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ABSTRACT

Adpversarial attacks have achieved widespread success in various domains, yet ex-
isting methods suffer from significant performance degradation when adversarial
examples are subjected to even minor disturbances. In this paper, we propose
a novel and robust attack called IGSA (Inverse Gradient Sample-based Attack),
capable of generating adversarial examples that remain effective under diverse
unknown disturbances. IGSA employs an iterative two-step framework: (i) in-
verse gradient sampling, which searches for the most disruptive direction within
the neighborhood of adversarial examples, and (ii) disturbance-guided refinement,
which updates adversarial examples via gradient descent along the identified dis-
ruptive disturbance. Theoretical analysis reveals that IGSA enhances robustness
by increasing the likelihood of adversarial examples within the data distribution.
Extensive experiments in both white-box and black-box attack scenarios demon-
strate that IGSA significantly outperforms state-of-the-art attacks in terms of ro-
bustness against various unknown disturbances. Moreover, IGSA exhibits supe-
rior performance when attacking adversarially trained defense models. Code is
available at https://github.com/nimingck/IGSA.

1 INTRODUCTION

Extensive research demonstrates that deep neural networks (DNN5s) are highly vulnerable to adver-
sarial examples |Szegedy| (2013)); Papernot et al.| (2017); |Kurakin et al.| (2018). The emergence of
more threatening adversarial examples has the potential to stimulate advances in secure machine
learning [Liu et al.| (2016); [Leino et al.|(2021); Zhu et al,| (2023b). To be genuinely threatening in
practice, an adversarial example should satisfy three key properties: (i) transferability, ensuring its
effectiveness in black-box scenarios; (ii) stealthiness, enabling it to evade standard detection mech-
anisms; and (iii) robustness, allowing it to retain attack effectiveness under various disturbances.

A widely studied category of adversarial attacks is the white-box attack (Goodfellow et al.[(2014);
Carlini & Wagner| (2017); [Kurakin et al.| (2018)), which assumes full access to the target model’s
parameters and architecture. While effective in theory, this assumption rarely holds in practice,
limiting their real-world relevance. A more practical alternative is the transfer-based black-box
attack [Papernot et al.| (2016); Wu et al.|(2020), where adversarial examples generated on surrogate
models are applied to unknown target models. Yet, recent evidence Liu et al.|(2024); Li et al.[(2022));
Xie et al.| (2017) suggests that existing transfer attacks are highly brittle: even minor disturbances
can result in the effectiveness of the attack, especially in targeted attacks, as shown in Fig[T] The
fragility of adversarial examples naturally limits their attack success rate in applications.

In this paper, we propose a novel adversarial attack framework designed to enhance the robustness
of adversarial examples against various (including unseen) disturbances. It adopts an iterative two-
step procedure. First, disturbances are sampled from a prior distribution and mapped into a specified
disturbance distribution, which relatively represent diverse and realistic disturbances. Second, the
adversarial example is optimized to maintain its effectiveness under the sampled disturbance.

The design of an appropriate mapping function in our robust attack framework raises three key
challenges. (i) Sampling Coverage Limitation: When the disturbances are insufficiently sampled,
adversarial examples may still fail under unseen disturbances. (ii) Distribution Mismatch: If the
distribution of disturbances used for training differs from the actual distribution of real-world dis-
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Figure 1: Robustness of adversarial attacks under various disturbances. Existing adversarial exam-
ples degrade under unseen disturbances. Our proposed IGSA enhances robustness against both seen
and unseen disturbances.

turbance, adversarial examples may lose their effectiveness in practice. (iii) Transferability Con-
sideration: In black-box scenarios, adversarial examples must remain transferable across models,
necessitating explicit integration of transferability into training.

To address these challenges, we propose the Inverse Gradient Sample-based Attack (IGSA). In con-
trast to prior approaches that rely on random disturbance sampling during training
(2018), IGSA employs inverse gradient sampling to identify the most disruptive disturbances. This
mechanism effectively mitigates the failure of adversarial examples under unseen or real-world
noise. Theoretical analysis further shows that IGSA achieves over 10® times higher efficiency in
approximating such disturbances compared to random sampling. Moreover, IGSA actively explores
flat regions of the loss landscape, a strategy recently shown |Ge et al.| (2023) to substantially enhance
transferability of adversarial examples.

By analyzing the impact of data likelihood on robustness of adversarial examples, we evaluate IGSA
under distribution mismatch. Extensive experiments show that models exhibit high confidence and
robustness on clean samples from the natural distribution (2025). Theoretical analysis
reveals that IGSA preserves a high likelihood of adversarial examples under the natural data dis-
tribution. This enables IGSA to generate adversarial examples that are both robust and resistant to
defenses. Our main contributions are summarized as follows:

* We propose a robust attack framework that iteratively samples disturbances from a prior distri-
bution and refines adversarial examples under these disturbances. The framework can be applied
to any existing attack, enabling effective resilience against diverse disturbances.

* We introduce IGSA to address three key challenges in the robust attack framework. Theoretical
analysis shows that IGSA improves the data likelihood of adversarial examples, enhancing its
robustness against disruptions and defenses.

» Extensive experiments demonstrate that IGSA maintains high data likelihood during training,
generating visually natural adversarial examples with strong attack success. Furthermore, the re-
sults show that IGSA outperforms state-of-the-art methods in both robustness and transferability.

2 RELATED WORK

2.1 BLACK-BOX ADVERSARIAL ATTACK

Black-box adversarial attacks are typically categorized into query-based [Cheng et al.| (2019);
et al. (2021);[Shi et al.| (2022)) and transfer-based approaches [Xie et al.| (2019); Wang & He| (2021));
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Wang et al.| (2021)); Jin et al.| (2023)); |Chen et al.| (2023)); /Wang et al.| (2024bja). Query-based meth-
ods estimate gradients by iteratively querying the target model, but they often require excessive
queries, limiting their practicality under query constraints. In contrast, transfer-based methods gen-
erate adversarial examples on surrogate models and transfer them to the target model. To enhance
transferability, prior work has explored diverse strategies, including momentum integration Wang
et al.| (2024a)), input transformations Xie et al.|(2019); Wang et al.| (2021), model-specific strategies
Jin et al.|(2023)); /Wang et al.| (2024b)), and gradient ensembling |Chen et al.| (2023).

Despite their effectiveness, many of these attacks fail under even basic input transformations |Xie
et al.|(2017); Xul(2017);|Li et al.|(2022)); Liu et al.|(2024), revealing a lack of robustness in real-world
scenarios. To mitigate this issue, researchers have proposed several strategies. The Expectation
over Transformation (EOT) framework |Athalye et al.| (2018)) incorporates data augmentation during
training to simulate distributional disturbances. Other techniques, such as gradient smoothing Wang
et al.| (2023), physical-world disturbances |[Eykholt et al.|(2018)), affine-invariant estimation Xu et al.
(2020), and margin maximization |Luo et al.[|(2018]), further enhance attack stability. Nevertheless,
these methods are largely heuristic, exhibit limited generalization to diverse disturbances, and lack
theoretical performance guarantees.

2.2 DEFENSE METHODS

The number of existing defense methods far exceeds that of adversarial attacks, as stronger attacks
continually motivate the development of more effective defenses. Broadly, defenses can be cat-
egorized into adversarial training-based and input transformation-based approaches. Adversarial
training defenses |Tramer et al.|(2017); Liu et al.| (2020a); Jiang et al.| (2023) enhance robustness by
incorporating adversarial examples during optimization, but are computationally intensive. Input
transformation defenses, on the other hand, attempt to neutralize perturbations before feeding them
into the model through techniques such as JPEG compression Dziugaite et al.| (2016), image scaling
Xu| (2017); |[Zheng et al.| (2023)), or randomized transformations [Xie et al.|(2017). Some methods
further employ denoising networks to purify inputs while preserving accuracy Hong & Lee| (2024);
Ning et al.| (2024)), though their effectiveness is often restricted to specific attack types. These
methods are attractive in practice, as they do not require modifications to the model architecture or
additional training cost, making them both efficient and easy to deploy.

3 METHODOLOGY

3.1 PRELIMINARY: ROBUST ADVERSARIAL ATTACK FRAMEWORK

Given an original sample x € R™ and a target model f : R™ — R*, the goal of adversarial attacks
is to find a minimal perturbation  such that the perturbed sample x + § is misclassified by the model
into a specified target class t, i.e., f(z 4+ &) = t.

