms existing methods in robustness
against diverse unknown disturbances on both image recognition and face recognition tasks. More-
over, IGSA achieves strong transferability, making it highly effective in black-box settings. One
limitation of our current work is the use of a fixed mapping function h(ϕ, x + δ) for disturbance
sampling. Replacing it with a learnable module could further enhance the adaptability and effec-
tiveness of the robust attack framework, which we leave for future exploration. We hope our work
inspires more research into generating adversarial examples that are both transferable and robust
under real-world variations.
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A PROOF OF THEOREMS

Theorem 1 Let m denote the dimensionality of the input space, and let n be the number of samples
drawn from B(0, r). Then, Eϕ∗∼B(0,r)

[
Eϕ∼B(0,r)

[
∥ϕ− ϕ∗∥

∣∣∣ϕ∗
]]

= r · Γ
(

1
m

)
· n− 1

m .

Proof 1 We define the random variable ∥h(ϕi) − ϕ∗∥ as Zi, and the random variable
min{Z1, Z2, ...ZN} as Y . We know that the volume of an m-dimensional hypersphere is given
by Vm(r) = πm/2

Γ(m/2+1) · r
m = A · rm, where A = πm/2

Γ(m/2+1) . Since ϕ ∼ B(0, r), the
probability density function is f(ϕ) = 1/Vm(r). For Zi, its cumulative distribution function is
FZi

(z) = Vm(z)/Vm(r). The probability density function fZi
(z) is:

fZi(z) = (FZi(z))
′
z = (

zm

rm
)′z =

m · zm−1

rm
(8)

Thus, the cumulative distribution function of Y can be computed as:

FY (y) = 1− P (Z1 > y,Z2 > y, ..., ZN > y)

= 1−
N∏
i=1

P (Zi > y) = 1−
N∏
i=1

(1− FZi
(y))

= 1− (1− FZi(y))
n

(9)

Equation (9) holds because Z1, Z2, ...ZN are independent. Therefore, we can compute the proba-
bility density function of Y as:

fY (y) =F ′
Y (y) = n(1− FZi(y))

n−1 · fZi(y)

=n(1− (
y

r
)m)n−1 ·m · y

m−1

rm

(10)

Now, we can compute the inner expectation in Theorem 1 as:

Eϕ∼B(0,r)

[
∥h(ϕ)− ϕ∗∥

∣∣∣ϕ∗
]
=

∫ r

0

y · fY (y)dy

=

∫
n(1− (

y

r
)m)n−1 ·m · (y

r
)mdy

(11)

Let u = (yr )
m, where 0 < u < 1, then we have:

Eϕ∼B(0,r)

[
∥h(ϕ)− ϕ∗∥

∣∣∣ϕ∗
]
=

∫ 1

0

n(1− u)n−1 · ·ud(r · u 1
m )

= r · n
∫ 1

0

(1− u)n−1 · u · u 1
m−1du

= r · n
∫ 1

0

(1− u)n−1u
1
m du

(1)
= r · n ·

Γ(n)Γ( 1
m + 1)

Γ(n+ 1
m + 1)

(12)

By the Beta function: β(a, b) =
∫ 1

0
(1− x)a−1 · xb−1 =

Γ(a)Γ(b)

Γ(a+ b)
, the equality

(1)
= holds.

Next, we consider the case when the sample size n is large. By Stirling’s approximation Feller
(1967): Γ(x) ≈

√
2πx · (xe )

x, we express Γ(n) and Γ(n+ 1
m + 1) in equation (12) as:

Γ(n) =
√
2πn · (n

e
)n

Γ(n+
1

m
+ 1) =

√
2π(n+

1

m
+ 1) ·

(
n+ 1

m + 1

e

)n+ 1
m+1 (13)
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By the Gamma function: Γ( 1
m + 1) = ( 1

m + 1) · Γ( 1
m ), equation (12) is transformed into:

Eϕ∼B(0,r)

[
∥h(ϕ)− ϕ∗∥

∣∣∣ϕ∗
]
= r · n ·

Γ(n)Γ( 1
m + 1)

Γ(n+ 1
m + 1)

=
r · n
√
2πn · (ne )

n · ( 1
m + 1) · Γ( 1

m ) · ( 1
m + 1) · Γ( 1

m )√
2π(n+ 1

m + 1) · (n+
1
m+1

e )n+
1
m+1

= e
1
m+1 · r · n ·

√
n

n+ 1
m + 1

· nn

(n+ 1
m + 1)n+

1
m+1

· Γ( 1
m
)

= e
1
m+1 · r · Γ( 1

m
) · nn+ 3

2

(n+ 1
m + 1)n+

1
m+ 3

2

= e
1
m+1 · r · Γ( 1

m
) · n− 1

m ·
(

n

n+ 1
m + 1

)n+ 1
m+ 3

2

(2)
= r · Γ( 1

m
) · n− 1

m

(14)

(2)
= holds for when n to∞,

(
n

n+ 1
m + 1

)n+ 1
m+ 2

3

to e−( 1
m+1).

From equation (14), we note that the inner expectation Eϕ∼B(0,r)

[
∥h(ϕ)− ϕ∗∥

∣∣∣ϕ∗
]

is independent
of the position of X∗. Therefore:

Eϕ∼B(0,r)[E ] ≤ Eϕ∼B(0,r)∥h(ϕ)− ϕ∗∥ = r · Γ( 1
m
) · n− 1

m (15)

Theorem 2 Let Ct be a convex function in a spherical neighborhood of radius r centered at x+ δ,
with a unique extremum point x+δ+ϕ∗. Then, the following relation holds: h(ϕ)−ϕ = γ(ϕ∗−ϕ),
where the scalar coefficient γ is given by γ =

∥∇ϕC
t(x+δ+ϕ)∥

∥ϕ∗−ϕ∥ .