In black-box settings, optimizing ¢ is particularly challenging because adversarial examples may
be subjected to additional disturbances before being processed by the target model. These distur-
bances can arise from various sources, such as secondary data acquisition, client-side preprocessing,
or built-in defense mechanisms. To enhance the robustness of adversarial examples against distur-
bance, we propose a novel robust attack framework. The framework operates in two stages, aiming
to generate perturbations that remain effective under diverse and potentially unseen disturbances:
Step 1: Sampling disturbance

We first sample a set of initial disturbances ¢ from a prior distribution B. These disturbances are
then translated to h(¢p, x + §) by a mapping function h, given the current adversarial example x + 4.
Step 2: Optimizing adversarial examples

We apply the disturbed sample x + § + h(¢, x + J) to a surrogate model g. The task loss is defined
as Ct(x+5+h(p,z+6)) := C(g(x+3d+h(¢,x+0)),t), where C denotes the cross-entropy loss.
We then minimize the expected loss over the distribution B: ming Ey5 [C*(z + § + h(¢, z +9))],
which can be optimized via gradient descent.

Let (¢, z + ) complies with distribution P. By the Law of the Unconscious Statistician (LOTUS),
we have: Ey 5 [C'(x 4+ 6 + h(¢,z + 6))] = E,op [C*(x + & + n)], which allows us to formulate
the problem of enhancing robustness against various disturbances as the design of a suitable map-
ping function h(¢,z + ¢). Unlike conventional methods that sample 7 from a fixed distribution,
function h(¢,z + &) can be designed to adapt both the adversarial example and surrogate models,
enabling it to produce the most destructive disturbances for each specific sample. In the following,
we analyze three key challenges in applying the proposed robust attack framework:
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> Limited Sampling Coverage: The estimation of the expected loss typically relies on a limited
number of Monte Carlo samples. This can lead to poor coverage of the disturbance space, resulting
in adversarial examples that generalize poorly to unseen disturbances;

> Distribution Mismatch: During application, adversarial examples may encounter real-world dis-
turbance that differs significantly from the distribution of h(¢, x + §), causing the attack to fail;

> Transferability Consideration: Under black-box settings, we also need to account for the trans-
ferability of adversarial examples to ensure their effectiveness on the unseen target models.

3.2 INVERSE GRADIENT SAMPLING

In this section, we first introduce the Inverse Gradient Sampling (IGS) method and then theoretically
analyze how it addresses the first limitation of existing approaches, namely the issue of limited
sampling coverage, as discussed in section|3.1

Based on the proposed robust attack framework, we define the map function h(¢, x + §) as h(p, x +
§) = ¢+ VyCh(x + 0 + ¢). The Step 2 is then solved using a two-step iterative approach:

Mo +08) =¢;j + Ve, Cx+5+¢;), ¢;~B )
1 N

dip =8i—a-Vs | T3 C'e+bi+h(@z+9) |- @
j=1

The challenge of limited sampling coverage arises from an insufficient number of training samples,
such that realistic perturbations may deviate substantially from any learned disturbance h(¢;, z +
). As a result, adversarial examples may fail to remain effective under real-world disturbance.
This suggests that robustness fundamentally depends on whether the set of trained disturbances
{h(¢:, z + 9)} can sufficiently approximate the most destructive disturbances applied to = + 4.

To quantitatively evaluate the performance of IGS, we assume that the most destructive disturbance
is given by ¢* = argmax|4<, C*(x 4+ 0 + ¢), and that ¢* is uniformly distributed within the
neighborhood, i.e., * ~ B(0,r). Under this assumption, the average loss over sampled disturbances
satisfies + SN | CH(a+6+ (¢, x+6)) < C(x+ 8+ ¢*).We define the error as the gap between
the upper bound and the empirical average: &£ := C*(z+8+¢*)— & Zf\il C'(z+d+nh(¢i, 2+9)).
During the iterative optimization in Equation (2), the accumulated error in § is given by:

1

A(SzZI: VsC'(z+0+¢")-Vs | + ; CHx + 6+ h(gi,x + 5)) %; VsEgn(0,m €],

3)
where [ is the iteration number of Equation 2} Assuming that C? is Lipschitz continuous in the
neighborhood of x + ¢ , the expected error over the sampling process satisfies Ey. (0[] <
Eg~5(0,r|~(¢, 2+6)—¢*||. This enables us to compare different sampling strategies by their ability
to minimize Ey.3(0,,) || (¢, © + &) — ¢*||. Since ¢* can appear anywhere within the neighborhood
of x + ¢, we derive the following theorem to compute the expectation when h(¢, x + 0) = ¢, which
is commonly used in EOT-based approaches|Athalye et al.|(2018));[Hu et al.[(2021)); Liu et al.| (2022).

Theorem 1 Let m denotes the dimensionality of the input space, and let n be the number of samples

drawn from B(0, 7). Then, Ey-p5(0,r) |:E¢~B((),r) [||¢ — ¢ ¢*H =r-I(L)- nom.
Remark 1 Theorem || indicates that the expected error decreases with the number of queries n
Sollowing a power-law decay of —1/m. To halve the error, the number of queries must increase by
a factor of 2™, which becomes computationally prohibitive in high-dimensional spaces.

To further quantify the advantage of IGS over EOT, we present the following theorem:

Theorem 2 Let C* be a convex function in a spherical neighborhood of radius r centered at x + 9,
with a unique extremum point x+ 6+ ¢*. Then, the following relation holds: h(¢) — ¢ = y(¢* — ),

t
where the scalar coefficient v is given by v = W.
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Let Eigs(€) and Feor(€) denote the error bounds of IGS and EOT. Based on Theorem we have:

1 1
Bis(€) = Eomonlln(ora +0) ~ | = (1=)-r T () o d

. 1 1
Bror(€) = Bason 6 = 6°) =T (£ ) cn7. ®
Let njgs and ngor denote the number of queries required by IGS and EOT, respectively, to achieve
the same error bound. By equating the two bounds, we obtain:

1

1 Tm 1
1= ) (nEOT) - NEOT _ . (6)
11—~ \ s negs  (1—)™

Remark 2 Equation (6) shows that the efficiency advantage of IGS over EOT scales exponentially
with the data dimensionality m. In typical vision tasks where m > 10%, this advantage becomes
particularly pronounced. For example, on ImageNet (m=256x256x3) with v ~ 10™%, we estimate:

NEeor

~ 3.5 x 10%.

niGs
This demonstrates that IGS can capture the most destructive disturbance using far fewer samples
than EOT, significantly alleviating the issue of limited sampling coverage. Theoretical extension for
non-convex conditions are detailed in Appendix|C}

3.3 ROBUSTNESS AND TRANSFERABILITY UNDER DISTRIBUTIONS MISMATCH

Adbversarial examples often encounter disturbances that deviate from the distribution assumed during
training. In this section, we analyze why our method maintains strong performance under such
distribution mismatch and examine how it promotes the fransferability of adversarial examples.

3.3.1 WHAT DETERMINES THE ROBUSTNESS OF ADVERSARIAL EXAMPLES?

Our analysis is motivated by the observation that clean samples exhibit significantly greater robust-
ness under disturbance compared to existing adversarial examples. To quantify this, we define the
robustness boundary, denoted as K%, as the minimum amount of disturbance required to change the
model’s prediction on a given sample set S. Formally: K7 = || arg maxg [Ercs[Zs) < 7] ||, Zo =
g(x + 0) - 1ri—opry(g(x)), where 6 is random disturbance, 7 is a confidence threshold, and
1{i—wpk} (+) indicates whether the prediction belongs to the original top-k classes. The robustness
boundary K7 indicates the ability of samples in S to retain their original labels under disturbance.

As shown in Fig. 2} the robustness bounds K5, o WG
are consistently larger for clean samples than for 500, EEIDTA []GRA

. o 1. . [CJPGN [JSMI-FGRM
adversarial examples, indicating that clean sam- o [ ]mim
ples are more robust to disturbance. This moti- 400 1BSR EEIIGSA (ours)

vates the conjecture that higher likelihood under

the natural data distribution Pp correlates with

greater robustness. Clean samples are drawn KT
from Pp, while adversarial examples are typi-
cally deviate from Pp [Zhu et al.| (2022). Since
models are trained to fit Pp, they tend to gener-
alize better to samples that are more likely un- |
der Pp, which explains the superior robustness H H
of clean samples. However, directly computing 0- . -
Pp(x,qy) is generally intractable. The key ques-
tion, therefore, becomes: How can we construct Figure 2: A comparison of the robustness bounds
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adversarial samples that maintain a high likeli- & across different adversarial examples and
hood under Pp? We address this question in the clean samples. The black bars represent the ro-
following section. bustness bounds for clean samples.

3.3.2 ALIGNING GRADIENTS FOR HIGH-LIKELIHOOD ADVERSARIAL SAMPLES

In Equation |2, we perform gradient descent on C? to push the input toward misclassification. This
process increases the surrogate model’s confidence in the target class, g*(z + &§). When the gradient
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Algorithm 1 Inverse Gradient Sample Adversarial Attack

Input: Original data x; balancing parameter \; inverse learning rate yu; step size «; perturbation
preset range ¢; number of sampling points N; sampling variance o2; model g; loss function C;
sign function sign(-); target class .
Output: Robust adversarial example x4, -
Initialize adversarial perturbation ¢ <— 0 and cumulative update direction dg,, 0.
repeat

Todv < T+ 0

fori =1to N do

Sample ¢; ~ N(0,02)

Compute loss at ¢;: C,, =Clglx+0+;),t)+A-|d]
Gradient update for ¢;: bi — i+ sign(V¢Cfbi)
Compute loss at ¢;: CZB,- =C(g(z + 5+ ¢i), t) + X+ ||
Compute update direction: d; <« Cfin Ve, log N (z + 0+ ¢332 + 6,02%)
Accumulate d,,: deym ¢ dgum +d b
end for
Update adversarial perturbation: Tadvy = Tady — < - sign (dgum )

Constrain perturbation magnitude: 0 <+ clamp[—e¢, €]
until Loss sz7 converges
Tado < T+ 0
return x,q,

of the surrogate model aligns with Pp, the update also increases the likelihood of adversarial exam-
ple under Pp. To encourage the search for a perturbation § where such alignment occurs between
the gradients of the surrogate model and Pp, we present Theorem 3]

Theorem 3 Let tr(H|[']) denote the trace of the Hessian matrix, and let B(0, 1) represent a uniform
distribution over the ball of radius v in R™. Then:

VB0 [(VsC)T - VsPp] = =VsEgh ) [tr(H[C')] .

Remark 3 Theoremestablishes that minimizing the trace of the Hessian of C* enhances the align-
ment between ¥ sC* and ¥V s Pp, which in turn increases the likelihood of the resulting adversarial
examples under Pp during the iterative process.

We now examine whether the iterative optimization procedure implemented by our proposed IGS
method leads to adversarial examples with reduced Hessian trace.

Theorem 4 Let C* denote C'(x + §). Suppose the Hessian H|C"| is bounded in the neighborhood
of © + 8, such that || H[C"]||a < L, the update rule satisfies:

2
VsEy [CH(z + 6 + ¢+ VuCh)] = VsC' + | VsC'|> + %Vatr(H[Ct]) +0(c"),0° < 1/L

Remark 4 Theoremd|shows that the proposed IGS method implicitly minimizes tr(H[C"]) through-
out the iterative process. This contributes to an increased likelihood of adversarial examples under
the data distribution Pp, which is verified by Fig.|3| At the same time, IGS also reduces ||V sC*||?,
promoting smoother loss landscapes. As demonstrated by |Ge et al.| (2023), such improvements in
smoothness significantly enhance the transferability of adversarial examples across models.

3.4 INVERSE GRADIENT SAMPLE ADVERSARIAL ATTACK
We present the detailed implementation of the IGSA in Algorithm[I} In Algorithm[I] we incorporate
several practical techniques to improve convergence and efficiency:

(1) Sampling Distribution. We sample the disturbance ¢ from a Gaussian distribution, ¢ ~
N (0, 0?%) leads to faster convergence and more stable optimization.

(2) Efficient Gradient Estimation. To reduce the computational cost associated with second-order
derivatives in Equations equation[3|and equation[2] we propose an efficient first-order approximation
based on Theorem [5]in appendix:

VsEg [CHa + 6 + ¢ + V)]

7
~ Egon(0,02) [CHx + 04 ¢+ VgCt) - Vslog N (x4 6 + ¢+ 6,02)] . @
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Table 1: Robustness of various attacks on ImageNet under additive and non-additive disturbances.

ASR (%) | VGG19 | ResNet34 | ViT | Avg

Disturbance Types — Additive Non-additive Additive Non-additive Additive Non-additive | time
Attacks Types | ‘ GSB JPEG ‘ RT CB | GSB JPEG ‘ RT CB | GSB JPEG | RT CB

PGD Madry et al.|(2017) 8.3 2.1 | 438 00 03 313 | 42 0.0 6.5 148 | 83 0.0 | 0.025
MI-FGSM Dong et al. |(2018) 66.7 625 | 729 00 | 771 85 |167 00 |732 773 |313 21 | 0.025
DTA |Yang et al.|(2023) 70.8 688 | 750 2.1 91.7 100.0 | 188 00 | 794 773 | 458 63 | 0.186
GRA [Zhu et al.|(2023a) 625 646 | 521 83 89.6 938 | 563 125 | 87.8 815 | 750 18.8 | 0.345
PGN|Ge et al.|(2023) 333 417 | 271 83 729 813 | 375 83 753 711 | 66.7 14.6 | 0.659
SMI-FGRM Han et al.|(2023) 66.7 625 | 521 125 | 875 938 | 396 63 87.8 898 | 66.7 45 | 0.198
DIM Xie et al.|(2019) 875 750 | 66.7 292 | 917 938 |39.6 125 | 919 878 | 750 16.7 | 0.020
TIM|Dong et al.|(2019) 68.8 583 | 27.1 125 | 875 938 | 83 4.2 857 83.6 | 208 42 | 0.020
BSR|Wang et al.|(2024a) 39.6 313 | 8.3 104 | 688 688 | 750 83 732 71.1 | 833 125 | 0.203
PGD+EOT |Athalye et al.|(2018) | 87.5 938 | 792 27.1 | 91.7 100.0 | 403 229 | 87.8 89.8 | 69.8 27.1 | 0.461
IGSA (ours) 875 958 | 967 354 | 972 100.0 | 75.0 50.8 | 942 919 | 833 27.1 | 0423

(3) Gradient Magnitude Control. To ensure stable optimization, we employ a sign-based gradient
update rule. Additionally, an /5-norm constraint is imposed on § during the computation of the loss
C*, in order to minimize the magnitude of the perturbation introduced.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Tasks and Models. We evaluate our proposed IGSA on two types of tasks, including image clas-
sification and face recognition. We use two benchmark datasets in the image classification task,
including CIFAR-10 [Krizhevsky et al.| (2009) and ImageNet |Deng et al.| (2009). The models on the
ImageNet dataset use the official pre-trained models from torchvision, including VGG19 Simonyan
(2014), ResNet34 |He et al.|(2016), ResNet101 |[He et al.[(2016), ViT-Base |Dosovitskiy et al.| (2020),
and Inception-v3 |Szegedy et al.| (2016). The models on the CIFAR-10 dataset, including VGG19,
ResNet34, and ViT-Base, are trained using the standard cross-entropy loss. In the face recognition
task, we use the CelebA dataset|Liu et al.| (2015) and perform attacks based on the aggregation mod-
els of the insightface framework [Deng et al|(2019). We train these models using a pairwise loss
function. More implementation is detailed in Appendix [B.1]

Attack Settings. In our experiments, the attack success rate (ASR) is mainly used to measure
the performance of various attacks. All experiments are conducted using a NVIDIA 4090 GPU.
In various tasks, we first set the adversarial perturbation strength e of various attacks to a unified
value to ensure fairness in comparison. In experiments on the CIFAR-10 and CelebA datasets,
€ is set to 8/255; in experiments on the ImageNet dataset, € is set to 16/255. The number of
iterations of various attacks is uniformly set to 100. For our proposed IGSA, the hyperparameter o
for adversarial perturbation update is set to 1.6/255. The number of sampling points N is set to 20.
The hyperparameter ) is set to 0.1 on the ImageNet dataset and 0.03 on the CIFAR-10 dataset. The
hyperparameter p is set to 0.4 for the ImageNet dataset. For the CIFAR-10 dataset, y varies across
different models: 0.5 for ResNet, 0.8 for VGG, and 0.3 for ViT.

4.2 ROBUSTNESS EXPERIMENTS

Evaluation of Attack Robustness: To evaluate the robustness of various attack methods, we con-
duct targeted attacks on the ImageNet dataset under both additive and non-additive disturbances
(Table [I). For additive disturbances, we apply Gaussian blur (GSB) with a kernel size of 5 and
standard deviation 1.0, and JPEG compression at 50%. For non-additive disturbances, we use ro-
tation transformation (RT) with a 10° angle and combined transformation (CB), including resizing
(x1.15), rotation (5°), and perspective distortion (0.15). Additional experiments are detailed in the
Appendix [B.2.1]

IGSA Performance Under Disturbances: Without disturbances, most attacks achieve nearly 100%
ASR. Table [I] shows IGSA outperforms existing methods under almost all disturbances. Transfer-
based attacks like MI-FGSM |Dong et al.| (2018), DTA [Yang et al.| (2023)), and GRA [Zhu et al.
(2023a) show significant performance drops under disturbances. Robustness-oriented attacks such
as DIM Xie et al.|(2019), TIM Dong et al.| (2019), BSR [Wang et al| (2024a), and EOT |Athalye
et al.| (2018) generate more robust adversarial examples, but their effectiveness is limited when the
enhancement strategy mismatches the actual disturbance.
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Table 2: Robustness of various attacks on the Tma- Lable 3: Black-box testing of various attacks
geNet dataset against defended models. on the ImageNet dataset.