Proof 2 We start from the definition of h(ϕ):

h(ϕ)− ϕ = ∇ϕC
t(x+ δ + ϕ). (16)

Since Ct is convex and has a unique extremum (minimum or maximum) at x + δ + ϕ∗, we apply
the first-order Taylor expansion of Ct around x+ δ + ϕ∗:

Ct(x+ δ + ϕ)− Ct(x+ δ + ϕ∗) = ∇ϕC
t(x+ δ + ξ)T (ϕ− ϕ∗), (17)

for some ξ on the line segment between ϕ and ϕ∗. When r is sufficiently small, we can approximate:

∇ϕC
t(x+ δ + ξ) ≈ ∇ϕC

t(x+ δ + ϕ), (18)

which gives us:

Ct(x+ δ + ϕ)− Ct(x+ δ + ϕ∗) ≈ ∇ϕC
t(x+ δ + ϕ)T (ϕ− ϕ∗). (19)

Now consider the first-order Taylor expansion of Ct at x+ δ + ϕ∗:

Ct(x+ δ + ϕ) = Ct(x+ δ + ϕ∗) +∇ϕC
t(x+ δ + ϕ∗)T (ϕ− ϕ∗) + o(∥ϕ− ϕ∗∥). (20)

Because ϕ∗ is an extremum, the gradient at that point vanishes:

∇ϕC
t(x+ δ + ϕ∗) = 0. (21)

Substituting into Equation (20), we obtain:

Ct(x+ δ + ϕ)− Ct(x+ δ + ϕ∗) = ∇ϕC
t(x+ δ + ϕ)T (ϕ− ϕ∗) + o(∥ϕ− ϕ∗∥). (22)
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Next, for any direction d ∈ Rd with ∥d∥ = 1, and for any small w > 0, the local extremality implies:

Ct(x+ δ + ϕ∗) ≥ Ct(x+ δ + wd). (23)

Expanding both sides using the Taylor approximation yields:

Ct(x+ δ + ϕ∗) ≥ Ct(x+ δ + ϕ) + w∇ϕC
t(x+ δ + ϕ)T d+ o(w). (24)

Taking w → 0, this inequality must hold for all directions d, which implies that ∇ϕC
t(x + δ + ϕ)

is collinear with ϕ∗ − ϕ. That is, there exists a scalar γ′ > 0 such that:

∇ϕC
t(x+ δ + ϕ) = γ′(ϕ∗ − ϕ). (25)

Substituting this back into Equation (16), we get:

h(ϕ)− ϕ = ∇ϕC
t(x+ δ + ϕ) = γ(ϕ∗ − ϕ). (26)

Theorem 3 Let tr(H[·]) denote the trace of the Hessian matrix, and let B(0, r) represent a uniform
distribution over the ball of radius r in Rm. Then:

∇δEB(0,r)[∇δ(C
t)T · ∇δPD] = −∇δEPD

B(0,r)[tr(H[Ct])].

Proof 3 Let VBm denote the volume of the neighborhood of the sample Bm(0, r).

EBm [∇δ(C
t)T · ∇δPD] =

∫
B

1

VBm

· ∇δ(C
t)T · ∇δPDdδ

=
1

VBm

·
∫
Bm

∇δ(C
t)T · ∇δPDdδ

=
1

VBm

·
m∑
i=1

∫
Bm

∇δiC
t · ∇δiPDdδ·

=
1

VBm

·
m∑
i=1

∫
Bm−1

[∫ b

a

∇δiC
t · ∇δiPDdδi

]
dδm−1

(3)
=

1

VBm

·
m∑
i=1

∫
Bm−1

[
PD|ab · ∇δiC

t −
∫ b

a

PD∇2
δiC

tdδi

]
dδm−1

(4)
= − 1

VBm

·
m∑
i=1

[∫
Bm

PD · ∇2
δiC

tdδm

]
=− 1

VB(0,r)
·
∫
B
PD · tr(H[Ct])dδ

=− EPD

Bm [tr(Hδ[C
t])]

(27)

The equation
(3)
= holds due to the application of integration by parts. In the equation

(4)
= , a and b

represent the upper and lower bounds of the values of the element δi within the neighborhood of
Bm, respectively. When Bm is sufficiently small, the influence of δi on PD becomes negligible,
i.e., PD(a)− PD(b) ≈ 0. Therefore, the term PD|ab · ∇δiC

t ≈ 0.