ASR (%) | ResNet50 (Defense) | ViT (Defense) AnAlS(RT(%) - | ResNet  ViT
acKs S
Attack Types | un-tar tar | un-tar  tar S le(2019‘| | 80 720
MI-FGSM |Dong et al.|(2018) | 87.12 11.90 7195  5.60 ; 4 ' )
DTA[Yang et al(2023) | 69.72 460 | 81.89 11.20 SMLEO g ;210(223(;23\, ool oo
GRA[Zhu et al.|(2023a} 94.69 1610 | 72.45  4.90 LD o — by Sy
PGNI[Ge et al.|(2023) 96.38 14.60 69.56  4.00 Lietal.|(2024) 3 .
SML-FGRM[Han ct al.|(2023) | 86.89 1530 | 73.84  5.80 IGSA (ours) 830 770
DIM [Xie et al.|(2019) 90.40 13.60 | 72.08 430 DIM[Xie et al.|(2019) + IGSA 91.0 910
TIM[Dong et al. (2019} 94.01 1860 | 6252 290 DTA [Yang et al.|(2023}) + IGSA 83.0 770
BSR|Wang et al.|(2024a) 91.64 18.20 68.43  2.90 SMI-FGRM Han et al. (2023, +IGSA 91.7 79.2
IGSA {ours) 9175 2730 | 90.94 23.90 ILPD|[Li et al.|(2024) + IGSA 89.0  87.0

Table 4: Black-box testing of various attacks on the face recognition task using the CelebA dataset.

ASR (%) ResNet50 MBF
Disturbance Types — RS RT PT CB |GSB CTRS BRT JPEG
Attack Types |
MI-FGSMDong ot al.[(2018) | 66.7 800 822 844 | 273 386 500 432
DTA[Yang et al[2023) | 795 909 886 878 | 439 585 634 634
GRAZhuctal[(2003a) | 854 732 878 902 | 610 476 548  61.9
PGNGe et al.|(2023) 854 921 927 927 | 568 405 486  59.5
SMI-FGRMHan et al.[(2023) | 553 489 617 574 | 255 234 404 362
DIM Xic et al.[2019) 860 837 837 860 |581 512 581 628
TIMDong etal (2019) | 63.8  10.6 234 234 | 229 42 63 42

IGSA (ours) 872 923 927 949 | 6L0 683 732 707

Further Validation on CIFAR-10: We validate IGSA on CIFAR-10; detailed results are in Ap-
pendix Recent works focus on generating adversarial examples resilient to physical-world
distortions like reshooting, rotation, and lighting changes. We benchmark IGSA against state-of-
the-art physical-world attack methods, also detailed in the Appendix

Performance Against Defended Models: We evaluate IGSA against defended models, including
ResNet50 and ViT models trained using defense method of adversarial training [Liu et al. (2025)
within the ARES 2.0 framework Dong et al.| (2020) (Table . Results show IGSA maintains sig-
nificantly higher robustness than existing attacks, especially under targeted settings where other
approaches largely fail.

4.3 TRANSFERABILITY EXPERIMENTS

Evaluation Setup for Transferability: We evaluate the transferability of various attacks on im-
age classification (ImageNet) and face recognition (CelebA), as shown in Table [3] and Table [4]
Inception-v3 is used as the surrogate model. For black-box evaluation, adversarial examples are
tested on ResNet34 and ViT-base for image classification, and ResNet50 and MBF for face recogni-
tion. We apply IGSA to enhance state-of-the-art transfer attack methods in image classification and
test robustness under black-box settings in face recognition. Additional implementation details are

provided in Appendix

Transfer Performance of IGSA: Experimental results show that IGSA achieves higher ASR than
existing transfer attacks. When applied to DIM Xie et al.[ (2019), DTA |Yang et al.| (2023), SMI-
FGRM Han et al.| (2023)), and ILPD [Li et al.|(2024), the ASR against ResNet34 increases by 13.0%,
16.3%, 20.9%, and 3.0%, respectively; against ViT, improvements are 19.0%, 12.4%, 22.9%, and
3.0%. Under black-box robustness tests, IGSA consistently outperforms all baseline attacks across
disturbance types.

4.4 HYPERPARAMETER ANALYSIS AND ABLATION STUDY

Hyperparameter analysis. We conducted a hyperparameter analysis of IGSA using the ResNet101
model. The results are shown by Table [5] It can be seen that IGSA achieves an ASR above 90%
when the number of iterations exceeds 50. The parameter A has a negative impact on ASR, as it
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constrains the magnitude of perturbations during iterations. The number of sampling points, ¢pym,
significantly boosts ASR from 94.4% at 5 points to 100% at 25 points by providing richer neigh-
borhood information. The learning rate, «, exhibits an optimal range, with ASR peaking at 99%
for o = 1.6/255 and slightly decreasing for higher values. The parameter y has a relatively minor

effect on ASR, varying from 96.0% to 98.7%.

Ablation analysis of IGS. As discussed in Sec-
tion [32] IGS enhances adversarial example ro-
bustness by approximating the most disruptive
disturbance. To evaluate its impact, we compare

Table 5: Hyperparameter analysis of our pro-
posed IGSA, where the shaded values are used
in comparative experiment.

IGSA with various EOT-based attacks. Figure 2 ASIi\ (%) 18{%() 180980 9(%12% 6()9.24()41 ggg
shows that under strong disturbance (SNR=10),

IGSA achieves over 80% attack success rate with AS}{L (%) 906'%20 9%%% 9%'1202 9()7%07 908:5608
only 5 sampling iterations, while EOT-based at- - ;

tacks reach only about 60% with 50 samples. Atgrﬁti%l) 111 .(il 562.(())0 9224 9%9202 138%0
This demonstrates that IGS significantly im- N 5 10 G 20 25
proves both efficiency and effectiveness in gen-  AgR (%)| 94.44 97.22 97.22 99.00 100.00

erating robust adversarial examples. 047255 0.8/255 1/255

88.00 96.00 97.22

1.6/255 3.2/255
99.00 97.22

0%

ASR (%)

Likelihood Analysis. As discussed in Section
[3:3] our IGS enhances robustness by aligning the
likelihood of adversarial examples with the original data distribution. We validated this using an
energy-based out-of-distribution detection method [Liu et al.| (2020b). Results show that IGSA-
generated samples achieve in-distribution scores comparable to clean data, whereas those from other
attacks show significantly lower scores. This demonstrates that IGSA produces more realistic and
distribution-aware adversarial examples, improving both robustness and stealth.

0.9 “ —— CIFAR-10
M 0.204 .'I | MI.FGSM
- Ay —= DIA
S 1 — = PGN
< 0.8 ,’ 1 — = SMI-FGRM
8 0.151 1, DIM
£ 5 l’ b /l\;\ —= ™M
207 3] I \4a\\ BSR
807 %010 I’l”ﬂ GRA
151 ]Y £330
5‘) Iy \ IGSA (ours)
M Iy 4
EXY; * hf W\
s —e— PGD+EOT 0.05 1 ,’I /’
< GRA+EOT /II/
—=— DTA+EOT /él
0.5 —— IGSA (ours) 0.001
0 10 20 30 40 50 0 5 10 15 20 25 30

Number of sampling points OOD score

Figure 3: Distribution of the Energy OOD scores
Liu et al.|(2020b)) for the clean samples, CIFAR-
10, and the adversarial examples.

Figure 4: Comparison of attack success rates be-
tween IGSA and EOT as the number of samples
increases.

5 CONCLUSION AND LIMITATION DISCUSSION

In this paper, we propose a robust adversarial attack framework to address the vulnerability of
transfer-based attacks under various disturbances. Within this framework, we introduce IGSA to
tackle three key challenges: sampling coverage limitation, distribution mismatch, and transferabil-
ity. Extensive experiments show that IGSA significantly outperforms existing methods in robustness
against diverse unknown disturbances on both image recognition and face recognition tasks. More-
over, IGSA achieves strong transferability, making it highly effective in black-box settings. One
limitation of our current work is the use of a fixed mapping function h(¢,x + &) for disturbance
sampling. Replacing it with a learnable module could further enhance the adaptability and effec-
tiveness of the robust attack framework, which we leave for future exploration. We hope our work
inspires more research into generating adversarial examples that are both transferable and robust
under real-world variations.
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A PROOF OF THEOREMS

Theorem 1 Let m denote the dimensionality of the input space, and let n be the number of samples
drawn from B(0, 7). Then, Ey-p5(0.r) |:E¢~B(O,r) [||q$ — ¢ ’ d)*” =r-T (%) nTw.

Proof 1 We define the random variable ||h(¢;) — ¢*|| as Z;, and the random variable
min{Zy,Z,,...Zn} as Y. We know that the volume of an m-dimensional hypersphere is given

am/? m m /2 .
by Vin(r) = oz - 7" = A 7™, where A = . Since ¢~ B(0,7), the

probability density function is f(¢) = 1/V,,,(r). For Z,, its cumulative distribution function is
Fz.(2) = Viu(2)/Vin(r). The probability density function fz, (z) is:

om m—1

f2.(2) = (Fa (). = ()l = = N

Tm
Thus, the cumulative distribution function of ¥ can be computed as:
FY(y) - 17P(Zl >yaZQ >y7"'7ZN > y)

N

N
—1-[[PZ >y =1- ][t - Fr ) )

1 (Q-Fi)"

Equation (©) holds because Zi, Zs, ...Zx are independent. Therefore, we can compute the proba-
bility density function of Y as:

fr(y) =Fy(y) = n(l = Fz,(y))" " - fz,(y)

m—1 (10)
=1 = (L tom e

Now, we can compute the inner expectation in Theorem [T]as:

Egson [I7(6) - 6]

¢>*} = /Ory-fy(y)dy

(11)
— _(Yymyn—1 ) (Yym
= [ =&yt (g
Letu = (%)m, where 0 < u < 1, then we have:
1 1
Bovson [I000) = 9°l¢7] = [ (1 =" )
1
=r n/ (1—u)"_1-u-u# Ydu
0
1 (12)
:r-n/ (1 —w)” Lum du
0
W L) (5 +1)
=r.n !
I'(n+ —-+1)
['(a)L'(b)

By the Beta function: 3(a,b) = fol(l — )t gbl = , the equality < holds.

I'(a+b)

Next, we consider the case when the sample size n is large. By Stirling’s approximation Feller
(1967): T'(z) ~ v2mz - (£)*, we express I'(n) and I'(n + -1 + 1) in equation as:

T(n) =v2mn - (1)"
€
n+i+1 (13)
1 1 + L4\
P(n+—+1)=y/2n(n+ —+1)- (”)
m m e

14
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By the Gamma function: I'(L + 1) = (X 4+ 1) - I'(1 ), equation is transformed into:
L(n)I(L +1

o] < ron DTG 4D
F(TL + m + 1)

V2 ()" (1) T (G + D -T(E)

- 1
J2r(n+ & 1) (BBt
:e%""l.r.n. n . n" F(i)
n+4+1 (n+ L pnrtatt m

nn+%

Eg~no,r |I1R(0) — o

1
) 1 n+=+3
m- (n+ -+ 1ntwmts
1 3
1 ntmts
= @#"—1 S F(i) . n_# . (?)

(14)

ntots
@ holds for when 7 to 00, (?) to e~ (m+1).
n -+ m -+ 1

From equation l| we note that the inner expectation Ey5(0,r) [Hh(qﬁ) — o*| qﬁ*] is independent

of the position of X *. Therefore:
x 1 1
Eons0r) (€] < Egpunon i) —¢"[| =7 -T(—)-n7m (15)

Theorem 2 Let Ct be a convex function in a spherical neighborhood of radius r centered at x + 6,
with a unique extremum point ©+ 9 + ¢*. Then, the following relation holds: h(¢) —d = y(¢* — &),

where the scalar coefficient v is given by v = Wﬂifjﬁ'q&)”.
Proof 2 We start from the definition of h(¢):
h(®) — ¢ = V4C'(z + 6 + ). (16)

Since C* is convex and has a unique extremum (minimum or maximum) at  + § + ¢*, we apply
the first-order Taylor expansion of C* around = + 6 + ¢*:

Cllx+d5+¢)—Clz+0+¢") =VsClx+ 5+ & (¢ — ¢), (17)
for some £ on the line segment between ¢ and ¢*. When r is sufficiently small, we can approximate:
VoC' x40+ &) ~ VsClz + 6 + ), (18)

which gives us:
Clx+6+¢)—Clx+5+¢") = VsClx+ 5+ ¢) (¢ — ¢%). (19

Now consider the first-order Taylor expansion of C* at x + & + ¢*:
Clla+d+¢)=Cz+8+06") +VeC'(x+0+¢") (60— ") +ollo—o"[).  (20)

Because ¢* is an extremum, the gradient at that point vanishes:

VoC'(x + 6+ ¢*) = 0. (21)

Substituting into Equation (20), we obtain:
Cz+0+0) = Ca+0+¢") =VsC'(x+5+0)" (6 — ") +ollo—o7).  (22)
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Next, for any direction d € R with ||d|| = 1, and for any small w > 0, the local extremality implies:

C'x+6+¢*) > Clz + 6+ wd). (23)

Expanding both sides using the Taylor approximation yields:
Cllx+d+¢*) > CHz+ 5+ ¢) + wVC'(z + 6+ ¢)"d + o(w). (24)

Taking w — 0, this inequality must hold for all directions d, which implies that V,C*(z + & + ¢)
is collinear with ¢* — ¢. That is, there exists a scalar v’ > 0 such that:

VsClz+ 0+ ¢) =7'(¢" — ). (25)

Substituting this back into Equation (16), we get:
Wg) = ¢ = VyCiz + 0+ ¢) =7(¢" — ¢). (26)

Theorem 3 Let tr(H|[]) denote the trace of the Hessian matrix, and let B(0, ) represent a uniform
distribution over the ball of radius r in R™. Then:

VsEs0.[Vs(C)" - VsPp] = =VsELL | [tr(H[C))].

Proof 3 Let Vi denote the volume of the neighborhood of the sample B™ (0, 7).

1
Epm [Vs(CH)T - Vs Pp] :/ — - Vs(CHT . VsPpds
B Vb
1
= Vs(CHT - Vs Ppds
VBm Bm™

1
———> | V5C"- Vs Ppds.
VBm i—1 Bm

m

1
5 'Z/Bm,l

=1

dém—l

b
/ Vs,Ct - V5, Ppds;

27)

dém—l

m

@ 1 /
VB'"L Zl Bm—1

7

b
Ppl¢-Vs,C" — / PpV3 C'ds;

(€] 1 2 it
= Pp - V2 Clds,,
‘/B =1 |:/m b 51'0 :|
1

_ ~/PD~tr(H[C’t})d6
Vs, JB

= — B2 [tr(H;[C"))]

The equation @ holds due to the application of integration by parts. In the equation (i), a and b
represent the upper and lower bounds of the values of the element §; within the neighborhood of
B™, respectively. When B is sufficiently small, the influence of d; on Pp becomes negligible,
i.e., Pp(a) — Pp(b) = 0. Therefore, the term Pp|{ - Vs, C* = 0.

Taking the gradient of both sides of equation yields:
VsEs(0.m [Vs(C)" - VsPp] = =VsEgh | [tr(Hs[C"))] (28)

Theorem 4 Let C* denote C'(x: + §). Suppose the Hessian H|C"] is bounded in the neighborhood
of © + 8, such that || H[C"]||2 < L, the update rule satisfies:

2
VsEg [Ct(m +0+o+ V¢Ct)] =VsC' + ||V§CtH2 + %V(;tr(H[Ct]) + 0(0'4),02 < 1/L
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Proof 4 Define:
=246+ ¢+ VuClz + 5+ ¢). (29)
Expand V,C*(x + 0 + ¢) around x + 4:
VoC'(z+ 0+ ) = V.C' + H[C"|6 + O(|6]), (30)
where H[C'] = V2C*!(z + §), and ||¢|| = O(o). Thus:
z—x—8=(+H)p+V,C'+O(8]?). @31
Expand C*(z) around x + ¢:
Clz) =~ C' + V. (C) T (z —x — 8) + %(z —x—0) H[CY(z — x — §). (32)

Substitute z —x — 6 ~ (I + H)¢p + V,C*:

Clz) = C'+ V. (C)T[(I+ H)p+ V,C'| + %[(I + H)p+ V,CY1TH[(I + H)p+ V,.CY.
(33)
Take expectation Ey[], using E[¢] = 0 and E[¢p " A¢] = o2tr(A):

Eg[Ct(2)] = C* + || V.CH||? + %Qtr(H) + O(o%), (34
Theorem 5 For any conditional distribution N (y|z), we have:
VEyn o) [FW)] = Eynyi) [F(y) - V= log(N (yl2))].
Proof 5 For any conditional distribution AN (y|z),
VByn i [F@)] = Ve / z)dy
- / F(3) - VN (yl)dy

_ Nl2) 65
/F<y> N(m) VN (l2)dy

/ N(ylz) - F(y) - V- log(N (y]2))dy
_]EyNN(y\z)[ () VZIOg(N(y|Z))]

Application of Theorem 5: To use Theorem 5, we let z = +4,y = =+ 90+
¢ and F(y) = C'y + V4C'(y)), then we have: V51E¢[ t(m +0+ ¢+ V,Ch =
Egnn(0,02) [C(z +8 + ¢+ VyC") - VslogN(z +6 + ¢y2 +6,0°)] .