Taking the gradient of both sides of equation (27) yields:

∇δEB(0,r)[∇δ(C
t)T · ∇δPD] = −∇δEPD

B(0,r)[tr(Hδ[C
t])] (28)

Theorem 4 Let Ct denote Ct(x+ δ). Suppose the Hessian H[Ct] is bounded in the neighborhood
of x+ δ, such that ∥H[Ct]∥2 ≤ L, the update rule satisfies:

∇δEϕ

[
Ct(x+ δ + ϕ+∇ϕC

t)
]
= ∇δC

t + ∥∇δC
t∥2 + σ2

2
∇δtr(H[Ct]) +O(σ4), σ2 ≪ 1/L

16
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Proof 4 Define:
z = x+ δ + ϕ+∇ϕC

t(x+ δ + ϕ). (29)
Expand∇ϕC

t(x+ δ + ϕ) around x+ δ:

∇ϕC
t(x+ δ + ϕ) = ∇xC

t +H[Ct]ϕ+O(∥ϕ∥2), (30)

where H[Ct] = ∇2
xC

t(x+ δ), and ∥ϕ∥ = O(σ). Thus:

z − x− δ = (I +H)ϕ+∇xC
t +O(∥ϕ∥2). (31)

Expand Ct(z) around x+ δ:

Ct(z) ≈ Ct +∇x(C
t)⊤(z − x− δ) +

1

2
(z − x− δ)⊤H[Ct](z − x− δ). (32)

Substitute z − x− δ ≈ (I +H)ϕ+∇xC
t:

Ct(z) ≈ Ct +∇x(C
t)⊤[(I +H)ϕ+∇xC

t] +
1

2
[(I +H)ϕ+∇xC

t]⊤H[(I +H)ϕ+∇xC
t].

(33)

Take expectation Eϕ[·], using E[ϕ] = 0 and E[ϕ⊤Aϕ] = σ2tr(A):

Eϕ[C
t(z)] ≈ Ct + ∥∇xC

t∥2 + σ2

2
tr(H) +O(σ4), (34)

Theorem 5 For any conditional distribution N (y|x), we have:

∇zEy∼N (y|z)[F (y)] = Ey∼N (y|z)[F (y) · ∇z log(N (y|z))].

Proof 5 For any conditional distribution N (y|z),

∇zEy∼N (y|z)[F (y)] = ∇z

∫
F (y) · N (y|z)dy

=

∫
F (y) · ∇zN (y|z)dy

=

∫
F (y) · N (y|z)

N (y|z)
· ∇zN (y|z)dy

=

∫
N (y|z) · F (y) · ∇z log(N (y|z))dy

= Ey∼N (y|z)[F (y) · ∇z log(N (y|z))]

(35)

Application of Theorem 5: To use Theorem 5, we let z = x + δ, y = x + δ +
ϕ and F (y) = Ct(y + ∇ϕC

t(y)), then we have: ∇δEϕ [C
t(x+ δ + ϕ+∇ϕC

t)] ≈
Eϕ∼N (0,σ2)

[
Ct(x+ δ + ϕ+∇ϕC

t) · ∇δ logN (x+ δ + ϕ;x+ δ, σ2)
]
.

B SUPPLEMENTARY EXPERIMENTS

B.1 EXPERIMENTS DETAILS

Details of the attack methods. All transfer attack baseline methods are from the TransferAttack li-
brary (https://github.com/Trustworthy-AI-Group/TransferAttack). Physical
world attacks, such as RP2 Eykholt et al. (2018), VMI-FGSM Wang & He (2021), AI-FGSM Zou
et al. (2022), used the open-source code from these papers.

Implementation Details for the face recognition task. We extracted the classification model
(ResNet50 trained on CelebA) from the aggregation model buffalo l for attacks. Similarly, we ex-
tracted the classification model (MBF CelebA) from the aggregation model buffalo s. The batch
size and the number of attack steps are set to 1 and 100, respectively. The attack is based on the
aggregation model of the insightface framework on the CelebA dataset. The classification model of
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Table 6: Robustness of various attacks on the ImageNet dataset under additional additive and non-
additive disturbances.

ASR (%) VGG19 ResNet34 ViT

Disturbance Types→ Additive Non-additive Additive Non-additive Additive Non-additive
Attacks Types ↓ CTRS BRT RS PT CTRS BRT RS PT CTRS BRT RS PT

PGD Madry et al. (2017) 85.4 91.7 43.8 0.0 60.4 70.8 4.2 6.3 67.5 77.9 8.3 0.0
MI-FGSM Dong et al. (2018) 91.7 97.9 72.9 10.4 83.3 91.7 16.7 0.0 77.9 79.1 31.3 10.4

DTA Yang et al. (2023) 89.6 95.8 75.0 10.4 83.3 93.8 25.0 0.0 79.7 83.3 56.3 6.3
GRA Zhu et al. (2023a) 66.7 79.2 52.1 29.2 75.0 93.8 54.2 14.6 79.3 79.3 66.7 25.0

PGN Ge et al. (2023) 37.5 54.2 27.1 14.6 62.5 72.9 20.8 10.4 67.5 65.4 52.1 25.0
SMI-FGRM Han et al. (2023) 72.9 95.8 52.1 16.7 87.5 87.5 25.0 6.3 77.9 77.9 54.2 12.5

DIM Xie et al. (2019) 81.3 89.6 66.7 35.4 89.6 93.8 45.8 14.6 79.7 79.6 58.3 20.8
TIM Dong et al. (2019) 52.1 58.3 27.1 4.2 75.0 87.5 6.3 4.2 71.7 67.5 12.5 4.2

BSR Wang et al. (2024a) 85.4 89.6 83.3 14.6 77.1 81.3 79.2 8.3 83.3 79.5 93.8 16.7
PGD+EOT Athalye et al. (2018) 91.7 95.8 79.2 50.0 91.7 93.8 68.8 33.3 79.6 89.6 31.3 51.0

IGSA (ours) 95.8 100.0 96.7 58.3 95.8 97.9 79.2 27.8 91.6 95.4 97.9 20.8

Table 7: Robustness of various untargeted attacks on ImageNet under additive disturbance.
ASR (%) VGG19 ResNet34 ViT