B SUPPLEMENTARY EXPERIMENTS

B.1 EXPERIMENTS DETAILS

Details of the attack methods. All transfer attack baseline methods are from the TransferAttack li-
brary (https://github.com/Trustworthy—-AI-Group/TransferAttack). Physical
world attacks, such as RP2 [Eykholt et al.|(2018), VMI-FGSM |Wang & He| (2021), AI-FGSM |Zou
et al.|(2022), used the open-source code from these papers.

Implementation Details for the face recognition task. We extracted the classification model
(ResNet50 trained on CelebA) from the aggregation model buffalo_I for attacks. Similarly, we ex-
tracted the classification model (MBF_CelebA) from the aggregation model buffalo_s. The batch
size and the number of attack steps are set to 1 and 100, respectively. The attack is based on the
aggregation model of the insightface framework on the CelebA dataset. The classification model of
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Table 6: Robustness of various attacks on the ImageNet dataset under additional additive and non-
additive disturbances.

ASR (%) \ VGG19 \ ResNet34 \ ViT

Disturbance Types — Additive Non-additive Additive Non-additive Additive Non-additive

Attacks Types | CTRS BRT ‘ RS PT | CTRS BRT ‘ RS PT | CTRS BRT | RS PT

PGD Madry et al.|(2017) 854 917 | 438 0.0 604 708 | 4.2 6.3 675 779 | 83 0.0
MI-FGSM Dong et al.[(2018) 91.7 979 | 729 104 | 833 91.7 | 167 0.0 779  79.1 | 313 104

DTA |Yang et al.|(2023) 896 958 | 750 104 | 833 938 | 250 00 79.7 833|563 6.3
GRA [Zhu et al.|(2023a) 66.7 792 | 521 292 | 750 938|542 146 | 793 793 | 66.7 25.0
PGN/|Ge et al.|(2023) 375 542 | 271 146 | 625 729 | 208 104 | 675 654 | 521 250
SMI-FGRM [Han et al.|[(2023) 729 958 | 52.1 167 875 875|250 63 7719 719 | 542 125
DIM|Xie et al.|(2019) 813 896 | 667 354 | 89.6 938 | 458 14.6 | 797 79.6 | 583 208

TIM |Dong et al.|(2019) 52.1 583 | 27.1 42 75.0 875 | 63 42 717 675 | 125 42
BSR Wang et al.|(2024a) 854 89.6 | 833 146 | 77.1 813 | 792 83 833 795 | 938 167
PGD+EOT |Athalye et al.|(2018) | 91.7 958 | 792 500 | 91.7 938 | 688 333 | 79.6 89.6 | 31.3 51.0
IGSA (ours) 95.8 100.0 | 96.7 583 | 958 979 | 792 278 | 91.6 954 | 979 208

Table 7: Robustness of various untargeted attacks on ImageNet under additive disturbance.

ASR (%) | VGG19 | ResNet34 | ViT
Disturbance Types — GSB CTRS BRT JPEG | GSB CTRS BRT JPEG | GSB CTRS BRT IPEG
Attacks Types |

PGD|Madry et al.|(2017) 755 979 953 703 | 786 927 870 885 | 754 875 802 620
MI-FGSMDong ct al.|(2018) | 89.1 979 984 745 | 979 974 922 77.1 | 879 898 943 77.1
DTA [Yang et al. |(2023) 91.1 984 984 714 | 974 958 943 771 | 874 879 964 797
GRA[Zhu et al.|(2023a) 729 969 943 651 | 781 90.6 865 526 | 765 802 Tl4 542
PGN[Ge et al. (2023} 969 1000 979 89.6 | 990 958 958 865 | 89.5 938 980 93.8
SMI-FGRM|Han et al.[(2023) | 99.5 1000 99.0 885 | 99.0 974 969 885 | 86.1 924 984 964
DIM[Xic et al.|(2019) 99.0 1000 99.5 839 | 948 974 969 89.6 | 87.4 874 974 90.1
TIM|Dong et al. |(2019) 984 979 958 89.6 | 948 922 917 859 | 895 917 89.1 89.1
BSR [Wang et al.|(2024a) 854 990 979 760 | 969 969 927 740 | 848 938 927 792
PGD+EOT/Athalye etal [2018) | 982 969 954 888 | 893 929 988 837 | 839 898 90.8 89.8
IGSA (ours) 99.5 1000 99.5 932 | 99.0 990 995 917 | 93.9 974 995 985

this framework only outputs 512-dimensional features without performing classification. Therefore,
we use pairwise as the loss function. An attack is considered effective when the cosine similarity
between the original features and the attacked features is less than 0.4.

Implementation Details for Combinate IGSA with other transferable attack. To combine IGSA
with DTA, we use a momentum update to smooth the gradient during sampling. A momentum decay
factor w is introduced to balance the influence of the current gradient and the previous gradients. To
combine IGSA with ILPD, we integrate the hook function of ILPD during the forward propagation
process. For example, in the Inception-v3 model, we use the hook function to obtain the output of
the Inception-A Block and combine it with the original intermediate layer output through weighted
summation. This allows the generated adversarial samples to have a larger perturbation amplitude
in the feature space and to be consistent with the target direction of the attack, thereby improving
the effectiveness of IGSA.

B.2 SUPPLEMENTARY EXPERIMENTAL RESULTS
B.2.1 EXPERIMENTS ON MORE DISTURBANCES

We introduced additional types of perturbations to the images: additive disturbances include contrast
transformation (CTRS), which adjusts the grayscale contrast with a compression ratio of 25%, and
brightness transformation (BRT), which uniformly modifies image brightness with a compression
ratio of 25%; non-additive disturbances include resizing transformation (RS) with a magnification
factor of 1.25, and perspective transformation (PT) with a distortion factor of 0.25. The results are
shown in Table[@l

Furthermore, we test the ASR of untargeted attacks under additive and non-additive disturbances on
the ImageNet dataset, respectively, as represented in Table [/| and Table [§| Compared with the tar-
geted setting, various attacks are more robust under the untargeted setting. In additive disturbances
settings, the standard deviation of GSB is increased to 3, the contrast is set to 5%, the brightness
is set to 5%, and the JPEG compression rate is set to 10%. In non-additive disturbance settings,
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Table 8: Robustness of various untargeted attacks on ImageNet under non-additive disturbance.

ASR (%) \ VGG19 \ ResNet34 \ ViT

Disturbance Types — RS RT PT CB | RS RT PT CB | RS RT PT CB
Attacks Types |

PGD|Madry ctal)2017) | 60.9 938 906 90.1 | 599 786 703 672 | 568 859 77.6 786
MLFGSMDong ct al[(3018) | 740 943 943 953 | 73.4 9Ll 87.5 849 | 677 943 938 917
DTA [Yang et al.|(2023} 766 979 90.6 969 | 734 90.6 89.6 89.6 | 719 984 958 94.3
GRA Zhu ot al.[(2003a) 609 880 875 90.1 |57.8 729 672 688|542 792 724 78.1
PGN{Ge et al.|(2023) 854 979 948 1000 | 77.1 948 938 958 | 813 97.9 979 97.9
SMI-FGRM|Han et al[2023) | 84.4 99.0 964 100.0 | 839 974 917 969 | 844 97.5 990 972
DIM Xic et al.[(2010} 850 974 948 995 | 839 964 Ol.1 984 | 823 960 932 894
TIM Dong et al. |(2019) 875 958 938 969 | 839 90.6 927 917 | 818 958 948 97.4
BSRWang ot al|(2024a) | 760 99.0 927 990 | 802 995 948 97.9 | 87.0 984 967 96.5
PGD+EOT Athalyc ot al|3018) | 87.5 875 87.5 917 | 729 77.1 927 954 | 792 89.6 87.5 833
IGSA (ours) 885 99.0 964 100.0 | 83.9 979 953 984 | 872 995 994 98.1

the image scaling factor is 0.5, the rotation angle is set to 45 degrees, and the perspective distortion
coefficient is set to 0.75. The experimental results show that in the untargeted attack experiments,
the proposed IGSA is more robust than other attacks under various unknown disturbances.

Table 9: Robustness of various untargeted attacks on CIFAR-10 under additive disturbance.