Disturbance Types→ GSB CTRS BRT JPEG GSB CTRS BRT JPEG GSB CTRS BRT JPEGAttacks Types ↓
PGD Madry et al. (2017) 75.5 97.9 95.3 70.3 78.6 92.7 87.0 88.5 75.4 87.5 80.2 62.0

MI-FGSM Dong et al. (2018) 89.1 97.9 98.4 74.5 97.9 97.4 92.2 77.1 87.9 89.8 94.3 77.1
DTA Yang et al. (2023) 91.1 98.4 98.4 71.4 97.4 95.8 94.3 77.1 87.4 87.9 96.4 79.7
GRA Zhu et al. (2023a) 72.9 96.9 94.3 65.1 78.1 90.6 86.5 52.6 76.5 80.2 71.4 54.2

PGN Ge et al. (2023) 96.9 100.0 97.9 89.6 99.0 95.8 95.8 86.5 89.5 93.8 98.0 93.8
SMI-FGRM Han et al. (2023) 99.5 100.0 99.0 88.5 99.0 97.4 96.9 88.5 86.1 92.4 98.4 96.4

DIM Xie et al. (2019) 99.0 100.0 99.5 83.9 94.8 97.4 96.9 89.6 87.4 87.4 97.4 90.1
TIM Dong et al. (2019) 98.4 97.9 95.8 89.6 94.8 92.2 91.7 85.9 89.5 91.7 89.1 89.1

BSR Wang et al. (2024a) 85.4 99.0 97.9 76.0 96.9 96.9 92.7 74.0 84.8 93.8 92.7 79.2
PGD+EOT Athalye et al. (2018) 98.2 96.9 95.4 88.8 89.3 92.9 98.8 83.7 83.9 89.8 90.8 89.8

IGSA (ours) 99.5 100.0 99.5 93.2 99.0 99.0 99.5 91.7 93.9 97.4 99.5 98.5

this framework only outputs 512-dimensional features without performing classification. Therefore,
we use pairwise as the loss function. An attack is considered effective when the cosine similarity
between the original features and the attacked features is less than 0.4.

Implementation Details for Combinate IGSA with other transferable attack. To combine IGSA
with DTA, we use a momentum update to smooth the gradient during sampling. A momentum decay
factor u is introduced to balance the influence of the current gradient and the previous gradients. To
combine IGSA with ILPD, we integrate the hook function of ILPD during the forward propagation
process. For example, in the Inception-v3 model, we use the hook function to obtain the output of
the Inception-A Block and combine it with the original intermediate layer output through weighted
summation. This allows the generated adversarial samples to have a larger perturbation amplitude
in the feature space and to be consistent with the target direction of the attack, thereby improving
the effectiveness of IGSA.

B.2 SUPPLEMENTARY EXPERIMENTAL RESULTS

B.2.1 EXPERIMENTS ON MORE DISTURBANCES

We introduced additional types of perturbations to the images: additive disturbances include contrast
transformation (CTRS), which adjusts the grayscale contrast with a compression ratio of 25%, and
brightness transformation (BRT), which uniformly modifies image brightness with a compression
ratio of 25%; non-additive disturbances include resizing transformation (RS) with a magnification
factor of 1.25, and perspective transformation (PT) with a distortion factor of 0.25. The results are
shown in Table 6.

Furthermore, we test the ASR of untargeted attacks under additive and non-additive disturbances on
the ImageNet dataset, respectively, as represented in Table 7 and Table 8. Compared with the tar-
geted setting, various attacks are more robust under the untargeted setting. In additive disturbances
settings, the standard deviation of GSB is increased to 3, the contrast is set to 5%, the brightness
is set to 5%, and the JPEG compression rate is set to 10%. In non-additive disturbance settings,
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Table 8: Robustness of various untargeted attacks on ImageNet under non-additive disturbance.
ASR (%) VGG19 ResNet34 ViT

Disturbance Types→ RS RT PT CB RS RT PT CB RS RT PT CBAttacks Types ↓
PGD Madry et al. (2017) 60.9 93.8 90.6 90.1 59.9 78.6 70.3 67.2 56.8 85.9 77.6 78.6

MI-FGSM Dong et al. (2018) 74.0 94.3 94.3 95.3 73.4 91.1 87.5 84.9 67.7 94.3 93.8 91.7
DTA Yang et al. (2023) 76.6 97.9 90.6 96.9 73.4 90.6 89.6 89.6 71.9 98.4 95.8 94.3
GRA Zhu et al. (2023a) 60.9 88.0 87.5 90.1 57.8 72.9 67.2 68.8 54.2 79.2 72.4 78.1
PGN Ge et al. (2023) 85.4 97.9 94.8 100.0 77.1 94.8 93.8 95.8 81.3 97.9 97.9 97.9

SMI-FGRM Han et al. (2023) 84.4 99.0 96.4 100.0 83.9 97.4 91.7 96.9 84.4 97.5 99.0 97.2
DIM Xie et al. (2019) 85.9 97.4 94.8 99.5 83.9 96.4 91.1 98.4 82.3 96.0 93.2 89.4

TIM Dong et al. (2019) 87.5 95.8 93.8 96.9 83.9 90.6 92.7 91.7 81.8 95.8 94.8 97.4
BSR Wang et al. (2024a) 76.0 99.0 92.7 99.0 80.2 99.5 94.8 97.9 87.0 98.4 96.7 96.5

PGD+EOT Athalye et al. (2018) 87.5 87.5 87.5 91.7 72.9 77.1 92.7 95.4 79.2 89.6 87.5 83.3
IGSA (ours) 88.5 99.0 96.4 100.0 83.9 97.9 95.3 98.4 87.2 99.5 99.4 98.1

the image scaling factor is 0.5, the rotation angle is set to 45 degrees, and the perspective distortion
coefficient is set to 0.75. The experimental results show that in the untargeted attack experiments,
the proposed IGSA is more robust than other attacks under various unknown disturbances.

Table 9: Robustness of various untargeted attacks on CIFAR-10 under additive disturbance.
ASR (%) VGG19 ResNet34 ViT

Disturbance Types→ GSB CTRS BRT JPEG GSB CTRS BRT JPEG GSB CTRS BRT JPEGAttacks Types ↓
None 25.0 15.0 15.0 30.0 36.7 13.3 16.7 50.0 46.7 13.3 13.3 63.3

PGD Madry et al. (2017) 90.6 90.6 90.6 89.8 74.2 84.4 89.1 73.3 70.0 86.7 76.7 43.3
MI-FGSM Dong et al. (2018) 93.8 90.6 90.6 90.6 79.7 85.9 90.6 65.6 82.8 90.6 77.5 62.5

DTA Yang et al. (2023) 93.8 89.1 90.6 87.5 76.6 85.9 90.6 73.4 82.8 90.6 87.5 64.1
GRA Zhu et al. (2023a) 90.6 90.6 89.1 90.6 82.8 85.9 92.2 71.9 84.4 89.1 75.9 60.9
PGN Ge et al. (2023) 93.0 90.6 93.0 92.2 75.0 84.4 92.2 59.4 84.4 90.6 79.1 64.1

SMI-FGRM Han et al. (2023) 93.8 90.6 91.4 90.6 68.0 84.4 88.3 65.6 81.3 90.6 82.8 62.5
DIM Xie et al. (2019) 98.4 90.6 93.8 93.8 87.5 80.5 86.7 73.3 89.1 90.6 87.5 70.8

TIM Dong et al. (2019) 94.5 89.8 93.0 94.5 89.2 85.2 89.1 74.2 90.6 89.1 89.6 68.8
BSR Wang et al. (2024a) 93.8 89.8 90.6 91.4 74.2 84.4 88.3 66.4 87.5 84.4 84.3 50.0

IGSA (ours) 100.0 91.4 93.8 95.0 90.6 86.7 95.0 80.5 90.6 95.0 90.6 73.3

Table 10: Robustness of various untargeted attacks on CIFAR-10 under non-additive disturbance.
ASR (%) VGG19 ResNet34 ViT

Disturbance Types→ RS RT PT CB RS RT PT CB RS RT PT CBAttacks Types ↓
None 15.0 35.0 25.0 20.0 33.3 33.3 46.7 40.0 56.7 40.0 60.0 56.7

PGD Madry et al. (2017) 90.6 84.4 87.5 87.5 70.0 73.4 80.0 76.7 50.0 71.9 76.7 80.0
MI-FGSM Dong et al. (2018) 87.5 93.8 87.5 93.8 60.9 75.0 73.4 84.4 64.1 78.1 85.9 89.1

DTA Yang et al. (2023) 89.1 84.4 93.8 90.6 64.1 73.4 90.6 84.4 68.8 78.1 90.6 90.6
GRA Zhu et al. (2023a) 89.1 90.6 90.6 87.5 68.3 78.3 87.5 90.8 70.3 79.7 90.6 95.9
PGN Ge et al. (2023) 89.1 95.3 93.0 89.1 64.1 71.9 84.4 85.9 67.2 79.7 87.5 96.9

SMI-FGRM Han et al. (2023) 90.6 93.8 93.8 87.5 64.1 78.1 82.8 85.9 70.3 75.0 89.1 95.3
DIM Xie et al. (2019) 89.8 93.8 91.4 91.4 68.8 76.6 85.9 89.1 70.3 78.1 85.9 96.1

TIM Dong et al. (2019) 90.6 95.3 93.8 91.4 73.4 75.0 87.5 92.2 74.2 76.6 88.3 90.0
BSR Wang et al. (2024a) 87.5 91.4 90.6 88.3 64.1 73.4 71.9 81.3 65.6 71.9 87.5 90.6

IGSA (ours) 95.3 95.3 100.0 100.0 71.9 78.1 90.6 92.2 70.3 80.0 90.6 98.0

B.2.2 EXPERIMENTS ON THE CIFAR-10 DATASET

We conduct extended experiments on the CIFAR10 dataset. In the untargeted attacks on CIFAR10
under additive disturbance, as shown in Table 9, IGSA reaches the highest ASR across different
disturbance types for various models such as VGG19, ResNet34, and ViT-base. For instance, when
dealing with JPEG compression in the VGG19 model, IGSA achieves an ASR of 95.0%, far exceed-
ing the values of other attacks. In the non-additive disturbance experiments for untargeted attacks
on CIFAR10, as shown in Table 10, IGSA also shows remarkable robustness. It can achieve 100.0%
ASR in some cases, such as for PT and CB in the VGG19 model. This indicates that IGSA can
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effectively resist significant image transformations without losing its attack ability. In the targeted
attack scenarios on CIFAR10, whether it is under additive disturbance, as shown in Table 11, or
non-additive disturbance, as shown in Table 12, IGSA again demonstrates its superiority.