ASR (%) \ VGG19 \ ResNet34 \ ViT
Disturbance Types — GSB CTRS BRT JPEG | GSB CTRS BRT JPEG | GSB CTRS BRT JPEG
Attacks Types |

None 250 150 150 300 | 367 133 167 500 | 467 133 133 633
PGD[Madry etal.|2017) | 90.6 90.6 90.6 89.8 | 742 844 891 733 | 700 867 767 433
MI-FGSM[Dong et al.|(2018) | 93.8 90.6 90.6 90.6 | 79.7 859 90.6 656 | 828 906 77.5 625
DTA [Yang et al.[(2023] 938 89.1 906 875 | 766 859 90.6 734 | 828 90.6 875 64.1
GRA[Zhu et al.|(2023a) 906 906 89.1 906 | 828 859 922 719 | 844 891 759 609
PGN[Ge et al.|(2023) 930 906 930 922 | 750 844 922 594 | 844 906 79.1 641
SMI-FGRM[Han et al.|(2023) | 938 90.6 914 906 | 680 844 883 656 | 813 906 828 625
DIM [Xie et al.|(2019) 984 906 938 938 | 875 805 867 733 |89.1 90.6 875 708
TIM[Dong et al. (2019} 945 898 930 945 | 892 852 891 742 | 90.6 89.1 896 688
BSR[Wang et al.|(2024a) | 93.8 898 90.6 914 | 742 844 883 664 | 875 844 843 500
IGSA (ours) 1000 914 938 950 | 90.6 867 950 80.5 | 90.6 950 90.6 733

Table 10: Robustness of various untargeted attacks on CIFAR-10 under non-additive disturbance.

ASR (%) \ VGG19 \ ResNet34 \ ViT

Disturbance Types — RS RT PT CB |RS RT PT CB|RS RT PT CB
Attacks Types |

None 150 350 250 200 | 333 333 467 400|567 400 600 56.7
PGD|Madry etal.|(2017) | 90.6 844 87.5 87.5 | 700 734 800 767 | 500 719 767 80.0
MI-FGSM[Dong et al.[(2018) | 87.5 93.8 875 938 | 609 750 734 844 |641 781 859 B89.1
DTA [Yang et al.|(2023} 89.1 844 938 906 | 64.1 734 906 844 | 688 781 90.6 906
GRA [Zhu et al.|(2023a) 89.1 906 906 87.5 | 683 783 875 908|703 797 90.6 959
PGN/Ge et al.|(2023) 89.1 953 930 89.1 | 641 719 844 859|672 797 875 969
SMI-FGRM Han et al.|(2023) | 90.6 938 938 875 | 641 781 828 859|703 750 89.1 953
DIM[Xie et al.|(2019} 898 938 914 914 | 688 766 859 89.1 |703 781 859 096.1
TIM [Dong et al.|(2019) 906 953 938 914 | 734 750 875 922|742 766 8383 900
BSR[Wang et al.|(2024a) | 87.5 914 90.6 883 | 64.1 734 719 813|656 719 875 906
IGSA (ours) 953 953 100.0 100.0 | 719 78.1 90.6 922|703 80.0 90.6 98.0

B.2.2 EXPERIMENTS ON THE CIFAR-10 DATASET

We conduct extended experiments on the CIFAR10 dataset. In the untargeted attacks on CIFAR10
under additive disturbance, as shown in Table El, IGSA reaches the highest ASR across different
disturbance types for various models such as VGG19, ResNet34, and ViT-base. For instance, when
dealing with JPEG compression in the VGG19 model, IGSA achieves an ASR of 95.0%, far exceed-
ing the values of other attacks. In the non-additive disturbance experiments for untargeted attacks
on CIFAR10, as shown in Table[10} IGSA also shows remarkable robustness. It can achieve 100.0%
ASR in some cases, such as for PT and CB in the VGG19 model. This indicates that IGSA can
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effectively resist significant image transformations without losing its attack ability. In the targeted
attack scenarios on CIFAR10, whether it is under additive disturbance, as shown in Table or
non-additive disturbance, as shown in Table[I2] IGSA again demonstrates its superiority.

Table 11: Robustness of various targeted attacks on CIFAR-10 under additive disturbance.

ASR (%) | VGG19 | ResNet34 | ViT
D‘i“rbance Types — GSB CTRS BRT JPEG | GSB CTRS BRT JPEG | GSB CTRS BRT JPEG
ttacks Types |
None 333 600 500 333 | 333 467 400 333 | 300 600 400 20.0
PGD|Madry etal |(2017) | 233 433 333 533 | 600 733 833 634 | 967 900 967 767
MI-FGSM{Dong et alJ2018) | 234 40.6 406 308 | 60.8 750 717 292 | 60.8 79.7 717 292
DTA [Yang et al.|(2023} 217 359 375 292 | 558 808 767 442 | 547 781 134 267
GRA[Zhu et al.|(2023a) 250 422 406 275 | 438 578 641 313 | 656 766 766 422
PGN[Ge et al.|(2023) 344 578 531 390 | 625 625 625 438 | 750 813 734 453
SMI-FGRM|Han et al.|(2023) | 20.0 500 40.8 292 | 484 617 719 438 | 734 797 766 484
DIM[Xie et al.|(2019} 225 450 417 308 | 208 575 667 275 | 358 703 672 317
TIM [Dong et al.|(2019} 234 484 438 266 | 300 825 800 325 | 422 859 875 313
BSR[Wang et al.|(2024a) | 46.9 563 594 469 | 692 742 742 313 | 625 781 781 375
IGSA (ours) 992 992 993 993 | 992 994 996 993 | 993 99.6 99.6 992

Table 12: Robustness of various targeted attacks on CIFAR-10 under non-additive disturbance.

ASR (%) | VGG19 | ResNet34 | ViT
Disturbance Types — RS RT PT CB|RS RT PT CB|RS RT PT CB
Attacks Types |
None 500 500 433 500 | 733 700 700 70.0 | 833 800 867 767

PGD Madry et al.|(2017) 66.7 66.7 634 67.1 | 533 533 235 64.1 | 467 76.6 433 833
MI-FGSM|Dong et al.[(2018) | 70.3 734 719 76.6 | 719 688 54.7 719 | 563 71.7 642 750

DTA |Yang et al.|(2023) 734 781 813 750 | 734 688 64.1 750|825 842 833 89.1
GRA [Zhu et al.|(2023a) 703 734 734 750|531 750 625 672|859 875 833 933
PGN|Ge et al.|(2023) 625 64.1 609 64.1 | 500 688 50.0 563|672 859 76,6 859
SMI-FGRM Han et al.|(2023) | 78.1 76.6 82.8 76.6 | 492 70.0 642 683 |53.1 844 719 875
DIM [Xie et al.|(2019) 734 734 750 766 | 69.2 717 71.7 800 | 594 859 828 844
TIM Dong et al.|(2019) 672 734 719 734|563 609 703 64.1 | 867 825 825 883
BSR|Wang et al.|(2024a) 484 469 500 53.1 563 609 594 578|500 734 719 734
IGSA (ours) 875 938 875 938 | 8.9 938 891 875|875 859 844 938

Some recent works study how to generate adversarial perturbations for the physical world. Their
adversarial samples can remain effective under various disturbances in the physical world, such
as reshooting, rotation, scaling, and brightness changes. In Table [I3] we compare IGSA with the
SOTA physical world attacks. The experiment is carried out using Inception-v3 on the Cifar-10
dataset under the setting of untargeted attacks. The experimental results show that IGSA achieves
the best ASR without any prior knowledge about the disturbance.

B.2.3 VisUAL COMPARISON OF ADVERSARIAL SAMPLES

In Figure 5, we present the adversarial samples generated by various attacks and the performance of
these adversarial samples after being subjected to combined disturbances. It can be seen that under
the same perturbation intensity, which is uniformly set to 8/255, the adversarial perturbations of
IGSA are less noticeable than those of other methods. This endows the adversarial samples of IGSA
with stronger stealthiness.

C THEORETICAL EXTENSION FOR NON-CONVEX CONDITIONS

In this section, we extend Theorem 2 to non-convex loss landscapes. As noted by |Liu et al.|(2020a),
adversarially trained models may converge to sharper minima, which makes local convexity a strong
assumption. We provide a generalized theorem and experimental verification.
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Table 13: Robustness of physical-world attacks on the CIFAR-10 dataset under disturbances.