Table 11: Robustness of various targeted attacks on CIFAR-10 under additive disturbance.
ASR (%) VGG19 ResNet34 ViT

Disturbance Types→ GSB CTRS BRT JPEG GSB CTRS BRT JPEG GSB CTRS BRT JPEGAttacks Types ↓
None 33.3 60.0 50.0 33.3 33.3 46.7 40.0 33.3 30.0 60.0 40.0 20.0

PGD Madry et al. (2017) 23.3 43.3 33.3 53.3 60.0 73.3 83.3 63.4 96.7 90.0 96.7 76.7
MI-FGSM Dong et al. (2018) 23.4 40.6 40.6 30.8 60.8 75.0 71.7 29.2 60.8 79.7 71.7 29.2

DTA Yang et al. (2023) 21.7 35.9 37.5 29.2 55.8 80.8 76.7 44.2 54.7 78.1 73.4 26.7
GRA Zhu et al. (2023a) 25.0 42.2 40.6 27.5 43.8 57.8 64.1 31.3 65.6 76.6 76.6 42.2

PGN Ge et al. (2023) 34.4 57.8 53.1 39.1 62.5 62.5 62.5 43.8 75.0 81.3 73.4 45.3
SMI-FGRM Han et al. (2023) 20.0 50.0 40.8 29.2 48.4 61.7 71.9 43.8 73.4 79.7 76.6 48.4

DIM Xie et al. (2019) 22.5 45.0 41.7 30.8 20.8 57.5 66.7 27.5 35.8 70.3 67.2 31.7
TIM Dong et al. (2019) 23.4 48.4 43.8 26.6 30.0 82.5 80.0 32.5 42.2 85.9 87.5 31.3

BSR Wang et al. (2024a) 46.9 56.3 59.4 46.9 69.2 74.2 74.2 31.3 62.5 78.1 78.1 37.5
IGSA (ours) 99.2 99.2 99.3 99.3 99.2 99.4 99.6 99.3 99.3 99.6 99.6 99.2

Table 12: Robustness of various targeted attacks on CIFAR-10 under non-additive disturbance.
ASR (%) VGG19 ResNet34 ViT

Disturbance Types→ RS RT PT CB RS RT PT CB RS RT PT CBAttacks Types ↓
None 50.0 50.0 43.3 50.0 73.3 70.0 70.0 70.0 83.3 80.0 86.7 76.7

PGD Madry et al. (2017) 66.7 66.7 63.4 67.1 53.3 53.3 23.5 64.1 46.7 76.6 43.3 83.3
MI-FGSM Dong et al. (2018) 70.3 73.4 71.9 76.6 71.9 68.8 54.7 71.9 56.3 71.7 64.2 75.0

DTA Yang et al. (2023) 73.4 78.1 81.3 75.0 73.4 68.8 64.1 75.0 82.5 84.2 83.3 89.1
GRA Zhu et al. (2023a) 70.3 73.4 73.4 75.0 53.1 75.0 62.5 67.2 85.9 87.5 83.3 93.3
PGN Ge et al. (2023) 62.5 64.1 60.9 64.1 50.0 68.8 50.0 56.3 67.2 85.9 76.6 85.9

SMI-FGRM Han et al. (2023) 78.1 76.6 82.8 76.6 49.2 70.0 64.2 68.3 53.1 84.4 71.9 87.5
DIM Xie et al. (2019) 73.4 73.4 75.0 76.6 69.2 71.7 71.7 80.0 59.4 85.9 82.8 84.4

TIM Dong et al. (2019) 67.2 73.4 71.9 73.4 56.3 60.9 70.3 64.1 86.7 82.5 82.5 88.3
BSR Wang et al. (2024a) 48.4 46.9 50.0 53.1 56.3 60.9 59.4 57.8 50.0 73.4 71.9 73.4

IGSA (ours) 87.5 93.8 87.5 93.8 85.9 93.8 89.1 87.5 87.5 85.9 84.4 93.8

Some recent works study how to generate adversarial perturbations for the physical world. Their
adversarial samples can remain effective under various disturbances in the physical world, such
as reshooting, rotation, scaling, and brightness changes. In Table 13, we compare IGSA with the
SOTA physical world attacks. The experiment is carried out using Inception-v3 on the Cifar-10
dataset under the setting of untargeted attacks. The experimental results show that IGSA achieves
the best ASR without any prior knowledge about the disturbance.

B.2.3 VISUAL COMPARISON OF ADVERSARIAL SAMPLES

In Figure 5, we present the adversarial samples generated by various attacks and the performance of
these adversarial samples after being subjected to combined disturbances. It can be seen that under
the same perturbation intensity, which is uniformly set to 8/255, the adversarial perturbations of
IGSA are less noticeable than those of other methods. This endows the adversarial samples of IGSA
with stronger stealthiness.

C THEORETICAL EXTENSION FOR NON-CONVEX CONDITIONS

In this section, we extend Theorem 2 to non-convex loss landscapes. As noted by Liu et al. (2020a),
adversarially trained models may converge to sharper minima, which makes local convexity a strong
assumption. We provide a generalized theorem and experimental verification.
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Table 13: Robustness of physical-world attacks on the CIFAR-10 dataset under disturbances.
ASR (%) additional non-additional

Disturbance Types→ RS RT PT CB GSB CTRS BRT JPEGAttacks Types ↓
RPA Zhang et al. (2022) 75.0 72.9 68.8 83.3 85.4 79.2 81.3 85.4

VMI-FGSM Wang & He (2021) 80.5 50.0 50.0 88.9 77.8 80.5 80.5 86.1
AI-FGSM Zou et al. (2022) 86.0 89.0 88.0 77.0 80.0 77.0 79.0 77.0

AutoAttack Croce & Hein (2020) 59.2 93.9 92.1 47.0 67.4 65.3 67.3 63.3
ILPD Li et al. (2024) 39.0 25.0 24.5 28.6 24.5 26.6 40.7 28.6

TAIG Huang & Kong (2022) 91.0 90.9 92.1 67.4 71.2 80.0 77.6 77.6
IGSA (ours) 94.6 97.9 98.5 97.9 87.5 95.8 91.7 97.9

Original image Adversarial image Additive trans. Non-additive trans.

MI-FGSM ASR: 100.0% ASR: 84.4% ASR: 43.2%

SMI-FGRM ASR: 100.0% ASR: 57.4% ASR: 36.2%

DIM ASR: 100.0% ASR: 86.0% ASR: 62.8%

IGSA (ours) ASR: 100.0% ASR: 94.9% ASR: 70.7%

Figure 5: Qualitative analysis on the CelebA dataset under additive and non-additive disturbance.

C.1 GENERALIZED THEOREM FOR NON-CONVEX LANDSCAPES

Theorem 6 (Revised Theorem 2: Non-Convex Case) Let ϕ∗ be a local extremum point in the
neighborhood B(0, r). For a sampled disturbance ϕ ∼ B(0, r), define the angle θϕ between the
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Original image Adversarial image Additive trans. Non-additive trans.

MI-FGSM ASR: 100.0% ASR: 62.5% ASR: 0.0%

SMI-FGRM ASR: 100.0% ASR: 62.5% ASR: 12.5%

DIM ASR: 100.0% ASR: 75.0% ASR: 29.2%

IGSA (ours) ASR: 100.0% ASR: 95.8% ASR: 35.4%

Figure 6: Qualitative analysis on the ImageNet dataset under additive and non-additive disturbance.

gradient and the extremum direction as:

cos θϕ =
⟨∇ϕC

t(x+ δ + ϕ), ϕ∗ − ϕ⟩
∥∇ϕCt∥ · ∥ϕ∗ − ϕ∥

.

Then the IGS update satisfies:

∥h(ϕ)− ϕ∗∥ = ∥ϕ− ϕ∗∥ ·
√

1− 2η cos θϕ + η2

where η = ∥∇ϕC
t∥/∥ϕ∗ − ϕ∥. Moreover, when cos θϕ > η/2, we have ∥h(ϕ)− ϕ∗∥ < ∥ϕ− ϕ∗∥.

Proof 6 Starting from the definition h(ϕ) = ϕ+∇ϕC
t:

∥h(ϕ)− ϕ∗∥2 = ∥ϕ− ϕ∗ +∇ϕC
t∥2 = ∥ϕ− ϕ∗∥2 + 2⟨ϕ− ϕ∗,∇ϕC

t⟩+ ∥∇ϕC
t∥2.

Substituting the inner product relation:

⟨ϕ− ϕ∗,∇ϕC
t⟩ = −∥ϕ− ϕ∗∥ · ∥∇ϕC

t∥ cos θϕ,
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we obtain:
∥h(ϕ)− ϕ∗∥2 = ∥ϕ− ϕ∗∥2(1− 2η cos θϕ + η2).

Taking square roots gives the main result. The inequality ∥h(ϕ)− ϕ∗∥ < ∥ϕ− ϕ∗∥ holds when:

1− 2η cos θϕ + η2 < 1 ⇐⇒ cos θϕ > η/2. □

Remark 6 Theorem 6 shows that IGS still reduces distance to ϕ∗ when the gradient direction is
sufficiently aligned with ϕ∗−ϕ (cos θϕ > η/2). This condition holds frequently in practice (verified
below), making IGS effective even in non-convex landscapes.

C.2 EXPERIMENTAL VERIFICATION OF cos θϕ DISTRIBUTION

We empirically measured cos θϕ using adversarially trained models on CIFAR-10 and ImageNet
datasets:

• CIFAR-10: ResNet-50 model trained with PGD adversarial training (ℓ∞-norm, ϵ = 8/255)
• ImageNet: ResNet-152 model trained with TRADES adversarial training (ℓ∞-norm, ϵ = 4/255)

For each dataset, we randomly selected 1000 samples. To find local extrema ϕ∗ in non-convex
landscapes, we initialized 5 random points within B(0, r), performed 1000-step gradient descent
from each starting point, and selected the ϕ∗ achieving the highest Ct value. We then computed:

cos θϕ =
⟨∇ϕC

t, ϕ∗ − ϕ⟩
∥∇ϕCt∥ · ∥ϕ∗ − ϕ∥

Results in Table 14 show:

Table 14: Distribution of cos θϕ on adversarially trained models

Dataset Model E[cos θϕ] P(cos θϕ > η/2)

CIFAR-10 ResNet-50 0.68 92.7%
ImageNet ResNet-152 0.72 94.1%

C.3 EFFICIENCY RATIO ANALYSIS

The efficiency ratio between EOT and IGS under non-convex conditions is:

nEOT

nIGS
=

(
E[∥h(ϕ)− ϕ∗∥]
E[∥ϕ− ϕ∗∥]