ASR (%) \ additional \ non-additional
Disturbance Types — RS RT PT CB |GSB CTRS BRT IJPEG
Attacks Types |

RPA [Zhang et al.|(2022 750 729 688 833 | 8.4 792 813 854
VMI-FGSM|Wang & He[(2021) | 80.5 50.0 500 889 | 778 805 805 86.1
AI-FGSM |Zou et al. |(20 86.0 89.0 8.0 770|800 770 79.0 77.0

AutoAttack [Croce & Hem|[(2020) | 592 939 92.1 470 | 674 653 673 633
ILPD|CT et al. 39.0 250 245 286 | 245 266 407 286
TAIG@%%} 91.0 909 921 674 | 712 800 716 716
ours 946 979 985 979 | 875 958 917 979

Original image Adversarial image Additive trans.

= - = v . a X
IGSA (ours) ASR: 100.0% ASR: 94.9% ASR: 70.7%

Figure 5: Qualitative analysis on the CelebA dataset under additive and non-additive disturbance.

C.1 GENERALIZED THEOREM FOR NON-CONVEX LANDSCAPES

Theorem 6 (Revised Theorem 2: Non-Convex Case) Let ¢* be a local extremum point in the
neighborhood B(0,1). For a sampled disturbance ¢ ~ B(0,r), define the angle 0, between the
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Original image

Adversarial image Additive trans.
bk ] / A' e / o |
1y,

Non-additive trans.

IGSA (ours) ASR: 100.0% ASR: 95.8% ASR: 35.4%

Figure 6: Qualitative analysis on the ImageNet dataset under additive and non-additive disturbance.

gradient and the extremum direction as:

(VoC'(z+6+6), 6" — ¢)
IVeCHl - ll¢* — ¢l

cosfy =
Then the IGS update satisfies:

Ih(6) = "Il = llé — &" | - /1 — 2ncos b, + 2
where n = ||V ,C||/||¢* — ¢||. Moreover, when cos 0, > 1/2, we have ||h(¢) — ¢*|| < ||¢ — ¢*|.

Proof 6 Starting from the definition h(¢) = ¢ + V,C":
1h(¢) = &* 11> = llé — 6" + VC'II* = ll¢ — ¢"[|* + 2(d — ¢*, Vo C*) + [ V4 C*|1%.
Substituting the inner product relation:

(6= 0", VoC') = —llp — ¢"|| - [[VC"| cos 0,
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we obtain:
Ih(¢) = 61> = [l — ¢"|I*(1 — 2n cos b + 7°).
Taking square roots gives the main result. The inequality ||h(¢) — ¢*|| < ||¢ — ¢*|| holds when:

1—2ncos€¢+n2<1 <= cosby >n/2. O

Remark 6 Theorem [6] shows that IGS still reduces distance to ¢* when the gradient direction is
sufficiently aligned with ¢* — ¢ (cos 0, > n/2). This condition holds frequently in practice (verified
below), making IGS effective even in non-convex landscapes.

C.2 EXPERIMENTAL VERIFICATION OF cos 9¢ DISTRIBUTION

We empirically measured cos 64 using adversarially trained models on CIFAR-10 and ImageNet
datasets:

* CIFAR-10: ResNet-50 model trained with PGD adversarial training ({.-norm, ¢ = 8/255)
« ImageNet: ResNet-152 model trained with TRADES adversarial training (¢,-norm, ¢ = 4,/255)

For each dataset, we randomly selected 1000 samples. To find local extrema ¢* in non-convex
landscapes, we initialized 5 random points within B(0,r), performed 1000-step gradient descent
from each starting point, and selected the ¢* achieving the highest C* value. We then computed:

(VoC' 0" — ¢)
IV CE| - [lo* — 4]

cosby =
Results in Table[14] show:

Table 14: Distribution of cos 64 on adversarially trained models

Dataset | Model | E[cosfy] | P(cosby > 1/2)
CIFAR-10 | ResNet-50 0.68 92.7%
ImageNet | ResNet-152 0.72 94.1%

C.3 EFFICIENCY RATIO ANALYSIS

The efficiency ratio between EOT and IGS under non-convex conditions is:

ngor _ (E[lh(¢) — "1\
nigs ( Efl¢ — ¢*|] )

(36)

proof:

From Theorem 1, the expected approximation error for a sampling method decreases as n~1/™

where n is the number of samples. Specifically for EOT:

-1
Egoslld — 67| < ¢ ngol™

where c is a constant depending on the dimension m. Similarly for IGS:
* —1/m
Egsllh(0) = °l| < ¢ migy

To achieve the same error bound €, we set:

—1/m E’Hh(¢) ¢*|| —1/m
c-n =e=——"2_""".¢c.n
EOT EH¢ ¢*H 1GS

Solving for the ratio:
—1/m _ El[h(¢) = &I —1/m
n = ———n
EOT EH(ZS_QS*H IGS
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TEOT _ (E|h(¢) - ¢*|>_m O
NIGs Ell¢ — o*||

Calculation for CIFAR-10:
Using experimental mean values n = 8.2 x 1072 and E[cos 6] = 0.68:

Efll7(¢) — ¢*]

~1— nE cosf,] =1 —0.005576 = 0.994424
Ellé— 411 [c0s B

For input dimension m = 32 x 32 x 3 = 3072:

TEOT

= (0.994424) 73072 ~ 2.88 x 107

niGs

Remark 5 Egq. equation@shows IGS maintains exponential efficiency gains (~ (1 — ncos6)~™)
even without convexity. The alignment term cos 04 plays a crucial role: better gradient alignment
(higher cos 04) leads to greater efficiency gains.

C.4 EXPERIMENTAL EFFICIENCY COMPARISON

Table [I5] compares IGS and EOT on adversarially trained ImageNet models (ResNet-152 with
TRADES training) at 95% attack success rate (ASR) threshold:

Table 15: Attack Success Rate (ASR) comparison on adversarially trained ImageNet models
Method | ASR @ 20 samples | ASR @ 100 samples | Samples to 95% ASR

EOT 34.2% 78.5% 320
IGS (ours) 89.7% 98.3% 15

Our analysis demonstrates that: (1) Under non-convex conditions, IGS reduces ||¢ — ¢*|| when
cosfy > n/2 (validated for ;92% of samples across datasets); (2) The efficiency ratio ngor/nics
scales exponentially with dimension m, preserving IGS’s sampling advantage; and (3) Practical
efficiency gains (21 x on ImageNet) remain substantial despite theoretical-empirical gaps. These
results confirm IGS effectively addresses limited sampling coverage, even for adversarially trained
models with non-convex loss landscapes. The observed efficiency gap (theoretical 107 vs. practical
21x) stems from non-global extrema, sampling correlation, and gradient estimation errors, yet IGS
maintains significant practical advantages.

D ANALYSIS OF FEATURE-SPACE STABILITY

Typical classification models can be decomposed into a two-stage process: feature embedding fol-
lowed by classification. The feature embedding stage captures common features across similar
images. Images sharing semantic content (such as an image before and after transformations) ex-
hibit similar feature representations in the embedding space. This property enables natural images
to maintain consistent classification results under various image transformations.

However, adversarial samples typically deviate from the natural data distribution. Their feature rep-
resentations exhibit significant variation under image transformations, leading to the failure of ad-
versarial attacks. The proposed IGSA addresses this limitation by enforcing feature-space stability.
It ensures that adversarial samples maintain similar feature representations under image transfor-
mations, thereby preserving their adversarial efficacy. Next, we provide a formal explanation and
experimental validation.

D.1 FORMAL DEFINITIONS

Let f : R™ — R be a classifier decomposed into:

f(@) = c(e(x)) 37)
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where e : R™ — R is the feature extractor and ¢ : R? — R is the classifier head.
For natural images x ~ Pp and transformation 7', we observe:
le(x) — e(T(x))ll2 < er (38)
where e quantifies the model’s inherent transformation tolerance.
Traditional adversarial examples x,qy exhibit:
le(Zaav) — e(T'(Zaav))ll2 > er 39)

due to their deviation from Pp. In contrast, IGSA enhances the stability of adversarial examples in
the feature space by increasing their likelihood within the data distribution Pp:

le(waae™) — e(T(waqy™ )2 ~ er. (40)

adv adv

We provide the following experimental verification.

D.2 EXPERIMENTAL VALIDATION

D.2.1 FEATURE DISTANCE ANALYSIS

Table 16: Feature Space Displacement Under Transformations
Attack | Blur Noise JPEG Brightness

PGD 187 223 15.2 12.6
EOT 141 175 11.8 9.3
IGSA (ours) | 6.8 84 51 4.7

Our experiments demonstrate IGSA’s superior stability across transformations. Quantitative analysis
using ResNet-50’s penultimate layer features shows IGSA achieves 63-73% reduction in feature
displacement (Agy = |le(x) — e(T'(x))]|2) compared to PGD and 52-58% reduction versus EOT,
with final displacements (A, &~ 4.7 — 8.4) approaching natural image variation levels (e =~ 4.2).
This confirms IGSA’s success in maintaining feature-space consistency under perturbations.
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