)−m

(36)

proof:

From Theorem 1, the expected approximation error for a sampling method decreases as n−1/m

where n is the number of samples. Specifically for EOT:

Eϕ∼B∥ϕ− ϕ∗∥ ≤ c · n−1/m
EOT

where c is a constant depending on the dimension m. Similarly for IGS:

Eϕ∼B∥h(ϕ)− ϕ∗∥ ≤ c · n−1/m
IGS

To achieve the same error bound ϵ, we set:

c · n−1/m
EOT = ϵ =

E∥h(ϕ)− ϕ∗∥
E∥ϕ− ϕ∗∥

· c · n−1/m
IGS

Solving for the ratio:

n
−1/m
EOT =

E∥h(ϕ)− ϕ∗∥
E∥ϕ− ϕ∗∥

n
−1/m
IGS
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nEOT

nIGS
=

(
E∥h(ϕ)− ϕ∗∥
E∥ϕ− ϕ∗∥

)−m

□

Calculation for CIFAR-10:

Using experimental mean values η = 8.2× 10−3 and E[cos θϕ] = 0.68:

E[∥h(ϕ)− ϕ∗∥]
E[∥ϕ− ϕ∗∥]

≈ 1− ηE[cos θϕ] = 1− 0.005576 = 0.994424

For input dimension m = 32× 32× 3 = 3072:
nEOT

nIGS
= (0.994424)−3072 ≈ 2.88× 107

Remark 5 Eq. equation 36 shows IGS maintains exponential efficiency gains (∼ (1− η cos θ)−m)
even without convexity. The alignment term cos θϕ plays a crucial role: better gradient alignment
(higher cos θϕ) leads to greater efficiency gains.

C.4 EXPERIMENTAL EFFICIENCY COMPARISON

Table 15 compares IGS and EOT on adversarially trained ImageNet models (ResNet-152 with
TRADES training) at 95% attack success rate (ASR) threshold:

Table 15: Attack Success Rate (ASR) comparison on adversarially trained ImageNet models

Method ASR @ 20 samples ASR @ 100 samples Samples to 95% ASR

EOT 34.2% 78.5% 320
IGS (ours) 89.7% 98.3% 15

Our analysis demonstrates that: (1) Under non-convex conditions, IGS reduces ∥ϕ − ϕ∗∥ when
cos θϕ > η/2 (validated for ¿92% of samples across datasets); (2) The efficiency ratio nEOT/nIGS
scales exponentially with dimension m, preserving IGS’s sampling advantage; and (3) Practical
efficiency gains (21× on ImageNet) remain substantial despite theoretical-empirical gaps. These
results confirm IGS effectively addresses limited sampling coverage, even for adversarially trained
models with non-convex loss landscapes. The observed efficiency gap (theoretical 107 vs. practical
21×) stems from non-global extrema, sampling correlation, and gradient estimation errors, yet IGS
maintains significant practical advantages.

D ANALYSIS OF FEATURE-SPACE STABILITY

Typical classification models can be decomposed into a two-stage process: feature embedding fol-
lowed by classification. The feature embedding stage captures common features across similar
images. Images sharing semantic content (such as an image before and after transformations) ex-
hibit similar feature representations in the embedding space. This property enables natural images
to maintain consistent classification results under various image transformations.

However, adversarial samples typically deviate from the natural data distribution. Their feature rep-
resentations exhibit significant variation under image transformations, leading to the failure of ad-
versarial attacks. The proposed IGSA addresses this limitation by enforcing feature-space stability.
It ensures that adversarial samples maintain similar feature representations under image transfor-
mations, thereby preserving their adversarial efficacy. Next, we provide a formal explanation and
experimental validation.

D.1 FORMAL DEFINITIONS

Let f : Rm → Rk be a classifier decomposed into:

f(x) = c(e(x)) (37)
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where e : Rm → Rd is the feature extractor and c : Rd → Rk is the classifier head.

For natural images x ∼ PD and transformation T , we observe:

∥e(x)− e(T (x))∥2 ≤ ϵT (38)

where ϵT quantifies the model’s inherent transformation tolerance.

Traditional adversarial examples xadv exhibit:

∥e(xadv)− e(T (xadv))∥2 ≫ ϵT (39)

due to their deviation from PD. In contrast, IGSA enhances the stability of adversarial examples in
the feature space by increasing their likelihood within the data distribution PD:

∥e(xIGSA
adv )− e(T (xIGSA

adv ))∥2 ≈ ϵT . (40)

We provide the following experimental verification.

D.2 EXPERIMENTAL VALIDATION

D.2.1 FEATURE DISTANCE ANALYSIS

Table 16: Feature Space Displacement Under Transformations

Attack Blur Noise JPEG Brightness

PGD 18.7 22.3 15.2 12.6
EOT 14.1 17.5 11.8 9.3

IGSA (ours) 6.8 8.4 5.1 4.7

Our experiments demonstrate IGSA’s superior stability across transformations. Quantitative analysis
using ResNet-50’s penultimate layer features shows IGSA achieves 63-73% reduction in feature
displacement (∆feat = ∥e(x) − e(T (x))∥2) compared to PGD and 52-58% reduction versus EOT,
with final displacements (∆feat ≈ 4.7− 8.4) approaching natural image variation levels (ϵT ≈ 4.2).
This confirms IGSA’s success in maintaining feature-space consistency under perturbations.
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